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The human gut harbors tens of trillions of microbes belonging to all three domains of life, Bacteria, 

Archaea, and Eukarya; most are members of Bacteria. These organisms collaborate and compete 

for functional niches and physical space (habitats), together forming a continuously functioning 

metabolic organ that influences many aspects of host biology. The factors that drive the assem-

bly, determine the stability, and shape the adaptive responses of the gut microbiota to a variety of 

perturbations are the subject of intense study as greater appreciation is gained of the importance 

of this microbial community for human health. My thesis focused on the viral component of the 

microbiota that had been less characterized than its bacterial component. I first developed and 

applied a series of experimental and computational tools for metagenomic analyses of viruses 

purified from frozen fecal samples obtained from healthy adult monozygotic twin pairs and their 

mothers living in the USA, over the course of a year. The virome in this population was dominated 

by phages and exhibited high inter-personal variation and contrasting intrapersonal stability, sug-

gesting a prevalent temperate lifestyle rather than a predator-prey relationship that is a feature 

of marine microbial communities. To further characterize the role of phage in shaping gut com-

munity structure, I colonized adult germ-free mice with a defined model human gut microbiota 

composed of 15 sequenced human gut symbionts, seven of which harbored 10 prophages, one of 

which (Bacteroides cellulosilyticus WH2) was represented by a library of >25,000 isogenic trans-



xvi

poson mutants covering 80% of genes in its genome. Once assembled, this model microbiota was 

subjected to a staged phage attack with a pool of virus-like particles (VLPs) purified from the fe-

cal microbiota of five humans from the first study. Shotgun sequencing of DNA isolated from the 

input human VLP preparation, cecal and fecal samples collected over time from these gnotobiotic 

mice, and VLPs recovered from their fecal samples, revealed a ordered and reproducible sequence 

of phage attack, allowing me to associate novel phages present in the input VLP preparation with 

bacterial hosts, and to characterize the dynamics and identify genetic determinants of prophage 

induction.  Finally, I used the tools I developed to characterize the phages and eukaryotic viruses 

present in the fecal microbiota of healthy and malnourished twins living in Malawi, sampled dur-

ing their first two years of life. Together, this work provided new perspectives about viral diversity 

and viral-bacterial host dynamics associated with the human gut microbiota.
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Abstract

Over the past decade researchers have begun to characterize viral diversity using metagenomic 

methods. These studies have shown that viruses, the majority of which infect bacteria (bacterio-

phages), are likely the most genetically diverse components of the biosphere. Here we briefly 

review the incipient rise of a phage biology renaissance catalyzed by recent advances in next gen-

eration sequencing. We explore how work characterizing phage diversity and their lifestyles in the 

gut is changing our view of ourselves as supra-organisms. Finally, we discuss how a new apprecia-

tion of phage dynamics may yield new applications for phage therapies designed to manipulate the 

structure and functions of our gut microbiomes.

Introduction

From Alfred Hershey and Martha Chase’s studies indicating that DNA was the genetic material 

1, to Francis Crick and Sydney Brenner’s experiment establishing the triplet nature of the genetic 

code 2, bacteriophages (“phages”) have helped define fundamental components of modern biol-

ogy. Most of the tools for early molecular biology arose from the work of phage biologists 3. The 

first genomes sequenced were from phages and other viruses. The first comparisons of multiple 

genomes were carried out on Lactobacillus and Mycobacteria phages. These early studies showed 

that there was extensive diversity in essentially every phage community. Now it is clear that virus-

es are the most diverse and uncharacterized components of the major ecosystems on Earth 4, and 

that viruses have intricate roles in ecosystem function, far beyond simple predator-prey dynamics 

5 (Box 1).

At the same time, the clinical world has become increasingly interested in phage-based 

therapeutics because of the increased prevalence of antibiotic resistant bacteria 6. The idea of us-

ing phages as therapeutic tools is not new. Félix d’Herelle, co-discoverer of phage, recognized the 

potential medical applications nearly a century ago 7 and his first phage therapies were tested as 

early as 1919 8. However, a rudimentary understanding of the composition and dynamic operations 
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of the human microbiome, a lack of knowledge of phage biology, and poor quality control during 

production of phages made this therapeutic approach unreliable 9.

