
A multistage-graph based procedure for solving a just-in-time flexible
job-shop scheduling problem with machine and time-dependent

processing costs

Albert Corominasa, Alberto García-Villoriaa*,

Néstor-Andrés Gonzálezb, Rafael Pastora

a Institute of Industrial and Control Engineering. Universitat Politècnica de Catalunya. Av. Diagonal
647, 11th fl., 08028 Barcelona, Spain.

b Research Group on Industrial Automation. Universidad del Cauca. Popayán, Colombia.

Abstract. This paper deals with a new flexible job-shop scheduling problem in which the
objective function to be minimised is the sum of the earliness and tardiness costs of the
jobs and the costs of the operations required to perform the jobs, the latter depending on
the machine and the time interval in which they are performed (as happens in many
countries with the costs of electric power or those of manpower). We formalise the
problem with a mathematical model and we propose a heuristic procedure that is based
primarily on constructing a multistage graph and finding in it the shortest path from the
source to the sink. We also describe the generation of the data set used in an extensive
computational experiment and expose and analyse the obtained results.

Keywords: scheduling; flexible job-shop problem; just-in-time; heuristics

1. Introduction

The job-shop problem (JSP) is an NP-hard problem (Garey et al., 1976) in which n jobs
must be performed using m machines. Each job consists of an ordered set of operations,
each operation has to be executed in one previously specified machine and the
processing times are known. The problem consists in finding a feasible schedule of the
operations that optimises some measure of the quality of the solution (the makespan,

maxC , being the most usual).

The flexible job-shop problem (fJSP) differs from the JSP in that each operation can be
performed in any machine of those belonging to a specific subset associated with the
operation. Therefore, the JSP is a particular case of the fJSP in which the subsets of
machines contain a single element.

Hence, the fJSP involves two subproblems: that of assigning machines to the operations
and that of sequencing the operations (Armentano et al., 2004). As the latter is a JSP,
fJSP is at least as hard as JSP.

The problem addressed in this paper is a generalization of the real problem of
scheduling that we had occasion to analyse in some manufacturing plants of compound
feed. In many real situations, there is a due date for each job (the desired moment to
complete the job) and the costs of the operations depend on the time interval in which
they are performed. For instance, this may be due to a higher pay-rate for the workforce

* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering, Av. Diagonal 647 (Edif. ETSEIB),
11th floor, 08028 Barcelona, Spain; tel.: +34 93 4010724; e-mail: alberto.garcia-villoria@upc.edu.

Page 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185527414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

during the night shifts or to dependency on the hours of the day of the electricity
charges (for example, a rate for the valley hours and a higher one for the peaks). These
cost differences, depending on the time in which tasks are performed, are very relevant
in many industries, such as those in which the cost of electricity is a significant part of
total costs, as happens, for instance, in the manufacture of compound feed for livestock.
Of course, the cost of performing a task may depend also on the machine to which it is
assigned.

According to this, we adopt as the objective function of the problem the sum of the
costs of the deviations relative to the due dates (earliness and tardiness) and the machine
and time dependent costs of the operations. At the best of our knowledge, this variant of
the fJSP has not been dealt with before.

The layout of the rest of the paper is as follows. Section 2 outlines the state of the art
concerning the fJSP. Section 3 describes the specific variant of the fJSP dealt with in
this paper and it is modelised with a binary integer programming (BIP) model. Section 4
is dedicated to a heuristic proposed procedure for solving the problem. Section 5 gives
an account of the computational experiment. Lastly, Section 6 contains the conclusions
and some ideas for future work.

2. State of the art

A detailed state of the art of the fJSP can be found in Fattahi et al. (2007). The first
paper tackling the fJSP is Brucker and Schlie (1990), in which a polynomial algorithm
is proposed to solve the fJSP with two jobs.

Concerning the criteria to be optimised, maxC (makespan) is adopted, for instance, in
Dini and Rossi (2007), Ham et al. (2011) and Ziaee (2013). Other papers (Scrich et al.,
2004) use tardiness or an aggregate of earliness and tardiness (Akyol and Bayhan, 2005;
Wu and Weng, 2005).

Recently, it is usual to consider the fJSP as a multiobjective problem, as in Zhang et al.
(2009). Loukil et al., (2007), Saad et al. (2008), Gholami and Zandieh (2009), Li et al.
(2010), Chen et al. (2012), and Gao et al. (2014) take into account earliness and
tardiness among the criteria they adopt. Jiang et al. (2014) includes energy
consumption, under the assumption that it is machine depending. Energy consumption
is, too, one of the criteria considered in Liu and Tiwari (2015) and in He et al. (2015).

The consideration of the costs of performing the operations is not usual in the
scheduling literature, since it is assumed, often implicitly, that they only depend on the
operation and not on the machines where it is processed or on the time when it is
performed. Several studies take into account only setup times/costs (Allahverdi, 2015).
Minimising energy consumption is related to minimising costs, but is not equivalent,
because price may depend on time, as happens with electricity when tariffs are time
sensitive (time-of-use ─TOU─ electricity prices). As it is pointed out in Zhang and
Chiong (2016), the consideration of TOU tariffs is a new research direction in
production scheduling. Luo et al. (2013) deals with a multi-objective hybrid flow shop
scheduling problem in which electric power cost with the presence of TOU tariffs is
considered. In Moon et al. (2013), which also assumes TOU prices, the objective is to
minimise the weighted sum of makespan and electricity cost. Zhang et al. (2014)

Page 2

proposes a mixed integer programming (MIP) model to find, in a flow shop setting,
manufacturing schedules that minimise carbon footprint and electricity cost, under TOU
tariffs.

Concerning the solution procedures for the general case (with a number of jobs greater
than two), two approaches, hierarchical and integrated, have primarily been used. In the
hierarchical approach, the two subproblems (assigning machines to operations and
sequencing the operations) are dealt with separately. Integrated approaches, on the other
hand, tackle assignment and sequencing simultaneously.

Regarding the hierarchical approach, Brandimarte (1993) was the first to adopt it, using
tabu search. Arkat et al. (2009) use simulated annealing and compare the results with
the optimal solutions obtained using branch-and-bound. De Giovanni and Pezzella
(2010) use a hierarchical procedure that combines a genetic algorithm with local search
procedures.

The integrated approach is adopted by Hurink et al. (1994) and by Dauzère-Pérès and
Paulli (1997), who use tabu search. Mastrolilli and Gambardella (2002) present two
local optimisation procedures that improve the technique proposed by Dauzère-Pérès
and Paulli (1997). Hmida et al. (2010) use discrepancy search, and Thammano and Phu-
ang (2013) use a hybrid artificial bee colony algorithm. Gao et al. (2014) solve the fJSP
using the so-called discrete harmony search algorithm and Gao et al. (2015) use the
same approach considering fuzzy processing times. González et al. (2015) apply path
relinking and tabu search in the frame of scatter search. Fattahi et al. (2009), Roshanaei
et al. (2013) and Birgin et al. (2014), propose mixed integer linear programming
(MILP) models to optimise fJSP.

