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Abstract. This paper deals with a new flexible job-shop scheduling problem in which the 
objective function to be minimised is the sum of the earliness and tardiness costs of the 
jobs and the costs of the operations required to perform the jobs, the latter depending on 
the machine and the time interval in which they are performed (as happens in many 
countries with the costs of electric power or those of manpower). We formalise the 
problem with a mathematical model and we propose a heuristic procedure that is based 
primarily on constructing a multistage graph and finding in it the shortest path from the 
source to the sink. We also describe the generation of the data set used in an extensive 
computational experiment and expose and analyse the obtained results. 
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1. Introduction 
 
The job-shop problem (JSP) is an NP-hard problem (Garey et al., 1976) in which n jobs 
must be performed using m machines. Each job consists of an ordered set of operations, 
each operation has to be executed in one previously specified machine and the 
processing times are known. The problem consists in finding a feasible schedule of the 
operations that optimises some measure of the quality of the solution (the makespan, 

maxC , being the most usual). 
 
The flexible job-shop problem (fJSP) differs from the JSP in that each operation can be 
performed in any machine of those belonging to a specific subset associated with the 
operation. Therefore, the JSP is a particular case of the fJSP in which the subsets of 
machines contain a single element. 
 
Hence, the fJSP involves two subproblems: that of assigning machines to the operations 
and that of sequencing the operations (Armentano et al., 2004). As the latter is a JSP, 
fJSP is at least as hard as JSP. 
 
The problem addressed in this paper is a generalization of the real problem of 
scheduling that we had occasion to analyse in some manufacturing plants of compound 
feed. In many real situations, there is a due date for each job (the desired moment to 
complete the job) and the costs of the operations depend on the time interval in which 
they are performed. For instance, this may be due to a higher pay-rate for the workforce 
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during the night shifts or to dependency on the hours of the day of the electricity 
charges (for example, a rate for the valley hours and a higher one for the peaks). These 
cost differences, depending on the time in which tasks are performed, are very relevant 
in many industries, such as those in which the cost of electricity is a significant part of 
total costs, as happens, for instance, in the manufacture of compound feed for livestock. 
Of course, the cost of performing a task may depend also on the machine to which it is 
assigned. 
 
According to this, we adopt as the objective function of the problem the sum of the 
costs of the deviations relative to the due dates (earliness and tardiness) and the machine 
and time dependent costs of the operations. At the best of our knowledge, this variant of 
the fJSP has not been dealt with before. 
 
The layout of the rest of the paper is as follows. Section 2 outlines the state of the art 
concerning the fJSP. Section 3 describes the specific variant of the fJSP dealt with in 
this paper and it is modelised with a binary integer programming (BIP) model. Section 4 
is dedicated to a heuristic proposed procedure for solving the problem. Section 5 gives 
an account of the computational experiment. Lastly, Section 6 contains the conclusions 
and some ideas for future work. 
 
2. State of the art 
 
A detailed state of the art of the fJSP can be found in Fattahi et al. (2007). The first 
paper tackling the fJSP is Brucker and Schlie (1990), in which a polynomial algorithm 
is proposed to solve the fJSP with two jobs. 
 
Concerning the criteria to be optimised, maxC  (makespan) is adopted, for instance, in 
Dini and Rossi (2007), Ham et al. (2011) and Ziaee (2013). Other papers (Scrich et al., 
2004) use tardiness or an aggregate of earliness and tardiness (Akyol and Bayhan, 2005; 
Wu and Weng, 2005).  
 
Recently, it is usual to consider the fJSP as a multiobjective problem, as in Zhang et al. 
(2009). Loukil et al., (2007), Saad et al. (2008), Gholami and Zandieh (2009), Li et al. 
(2010), Chen et al. (2012), and Gao et al. (2014) take into account earliness and 
tardiness among the criteria they adopt. Jiang et al. (2014) includes energy 
consumption, under the assumption that it is machine depending. Energy consumption 
is, too, one of the criteria considered in Liu and Tiwari (2015) and in He et al. (2015). 
 
The consideration of the costs of performing the operations is not usual in the 
scheduling literature, since it is assumed, often implicitly, that they only depend on the 
operation and not on the machines where it is processed or on the time when it is 
performed. Several studies take into account only setup times/costs (Allahverdi, 2015). 
Minimising energy consumption is related to minimising costs, but is not equivalent, 
because price may depend on time, as happens with electricity when tariffs are time 
sensitive (time-of-use ─TOU─ electricity prices). As it is pointed out in Zhang and 
Chiong (2016), the consideration of TOU tariffs is a new research direction in 
production scheduling. Luo et al. (2013) deals with a multi-objective hybrid flow shop 
scheduling problem in which electric power cost with the presence of TOU tariffs is 
considered. In Moon et al. (2013), which also assumes TOU prices, the objective is to 
minimise the weighted sum of makespan and electricity cost. Zhang et al. (2014) 
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proposes a mixed integer programming (MIP) model to find, in a flow shop setting, 
manufacturing schedules that minimise carbon footprint and electricity cost, under TOU 
tariffs. 
  
Concerning the solution procedures for the general case (with a number of jobs greater 
than two), two approaches, hierarchical and integrated, have primarily been used. In the 
hierarchical approach, the two subproblems (assigning machines to operations and 
sequencing the operations) are dealt with separately. Integrated approaches, on the other 
hand, tackle assignment and sequencing simultaneously. 
 
Regarding the hierarchical approach, Brandimarte (1993) was the first to adopt it, using 
tabu search. Arkat et al. (2009) use simulated annealing and compare the results with 
the optimal solutions obtained using branch-and-bound. De Giovanni and Pezzella 
(2010) use a hierarchical procedure that combines a genetic algorithm with local search 
procedures. 
 
The integrated approach is adopted by Hurink et al. (1994) and by Dauzère-Pérès and 
Paulli (1997), who use tabu search. Mastrolilli and Gambardella (2002) present two 
local optimisation procedures that improve the technique proposed by Dauzère-Pérès 
and Paulli (1997). Hmida et al. (2010) use discrepancy search, and Thammano and Phu-
ang (2013) use a hybrid artificial bee colony algorithm. Gao et al. (2014) solve the fJSP 
using the so-called discrete harmony search algorithm and Gao et al. (2015) use the 
same approach considering fuzzy processing times. González et al. (2015) apply path 
relinking and tabu search in the frame of scatter search. Fattahi et al. (2009), Roshanaei 
et al. (2013) and Birgin et al. (2014), propose mixed integer linear programming 
(MILP) models to optimise fJSP.  
 