This Review details recent advances on the rising field of viral metagenomics with an 

emphasis on our current views of phage communities associated with the human gut. It does not 

discuss many of the resistance mechanisms such as Clustered Regularly Interspaced Short Palin-

dromic Repeats (CRISPRs), or the extremely large field of eukaryotic viral discovery that is being 

propelled by metagenomics, since these topics have been reviewed elsewhere 10-14. Instead, we 

focus on viruses that infect bacteria. Box 2 provides examples of some challenges facing phage 

metagenomics at the present time, some of which are discussed below.

Methods for viral metagenomics

The introduction of small subunit (SSU) ribosomal RNA (e.g.,  16S rRNA) as a reliable prokary-

otic phylogenetic marker 15-17 opened the door to remarkable insights about microbial community 

diversity and dynamics. Phylogenetic marker ‘envy’ rapidly ‘infected’ the psyche of phage biolo-

gists: they did not have an SSU rRNA equivalent and there was, and is, no conserved protein or 

gene enabling a similar characterization of all or the majority of phages present in a sample. Efforts 

to characterize phage diversity focused on characterizing partially conserved fragments of phage 

genes such as polymerases. However, this method was useful only within certain viral families 18-

20. Horizontal gene transfer further complicates the use of marker genes in phages. For example, 

most Caudovirales have identifiable conserved functional genes (terminase, portal proteins, cap-

sid, etc), but horizontal transfer and recombination events generate extensive genome mosaicism 

that challenges phage phylogeny 21. The arrival of next generation sequencing (NGS) together with 

methods for purifying virus-like particles (VLPs) set the stage for defining viral diversity based on 

shotgun sequencing.

Purification of VLPs - Although viral particles outnumber microbial cells 10:1 in most en-

vironments, viral DNA represents 2–5% of total community DNA 22-24. For this reason, it is often 

desirable to separate viruses from microbial cells. If sample volume is large and viral density low 
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(such as in ocean environments), tangential flow filtration can be used to remove large particles 

and concentrate VLPs. For solid samples with high viral density e.g., feces, a common approach is 

to resuspend the material in an osmotically neutral buffer followed by one or more steps designed 

to remove large particles (e.g., cesium chloride density gradient ultracentrifugation 25 and subse-

quent filtration) (Fig. 1). This procedure has been successfully applied to fecal material that had 

been stored at -80oC for several years, without any pre-processing of the sample, indicating that 

VLP structures are quite stable to freezing and thawing 22.

Amplification of VLP-derived DNA - After VLPs are purified, non-encapsulated free nu-

cleic acids are removed by treatment with DNase and RNase, and VLP nucleic acids are then 

isolated. The methods chosen will determine purity, influence DNA and RNA yields, and represent 

a selection step that can bias interpretation of virotype abundance and viral community diversity 

26. Unfortunately, the yield of DNA following extraction of nucleic acids from purified VLPs is 

often below the required minimum for sequencing. Therefore, a variety of amplification methods 

have been developed such as random amplified shotgun library RASL 27, linker-amplified shotgun 

library LASL 28 and others 29-32. Caveats concerning random PCR amplification of viral DNA in-

clude inherent bias due to exponential amplification of mixed templates, uneven coverage of viral 

genomes, and its limitation to dsDNA templates. Another common method uses the phage-derived 

phi29 polymerase for multiple displacement amplification (MDA) 33. MDA takes advantage of the 

high processivity of this DNA polymerase (>70,000 nucleotides) and its strong strand-displace-

ment capability, which permits amplification of complete viral genomes. The result is a very fast 

method that can efficiently amplify minute amounts of both ssDNA and dsDNA. While fast, the 

method is not without flaws, including over-amplification of small circular ssDNA viruses 34 and 

potential chimera formation 35, 36. Procedures for avoiding some of these limitations continue to be 

developed 37, 38, including a novel transposon-based method for rapidly generating DNA libraries 

from small quantities of dsDNA 39. RNA viruses can be sequenced by reverse transcription fol-

lowed by application of the protocols described above. Alternatively, Whole Transcriptome Am-

plification (WTA) approaches can also be used 40.
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Sequencing strategies – Although sequencing costs are falling at an astonishingly rapid 

rate as newer technologies offer higher degrees of parallelism (greater numbers of reads per run; 

multiplex sequencing using sample-specific DNA barcodes), read length matters 41. When charac-

terizing a viral community where most of the sequences obtained are novel and enriched in regions 

of low complexity repeats, accurate assembly and taxonomic assignment benefit from the longest 

reads possible 41, 42. The earliest NGS analyses were powered by the 454 GS20 instrument with 

