443 research outputs found

    Novel polyomaviruses in mammals from multiple orders and reassessment of polyomavirus evolution and taxonomy

    Get PDF
    As the phylogenetic organization of mammalian polyomaviruses is complex and currently incompletely resolved, we aimed at a deeper insight into their evolution by identifying polyomaviruses in host orders and families that have either rarely or not been studied. Sixteen unknown and two known polyomaviruses were identified in animals that belong to 5 orders, 16 genera, and 16 species. From 11 novel polyomaviruses, full genomes could be determined. Splice sites were predicted for large and small T antigen (LTAg, STAg) coding sequences (CDS) and examined experimentally in transfected cell culture. In addition, splice sites of seven published polyomaviruses were analyzed. Based on these data, LTAg and STAg annotations were corrected for 10/86 and 74/86 published polyomaviruses, respectively. For 25 polyomaviruses, a spliced middle T CDS was observed or predicted. Splice sites that likely indicate expression of additional, alternative T antigens, were experimentally detected for six polyomaviruses. In contrast to all other mammalian polyomaviruses, three closely related cetartiodactyl polyomaviruses display two introns within their LTAg CDS. In addition, the VP2 of Glis glis (edible dormouse) polyomavirus 1 was observed to be encoded by a spliced transcript, a unique experimental finding within the Polyomaviridae family. Co-phylogenetic analyses based on LTAg CDS revealed a measurable signal of codivergence when considering all mammalian polyomaviruses, most likely driven by relatively recent codivergence events. Lineage duplication was the only other process whose influence on polyomavirus evolution was unambiguous. Finally, our analyses suggest that an update of the taxonomy of the family is required, including the creation of novel genera of mammalian and non-mammalian polyomaviruses.info:eu-repo/semantics/publishedVersio

    Novel polyomaviruses of nonhuman primates: genetic and serological predictors for the existence of multiple unknown polyomaviruses within the human population.

    Get PDF
    Polyomaviruses are a family of small non-enveloped DNA viruses that encode oncogenes and have been associated, to greater or lesser extent, with human disease and cancer. Currently, twelve polyomaviruses are known to circulate within the human population. To further examine the diversity of human polyomaviruses, we have utilized a combinatorial approach comprised of initial degenerate primer-based PCR identification and phylogenetic analysis of nonhuman primate (NHP) polyomavirus species, followed by polyomavirus-specific serological analysis of human sera. Using this approach we identified twenty novel NHP polyomaviruses: nine in great apes (six in chimpanzees, two in gorillas and one in orangutan), five in Old World monkeys and six in New World monkeys. Phylogenetic analysis indicated that only four of the nine chimpanzee polyomaviruses (six novel and three previously identified) had known close human counterparts. To determine whether the remaining chimpanzee polyomaviruses had potential human counterparts, the major viral capsid proteins (VP1) of four chimpanzee polyomaviruses were expressed in E. coli for use as antigens in enzyme-linked immunoassay (ELISA). Human serum/plasma samples from both Côte d'Ivoire and Germany showed frequent seropositivity for the four viruses. Antibody pre-adsorption-based ELISA excluded the possibility that reactivities resulted from binding to known human polyomaviruses. Together, these results support the existence of additional polyomaviruses circulating within the human population that are genetically and serologically related to existing chimpanzee polyomaviruses

    The ancient evolutionary history of polyomaviruses

    Get PDF
    Author Summary: Polyomaviruses are a family of DNA-based viruses that are known to infect various terrestrial vertebrates, including humans. In this report, we describe our discovery of highly divergent polyomaviruses associated with various marine fish. Searches of public deep sequencing databases unexpectedly revealed the existence of polyomavirus-like sequences in scorpion and spider datasets. Our analysis of these new sequences suggests that polyomaviruses have slowly co-evolved with individual host animal lineages through an established mechanism known as intrahost divergence. The proposed model is similar to the mechanisms through with other DNA viruses, such as papillomaviruses, are thought to have evolved. Our analysis also suggests that distantly related polyomaviruses sometimes recombine to produce new chimeric lineages. We propose a possible taxonomic scheme that can account for these inferred ancient recombination events

    Search for polyoma-, herpes-, and bornaviruses in squirrels of the family Sciuridae

    Get PDF
    Background Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. Methods Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription-quantitative PCR (RT-qPCR). Results In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR). Splice sites of the PyV genomes were predicted in silico for large T antigen, small T antigen, and VP2 coding sequences, and experimentally confirmed in Vero and NIH/3T3 cells. Attempts to extend the HV DPOL sequences in upstream direction resulted in contiguous sequences of around 3.3 kilobase pairs for one BHV and two GHVs. Phylogenetic analysis allocated the novel squirrel PyVs to the genera Alpha- and Betapolyomavirus, the BHVs to the genus Muromegalovirus, and the GHVs to the genera Rhadinovirus and Macavirus. Conclusions This is the first report on molecular identification and sequence characterization of PyVs and HVs and the detection of bornavirus coinfections with PyVs or HVs in two squirrel species. Multiple detection of PyVs and HVs in certain squirrel species exclusively indicate their potential host association to a single squirrel species. The novel PyVs and HVs might serve for a better understanding of virus evolution in invading host species in the future

    Discovery of a New Human Polyomavirus Associated with Trichodysplasia Spinulosa in an Immunocompromized Patient