Summing up, regarding the types of problems treated in the literature, there are papers 
that consider earliness and tardiness as criteria to optimise in the fJSP and others, 
dealing with different scheduling problems, which take into account machine or time 
dependent costs. However, to the best of our knowledge there is no published work on 
the fJSP with the objective function considered in the present paper, i.e., the sum of the 
costs of earliness and tardiness and the costs of performing the operations, dependent on 
the machine and on the time interval in which the operations are processed. 
 
 
3. Description and formulation of the problem 
 
First, we describe the problem dealt with in this paper (Subsection 3.1). Then, we 
formalise it with a binary integer programming (BIP) model (Subsection 3.2). The 
model is useful for a formalisation purpose and for obtaining benchmark solutions of 
small instances as well. 
 
3.1. Description of the problem 
 
In the following, we present the specific variant of the fJSP dealt with in this paper, in 
which n  jobs ( )1,...,j n=  must be performed using m  machines ( )1,...,i m= . Each job 

j  consists of an ordered set of jh  operations, where jhO  ( )1,..., ; 1,..., jj n h h= =  
denote the h -th operation of job j . Each operation has to be performed in any machine 

Page 3 



of those belonging to a specific subset associated with the operation, jhM  

( )1,..., ; 1,..., jj n h h= = . Processing operation h  of job j  ( )jhO  in machine i  

( )jhi M∈  requires a predetermined processing time, ijhp , and a predefined amount of a 

resource, such as energy, ijhP  ( )1,..., ; 1,..., ;j jhj n h h i M= = ∈ . Moreover, each job j  

has a release date (earliest start date), jr . 
 
The problem consists in finding a feasible schedule of the operations that minimises the 
sum of the costs of earliness and tardiness of the n  jobs, with respect to their due date 

jd  ( )1,...,j n= , and the costs of performing the operations, dependent on the machine 
and on the time interval in which the operations are processed (Eq. 1). Concerning the 
costs corresponding to deviations from the due date, we have assumed that they are 
linear and quadratic relative to earliness and tardiness, respectively (however, these 
assumptions can be modified without altering the structure of the proposed algorithm). 
Regarding the costs of performing the operations, to fix ideas hereinafter we will 
identify them with those of the electrical energy required to process the operations on 
the machines (to adapt the procedure to other kinds of costs depending on the machines 
and on the time interval it suffices to change the terminology). 
 

 ( ) ( )
1

 [ ]
=

 = + + ∑
n

E j T j j
j

MIN z C E C T U  (1) 

 
Therefore, the objective function includes three kinds of variables: 
 
• The earliness cost of job j  with respect to its due date jd : 

 ( ) ·δ=E j j jC E E  (2) 

where ( )max 0,= −j j jE d c  is the earliness, jc  is the completion time of job j  

(i.e., the instant when the last operation 
jjhO  is finished), and jδ  ( )0≥jδ  is the 

parameter that specifies the linear relation between the earliness and its cost. 
 
• The tardiness cost of job j  with respect to its due date jd : 

 ( ) 2β γ= ⋅ + ⋅T j j j j jC T T T  (3) 

where ( )max ,j j jT c d= −0  is the tardiness, jβ  ( )0>jβ  and jγ  ( )γ δ≥j j  are 
the coefficients that specify the quadratic cost function of the tardiness of job j ; 
we assume that ≥j jγ δ  to enforce that for any given value of the discrepancy 
from the due date, the earliness cost is lower than the tardiness cost. 

 
• jU  is the cost of the energy required to produce job j : 

 

 
( )

1=
=∑

j

jh

h

j i jh
h

U U  (4) 
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( )( ) ( )
1= Ω ⋅ + −Ω ⋅ ⋅

jh jh

V P
i jh jh jh i jhU C C P  (5) 

 
where ( )jhi  ( )( )∈ jhjhi M  is the machine to which operation h  of job j  ( )jhO  

has been assigned; 
( )jhi jhU  corresponds to the cost of the energy required to 

process operation jhO  on machine ( )jhi ; Ω jh  and ( )1−Ω jh  indicate the 

proportion of operation jhO  processed during the valley and the peak hours, 
respectively; VC  and PC  are the unit costs of energy at valley and peak hours, 
respectively; and 

( )jhi jhP  is the energy required to process operation jhO  on 

machine ( )jhi . 
 
Next, there is a summary of the assumptions of the solved problem: 
 
1. The sequence of operations for each job is fixed.  
2. There are no precedence constraints among operations of different jobs. 
3. Each machine can process at most one operation at a time. 
4. The time is discretised in regular intervals. Without loss of generality, all times are 

considered multiple of the time intervals. 
5. The operations cannot be interrupted. 
6. There is unlimited buffer space between the machines. 
7. For each job j  the release date, jr , is also known. 
8. Ideally, each job j  should be completed on its due date jd .  
9. The set-up times are independent of the sequence and are included in the processing 

times of the jobs. 
10. The initial availability of the machines is known and it is defined by the set of time 

intervals, iQ , at which machine i  ( )1,...,i m=  is initially occupied by previously 
scheduled operations. 

11. Each machine i  requires a predefined amount of energy, ijhP , to process each 
operation jhO . 

12. The costs of processing the operations depend on the machine and on the time 
interval in which they are performed. 

 
Assumptions 1 to 6 are common in scheduling problems and compatible with the real 
problem underlying that we are dealing with in this article. Accepting the possibility of 
releasing dates different from 0 is less usual, because it adds difficulty, but it overcomes 
the rigidity of imposing that all of them are null. As the unavailability of the machines 
during some periods is seldom considered, assumption 10, which is essential in many 
real settings, contributes also to make the formalization of our problem more general. 
Assumptions 11 and 12, as well as the objective function, for which the consideration of 
due dates is essential, distinguishes the fJSP considered in this work from previous 
fJSPs. Assumption 9 is somehow restrictive, since it does not fit in many real settings; 
although the heuristic algorithm that we propose could be adapted straightforwardly to 
take into account sequence dependent set-up times when computing the completing 
times of the operations, their consideration in the mathematical programming model and 
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in the Step 1 (Section 4.1) of the heuristic requires further research, as we point out in 
Section 6. 
 