~100 nt reads. Advances in pyrosequencing technology, including today’s FLX+ platform, have 

produced average read lengths that exceed 800 nt 22, 23, 43-46. Most recently, analysis of metagenomic 

datasets generated by deep sequencing of total microbial community DNA with highly parallel Il-

lumina instruments showed that the percentage of reads with similarity to known viral sequences 

was generally less than 0.01% 30, 47, 48. This low value is in part due to the short read length (≤100 

nt). However, the percentage increases when VLPs are purified 32. Other studies have obtained bet-

ter assignments by pre-assembling the short reads 49, 50.

In summary, viral metagenomics has opted for technologies that prioritize long read length 

over platforms with short read length and higher throughput. However, as the latter platforms ap-

proach 250nt read lengths and 250 million reads per lane (Illumina HiSeq 2500), and the cost per 

read falls, we will undoubtedly see a very rapid transition to these types of sequencers — as long 

as improvements in assembly algorithms keep pace (Fig. 1).

Computational approaches for characterizing sequenced viromes - To address the question 

of viral community composition, shotgun metagenomic sequences are typically compared to indi-

vidual viral genomes. Although public sequence databases have expanded considerably — from 

500 viral genomes as of 2007 to over 3000 full viral genomes to date — the number of deposited 

genomes is far less than the expected number of virotypes present in 100 liters of sea water 51. 

Compounding the problem, existing databases include very few viral proteins in their training 

sets, meaning many taxonomic assignments are based on proteins transferred between a virus and 

a microbial host or that are present in prophages and described as part of a microbial genome. Da-

tabases with a particular focus on viruses are under development and include a CLAssification of 
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Mobile genetic Elements (ACLAME) 52 and the Phage SEED 53. Novel data analysis pipelines are 

also being constructed to improve the accuracy and efficiency of homology searches 54-61.

Once taxonomic and functional assignments have been made for a given sample, a viral 

community profile can be created that characterizes the diversity present in that sample. Multi-

dimensional reduction methods such as Principal Coordinate Analysis (PCA) and hierarchical 

clustering have been used to visualize similarities among viral communities, and methods such as 

supervised learning can help to identify discriminatory features.

Given that most of the viral metagenomic data lack similarity to entries in databases, sim-

ilarity-independent methods have been developed to better understand viral community structure. 

One example, PHACCS (Phage Communities from Contig Spectrum), was designed to quantify 

virotypes 62, 63 based on the assumption that if a virotype is present in high abundance in a VLP 

sample, it is more likely to be assembled into a large contig. Moreover, we can posit that if as-

sembly of a single sample dataset allows prediction of community structure and diversity, pooling 

two samples together and performing a cross-assembly analysis can determine inter-sample di-

versity (e.g., using MaxiPhi 64). Another alternative for identifying shared viruses among different 

samples comes from crAss 65, an algorithm that allows for the simultaneous cross-assembly of all 

the samples in a dataset as opposed to the pairwise assemblies used in MaxiPhi. As more tools are 

developed, special attention should be given to the assembly parameters to prevent mixed assem-

blies and chimeras between viral genomes (Fig. 1).

Phages in the human gut

The gut provides an enticing place to characterize the role of phages in community assembly 

and dynamics. Assembly of the human gut microbiota begins at birth with evolution toward an 

adult-like configuration during the first three years of life 66. The importance of early environ-

mental exposures is emphasized by the fact that the overall phylogenetic composition of the gut 

microbiota of adult monozygotic twins is not significantly greater than that of dizygotic twins, and 

family members share a higher degree of similarity than unrelated individuals living in different 
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households. These patterns are robust to different cultural traditions, and the observations about 

mono- versus dizygotic twins apply to infants and children as well as teenagers and adults 66, 67. 