Summing up, regarding the types of problems treated in the literature, there are papers
that consider earliness and tardiness as criteria to optimise in the fJSP and others,
dealing with different scheduling problems, which take into account machine or time
dependent costs. However, to the best of our knowledge there is no published work on
the fJSP with the objective function considered in the present paper, i.e., the sum of the
costs of earliness and tardiness and the costs of performing the operations, dependent on
the machine and on the time interval in which the operations are processed.

3. Description and formulation of the problem

First, we describe the problem dealt with in this paper (Subsection 3.1). Then, we
formalise it with a binary integer programming (BIP) model (Subsection 3.2). The
model is useful for a formalisation purpose and for obtaining benchmark solutions of
small instances as well.

3.1. Description of the problem

In the following, we present the specific variant of the fJSP dealt with in this paper, in
which n jobs ()1,...,j n= must be performed using m machines ()1,...,i m= . Each job

j consists of an ordered set of jh operations, where jhO ()1,..., ; 1,..., jj n h h= =
denote the h -th operation of job j . Each operation has to be performed in any machine

Page 3

of those belonging to a specific subset associated with the operation, jhM

()1,..., ; 1,..., jj n h h= = . Processing operation h of job j ()jhO in machine i

()jhi M∈ requires a predetermined processing time, ijhp , and a predefined amount of a

resource, such as energy, ijhP ()1,..., ; 1,..., ;j jhj n h h i M= = ∈ . Moreover, each job j

has a release date (earliest start date), jr .

The problem consists in finding a feasible schedule of the operations that minimises the
sum of the costs of earliness and tardiness of the n jobs, with respect to their due date

jd ()1,...,j n= , and the costs of performing the operations, dependent on the machine
and on the time interval in which the operations are processed (Eq. 1). Concerning the
costs corresponding to deviations from the due date, we have assumed that they are
linear and quadratic relative to earliness and tardiness, respectively (however, these
assumptions can be modified without altering the structure of the proposed algorithm).
Regarding the costs of performing the operations, to fix ideas hereinafter we will
identify them with those of the electrical energy required to process the operations on
the machines (to adapt the procedure to other kinds of costs depending on the machines
and on the time interval it suffices to change the terminology).

 () ()
1

 []
=

 = + + ∑
n

E j T j j
j

MIN z C E C T U (1)

Therefore, the objective function includes three kinds of variables:

• The earliness cost of job j with respect to its due date jd :

 () ·δ=E j j jC E E (2)

where ()max 0,= −j j jE d c is the earliness, jc is the completion time of job j

(i.e., the instant when the last operation
jjhO is finished), and jδ ()0≥jδ is the

parameter that specifies the linear relation between the earliness and its cost.

• The tardiness cost of job j with respect to its due date jd :

 () 2β γ= ⋅ + ⋅T j j j j jC T T T (3)

where ()max ,j j jT c d= −0 is the tardiness, jβ ()0>jβ and jγ ()γ δ≥j j are
the coefficients that specify the quadratic cost function of the tardiness of job j ;
we assume that ≥j jγ δ to enforce that for any given value of the discrepancy
from the due date, the earliness cost is lower than the tardiness cost.

• jU is the cost of the energy required to produce job j :

()

1=
=∑

j

jh

h

j i jh
h

U U (4)

Page 4

()

()() ()
1= Ω ⋅ + −Ω ⋅ ⋅

jh jh

V P
i jh jh jh i jhU C C P (5)

where ()jhi ()()∈ jhjhi M is the machine to which operation h of job j ()jhO

has been assigned;
()jhi jhU corresponds to the cost of the energy required to

process operation jhO on machine ()jhi ; Ω jh and ()1−Ω jh indicate the

proportion of operation jhO processed during the valley and the peak hours,
respectively; VC and PC are the unit costs of energy at valley and peak hours,
respectively; and

()jhi jhP is the energy required to process operation jhO on

machine ()jhi .

Next, there is a summary of the assumptions of the solved problem:

1. The sequence of operations for each job is fixed.
2. There are no precedence constraints among operations of different jobs.
3. Each machine can process at most one operation at a time.
4. The time is discretised in regular intervals. Without loss of generality, all times are

considered multiple of the time intervals.
5. The operations cannot be interrupted.
6. There is unlimited buffer space between the machines.
7. For each job j the release date, jr , is also known.
8. Ideally, each job j should be completed on its due date jd .
9. The set-up times are independent of the sequence and are included in the processing

times of the jobs.
10. The initial availability of the machines is known and it is defined by the set of time

intervals, iQ , at which machine i ()1,...,i m= is initially occupied by previously
scheduled operations.

11. Each machine i requires a predefined amount of energy, ijhP , to process each
operation jhO .

12. The costs of processing the operations depend on the machine and on the time
interval in which they are performed.

Assumptions 1 to 6 are common in scheduling problems and compatible with the real
problem underlying that we are dealing with in this article. Accepting the possibility of
releasing dates different from 0 is less usual, because it adds difficulty, but it overcomes
the rigidity of imposing that all of them are null. As the unavailability of the machines
during some periods is seldom considered, assumption 10, which is essential in many
real settings, contributes also to make the formalization of our problem more general.
Assumptions 11 and 12, as well as the objective function, for which the consideration of
due dates is essential, distinguishes the fJSP considered in this work from previous
fJSPs. Assumption 9 is somehow restrictive, since it does not fit in many real settings;
although the heuristic algorithm that we propose could be adapted straightforwardly to
take into account sequence dependent set-up times when computing the completing
times of the operations, their consideration in the mathematical programming model and

Page 5

in the Step 1 (Section 4.1) of the heuristic requires further research, as we point out in
Section 6.

3.2. A BIP model

Ku and Beck (2016) compare four mathematical models for the JSP with the objective
of minimising the makespan. The best one is called disjunctive MIP model because of
the way in which the time-overlapping of the operations in the machines is avoided.
Thus, the model that we propose also uses disjunctive non-overlapping constraints. The
model is formulated as follows:

Additional data

ijhT set of integer times in which operation jhO can start on machine i tacking into
account the release dates of the jobs (jr) and the initial occupancies of the
machines (1,...,j n= ; 1,..., jh h= ; jhi M∈).

ijhtc cost associated with the start of operation jhO on machine i at time t
(1,...,j n= ; 1,..., jh h= ; jhi M∈ ; ∈ ijht T). If operation jhO is not the last
operation of job j (1jh h≤ −), ijhtc is only the energy cost of performing jhO at
machine i starting at time t ; otherwise (jh h=), ijhtc is the energy cost of
performing jhO at machine i starting at time t plus the earliness or tardiness
cost of the discrepancy between jd (due date) and ijht p+ (completion time of
job j).

ijhV big enough value used in Eqs. 9 and 10: max
ijh

ijh ijh t T
V p t

∈
= +

Variables

{ }0,1ijhtx ∈ 1 if operation jhO is started at instant t on machine i (1,...,j n= ;
1,..., jh h= ; jhi M∈ ; ∈ ijht T); 0 otherwise

{ }0,1ijhz κi ∈ auxiliary variables to ensure that operations jhO and Oκι are not
scheduled on machine i at the same time (1,...,j n= ; 1,..., jh h= ;

1,...,κ = +j n ; 1,..., hκι = ; jhi M Mκi∈ ∩). If operations jhO and Oκι are
performed in the same machine then ijhz κi is 1 if jhO is performed before
operation Oκι and 0 otherwise; if jhO and Oκι are performed in different
machines then the value of ijhz κi is irrelevant.