3.2. A BIP model 
 
Ku and Beck (2016) compare four mathematical models for the JSP with the objective 
of minimising the makespan. The best one is called disjunctive MIP model because of 
the way in which the time-overlapping of the operations in the machines is avoided. 
Thus, the model that we propose also uses disjunctive non-overlapping constraints. The 
model is formulated as follows: 
 
Additional data 
 

ijhT  set of integer times in which operation jhO  can start on machine i  tacking into 
account the release dates of the jobs ( jr ) and the initial occupancies of the 
machines ( 1,...,j n= ; 1,..., jh h= ; jhi M∈ ).  

ijhtc  cost associated with the start of operation jhO  on machine i  at time t                   
( 1,...,j n= ; 1,..., jh h= ; jhi M∈ ; ∈ ijht T ). If operation jhO  is not the last 
operation of job j  ( 1jh h≤ − ), ijhtc  is only the energy cost of performing jhO  at 
machine i  starting at time t ; otherwise ( jh h= ), ijhtc  is the energy cost of 
performing jhO  at machine i  starting at time t  plus the earliness or tardiness 
cost of the discrepancy between jd  (due date) and ijht p+  (completion time of 
job j ). 

ijhV  big enough value used in Eqs. 9 and 10: max
ijh

ijh ijh t T
V p t

∈
= +  

 
Variables 
 

{ }0,1ijhtx ∈  1 if operation jhO  is started at instant t  on machine i  ( 1,...,j n= ; 
1,..., jh h= ; jhi M∈ ; ∈ ijht T ); 0 otherwise 

{ }0,1ijhz κi ∈  auxiliary variables to ensure that operations jhO  and Oκi  are not 
scheduled on machine i  at the same time ( 1,...,j n= ; 1,..., jh h= ; 

1,...,κ = +j n ; 1,..., hκi = ; jhi M Mκi∈ ∩ ). If operations jhO  and Oκi  are 
performed in the same machine then ijhz κi  is 1 if jhO  is performed before 
operation Oκi  and 0 otherwise; if jhO  and Oκi  are performed in different 
machines then the value of ijhz κi  is irrelevant. 

 
Model 
 

1 1
[MIN] 

j

jh ijh

hn

ijht ijht
j h i M t T

c x
= = ∈ ∈

⋅∑∑ ∑ ∑  (6) 

1
jh ijh

ijht
i M t T

x
∈ ∈

=∑ ∑  1,...,j n= ; 1,..., jh h=  (7) 
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( )
, 1 , , 1

, , 1 , , 1,
jh ijh j h i j h

ijht i j h i j h t
i M t T i M t T

t x t p x
− −

− −
∈ ∈ ∈ ∈

⋅ ≥ + ⋅∑ ∑ ∑ ∑  1,...,j n= ; 2,..., jh h=  (8) 

( )
ijh i

ijht i i t i ijh
t T t T

t x t p x V z
κi

κi κi κi κi
∈ ∈

 
⋅ ≥ + ⋅ − ⋅ 

 
∑ ∑  

 1,...,j n= ; 1,..., jh h= ; 1,...,j nκ = + ; 1,..., hκi = ; jhi M Mκi∈ ∩  (9) 

( ) ( )1
i ijh

i t ijh ijht ijh ijh
t T t T

t x t p x V z
κi

κi κi
∈ ∈

 
⋅ ≥ + ⋅ − ⋅ −  

 
∑ ∑  

 1,...,j n= ; 1,..., jh h= ; 1,...,j nκ = + ; 1,..., hκi = ; jhi M Mκi∈ ∩  (10) 
 
The objective function (6) states the minimisation of the total cost. Constraints (7) 
impose that each operation starts once and is scheduled on one machine. Constraints (8) 
impose that all operations of a job are performed in the right order. Finally, constraints 
(9) and (10) ensure that two operations cannot be performed on the same machine at the 
same time. 
 
4. A heuristic procedure for solving the problem 
 
Next, we present the structure of the developed solution procedure, which can be 
considered as an integrated approach (Section 2). The heuristic procedure, named 
HeufJSP, consists of two sets of iterations. In the first one (lines 1 to 5 of Figure 1), 
which may be seen as the diversification phase of the algorithm, two steps are repeated 
for different values of parameter ζ  ( )0 1≤ ≤ζ . At the first step, a job sequence is 
obtained; at the second one, when the jobs have been ordered in a sequence, an optimal 
schedule of the operations of each job is obtained constructing a multistage graph and 
finding in it the shortest path from the beginning to the end. Once the better value, *ζ , 
of the parameter ζ is obtained, a second round of iterations is performed (lines 6 to 10 
in Figure 1), in order to intensify the search in a neighbourhood of *ζ . 
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Algorithm HeufJSP 

ζ : parameter 
*ζ : ζ  value from which the best solution is obtained in the first loop 
1
ζ

∆ , 2
ζ

∆  ( 2 1
ζ ζ

∆ < ∆ ): increase values of parameter ζ  

ϒ , Z : current solution and its value, respectively 
*ϒ , *Z : best obtained solution and its value, respectively 

0 * = ∞Z  
1 For ( 0ζ = ; 1≤ζ ; 1

ζ
ζ ζ= + ∆ ) 

2  Π  = Initial_Job_Sequence ( )ζ  
3  ϒ  = Optimal_Schedule ( )Π  

4  If *<Z Z  then *ζ ζ= , *ϒ = ϒ , * =Z Z  End if 
5 End for 
6 For ( ( )* 1max 0, 0.5

ζ
ζ ζ= − ⋅∆ ; ( )* 1min 1, 0.5

ζ
ζ ζ≤ + ⋅∆ ; 2

ζ
ζ ζ= + ∆ ) 

7  Π  = Initial_Job_Sequence ( )ζ  
8  ϒ  = Optimal_Schedule ( )Π  

9  If *<Z Z  then *ϒ = ϒ , * =Z Z  End if 
10 End for 

 
Figure 1. Structure of the developed algorithm HeufJSP 

 
When coding HeufJSP, the following two improvements are introduced to reduce cpu 
time: 
 
- The same sequence of jobs may be obtained with different values of ζ  (Subsection 
4.1). However, solution ϒ  is calculated only once for the set of different values of ζ
that yield the same sequence of jobs. 
 
- Function Optimal_Schedule ( )Π  (Subsection 4.2) is applied from the position in 
which the current job sequence Π  differs from the previous job sequence (i.e., the job 
sequence obtained in the previous iteration). 
 
4.1 Step 1: Obtaining an initial job sequence 
 
Before generating a solution, jobs j  ( )1,...,j n=  are sorted in the non decreasing order 
of their priority indexes jIP : 
 
 ( )1= ⋅ − − ⋅j j jIP D Aζ ζ  (11) 
 
where parameter ζ  ( )0 1≤ ≤ζ  is used to prioritise the jobs, jD  is the normalised due 
date of job j , and jA  is a normalised estimation of the energy required to process job 
j . 
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jD  and jA  are obtained as follows: 
1...

max
=

= j
j

ss n

d
D

d
 and 

1...
max
=

= j
j

ss n

A
λ
λ

, where 
1=

=∑
jh

j jh
h

λ σ  

is an estimation of the energy required to process job j , being σ
∈

= ∑
jh

ijh
jh

i M jh

P
M

 an 

estimation of the energy required to process operation jhO . 
 