    Get PDF
    The Polyomaviridae constitute a family of small DNA viruses infecting a variety of hosts. In humans, polyomaviruses can cause infections of the central nervous system, urinary tract, skin, and possibly the respiratory tract. Here we report the identification of a new human polyomavirus in plucked facial spines of a heart transplant patient with trichodysplasia spinulosa, a rare skin disease exclusively seen in immunocompromized patients. The trichodysplasia spinulosa-associated polyomavirus (TSV) genome was amplified through rolling-circle amplification and consists of a 5232-nucleotide circular DNA organized similarly to known polyomaviruses. Two putative “early” (small and large T antigen) and three putative “late” (VP1, VP2, VP3) genes were identified. The TSV large T antigen contains several domains (e.g. J-domain) and motifs (e.g. HPDKGG, pRb family-binding, zinc finger) described for other polyomaviruses and potentially involved in cellular transformation. Phylogenetic analysis revealed a close relationship of TSV with the Bornean orangutan polyomavirus and, more distantly, the Merkel cell polyomavirus that is found integrated in Merkel cell carcinomas of the skin. The presence of TSV in the affected patient's skin was confirmed by newly designed quantitative TSV-specific PCR, indicative of a viral load of 105 copies per cell. After topical cidofovir treatment, the lesions largely resolved coinciding with a reduction in TSV load. PCR screening demonstrated a 4% prevalence of TSV in an unrelated group of immunosuppressed transplant recipients without apparent disease. In conclusion, a new human polyomavirus was discovered and identified as the possible cause of trichodysplasia spinulosa in immunocompromized patients. The presence of TSV also in clinically unaffected individuals suggests frequent virus transmission causing subclinical, probably latent infections. Further studies have to reveal the impact of TSV infection in relation to other populations and diseases

    Metagenomic Analyses of the Human Gut Virome

    Get PDF
    The human gut harbors tens of trillions of microbes belonging to all three domains of life, Bacteria, Archaea, and Eukarya; most are members of Bacteria. These organisms collaborate and compete for functional niches and physical space: habitats), together forming a continuously functioning metabolic organ that influences many aspects of host biology. The factors that drive the assembly, determine the stability, and shape the adaptive responses of the gut microbiota to a variety of perturbations are the subject of intense study as greater appreciation is gained of the importance of this microbial community for human health. My thesis focused on the viral component of the microbiota that had been less characterized than its bacterial component. I first developed and applied a series of experimental and computational tools for metagenomic analyses of viruses purified from frozen fecal samples obtained from healthy adult monozygotic twin pairs and their mothers living in the USA, over the course of a year. The virome in this population was dominated by phages and exhibited high inter-personal variation and contrasting intrapersonal stability, suggesting a prevalent temperate lifestyle rather than a predator-prey relationship that is a feature of marine microbial communities. To further characterize the role of phage in shaping gut community structure, I colonized adult germ-free mice with a defined model human gut microbiota composed of 15 sequenced human gut symbionts, seven of which harbored 10 prophages, one of which: Bacteroides cellulosilyticusWH2) was represented by a library of \u3e25,000 isogenic transposon mutants covering 80% of genes in its genome. Once assembled, this model microbiota was subjected to a staged phage attack with a pool of virus-like particles: VLPs) purified from the fecal microbiota of five humans from the first study. Shotgun sequencing of DNA isolated from the input human VLP preparation, cecal and fecal samples collected over time from these gnotobiotic mice, and VLPs recovered from their fecal samples, revealed a ordered and reproducible sequence of phage attack, allowing me to associate novel phages present in the input VLP preparation with bacterial hosts, and to characterize the dynamics and identify genetic determinants of prophage induction. Finally, I used the tools I developed to characterize the phages and eukaryotic viruses present in the fecal microbiota of healthy and malnourished twins living in Malawi, sampled during their first two years of life. Together, this work provided new perspectives about viral diversity and viral-bacterial host dynamics associated with the human gut microbiota

    Viral diversity in oral cavity from Sapajus nigritus by metagenomic analyses

    Get PDF
    Sapajus nigritus are non-human primates which are widespread in South America. They are omnivores and live in troops of up to 40 individuals. The oral cavity is one of the main entry routes for microorganisms, including viruses. Our study proposed the identification of viral sequences from oral swabs collected in a group of capuchin monkeys (n = 5) living in a public park in a fragment of Mata Atlantica in South Brazil. Samples were submitted to nucleic acid extraction and enrichment, which was followed by the construction of libraries. After high-throughput sequencing and contig assembly, we used a pipeline to identify 11 viral families, which are Herpesviridae, Parvoviridae, Papillomaviridae, Polyomaviridae, Caulimoviridae, Iridoviridae, Astroviridae, Poxviridae, and Baculoviridae, in addition to two complete viral genomes of Anelloviridae and Genomoviridae. Some of these viruses were closely related to known viruses, while other fragments are more distantly related, with 50% of identity or less to the currently available virus sequences in databases. In addition to host-related viruses, insect and small vertebrate-related viruses were also found, as well as plant-related viruses, bringing insights about their diet. In conclusion, this viral metagenomic analysis reveals, for the first time, the profile of viruses in the oral cavity of wild, free ranging capuchin monkeys

    Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes

    Get PDF
    It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts
    corecore