Model

1 1
[MIN]

j

jh ijh

hn

ijht ijht
j h i M t T

c x
= = ∈ ∈

⋅∑∑ ∑ ∑ (6)

1
jh ijh

ijht
i M t T

x
∈ ∈

=∑ ∑ 1,...,j n= ; 1,..., jh h= (7)

Page 6

()
, 1 , , 1

, , 1 , , 1,
jh ijh j h i j h

ijht i j h i j h t
i M t T i M t T

t x t p x
− −

− −
∈ ∈ ∈ ∈

⋅ ≥ + ⋅∑ ∑ ∑ ∑ 1,...,j n= ; 2,..., jh h= (8)

()
ijh i

ijht i i t i ijh
t T t T

t x t p x V z
κi

κi κi κi κi
∈ ∈

 
⋅ ≥ + ⋅ − ⋅ 

 
∑ ∑

 1,...,j n= ; 1,..., jh h= ; 1,...,j nκ = + ; 1,..., hκι = ; jhi M Mκi∈ ∩ (9)

() ()1
i ijh

i t ijh ijht ijh ijh
t T t T

t x t p x V z
κi

κi κi
∈ ∈

 
⋅ ≥ + ⋅ − ⋅ −  

 
∑ ∑

 1,...,j n= ; 1,..., jh h= ; 1,...,j nκ = + ; 1,..., hκι = ; jhi M Mκi∈ ∩ (10)

The objective function (6) states the minimisation of the total cost. Constraints (7)
impose that each operation starts once and is scheduled on one machine. Constraints (8)
impose that all operations of a job are performed in the right order. Finally, constraints
(9) and (10) ensure that two operations cannot be performed on the same machine at the
same time.

4. A heuristic procedure for solving the problem

Next, we present the structure of the developed solution procedure, which can be
considered as an integrated approach (Section 2). The heuristic procedure, named
HeufJSP, consists of two sets of iterations. In the first one (lines 1 to 5 of Figure 1),
which may be seen as the diversification phase of the algorithm, two steps are repeated
for different values of parameter ζ ()0 1≤ ≤ζ . At the first step, a job sequence is
obtained; at the second one, when the jobs have been ordered in a sequence, an optimal
schedule of the operations of each job is obtained constructing a multistage graph and
finding in it the shortest path from the beginning to the end. Once the better value, *ζ ,
of the parameter ζ is obtained, a second round of iterations is performed (lines 6 to 10
in Figure 1), in order to intensify the search in a neighbourhood of *ζ .

Page 7

Algorithm HeufJSP

ζ : parameter
*ζ : ζ value from which the best solution is obtained in the first loop
1
ζ

∆ , 2
ζ

∆ (2 1
ζ ζ

∆ < ∆): increase values of parameter ζ

ϒ , Z : current solution and its value, respectively
*ϒ , *Z : best obtained solution and its value, respectively

0 * = ∞Z
1 For (0ζ = ; 1≤ζ ; 1

ζ
ζ ζ= + ∆)

2 Π = Initial_Job_Sequence ()ζ
3 ϒ = Optimal_Schedule ()Π

4 If *<Z Z then *ζ ζ= , *ϒ = ϒ , * =Z Z End if
5 End for
6 For (()* 1max 0, 0.5

ζ
ζ ζ= − ⋅∆ ; ()* 1min 1, 0.5

ζ
ζ ζ≤ + ⋅∆ ; 2

ζ
ζ ζ= + ∆)

7 Π = Initial_Job_Sequence ()ζ
8 ϒ = Optimal_Schedule ()Π

9 If *<Z Z then *ϒ = ϒ , * =Z Z End if
10 End for

Figure 1. Structure of the developed algorithm HeufJSP

When coding HeufJSP, the following two improvements are introduced to reduce cpu
time:

- The same sequence of jobs may be obtained with different values of ζ (Subsection
4.1). However, solution ϒ is calculated only once for the set of different values of ζ
that yield the same sequence of jobs.

- Function Optimal_Schedule ()Π (Subsection 4.2) is applied from the position in
which the current job sequence Π differs from the previous job sequence (i.e., the job
sequence obtained in the previous iteration).

4.1 Step 1: Obtaining an initial job sequence

Before generating a solution, jobs j ()1,...,j n= are sorted in the non decreasing order
of their priority indexes jIP :

 ()1= ⋅ − − ⋅j j jIP D Aζ ζ (11)

where parameter ζ ()0 1≤ ≤ζ is used to prioritise the jobs, jD is the normalised due
date of job j , and jA is a normalised estimation of the energy required to process job
j .

Page 8

jD and jA are obtained as follows:
1...

max
=

= j
j

ss n

d
D

d
 and

1...
max
=

= j
j

ss n

A
λ
λ

, where
1=

=∑
jh

j jh
h

λ σ

is an estimation of the energy required to process job j , being σ
∈

= ∑
jh

ijh
jh

i M jh

P
M

 an

estimation of the energy required to process operation jhO .

Note that parameter ζ and its complement weight the importance given to the due date
and to the estimation of the energy requirements, respectively, when ordering the jobs.
For example, if ζ is equal to 1, then the jobs would be sorted according to the EDD
(earliest due date) rule.

This way of generating different orderings of the jobs captures an small but logical
subset of all possible !n orderings. The adopted approach intends to be a first
reasonable compromise between diversifying more and avoiding prohibitive computing
times.

4.2 Step 2: Obtaining an optimal schedule of each job

After a sequence of jobs is obtained, the subproblem of scheduling optimally the
operations of each job j is solved successively according to the order of the jobs in the
sequence. When scheduling the operations of a given job, the availability of the
machines is that resulting from the decisions corresponding to all the preceding jobs.
The solution indicates the start and finish times for processing each operation, as well as
the assignment of the operations to the machines.

In order to represent and solve the subproblem of assigning the operations of job j to
the machines and the timing of these operations, we propose to construct and find the
shortest path in a multistage graph. Although the calculation of the minimum path is
done as it advances the construction of graph, for the sake of clarity, we first expose
separately the process of constructing the multistage graph (Section 4.2.1) and the
process of finding the shortest path (Section 4.2.2). Then, the overall pseudocode for
obtaining the optimal schedule of job j is given (Section 4.2.3). Appendix A1
describes the process of obtaining an optimal schedule of a given job for a numerical
example.

4.2.1 Constructing the multistage graph

Given a job j , a multistage graph with 2jh + stages (from stage 0 to stage 1jh +) is

constructed. The step from stage 1h − to stage h ()1,..., jh h= corresponds to the

scheduling of operation jhO ; the step from stage jh to stage 1jh + represents the
completion of job j .

The stages of the graph, from stage 1 to stage jh , contain one or several nodes, htv ,
corresponding to the instants t at which the processing of operation jhO can be

Page 9

completed. In addition, there are two nodes that represent the beginning and end of the
graph: node α (at stage 0) and node ω (at stage 1jh +).