Note that parameter ζ  and its complement weight the importance given to the due date 
and to the estimation of the energy requirements, respectively, when ordering the jobs. 
For example, if ζ  is equal to 1, then the jobs would be sorted according to the EDD 
(earliest due date) rule. 
 
This way of generating different orderings of the jobs captures an small but logical 
subset of all possible !n  orderings. The adopted approach intends to be a first 
reasonable compromise between diversifying more and avoiding prohibitive computing 
times. 
 
4.2 Step 2: Obtaining an optimal schedule of each job 
 
After a sequence of jobs is obtained, the subproblem of scheduling optimally the 
operations of each job j  is solved successively according to the order of the jobs in the 
sequence. When scheduling the operations of a given job, the availability of the 
machines is that resulting from the decisions corresponding to all the preceding jobs. 
The solution indicates the start and finish times for processing each operation, as well as 
the assignment of the operations to the machines. 
 
In order to represent and solve the subproblem of assigning the operations of job j  to 
the machines and the timing of these operations, we propose to construct and find the 
shortest path in a multistage graph. Although the calculation of the minimum path is 
done as it advances the construction of graph, for the sake of clarity, we first expose 
separately the process of constructing the multistage graph (Section 4.2.1) and the 
process of finding the shortest path (Section 4.2.2). Then, the overall pseudocode for 
obtaining the optimal schedule of job j  is given (Section 4.2.3). Appendix A1 
describes the process of obtaining an optimal schedule of a given job for a numerical 
example. 
 
4.2.1 Constructing the multistage graph 
 
Given a job j , a multistage graph with 2jh +  stages (from stage 0 to stage 1jh + ) is 

constructed. The step from stage 1h −  to stage h  ( )1,..., jh h=  corresponds to the 

scheduling of operation jhO ; the step from stage jh  to stage 1jh +  represents the 
completion of job j . 
 
The stages of the graph, from stage 1 to stage jh , contain one or several nodes, htv , 
corresponding to the instants t  at which the processing of operation jhO  can be 
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completed. In addition, there are two nodes that represent the beginning and end of the 
graph: node α  (at stage 0) and node ω  (at stage 1jh + ). 
 
The arcs that link nodes at stage 1h −  to nodes at the next stage h  ( )1,..., jh h=  

correspond to the scheduling of operation jhO  on a machine i  ( )jhi M∈ . The cost 
associated with these arcs is that of the energy required to perform the operation, ijhU . 
 
All nodes of stage jh  are linked with node ω  of stage 1jh +  (which represents the 
completion of job j ). The costs associated with these arcs correspond to earliness jE  
or tardiness jT  with respect to the due date jd  of job j . 
 
If there are two arcs going from the same node at a stage jh h<  to the same node at 
stage 1h +  (of course, these arcs correspond to different machines), one of them can be 
omitted, according to the following rule (rule R1), which comprises two cases: 
 
• Case R1a: If an arc has a cost greater that of another arc, the former is omitted. 
 
• Case R1b: If two arcs have the same cost, only the arc corresponding to machine i  

with the lower estimation of future workload ijhq  is retained; if there is a tie, the 
retained arc is that corresponding to the machine with the lower value of i . 

 
Case R1b (that is not a dominance rule) is oriented to favour the assignment of 
operations to the machine with a lower estimation of future workload. ijhq  is obtained as 
the processing time of jhO  in machine i  plus the sum of the quotients of the processing 
times of the operations of the other jobs that could still be processed in machine i  by 
the number of machines on which each operation can be processed. Appendix A2 
describes the process of calculating ijhq  for a numerical example. 
 
A rule for dominance between arcs emanating from the same node at a stage 1jh h≤ −  
and leading to different nodes (rule R2) can also be applied: 
 
• Case R2a, for arcs emanating from the same node at a stage 1jh h< − : If the cost of 

an arc is not better than that of another arc and leads to a node that represents a later 
point in time, the former arc is omitted, since if it were used instead of the latter the 
cost of the energy would not be better and nor either would be the cost associated 
with the difference between the completion time of the job and its due date For 
instance, in the graph of the example given in Appendix A1 (Figure A1.1), arc 

28 240,mα →  is omitted because it is dominated by arc 12 60,mα →  (see Appendix 
A1 for the arc notation). 

 
• Case R2b, for arcs emanating from the same node at a stage 1jh h= −  and leading 

to different nodes 
jh tv  with jt d≥ : If the cost of an arc is not better than that of 

another arc and leads to a node that represents a later point in time, the former arc is 
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omitted because if it were used instead of the latter, the cost of the energy 
corresponding to the last operation of the job would not be better and the tardiness 
cost would be worse. In the graph in Figure A1.1, arc 22240 2400,m→  is omitted 
since it is dominated by arc 22240 2340,m→ . 

 
• Case R2c, for arcs emanating from the same node at a stage 1jh h= −  and leading 

to different nodes 
jh tv  with < jt d : If the cost of an arc is not better than that of 

another arc and leads to a node that represents an earlier point in time, the former 
arc is omitted, since if it were used, the energy cost of performing the last operation 
of the job would not better and the earliness cost would be worse. In the graph in 
Appendix A1 (Figure A1.1), arc 22240 780,m→  is omitted since it is dominated by 
arc 22240 1140,m→ . 

 
The arcs omitted because of applying R2a (when the cost of the dominated arc is greater 
than that of the dominant one), R2b, and R2c could not belong to an optimum path. 
When dominant and dominated arcs (case R2a) have the same cost, the dominated one 
can be omitted without detriment of the cost of the optimal path; the way chosen to 
break the tie favours the assignments that allow completing the operations sooner. 
 
4.2.2 Finding the shortest path 
 
The subproblem of assigning operations to machines and the subproblem of sequencing 
the operations on the machines are optimally solved, for each job j  of the ordered 
sequence Π , by calculating the minimum cost path, between the initial node α  and the 
final node ω . This process is performed simultaneously with the construction of the 
multistage graph, as mentioned above. 
 