Microbes in this densely populated ecosystem are engaged in a constant fight for nutrients and 

survival. Peristalsis moves an ephemeral menu of dietary components along the cephalocaudal 

axis of the intestine and microbial members face the omnipresent threat of washout from the gut 

‘bioreactor’. Maintaining a foothold in this ecosystem depends not only on physical interactions 

with the perpetually renewing mucus layer and partially digested food particles, but also on func-

tional interactions with other community members. Preserving functional redundancy contributes 

to community resilience, with horizontal gene transfer providing an opportunity to constantly re-

fashion the genomes (and by extension the pan-genomes) of species-level phylotypes. Each adult 

appears to harbor a persistent collection of one or at most a few hundred species in their intestines, 

although strain level diversity is great 24, 68, 69. While the proportional representation of taxa changes 

as the community responds to various environmental perturbations, intrapersonal variation in spe-

cies content is considerably less than interpersonal differences 66, 67, 70, 71.

As our knowledge of inter- and intrapersonal variations in the microbiota expands, a lag-

ging question has been the role of phages in shaping community properties. Although a number of 

individual phages have been extensively characterized (providing an important genomic context 

against which metagenomic data can be interpreted), recently much more attention has been given 

to phage dynamics at a microbial community level. In 2003, the first report of a human-associated 

gut virome was published; it described the results of shotgun (Sanger) sequencing of VLPs isolat-

ed from a fecal sample obtained from a single healthy adult. The identifiable fraction of the virome 

was dominated by phages, including temperate phages (‘prophages’ are defined here as temper-

ate phages in their host-incorporated state). This report estimated that there were 1200 different 

virotypes in the single sample analyzed, with the majority assigned to the Siphoviridae family 28. 

Siphoviridae and temperate phages have subsequently been reported to be the most abundant iden-

tifiable viruses in other sampled fecal viromes, followed by members of the Podoviridae 22, 23, 72.
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The prominence of Microviridae in adult human gut microbiota was initially dismissed as 

an artifact of the MDA method, which has a preference for ssDNA. However, a novel branch of the 

Microviridae has been identified recently from prophages present in the genomes from members of 

two genera in the Bacteroidetes: Bacteroides and Prevotella 73. These two genera are prominently 

represented in the microbiota of adult human populations living in a number of diverse geographic 

areas 66, 74. Another study characterizing Microviridae from healthy human donors also clustered 

these novel viruses with Bacteroides and Prevotella prophages 72, suggesting that Microviridae 

could be an important viral family in the human gut and that what was previously considered to be 

an exclusively lytic phage can integrate into bacterial hosts in an environment that encourages a 

temperate (lysogenic) viral-host lifestyle (see Fig. 2 and below).

Marine environments can contain millions of different virotypes in a single sample 51. None 

of the human fecal samples characterized thus far has had greater than 1500 virotypes. Moreover, 

the ratio of virotypes to species-level bacterial phylotypes in the ocean is 10:1 but closer to 1:1 in 

the gut 22. Microscopy counts have further validated these estimated ratios, demonstrating an aver-

age of 108-109 VLPs per gram of feces compared to ~109 bacterial cells per gram of feces 72. These 

findings also support the notion that phage exhibit a more temperate lifestyle in the gut, in contrast 

to the active kill-the-winner viral-bacterial dynamic manifest in marine environments.

The temperate lifestyle observed in the gut environment along with known bacterial mech-

anism of resistance such as CRISPRs allowed researchers for computational screening and dis-

covery of novel viruses. Recently, Stern et al, 75 used datasets with deep sequencings of gut micro-

biomes 24 to extract CRISPR spacers present in gut-associated bacterial genomes. Those spacers 

were then used to query gut-associated viromes 22, 23 as well as assembled contigs. The results 

allowed the identification of large collections of contigs of potential viral origin, their association 

to known bacterial host and the wide distribution of certain phages across different datasets.

Temporal variation - To date, only three reported metagenomic studies of the gut DNA 

virome have characterized temporal variation 22, 23, 76. One of these studies used VLPs isolated from 
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frozen fecal samples collected from four adult female monozygotic twin pairs and their mothers 

at three time points over a 12-month period 22. VLP-derived virome datasets were compared to 

datasets of sequenced bacterial 16S rRNA genes and shotgun reads from total fecal community 

DNA generated from the same fecal samples used to prepare VLPs. The results disclosed that the 

viromes of co-twins and their mothers exhibited a significantly greater degree of interpersonal 

variation than did the corresponding bacterial communities. Despite the marked interpersonal vari-

ation in gut viromes and their encoded gene functions, intrapersonal diversity was extremely low, 

with >95% of virotypes retained over the period surveyed, and with DNA viromes dominated by 

a few temperate phages that exhibited remarkable genetic stability (>99% sequence conservation). 