The arcs that link nodes at stage 1h − to nodes at the next stage h ()1,..., jh h=

correspond to the scheduling of operation jhO on a machine i ()jhi M∈ . The cost
associated with these arcs is that of the energy required to perform the operation, ijhU .

All nodes of stage jh are linked with node ω of stage 1jh + (which represents the
completion of job j). The costs associated with these arcs correspond to earliness jE
or tardiness jT with respect to the due date jd of job j .

If there are two arcs going from the same node at a stage jh h< to the same node at
stage 1h + (of course, these arcs correspond to different machines), one of them can be
omitted, according to the following rule (rule R1), which comprises two cases:

• Case R1a: If an arc has a cost greater that of another arc, the former is omitted.

• Case R1b: If two arcs have the same cost, only the arc corresponding to machine i

with the lower estimation of future workload ijhq is retained; if there is a tie, the
retained arc is that corresponding to the machine with the lower value of i .

Case R1b (that is not a dominance rule) is oriented to favour the assignment of
operations to the machine with a lower estimation of future workload. ijhq is obtained as
the processing time of jhO in machine i plus the sum of the quotients of the processing
times of the operations of the other jobs that could still be processed in machine i by
the number of machines on which each operation can be processed. Appendix A2
describes the process of calculating ijhq for a numerical example.

A rule for dominance between arcs emanating from the same node at a stage 1jh h≤ −
and leading to different nodes (rule R2) can also be applied:

• Case R2a, for arcs emanating from the same node at a stage 1jh h< − : If the cost of

an arc is not better than that of another arc and leads to a node that represents a later
point in time, the former arc is omitted, since if it were used instead of the latter the
cost of the energy would not be better and nor either would be the cost associated
with the difference between the completion time of the job and its due date For
instance, in the graph of the example given in Appendix A1 (Figure A1.1), arc

28 240,mα → is omitted because it is dominated by arc 12 60,mα → (see Appendix
A1 for the arc notation).

• Case R2b, for arcs emanating from the same node at a stage 1jh h= − and leading

to different nodes
jh tv with jt d≥ : If the cost of an arc is not better than that of

another arc and leads to a node that represents a later point in time, the former arc is

Page 10

omitted because if it were used instead of the latter, the cost of the energy
corresponding to the last operation of the job would not be better and the tardiness
cost would be worse. In the graph in Figure A1.1, arc 22240 2400,m→ is omitted
since it is dominated by arc 22240 2340,m→ .

• Case R2c, for arcs emanating from the same node at a stage 1jh h= − and leading

to different nodes
jh tv with < jt d : If the cost of an arc is not better than that of

another arc and leads to a node that represents an earlier point in time, the former
arc is omitted, since if it were used, the energy cost of performing the last operation
of the job would not better and the earliness cost would be worse. In the graph in
Appendix A1 (Figure A1.1), arc 22240 780,m→ is omitted since it is dominated by
arc 22240 1140,m→ .

The arcs omitted because of applying R2a (when the cost of the dominated arc is greater
than that of the dominant one), R2b, and R2c could not belong to an optimum path.
When dominant and dominated arcs (case R2a) have the same cost, the dominated one
can be omitted without detriment of the cost of the optimal path; the way chosen to
break the tie favours the assignments that allow completing the operations sooner.

4.2.2 Finding the shortest path

The subproblem of assigning operations to machines and the subproblem of sequencing
the operations on the machines are optimally solved, for each job j of the ordered
sequence Π , by calculating the minimum cost path, between the initial node α and the
final node ω . This process is performed simultaneously with the construction of the
multistage graph, as mentioned above.

The process to find the shortest path in the multistage graph of job j is carried out
using the expressions (12) and (13):

0 0ακ = (12)

()
1, '

' 1, '
|
minκ κ

−
−

−
∀ ∈Γ

= +
h t ht

ht h t htt
t v

c ()1,..., 1jh h= + (13)

where: 0ακ is the value of the initial node α

κht is the value of node htv

'httc is the cost of the arc that connects node ,h tv −1 to node 'htv

'
−Γht is the set of nodes at stage 1h − that are connected to node 'htv

As the least cost path is being calculated, ties may occur between arcs leading to the
same node and yielding the minimum value of the expression 1, 'h t httcκ − + . To break
these ties we use a rule R3 (that is not a dominance rule), which considers the three
following cases:

Page 11

• Case R3a, for arcs yielding to nodes at stage jh h≤ : If the tie is among arcs with the
same value associated with the source nodes, 1,h tυ − , and that correspond to the same
machine, the arc that it is retained is that emanating from the node corresponding to
the earliest time at which the previous operation , 1−j hO is completed.

• Case R3b, for arcs yielding to node ω (at stage 1jh +): The arc that will be retained is
that emanating from the node corresponding to the earliest time at which the last
operation,

jjhO , is completed.

• Case R3c, for arcs yielding to nodes at stage jh h≤ : If the tie is among arcs
corresponding to different machines, the arc that will be retained is that which
corresponds to machine i with a lower estimation of the workload, ijhq . If the tie
remains, then the arc that is retained is that emanating from the node corresponding
to the earliest time at which the previous operation , 1−j hO is completed.

Note that cases R3a and R3b favour that the operations are performed as early as
possible, whereas case R3c favours the assignment of the operations to the machines
with a possible lower future workload.

Furthermore, rule R4 concerning the relations between the nodes at the same stage
()1 1jh h≤ ≤ − can also be applied. According to this rule, if there are two nodes at the

same stage, htv and 'htv , such that 'ht htκ κ≤ and '<t t , then node htv dominates 'htv
which is eliminated.

4.2.3 Procedure for calculating the optimal schedule of a job

The overall procedure for simultaneously constructing the multistage graph and finding
the minimum path is shown in Figure 2.

Page 12

Given job j :
1 Add node α (stage 0)
2 For each stage 1... jh h=
2 For each node 1,h tv − of stage 1h −
3 Add arcs and nodes , 'h tv for ' , 2 ,...t t t= + ∆ + ⋅∆ (where ∆ is the time

unit) such as there exists at least one arc yielding to that node. If
1jh h≤ − , when an arch yielding to node , 'h tv has the lowest possible

energy cost, then no more nodes (with 't t>) are added because the
arcs to these nodes will be dominated according to rule R2. If jh h= ,
additionally it is ensured that there is at least one node , 'h tv such as

' jt d≥
4 Apply rules R1 and R2, and eliminate the nodes , 'h tv without arcs

yielding to them
5 Find the minimum cost path to nodes , 'h tv using rule R3
6 If 1jh h≤ − , eliminate nodes , 'h tv according to rule R4
7 End for
8 End for
9 Add node ω and the arcs from nodes to ω
10 Return the minimum path to ω

Figure 2. Procedure for building the graph and calculating the minimum path

5. Computational experiment

The algorithm HeufJSP was coded in Java and the computational experiment was
executed on a PC 3.16 GHz Intel Core 2 Duo E8500 with 3.5 GB of RAM. The values
of parameters 1

ζ
∆ and 2

ζ
∆ (see Figure 1) are set to 0.1 and 0.01, respectively.

In order to evaluate the heuristic, we generated and solved a set of test instances. The
generation of these instances is explained in Section 5.1. The obtained results are
discussed in Section 5.2.