The process to find the shortest path in the multistage graph of job j  is carried out 
using the expressions (12) and (13): 
 

0 0ακ =  (12) 
 

( )
1, '

' 1, '
|
minκ κ

−
−

−
∀ ∈Γ

= +
h t ht

ht h t htt
t v

c  ( )1,..., 1jh h= +  (13) 

 
where: 0ακ  is the value of the initial node α  

κht  is the value of node htv  

'httc  is the cost of the arc that connects node ,h tv −1  to node 'htv  

'
−Γht  is the set of nodes at stage 1h −  that are connected to node 'htv  

 
As the least cost path is being calculated, ties may occur between arcs leading to the 
same node and yielding the minimum value of the expression 1, 'h t httcκ − + . To break 
these ties we use a rule R3 (that is not a dominance rule), which considers the three 
following cases: 
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• Case R3a, for arcs yielding to nodes at stage jh h≤ : If the tie is among arcs with the 
same value associated with the source nodes, 1,h tυ − , and that correspond to the same 
machine, the arc that it is retained is that emanating from the node corresponding to 
the earliest time at which the previous operation , 1−j hO  is completed. 

• Case R3b, for arcs yielding to node ω (at stage 1jh + ): The arc that will be retained is 
that emanating from the node corresponding to the earliest time at which the last 
operation, 

jjhO , is completed. 

• Case R3c, for arcs yielding to nodes at stage jh h≤ : If the tie is among arcs 
corresponding to different machines, the arc that will be retained is that which 
corresponds to machine i  with a lower estimation of the workload, ijhq . If the tie 
remains, then the arc that is retained is that emanating from the node corresponding 
to the earliest time at which the previous operation , 1−j hO  is completed. 

 
Note that cases R3a and R3b favour that the operations are performed as early as 
possible, whereas case R3c favours the assignment of the operations to the machines 
with a possible lower future workload. 
 
Furthermore, rule R4 concerning the relations between the nodes at the same stage 
( )1 1jh h≤ ≤ −  can also be applied. According to this rule, if there are two nodes at the 

same stage, htv  and 'htv , such that 'ht htκ κ≤  and '<t t , then node htv  dominates 'htv  
which is eliminated. 
 
 
4.2.3 Procedure for calculating the optimal schedule of a job 
 
The overall procedure for simultaneously constructing the multistage graph and finding 
the minimum path is shown in Figure 2. 
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Given job j : 
1 Add node α  (stage 0)  
2 For each stage 1... jh h=   
2  For each node 1,h tv −  of stage 1h −   
3   Add arcs and nodes , 'h tv  for ' , 2 ,...t t t= + ∆ + ⋅∆  (where ∆  is the time 

unit) such as there exists at least one arc yielding to that node. If 
1jh h≤ − , when an arch yielding to node , 'h tv  has the lowest possible 

energy cost, then no more nodes (with 't t> ) are added because the 
arcs to these nodes will be dominated according to rule R2. If jh h= , 
additionally it is ensured that there is at least one node , 'h tv  such as 

' jt d≥  
4   Apply rules R1 and R2, and eliminate the nodes , 'h tv  without arcs 

yielding to them 
5   Find the minimum cost path to nodes , 'h tv  using rule R3 
6   If 1jh h≤ − , eliminate nodes , 'h tv  according to rule R4 
7  End for 
8 End for 
9 Add node ω  and the arcs from nodes to ω  
10 Return the minimum path to ω  

 
Figure 2. Procedure for building the graph and calculating the minimum path 

 
 
5. Computational experiment 
 
The algorithm HeufJSP was coded in Java and the computational experiment was 
executed on a PC 3.16 GHz Intel Core 2 Duo E8500 with 3.5 GB of RAM. The values 
of parameters 1

ζ
∆  and 2

ζ
∆  (see Figure 1) are set to 0.1 and 0.01, respectively. 

 
In order to evaluate the heuristic, we generated and solved a set of test instances. The 
generation of these instances is explained in Section 5.1. The obtained results are 
discussed in Section 5.2. 
 
5.1. Test instances 
 
A set of 2592 instances were generated randomly. Next, we detail the characteristics of 
these instances: 
 
• m : 10, 20, 30, 40, 50, 60. 
• n  : 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120. 
• jh : [ ]1,10U  ( 1,...,j n= ), where [ ],U a b  is a discrete uniform distribution between 

a  and b . 
• jhM  (set of machines that can process operation jhO ; 1,...,j n= , 1,..., jh h= ). This 

set is calculated as follows. For each machine i M∈ , there is a probability jpr  that 
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machine i  can process operation jhO  (probability jpr  is the same for all operations 
of job j ) and it is ensured that jhM ≠ ∅  (i.e., jhO  can be processed in at least one 
machine). Probability jpr  (for each job j ) is generated at random and 2 scenarios 

are considered: [ ]0.1,0.4=jpr U  (low versatility scenario) or [ ]0.5,0.9=jpr U  
(high versatility scenario). 

• ijhp : [ ]1,30U , [ ]1,90U  or [ ]1,240U  (processing time of operation jhO  in machine 
i ; 1,...,j n= , 1,..., jh h= , jhi M∈ ). 

• ijhP : 1.1 ,1.9ijh ijhU p p ⋅ ⋅   (energy required, in kWh, to process operation jhO  in 

machine i ; 1,...,j n= , 1,..., jh h= , jhi M∈ ). 

• jr : [ ]0,359U  (release date of job j ; 1,...,j n= ). 
• PC , VC  (costs, in €/kWh, of energy at peak and valley hours, respectively): 0.15 

and 0.06, respectively. Each day has 10 peak hours and 14 valley hours and the first 
instant of the scheduling horizon coincides with the beginning of a peak period. 

• ( ), ,j j jβ γ δ : ( )0.02,1,0.90 , ( )1 9,1,0.5  or ( )0.4,1,0.2 , coefficients in the objective 
function related to costs associated with the due dates of job j  ( 1,...,j n= ). Note 
that these scenarios correspond to a low, medium and high ratio between tardiness 
and earliness costs, respectively. 

 
In order to generate realistic due dates and initial occupancies of the machines, the 
following two mechanisms are used. 
 
• jd  (due date of job j ; 1,...,j n= ). Let ins  be an instance in which the values of 

,m  n , jh , jhM , ijhp , ijhP , jr , PC , VC , jβ , jγ , jδ  and iQ  have been set. Let 
1insAux  an auxiliary instance in which the values of the aforementioned data, except 

those of jr , PC , VC  and jβ , have been set to the values of instance ins ; in 
1insAux , the release dates and energy costs are set to 0, and jβ  values are set to a 

very big value. The idea is that the jobs are scheduled as soon as possible when 
insAux  is solved with the proposed heuristic with 0ζ = . Let je  be the instant in 
which job j  is finished in the obtained solution. The due date of job j  of instance 
ins  is calculated as [ ]{ }( )max , 0.05 ,2= + − ⋅ ⋅j jd TIM e U TIM TIM , where [ ]x  

returns the integer value closest to x  and TIM  is the expected value of the total 
processing time of a job; that is, TIM is the product of the expected number of 
operations and the expected processing time of an operation. 