These observations suggested that a temperate viral lifestyle is more prevalent in the distal intes-

tine than a kill-the-winner dynamic (see Fig. 2).

Another study of temporal variation involved adults subjected to a defined diet for a period 

of eight days 23. During this time, both fecal bacterial and viral communities changed in a com-

parable manner. Importantly, interpersonal variation at the late time points was reduced among 

individuals consuming the same diet, suggesting that diet has an important effect in shaping both 

bacterial and viral communities.

A third study examining temporal variation characterized the DNA virome of a one week 

old healthy infant and used DNA microarrays to compare relative viral abundances in the fecal 

microbiota between postnatal weeks one and two 76. The results showed that at early stages of life, 

the viral population changes drastically: over half of the virotypes present at one week were unde-

tectable at two weeks. While contrasting with the stability documented in the fecal DNA viromes 

of healthy adults, these results are consistent with the dynamic and rapid nature of assembly of the 

infant bacterial microbiota 66, 77.

Functions encoded in phage genomes – There are a number of examples of known phage-

encoded host fitness factors in gut bacteria (e.g., lambda bor and lom, 933W Stx2) 78, 79, but most 

of these appear to be virulence determinants of one kind or another. When comparing purified VLP 
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viromes and fecal microbiomes in the study of monozygotic twins, phage exhibit enrichment for 

genes involved in anaerobic nucleotide synthesis, as well as cell wall biosynthesis and degradation 

22. Other distinctive features of phage genomes include genes that can alter bacterial receptors and 

prevent superinfection 80. Interestingly, many phage receptors may be involved in carbohydrate 

transport and utilization. In an environment such as the gut, where carbohydrate utilization is an 

important fitness factor, mobilization of these genes by phages could endow their bacterial host 

with benefits (Fig. 2). There are likely a great number of bona-fide (metabolic) fitness factors en-

coded in phages that have yet to be characterized.

Intriguingly, new evidence suggests that carbohydrate-binding components of the human 

gut virome may change at an extremely high rate. A recent metagenomic study examining VLPs 

purified from fecal samples collected from 12 humans identified 51 hypervariable loci, areas with 

mutation rates that are much higher than the rest of their viral genomes 50. Protein structural pre-

dictions revealed that some do not have homology to known folds, some have similarity to Ig-

superfamily proteins, and others have similarity to C-type lectin folds, which play a key role in 

carbohydrate binding. Moreover, these loci appear to be specifically targeted for mutation by a re-

verse transcriptase-based mechanism, perhaps suggesting a critical functional advantage provided 

by these hypervariable loci. It is tempting to speculate that these loci confer a selective advantage 

to phages, enabling immune evasion through IgA binding, or improving the chances of infecting a 

host cell in the rapidly changing conditions of the gut through adaptable binding to relevant envi-

ronmental materials or bacterial surface receptors. There is a well-documented precedent for hy-

pervariable loci conferring a fitness advantage in Bordetella phage by allowing tropism switching 

in the phage receptor-binding protein 81. Is important to emphasize that the hypothesis that these 

loci may allow a phage to bind IgA or environmental ligands is speculative and needs experimen-

tal validation; non-receptor phage structural proteins have been found to contain Ig-like domains, 

which may aid in host binding by weakly interacting with the cell surface 82.

RNA virome - The RNA virome of two healthy adults has been characterized by purifying 

VLPs 83. This study showed that most RNA viruses appeared to be consumed together with food. 
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A pepper-associated virus (PMMV), comprised over 80% of the identifiable gut viruses. The only 

animal RNA virus observed was a picobirnavirus that had previously been found in the feces of 

healthy individuals as well as in patients with diarrhea: it has not been associated with any particu-

lar disease.