5.1. Test instances

A set of 2592 instances were generated randomly. Next, we detail the characteristics of
these instances:

• m : 10, 20, 30, 40, 50, 60.
• n : 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120.
• jh : []1,10U (1,...,j n=), where [],U a b is a discrete uniform distribution between

a and b .
• jhM (set of machines that can process operation jhO ; 1,...,j n= , 1,..., jh h=). This

set is calculated as follows. For each machine i M∈ , there is a probability jpr that

Page 13

machine i can process operation jhO (probability jpr is the same for all operations
of job j) and it is ensured that jhM ≠ ∅ (i.e., jhO can be processed in at least one
machine). Probability jpr (for each job j) is generated at random and 2 scenarios

are considered: []0.1,0.4=jpr U (low versatility scenario) or []0.5,0.9=jpr U
(high versatility scenario).

• ijhp : []1,30U , []1,90U or []1,240U (processing time of operation jhO in machine
i ; 1,...,j n= , 1,..., jh h= , jhi M∈).

• ijhP : 1.1 ,1.9ijh ijhU p p ⋅ ⋅  (energy required, in kWh, to process operation jhO in

machine i ; 1,...,j n= , 1,..., jh h= , jhi M∈).

• jr : []0,359U (release date of job j ; 1,...,j n=).
• PC , VC (costs, in €/kWh, of energy at peak and valley hours, respectively): 0.15

and 0.06, respectively. Each day has 10 peak hours and 14 valley hours and the first
instant of the scheduling horizon coincides with the beginning of a peak period.

• (), ,j j jβ γ δ : ()0.02,1,0.90 , ()1 9,1,0.5 or ()0.4,1,0.2 , coefficients in the objective
function related to costs associated with the due dates of job j (1,...,j n=). Note
that these scenarios correspond to a low, medium and high ratio between tardiness
and earliness costs, respectively.

In order to generate realistic due dates and initial occupancies of the machines, the
following two mechanisms are used.

• jd (due date of job j ; 1,...,j n=). Let ins be an instance in which the values of

,m n , jh , jhM , ijhp , ijhP , jr , PC , VC , jβ , jγ , jδ and iQ have been set. Let
1insAux an auxiliary instance in which the values of the aforementioned data, except

those of jr , PC , VC and jβ , have been set to the values of instance ins ; in
1insAux , the release dates and energy costs are set to 0, and jβ values are set to a

very big value. The idea is that the jobs are scheduled as soon as possible when
insAux is solved with the proposed heuristic with 0ζ = . Let je be the instant in
which job j is finished in the obtained solution. The due date of job j of instance
ins is calculated as []{ }()max , 0.05 ,2= + − ⋅ ⋅j jd TIM e U TIM TIM , where []x

returns the integer value closest to x and TIM is the expected value of the total
processing time of a job; that is, TIM is the product of the expected number of
operations and the expected processing time of an operation.

• iQ (initial occupancy of machine i ; 1,...,i m=). Let ins be the instance to generate
in which iQ i=∅ ∀ (i.e., all machines are fully available from the initial instant)
and the values of m , n , jh , jhM , ijhp , ijhP , jr , PC , VC , jβ , jγ and jδ have
been set. Let 2insAux an auxiliary instance in which the values of the
aforementioned parameters, except those of jr , have been set to the values of
instance ins ; the release dates of the jobs of 2insAux are set to 0 (i.e., the jobs are
available from the start). First, the due dates of the jobs of 2insAux are set using the
mechanism described above. Then the proposed heuristic with 0.5ζ = is applied to

Page 14

solve 2insAux . Finally, the initial occupancies of the machines of ins are set to the
occupancies of the obtained solution of 2insAux (according to the assignment of the
operations to the machines).

For each combination of the parameters, 2 instances are generated, giving a total of
2592 test instances. All instances are available at https://www.ioc.upc.edu/EOLI
/research/.

5.2. Results

All test instances were solved with the algorithm HeufJSP. For each one, the cpu time,
the costs (differentiating energy and deviation from due date costs), average (Aver.) and
maximum (Max.) earliness and tardiness times were recorded (the minimum earliness
and tardiness times are not reported in Tables 1-6 since they are always 0). Table 1
shows the averages of the aforementioned values for all instances.

cpu
time (s)

Cost (€) Earliness Tardiness

Total Energy Deviation from
due dates Aver. Max. Aver. Max.

57.05 15812.83 778.64 15034.19 2.11 53.24 3.91 48.57

Table 1. Average values of the heuristic solutions

The implemented heuristic obtains a solution in around 1 minute on average. On
average, average tardiness times are around 2 times greater than average earliness times,
although their maximum values are similar (around 50 units of time).

Next, we analyse the solutions according to the characteristics of the instances. Table 2
groups the results according to the ratio between number of jobs and number of
machines, n m (between parentheses, it is shown the number of instances in each
group).

Page 15

n/m cpu
time (s)

Cost (€) Earliness Tardiness

Total Energy Deviation from
due dates Aver. Max. Aver. Max.

(0,1]
(756) 10.25 288.62 246.13 42.49 0.28 3.79 0.26 3.36

(1,2]
(756) 62.34 983.13 603.29 379.84 0.73 15.30 0.78 14.26

(2,3]
(432) 82.54 3471.10 855.09 2616.01 1.88 43.55 2.23 36.03

(3,4]
(216) 77.48 8628.20 1116.41 7511.79 3.06 69.41 4.87 78.26

(4,5]
(108) 67.23 35763.56 1264.70 34498.87 4.14 93.52 9.52 115.75

(5,6]
(108) 83.67 37987.94 1538.12 36449.82 5.30 134.51 10.54 146.73

7
(36) 71.51 86524.00 1544.68 84979.32 8.51 174.31 19.60 199.83

8
(36) 79.47 92510.07 1744.51 90765.56 10.32 303.00 20.55 225.56

9
(36) 93.17 105650.01 1968.49 103681.52 9.83 258.97 20.94 203.89

10
(36) 120.73 123219.70 2276.23 120943.47 11.24 393.22 24.97 233.83

11
(36) 132.48 194383.90 2559.01 191824.88 11.20 355.89 27.36 266.33

12
(36) 177.99 194852.13 2763.24 192088.89 10.06 323.94 30.22 308.08

Table 2. Average values grouped by the ratio n/m

As we expect, earliness and especially tardiness times and costs tend to increase when
the ratio n m increases. When there are not more jobs than machines (]()0,1n m∈ , the
main costs are energetic (85.28% on average) but this percentage decreases quickly
when there are much more jobs than machines (1.42% on average when 12n m =). We
can see that earliness and tardiness times, on average, have a tendency to grow with
similar proportions as the ratio n m grows. Regarding the cpu time, we cannot observe
any tendency with regard to n m , because it depends mainly of the number of jobs:
when 10n = and 120n = , the cpu time averages are 1.33 s and 141.72 s, respectively.