• iQ  (initial occupancy of machine i ; 1,...,i m= ). Let ins  be the instance to generate 
in which iQ i=∅ ∀  (i.e., all machines are fully available from the initial instant) 
and the values of m , n , jh , jhM , ijhp , ijhP , jr , PC , VC , jβ , jγ  and jδ  have 
been set. Let 2insAux  an auxiliary instance in which the values of the 
aforementioned parameters, except those of jr , have been set to the values of 
instance ins ; the release dates of the jobs of 2insAux  are set to 0 (i.e., the jobs are 
available from the start). First, the due dates of the jobs of 2insAux  are set using the 
mechanism described above. Then the proposed heuristic with 0.5ζ =  is applied to 
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solve 2insAux . Finally, the initial occupancies of the machines of ins  are set to the 
occupancies of the obtained solution of 2insAux  (according to the assignment of the 
operations to the machines). 

 
For each combination of the parameters, 2 instances are generated, giving a total of 
2592 test instances. All instances are available at https://www.ioc.upc.edu/EOLI 
/research/. 
 
5.2. Results 
 
All test instances were solved with the algorithm HeufJSP. For each one, the cpu time, 
the costs (differentiating energy and deviation from due date costs), average (Aver.) and 
maximum (Max.) earliness and tardiness times were recorded (the minimum earliness 
and tardiness times are not reported in Tables 1-6 since they are always 0). Table 1 
shows the averages of the aforementioned values for all instances. 
 

cpu 
time (s) 

Cost (€) Earliness Tardiness 

Total Energy Deviation from 
due dates Aver. Max. Aver. Max. 

57.05 15812.83 778.64 15034.19 2.11 53.24 3.91 48.57 
 

Table 1. Average values of the heuristic solutions 
 
The implemented heuristic obtains a solution in around 1 minute on average. On 
average, average tardiness times are around 2 times greater than average earliness times, 
although their maximum values are similar (around 50 units of time). 
 
Next, we analyse the solutions according to the characteristics of the instances. Table 2 
groups the results according to the ratio between number of jobs and number of 
machines, n m  (between parentheses, it is shown the number of instances in each 
group). 
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n/m cpu 
time (s) 

Cost (€) Earliness Tardiness 

Total Energy Deviation from 
due dates Aver. Max. Aver. Max. 

(0,1] 
(756) 10.25 288.62 246.13 42.49 0.28 3.79 0.26 3.36 

(1,2] 
(756) 62.34 983.13 603.29 379.84 0.73 15.30 0.78 14.26 

(2,3] 
(432) 82.54 3471.10 855.09 2616.01 1.88 43.55 2.23 36.03 

(3,4] 
(216) 77.48 8628.20 1116.41 7511.79 3.06 69.41 4.87 78.26 

(4,5] 
(108) 67.23 35763.56 1264.70 34498.87 4.14 93.52 9.52 115.75 

(5,6] 
(108) 83.67 37987.94 1538.12 36449.82 5.30 134.51 10.54 146.73 

7 
(36) 71.51 86524.00 1544.68 84979.32 8.51 174.31 19.60 199.83 

8 
(36) 79.47 92510.07 1744.51 90765.56 10.32 303.00 20.55 225.56 

9 
(36) 93.17 105650.01 1968.49 103681.52 9.83 258.97 20.94 203.89 

10 
(36) 120.73 123219.70 2276.23 120943.47 11.24 393.22 24.97 233.83 

11 
(36) 132.48 194383.90 2559.01 191824.88 11.20 355.89 27.36 266.33 

12 
(36) 177.99 194852.13 2763.24 192088.89 10.06 323.94 30.22 308.08 

 

Table 2. Average values grouped by the ratio n/m 
 
As we expect, earliness and especially tardiness times and costs tend to increase when 
the ratio n m  increases. When there are not more jobs than machines ( ]( )0,1n m∈ , the 
main costs are energetic (85.28% on average) but this percentage decreases quickly 
when there are much more jobs than machines (1.42% on average when 12n m = ). We 
can see that earliness and tardiness times, on average, have a tendency to grow with 
similar proportions as the ratio n m  grows. Regarding the cpu time, we cannot observe 
any tendency with regard to n m , because it depends mainly of the number of jobs: 
when 10n =  and 120n = , the cpu time averages are 1.33 s and 141.72 s, respectively. 
 
Table 3 groups the results according to the versatility of the machines (Vers.). When the 
versatility of the machines is high (i.e., the number of machines capable of processing 
an operation is, on average, relatively high) the average earliness and tardiness times are 
reduced around 3 and 13 times, respectively, with respect to the times corresponding to 
a low versatility of the machines (in whose case, on average, the number of machines 
capable of processing an operation is low). Thus, the versatility of the machines has a 
high influence on the costs of the solutions. Moreover, we can see that with high 
versatility the energy cost is an important term of the total cost (40.33% on average) 
whereas the energy cost is relatively insignificant with low versatility (3.56% on 
average). Regarding cpu times, on average the heuristic applied to instances with high 
versatility lasts 1.2 times more with respect to the solution of low versatility instances. 
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Vers. cpu 
time (s) 

Cost (€) Earliness Tardiness 

Total Energy Deviation from 
due dates Aver. Max. Aver. Max. 

Low 49.02 30452.57 1084.14 29368.43 3.24 83.00 7.29 83.61 

High 65.09 1173.08 473.14 699.94 0.98 23.49 0.54 13.53 
 

Table 3. Average values grouped by the versatility of the machines 
 
Table 4 groups the results according to the expected value of the processing times of the 
operations (PT Var.): low ( [ ]1,30U ), medium ( [ ]1,90U ) and high ( [ ]1,240U ). This 
characteristic has some influence in the cpu time: with high processing times the 
heuristic takes twice as long than it does with low processing times. On the other hand, 
as expected, earliness and tardiness times and costs (both energy and due date costs) 
increase along with processing times. Here, when processing times are low, the energy 
cost is an important term of the total cost (25.25% on average) whereas the energy cost 
is relatively insignificant with high processing times (3.69% on average). 
 

PT 
Var. 

cpu 
time (s) 

Cost (€) Earliness Tardiness 

Total Energy 
Deviation 
from due 

dates 
Aver. Max. Aver. Max. 