Table 3 groups the results according to the versatility of the machines (Vers.). When the
versatility of the machines is high (i.e., the number of machines capable of processing
an operation is, on average, relatively high) the average earliness and tardiness times are
reduced around 3 and 13 times, respectively, with respect to the times corresponding to
a low versatility of the machines (in whose case, on average, the number of machines
capable of processing an operation is low). Thus, the versatility of the machines has a
high influence on the costs of the solutions. Moreover, we can see that with high
versatility the energy cost is an important term of the total cost (40.33% on average)
whereas the energy cost is relatively insignificant with low versatility (3.56% on
average). Regarding cpu times, on average the heuristic applied to instances with high
versatility lasts 1.2 times more with respect to the solution of low versatility instances.

Page 16

Vers. cpu
time (s)

Cost (€) Earliness Tardiness

Total Energy Deviation from
due dates Aver. Max. Aver. Max.

Low 49.02 30452.57 1084.14 29368.43 3.24 83.00 7.29 83.61

High 65.09 1173.08 473.14 699.94 0.98 23.49 0.54 13.53

Table 3. Average values grouped by the versatility of the machines

Table 4 groups the results according to the expected value of the processing times of the
operations (PT Var.): low ([]1,30U), medium ([]1,90U) and high ([]1,240U). This
characteristic has some influence in the cpu time: with high processing times the
heuristic takes twice as long than it does with low processing times. On the other hand,
as expected, earliness and tardiness times and costs (both energy and due date costs)
increase along with processing times. Here, when processing times are low, the energy
cost is an important term of the total cost (25.25% on average) whereas the energy cost
is relatively insignificant with high processing times (3.69% on average).

PT
Var.

cpu
time (s)

Cost (€) Earliness Tardiness

Total Energy
Deviation
from due

dates
Aver. Max. Aver. Max.

Low 36.80 1033.07 261.00 772.07 0.29 8.21 0.94 10.06

Medium 56.70 7422.65 636.11 6786.54 1.33 35.85 3.10 37.75

High 77.67 38982.75 1438.80 37543.95 4.70 115.67 7.70 97.90

Table 4. Average values grouped by the expected value of the processing times of the operations

Finally, Table 5 groups the results according to the ratio between tardiness and earliness
cost parameters, j jβ δ : low ()0.02j jβ δ =



, medium ()0.2j jβ δ =


 and high

()2β δ =j j . We can see that average cpu times are very similar. Regarding the other
results, the tendency is that the tardiness averages decrease and the earliness averages
increase when the tardiness cost weight increases, as it can be expected.

β δj j cpu
time (s)

Cost (€) Earliness Tardiness

Total Energy
Deviation
from due

dates
Aver. Max. Aver. Max.

Low 55.45 2667.13 776.14 1890.99 1.34 35.83 4.03 49.00

Medium 57.92 9655.36 778.81 8876.55 2.15 54.66 3.83 48.90

High 57.79 35115.99 780.97 34335.01 2.83 69.25 3.88 47.82

Table 5. Average values grouped by the ratio j jβ δ

As it has been stated in Section 2, there is not any published procedure for solving the
specific variant of the fJSP problem dealt with in the present paper. Barr et al. (1995)
suggest that new methods can be compared with a simple random restart procedure.
Therefore, as a rough first assessment of the quality of the solutions provided by the
proposed procedure we compared them with those obtained with MSfJSP, which in fact

Page 17

is a multi-start greedy randomised algorithm that takes into account the deviations from
the due dates.

MSfJSP generates a random solution at each iteration as follows. First, an operation is
selected at random among a set of candidate operations. Operation jhO is candidate if it
has not been scheduled and it is the first operation of its job (1=h) or the previous
operation (, 1−j hO) has been scheduled. Then the selected operation is assigned to a
compatible machine (i.e., a machine in set jhM) selected at random. If jhO is not the
last operation (< jh h) then it is assigned to the first possible time interval; otherwise it
is assigned to the best feasible time interval (i.e., to the feasible time interval involving
the minimum increment of costs).

All test instances were solved with MSfJSP. In order to make a fair comparison, the cpu
time per instance was the same time used by HeufJSP. The average number of iterations
(generated solutions) per instance of MSfJSP is 1888.41. HeufJSP yields better results
for all the instances, improving the total costs given by MSfJSP between a minimum of
33.86% and a maximum of 99.99%. Table 6 compares the average results obtained by
HeufJSP and MSfJSP. We can see clearly the benefits of solving the problem with
HeufJSP.

Procedures
Cost (€) Earliness Tardiness

Total Energy Deviation from
due dates Aver. Max. Aver. Max.

HeufJSP 15812.83 778.64 15034.19 2.11 53.24 3.91 48.57

MSfJSP 17119560.12 3296.72 17116263.40 2.36 98.24 546.30 1391.74

Table 6. Average values of the HeufJSP and MSfJSP solutions

Finally, the HeufJSP and MSfJSP solutions are compared with the solutions obtained
with the BIP model. BIP was solved using IBM ILOG CPLEX 12.6 and the cpu time
was limited to 1 hour per instance. The maximum possible start time of the operations

when calculating the sets ijhT (Section 3.2) is set to
1

2 max
=

⋅
n

jj
d , which is a big enough

value.

For the instances with 10 and 20 jobs (432 instances), BIP was solved optimally 320
times; for larger instances, optimal (or even feasible) solutions were rarely found. For
those 320 instances that were solved optimally with BIP (grouped by versatility of the
machines, vers., and number of machines, m), Table 7 shows the number of instances,
in each group, that were solved optimally (column #ins), the averages of the cpu times
(in s) and the total costs (in €) of BIP, HeufJSP and MSfJSP (columns Mt , MZ , Ht , HZ ,

St , and SZ respectively), the gap (%) between the average costs of HeufJSP and the BIP
model (column ()100H H M HGAP Z Z Z= ⋅ −) and the gap (%) between the average costs of
MSfJSP and BIP (column ()100S S M SGAP Z Z Z= ⋅ −).

Page 18

vers. / m
BIP HeufJSP MSfJSP

#ins Mt MZ Ht HZ GAPH St SZ GAPS

Low / 10 29 1006.81 292.91 2.11 1387.12 78.88 2.12 81638.46 99.64

Low / 20 28 539.53 247.35 2.20 351.35 29.60 2.20 69835.82 99.65

Low / 30 28 611.69 208.18 2.30 217.42 4.25 2.30 103644.63 99.80

Low / 40 29 585.63 156.37 1.53 156.79 0.27 1.54 144712.00 99.89

Low / 50 32 761.28 172.25 1.87 173.05 0.46 1.88 214230.99 99.92

Low / 60 32 1019.08 139.62 1.54 140.13 0.37 1.54 155915.90 99.91

High / 10 26 682.57 158.09 2.89 167.74 5.75 2.88 197031.37 99.92

High / 20 29 910.78 117.10 3.28 117.46 0.30 3.27 140543.41 99.92

High / 30 26 804.44 72.02 2.57 72.10 0.11 2.55 69950.60 99.90

High / 40 22 864.27 50.94 1.95 50.94 0.00 1.95 25393.13 99.80

High / 50 21 912.14 48.86 1.64 48.76 0.00 1.63 80761.86 99.94

High / 60 18 1096.22 38.28 1.85 38.28 0.00 1.85 77853.40 99.95

Table 7. Comparison of the heuristic solutions versus the optimal solutions of BIP model

We can see that the heuristics need a tiny fraction of the cpu time spent by BIP. With
respect to the quality of the HeufJSP solutions, when the machines are highly versatile,
on average the heuristic performs very well on instances with 20 or more machines
(gaps are not greater than 0.3%) and performs quite well on instances with 10 machines
(gap is equal to 5.75%). And when the machines have low versatility, HeufJSP
performs also very well on instances with 30 or more machines (gaps are smaller than
0.5%) and quite well with 20 machines (gap is equal to 4.25%). In contrast, the results
of MSfJSP show that these instances are not trivial to solve and very poor quality
solutions are obtained with randomness.

On the other hand, in the scenario of 10 or 20 machines with low versatility, HeufJSP
does not perform well (gaps are equal to 29.6% and 78.88%, respectively) and MSfJSP
performs much worse (gaps greater than 99.6%).

To sum up, for the most of the instances with 10 and 20 jobs, HeufJSP performs well
when compared to the optimal solutions obtained with BIP. For larger and more
realistic instances with more than 20 jobs, optimal (or even feasible) solutions were
rarely found with the BIP model whereas the proposed heuristic can calculate always a
feasible solution in a short cpu time (around 1 minute on average).

6. Conclusions and prospects

This paper introduces a new just-in-time scheduling problem in which the costs of
performing the operations depend on time. This problem is found in many real
industrial situations where the costs of the energy or of the work force are a significant
component of the total costs and the operations can be performed in any time of the day.

We have formulated the problem with a mathematical programming model and
proposed a quick enough heuristic algorithm to find feasible solutions fulfilling the

Page 19

constraints on the availability of the machines and taking into account the costs of
performing the operations and those corresponding to the deviations from the due dates.

This is a first step in a research agenda that includes the relaxation of some of the
assumptions enumerated in 3.1 (specifically, those concerning the precedence
relationships between the operations of each job and between the operations of different
jobs, the size of buffers and the set-up times) and the application of metaheuristics and
matheuristics, with the aim to introduce a greater diversification, i. e., to explore
ordering jobs different from those corresponding to the diverse values of the parameter
ζ . The benchmark solutions obtained with BIP model points out that the proposed
heuristic performs very well on scenarios with a not too small number of machines or
with machines with high versatility, but for the other scenarios the resolution of the
problem has to be improved.

References

Akyol, D.E., Bayhan, G.M., (2005). A Coupled Gradient Network Approach for the
Multi Machine Earliness and Tardiness Scheduling Problem. Lecture Notes in
Computer Science, 3483, 596–605.

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with
setup times/costs. European Journal of Operational Research, 246, 345–378.

Arkat, J., Fattahi, P., Jolai, F. (2009). “Flexible job shop scheduling with overlapping in
operations”. Applied Mathematical Modelling, 33, 3076–3087.

Armentano, V.A., Laguna, M., Scrich, C.R. (2004). Tardiness minimization in a flexible
job shop: a tabu search approach. Journal of Intelligent Manufacturing, 15, 103–115.

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G.C., Stewart, W. R. (1995).
Designing and reporting on computational experiments with heuristic methods. Journal
of Heuristics, 1, 9-32.

Birgin, E.G., Feofiloff, P., Fernandes, C.G., Melo, E.L., Oshiro, M.T.I., Ronconi, D.P.
(2014). A MILP model for an extended version of the Flexible Job Shop Problem.
Optimization Letters, 8, 1417–1431.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations Research, 41, 157–183.

Brucker, P., Schlie, R. (1990). Job shop scheduling with multi-purpose machines.
Computing, 45, 369–375.

Chen, J.C., Cheng-Chun, W., Chia-Wen, C., Kou-Huang, C. (2012). Flexible job shop
scheduling with parallel machines using Genetic Algorithm and Grouping Genetic
Algorithm. Expert Systems with Applications, 39, 10016–10021.

Dauzère-Pérès, S., Paulli, J. (1997). An integrated approach for modeling and solving
the general multiprocessor job-shop scheduling problem using tabu search. Annals of
Operations Research, 70, 281–306.

De Giovanni, L., Pezzella, F. (2010). An Improved Genetic Algorithm for the
Distributed and Flexible Job-shop Scheduling problem. European Journal of
Operational Research, 200, 395–408.

Page 20

Dini, G., Rossi, A. (2007). Flexible job-shop scheduling with routing flexibility and
separable setup times using ant colony optimization method. Robotics and Computer-
Integrated Manufacturing, 23, 503–516.

Fattahi, P., Jolai, F., Saidi-Mehrabad, M. (2007). Mathematical modeling and heuristic
approaches to flexible job shop scheduling problems. Journal of Intelligent
Manufacturing, 18, 331–342.

Fattahi, P., Jolai, F., Arkat, J. (2009). Flexible job shop scheduling with overlapping in
operations. Applied Mathematical Modelling, 33, 3076–3087.

Gao, K. Z., Suganthan, P. N., Pan, Q. K., Chua, T. J., Cai, T. X., Chong, C. S. (2014).
Pareto-based grouping discrete harmony search algorithm for multi-objective flexible
job shop scheduling. Information Sciences, 289, 76-90.

Gao, K. Z., Suganthan, P. N., Pan, Q. K.,Tasgetiren, M. F. (2015). An effective discrete
harmony search algorithm for flexible job shop scheduling problem with fuzzy
processing time. International Journal of Production Research, 53, 5893-5911.

Garey, M.R., Johnson, D.S., Sethi, R. (1976). The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1, 117–129.

Gholami, M., Zandieh, M. (2009). Integrating simulation and genetic algorithm to
schedule a dynamic flexible job shop. Journal of Intelligent Manufacturing, 20, 481-
498.

González, M. A., Vela, C. R. Vela, Varela, R. (2015). Scatter Search with Path
Relinking for the Flexible Job Shop Scheduling problem. European Journal of
Operational Research, 245, 35-45.

Ham, M., Lee, Y.H., Kim, S.H. (2011). Real-time scheduling of multi-stage flexible job
shop floor. International Journal of Production Research, 49, 3715–3730.

He, Y., Li, Y., Wu, T., Sutherland, J. W. (2015). An energy-responsive optimization
method for machine tool selection and operation sequence in flexible machining job
shops. Journal of Cleaner Production, 87, 245-254.

Hmida, A. B., Haouari, M., Huguet, M.J., Lopez, P. (2010). Discrepancy search for the
flexible job shop scheduling problem. Computers & Operations Research, 37, 2192-
2201.

Hurink, E., Jurisch, B., Thole, M. (1994). Tabu search for the job shop scheduling
problem with multi-purpose machines. Operations Research Spektrum, 15, 205–215.

Jiang, Z., Zuo, L., E, M. (2014). Study on Multi-objective Flexible Job-shop Scheduling
Problem considering energy Consumption. Journal of Industrial Engineering and
Management, 7, 589-604.

Ku, W.-Y., Beck, J. C. (2016). Mixed Integer Programming models for job shop
scheduling: A computational analysis. Computers & Operations Research, 73, 165-173.

Li, J., Pan, Q., Xie, S., Liang, J. (2010). A Hybrid Pareto-Based Tabu Search for Multi-
objective Flexible Job Shop Scheduling Problem with E/T Penalty. Lecture Notes in
Computer Science, 6145, 620–627.