Low 36.80 1033.07 261.00 772.07 0.29 8.21 0.94 10.06 

Medium 56.70 7422.65 636.11 6786.54 1.33 35.85 3.10 37.75 

High 77.67 38982.75 1438.80 37543.95 4.70 115.67 7.70 97.90 
 

Table 4. Average values grouped by the expected value of the processing times of the operations 
 
Finally, Table 5 groups the results according to the ratio between tardiness and earliness 
cost parameters, j jβ δ : low ( )0.02j jβ δ =



, medium ( )0.2j jβ δ =


 and high 

( )2β δ =j j . We can see that average cpu times are very similar. Regarding the other 
results, the tendency is that the tardiness averages decrease and the earliness averages 
increase when the tardiness cost weight increases, as it can be expected. 
 

β δj j  cpu 
time (s) 

Cost (€) Earliness Tardiness 

Total Energy 
Deviation 
from due 

dates 
Aver. Max. Aver. Max. 

Low 55.45 2667.13 776.14 1890.99 1.34 35.83 4.03 49.00 

Medium 57.92 9655.36 778.81 8876.55 2.15 54.66 3.83 48.90 

High 57.79 35115.99 780.97 34335.01 2.83 69.25 3.88 47.82 
 

Table 5. Average values grouped by the ratio j jβ δ  

 
As it has been stated in Section 2, there is not any published procedure for solving the 
specific variant of the fJSP problem dealt with in the present paper. Barr et al. (1995) 
suggest that new methods can be compared with a simple random restart procedure. 
Therefore, as a rough first assessment of the quality of the solutions provided by the 
proposed procedure we compared them with those obtained with MSfJSP, which in fact 
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is a multi-start greedy randomised algorithm that takes into account the deviations from 
the due dates. 
 
MSfJSP generates a random solution at each iteration as follows. First, an operation is 
selected at random among a set of candidate operations. Operation jhO  is candidate if it 
has not been scheduled and it is the first operation of its job ( 1=h ) or the previous 
operation ( , 1−j hO ) has been scheduled. Then the selected operation is assigned to a 
compatible machine (i.e., a machine in set jhM ) selected at random. If jhO  is not the 
last operation ( < jh h ) then it is assigned to the first possible time interval; otherwise it 
is assigned to the best feasible time interval (i.e., to the feasible time interval involving 
the minimum increment of costs). 
 
All test instances were solved with MSfJSP. In order to make a fair comparison, the cpu 
time per instance was the same time used by HeufJSP. The average number of iterations 
(generated solutions) per instance of MSfJSP is 1888.41. HeufJSP yields better results 
for all the instances, improving the total costs given by MSfJSP between a minimum of 
33.86% and a maximum of 99.99%. Table 6 compares the average results obtained by 
HeufJSP and MSfJSP. We can see clearly the benefits of solving the problem with 
HeufJSP.  
 

Procedures 
Cost (€) Earliness Tardiness 

Total Energy Deviation from 
due dates Aver. Max. Aver. Max. 

HeufJSP 15812.83 778.64 15034.19 2.11 53.24 3.91 48.57 

MSfJSP 17119560.12 3296.72 17116263.40 2.36 98.24 546.30 1391.74 
 

Table 6. Average values of the HeufJSP and MSfJSP solutions 
 
Finally, the HeufJSP and MSfJSP solutions are compared with the solutions obtained 
with the BIP model. BIP was solved using IBM ILOG CPLEX 12.6 and the cpu time 
was limited to 1 hour per instance. The maximum possible start time of the operations 

when calculating the sets ijhT  (Section 3.2) is set to 
1

2 max
=

⋅
n

jj
d , which is a big enough 

value. 
 
For the instances with 10 and 20 jobs (432 instances), BIP was solved optimally 320 
times; for larger instances, optimal (or even feasible) solutions were rarely found. For 
those 320 instances that were solved optimally with BIP (grouped by versatility of the 
machines, vers., and number of machines, m), Table 7 shows the number of instances, 
in each group, that were solved optimally (column #ins), the averages of the cpu times 
(in s) and the total costs (in €) of BIP, HeufJSP and MSfJSP (columns Mt , MZ , Ht , HZ , 

St , and SZ  respectively), the gap (%) between the average costs of HeufJSP and the BIP 
model (column ( )100H H M HGAP Z Z Z= ⋅ − ) and the gap (%) between the average costs of 
MSfJSP and BIP (column ( )100S S M SGAP Z Z Z= ⋅ − ). 
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vers. / m 
BIP HeufJSP MSfJSP 

#ins Mt  MZ  Ht  HZ  GAPH St  SZ  GAPS 

Low / 10 29 1006.81 292.91 2.11 1387.12 78.88 2.12 81638.46 99.64 

Low / 20 28 539.53 247.35 2.20 351.35 29.60 2.20 69835.82 99.65 

Low / 30 28 611.69 208.18 2.30 217.42 4.25 2.30 103644.63 99.80 

Low / 40 29 585.63 156.37 1.53 156.79 0.27 1.54 144712.00 99.89 

Low / 50 32 761.28 172.25 1.87 173.05 0.46 1.88 214230.99 99.92 

Low / 60 32 1019.08 139.62 1.54 140.13 0.37 1.54 155915.90 99.91 

High / 10 26 682.57 158.09 2.89 167.74 5.75 2.88 197031.37 99.92 

High / 20 29 910.78 117.10 3.28 117.46 0.30 3.27 140543.41 99.92 

High / 30 26 804.44 72.02 2.57 72.10 0.11 2.55 69950.60 99.90 

High / 40 22 864.27 50.94 1.95 50.94 0.00 1.95 25393.13 99.80 

High / 50 21 912.14 48.86 1.64 48.76 0.00 1.63 80761.86 99.94 

High / 60 18 1096.22 38.28 1.85 38.28 0.00 1.85 77853.40 99.95 
 

Table 7. Comparison of the heuristic solutions versus the optimal solutions of BIP model 
 
We can see that the heuristics need a tiny fraction of the cpu time spent by BIP. With 
respect to the quality of the HeufJSP solutions, when the machines are highly versatile, 
on average the heuristic performs very well on instances with 20 or more machines 
(gaps are not greater than 0.3%) and performs quite well on instances with 10 machines 
(gap is equal to 5.75%). And when the machines have low versatility, HeufJSP 
performs also very well on instances with 30 or more machines (gaps are smaller than 
0.5%) and quite well with 20 machines (gap is equal to 4.25%). In contrast, the results 
of MSfJSP show that these instances are not trivial to solve and very poor quality 
solutions are obtained with randomness. 
 