Liu, Y., Tiwari, A. (2015). An Investigation into Minimising Total energy Consumption
and Total Completion Time in a Flexible Job Shop for Recycling Carbon Fiber
Reinforced Polymer. Procedia CIRP, 29, 722-727.

Page 21

Loukil, T., Teghem, J., Fortemps, P. (2007). A multi-objective production scheduling
case study solved by simulated annealing. European Journal of Operational Research,
179, 709–722.

Luo, H., Du, B., Huang, G. Q., Chen, H., Li, X. (2013). Hybrid flow shop scheduling
considering machine electricity consumption cost. International Journal of Production
Economics, 146, 423-439.

Mastrolilli, M., Gambardella, L.M. (2002). Effective neighborhood functions for the
flexible job shop problem. Journal of Scheduling, 3, 3–20.

Moon, J.-Y., Shin, K., Park, J. (2013). “Optimization of production scheduling with
time-dependent and machine-dependent electricity cost for industrial energy efficiency.
International Journal of Advanced Manufacturing Technology, 68, 523-535.

Roshanaei, V., Azab, A., ElMaraghy, H. (2013). Mathematical modelling and a meta-
heuristic for flexible job shop scheduling. International Journal of Production
Research, 51, 6247–6274.

Saad, I., Hammadi, S., Benrejeb, M., Borne, P. (2008). Choquet integral for criteria
aggregation in the flexible job-shop scheduling problems. Mathematics and Computers
in Simulation, 76, 447-462.

Scrich, C.R., Armentano, V.A., Laguna, M. (2004). Tardiness minimization in a flexible
job shop: A tabu search approach. Journal of Intelligent Manufacturing, 15, 103–115.

Thammano, A., Phu-ang, A. (2013). A Hybrid Artificial Bee Colony Algorithm with
Local Search for Flexible Job-Shop Scheduling Problem. Procedia Computer Science,
20, 96-101.

Wu, Z., Weng, M. X. (2005). Multiagent Scheduling Method With Earliness and
Tardiness Objectives in Flexible Job Shops. IEEE Transactions on Systems, Man, and
Cyberrnetics-Part B: Cybernetics, 35, 293-301.

Zhang, R., Chiong, R. (2016). Solving the energy-efficient job shop scheduling
problem: a multi-objective genetic algorithm with enhanced local search for minimizing
the total weighted tardiness and total energy consumption. Journal of Cleaner
Production, 112, 3361-3375.

Zhang, G., Shao, X., Li, P., Gao, L. (2009). An effective hybrid particle swarm
optimization algorithm for multi-objective flexible job-shop scheduling problem,
Computers & Industrial Engineering, 56, 1309-1318.

Zhang, H., Zhao, F., Fang, K., Sutherland, J. W. (2014). Energy-conscious flow shop
scheduling under time-of-use electricity tariffs. CIRP Annals – Manufacturing
Technology, 63, 37-40.

Ziaee, M. (2013). A heuristic algorithm for the distributed and flexible job-shop
scheduling problem. The Journal of Supercomputing, 67, 69–83.

Page 22

Appendix A1. Process of obtaining an optimal schedule of a given job for a
numerical example

Next, an example of obtaining an optimal schedule of a job is shown. Let the data of the
example set as follows:

2n =

4m =

1 3h = , 2 2h =

Table A1.1 shows the values of jhO , jhM and ijhp .

 ijhp

1m 2m 3m 4m
Job 1j = 11O 60 240 × ×

12O × 180 120 ×

13O 180 120 × 180
Job 2j = 21O 180 240 × 120

22O 120 × 60 ×
Table A1.1. Values of jhO , jhM and ijhp

(1, 2)Π = (job 1j = is processed before job 2j =) and let 1j = be the job to be

scheduled.

Table A1.2 shows the values of ijhP (only for job 1j = to be scheduled).

 1i hP

1m 2m 3m 4m
Job 1j = 11O 10 40 × ×

12O × 30 20 ×

13O 30 20 × 30
Table A1.2. Values of ijhP for job 1=j

1 1800d =

1 1r =

1 1 10β = ; 1 1γ = ; 1 1 30δ =

0.2PC = ; 0.1VC = .

Page 23

Table A1.3 shows the initial occupancy of each machine i , iQ , the peak and valley
periods and the associated energy cost.

 t 1m 2m 3m 4m

Peak
period

1-60 2

8

61-120
121-180
181-240 2
241-300
301-360
361-420
421-480
481-540
541-600

Valley
period

601-660
661-720
721-780 1
781-840
841-900
901-960

961-1020
1021-1080
1081-1140
1141-1200
1201-1260
1261-1320
1321-1380
1381-1440

Peak
period

1441-1500
1501-1560 2
1561-1620 2
1621-1680
1681-1740
1741-1800 2
1801-1860 2
1861-1920 2
1921-1980
1981-2040

Valley
period

2041-2100
2101-2160
2161-2220 1
2221-2280 1

4

2281-2340 1

4

2341-2400 1

4

2401-2460 1

4

2461-2520 1

4

2521-2580 1

4

2581-2640 1

4

2641-2700 1

4

2701-2760 1
2761-2820 1
2821-2880 1

Table A1.3. Initial occupancy of machines and the energy costs of performing operation 11O for each
machine and set of periods in which the operation can be processed.

Figure A1.1 shows the multistage graph corresponding to job 1j = . The value inside the
nodes is the completion time of the corresponding operations. The first value over the
arc leading at the stage h ()1 jh h≤ ≤ is the cost

()jhi jhU (the cost of the energy required

to process operation jhO on machine ()jhi); and the second value is the machine ()jhi

()()∈ jhjhi M to which operation h of job j ()jhO has been assigned. The value over

the arc leading at the stage 1jh + is the cost ()E jC E (the earliness cost of job j with

Page 24

respect to its due date jd) plus the cost ()T jC T (the tardiness cost of job j with

respect to its due date jd). The first value below the nodes corresponds to κht (the
value of node htv); and the second value identifies the node that precedes htv) in the
shortest path.

Figure A1.1. Multistage graph corresponding to job 1=j

In summary, the least cost path (27) represents the ordered sequence of operations (11O ,

12O , 13O) and their respective associated costs (111 1U = , 312 2U = , 213 2U = ,
() ()1 1 22+ =E TC E C T), as well as the times (780, 1020, 1140) at which the operations

finish being processed on the machines (1m , 3m , 2m , respectively).

Appendix A2. Process of calculating ijhq for a numerical example

Next, an example of calculating ijhq is shown: 2n = ; 4m = ; 1 3h = , 2 2h = ; Table A1.1
shown the values of jhO , jhM and ijhp ; (1, 2)Π = (job 1j = is processed before job

2j =); and let 11O be the operation to be scheduled.

The obtained values of ijhq are:

111
180 12060 180

3 2
q = + + =

211
240240 320
3

q = + =

60

2,α

780

1,α

240

6,60

1920

9,1020

α
0

1020

3,780

ω
27,1140

2040

7,1020

1140

5,1020

2340

5,1020

2,m2

2,m1

1,m1

2,m2

2,m2
2,m2

4,m2
4,m2

6,m1
6,m1

2,m3
2,m3

4,m3

22

600

156

2970

Page 25