On the other hand, in the scenario of 10 or 20 machines with low versatility, HeufJSP 
does not perform well (gaps are equal to 29.6% and 78.88%, respectively) and MSfJSP 
performs much worse (gaps greater than 99.6%). 
 
To sum up, for the most of the instances with 10 and 20 jobs, HeufJSP performs well 
when compared to the optimal solutions obtained with BIP. For larger and more 
realistic instances with more than 20 jobs, optimal (or even feasible) solutions were 
rarely found with the BIP model whereas the proposed heuristic can calculate always a 
feasible solution in a short cpu time (around 1 minute on average). 
 
6. Conclusions and prospects 
 
This paper introduces a new just-in-time scheduling problem in which the costs of 
performing the operations depend on time. This problem is found in many real 
industrial situations where the costs of the energy or of the work force are a significant 
component of the total costs and the operations can be performed in any time of the day.  
 
We have formulated the problem with a mathematical programming model and 
proposed a quick enough heuristic algorithm to find feasible solutions fulfilling the 
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constraints on the availability of the machines and taking into account the costs of 
performing the operations and those corresponding to the deviations from the due dates. 
 
This is a first step in a research agenda that includes the relaxation of some of the 
assumptions enumerated in 3.1 (specifically, those concerning the precedence 
relationships between the operations of each job and between the operations of different 
jobs, the size of buffers and the set-up times) and the application of metaheuristics and 
matheuristics, with the aim to introduce a greater diversification, i. e., to explore 
ordering jobs different from those corresponding to the diverse values of the parameter 
ζ . The benchmark solutions obtained with BIP model points out that the proposed 
heuristic performs very well on scenarios with a not too small number of machines or 
with machines with high versatility, but for the other scenarios the resolution of the 
problem has to be improved. 
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Appendix A1. Process of obtaining an optimal schedule of a given job for a 
numerical example 
 
Next, an example of obtaining an optimal schedule of a job is shown. Let the data of the 
example set as follows: 
 

2n =  
 

4m =  
 

1 3h = , 2 2h =  
 
Table A1.1 shows the values of jhO , jhM  and ijhp . 
 

 ijhp  

1m  2m  3m  4m  
Job 1j =  11O  60 240 × × 

12O  × 180 120 × 

13O  180 120 × 180 
Job 2j =  21O  180 240 × 120 

22O  120 × 60 × 
Table A1.1. Values of jhO , jhM  and ijhp  

 
(1, 2)Π =  (job 1j =  is processed before job 2j = ) and let 1j =  be the job to be 

scheduled. 
 
Table A1.2 shows the values of ijhP  (only for job 1j =  to be scheduled). 
 

 1i hP  

1m  2m  3m  4m  
Job 1j =  11O  10 40 × × 

12O  × 30 20 × 

13O  30 20 × 30 
Table A1.2. Values of ijhP  for job 1=j  

 
1 1800d =  

 
1 1r =  

 
1 1 10β = ; 1 1γ = ; 1 1 30δ =  

 
0.2PC = ; 0.1VC = .  
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Table A1.3 shows the initial occupancy of each machine i , iQ , the peak and valley 
periods and the associated energy cost. 

 
 t  1m  2m  3m  4m  

Peak 
period 

1-60 2 

8 

     
61-120       
121-180       
181-240 2      
241-300        
301-360        
361-420        
421-480        
481-540        
541-600        

Valley 
period 

601-660        
661-720        
721-780 1       
781-840        
841-900        
901-960        

961-1020        
1021-1080        
1081-1140        
1141-1200        
1201-1260        
1261-1320        
1321-1380        
1381-1440        

Peak 
period 

1441-1500        
1501-1560 2       
1561-1620 2       
1621-1680        
1681-1740        
1741-1800 2       
1801-1860 2       
1861-1920 2       
1921-1980        
1981-2040        

Valley 
period 

2041-2100        
2101-2160        
2161-2220 1       
2221-2280 1 

4 

     
2281-2340 1 

4 

    
2341-2400 1 

4 

   
2401-2460 1 

4 

  
2461-2520 1 

4 

  
2521-2580 1 

4 

  
2581-2640 1 

4 

  
2641-2700 1 

4 

  
2701-2760 1    
2761-2820 1     
2821-2880 1      

Table A1.3. Initial occupancy of machines and the energy costs of performing operation 11O  for each 
machine and set of periods in which the operation can be processed. 

 
Figure A1.1 shows the multistage graph corresponding to job 1j = . The value inside the 
nodes is the completion time of the corresponding operations. The first value over the 
arc leading at the stage h  ( )1 jh h≤ ≤  is the cost 

( )jhi jhU  (the cost of the energy required 

to process operation jhO  on machine ( )jhi ); and the second value is the machine ( )jhi  

( )( )∈ jhjhi M  to which operation h  of job j  ( )jhO  has been assigned. The value over 

the arc leading at the stage 1jh +  is the cost ( )E jC E  (the earliness cost of job j  with 
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respect to its due date jd ) plus the cost ( )T jC T  (the tardiness cost of job j  with 

respect to its due date jd ). The first value below the nodes corresponds to κht  (the 
value of node htv ); and the second value identifies the node that precedes htv ) in the 
shortest path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.1. Multistage graph corresponding to job 1=j  
 
In summary, the least cost path (27) represents the ordered sequence of operations ( 11O ,

12O , 13O ) and their respective associated costs ( 111 1U = , 312 2U = , 213 2U = ,
( ) ( )1 1 22+ =E TC E C T ), as well as the times (780, 1020, 1140) at which the operations 

finish being processed on the machines ( 1m , 3m , 2m , respectively). 
 
Appendix A2. Process of calculating ijhq  for a numerical example 
 
Next, an example of calculating ijhq  is shown: 2n = ; 4m = ; 1 3h = , 2 2h = ; Table A1.1 
shown the values of jhO , jhM  and ijhp ; (1, 2)Π =  (job 1j =  is processed before job 

2j = ); and let 11O  be the operation to be scheduled. 
 
The obtained values of ijhq  are: 
 

111
180 12060 180

3 2
q = + + =  

211
240240 320
3

q = + =  

 

60 

2,α 

 

780 

1,α 

 

240 

6,60 
 

1920 

9,1020 
 

α 
0 

 

1020 

3,780 

 

ω 
27,1140 

 

2040 

7,1020 

 

1140 

5,1020 

 

2340 

5,1020 

2,m2 

2,m1 

1,m1 

2,m2 

2,m2 
2,m2 

4,m2 
4,m2 

6,m1 
6,m1 

2,m3 
2,m3 

4,m3 

22 

600

156

2970
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