Comparative studies of gut viromes in other mammals

Comparative studies of different mammalian species represent a source of information about the 

effects of environmental factors, including diet 84, 85, and various host factors on phage diversity in 

the gastrointestinal tract. Extensive surveys have been conducted of viruses associated with differ-

ent mammalian species in search of potential sources of zoonosis, the etiology of animal diseases, 

and to identify common mammalian viruses 13. These studies, which includes mammals occupy-

ing very distinct habitats 29, 31, 32, 86-91, identified viruses from the same families identified in the 

human gut virome, further underscoring the prevalence and long-standing nature of the evolved 

viral-mammalian host relationship (Box 3). In all these studies, ssDNA viruses were ubiquitous, 

accompanied in some cases by positive-sense ssRNA enteric viruses 43, 90, 91.

An early survey of coliphages in cows, pigs, and humans 92 showed that they were present 

in titers of up to 107 VLPs per gram of feces and that temperate phages were the most common. 

Interestingly, humans and pigs (omnivores with simple guts) had higher counts of temperate co-

liphages than cows (herbivores with foregut fermentation chambers). In an independent study, 

estimates of phage diversity from bovine rumen fluid 93 suggested that up to 28,000 different viro-

types could be present in titers as high as 109 VLPs per ml of sample, hinting at strikingly higher 

diversity and abundance compared to humans. In contrast to the large interpersonal variation ob-

served in human gut viromes 22, 23, this latter study showed a high degree of similarity between 

the phage communities of cohabitating animals on a similar diet. Metagenomic studies in horses 

(herbivores containing a hindgut fermentative chamber) revealed an intermediate level of phage 

diversity between that documented in herbivorous foregut-fermenting ruminants and omnivorous 

humans with simple guts.
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Together, these studies suggest that diet, gut physiology, and potentially the transit time of 

food, play important roles in determining the lifecycle (and diversity) of phages in the mammalian 

gut. Further dissection of these relationships requires manipulable, representative, and defined in 

vivo models. Moving in this direction, Maura and colleagues used mice to study the effects of a 

lytic enteric phage, observing stable long-term replication over three weeks 94. As noted below, 

gnotobiotic mouse models may also be very informative.

Phage Therapy

Much has already been written about the history, successes, and failings of phage therapy. Most 

of the studies have focused on the use of lytic phages to destroy pathogenic bacteria 95 96 (Fig. 

3). Clinically oriented phage research began very soon after the discovery of phages, with Felix 

d’Herelle using phages to treat bacillary dysentery in a number of human patients 8. This optimis-

tic start, however, led to a number of misconceptions and missteps, both scientific and political, 

regarding the use of phages. d’Herelle incorrectly assumed that there was only one universally 

efficacious strain of lytic phage 97, though we now know phages exhibit exquisite host cell specific-

ity. In the 1930s, pharmaceutical companies began distributing enormous amounts of lytic phages 

as generic antibacterial therapies, but in part because of the perceived universality of phages, they 

had very little knowledge of their product’s components.

In retrospect, many of the commonly used phage preparations were destroyed by the or-

ganomercury preservatives added to the vials that contained them, or were contaminated with bac-

terial exotoxins secreted by the cultures used to generate them 98. Inevitably these problems, along 

with manufacturing inconsistencies (the supposedly standardized strains of phages would change 

from batch-to-batch) led to distrust among the medical and scientific community.

The recent resurgence of phages as possible therapeutics has been driven by a number of 

factors. The alarming prevalence of antibiotic-resistant strains of pathogenic bacteria, combined 

with the inexorable spread of antibiotic-degrading enzymes, such as the New Delhi metallo-beta-

lactamase (NDM-1), have led to calls for new therapeutic strategies 99. From a practical standpoint, 
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antibiotic discovery efforts have produced few novel compounds over the past decade 100. Phages 

are a promising tool as they are easy to manufacture, have good host specificity, and can be readily 

genetically manipulated. Moreover, resistance to phages may develop more slowly than to antibi-

otics, though the reasons for this are multifaceted 101. Phage resistance can occur spontaneously in 

cultures (as frequently as 1 in 105 cells), but there can be fitness costs associated with resistance. 

In contrast, many forms of antibiotic resistance cannot occur spontaneously, but instead require 

introduction of a foreign DNA element. In many ways, addressing bacterial resistance is much 

easier with phages than with antibiotics because one can isolate different phages, or phages may 

spontaneously mutate to overcome host resistance.

Perhaps a more interesting question, in the context of community dynamics and our grow-

ing understanding of the virome and microbiome, is whether we can produce more subtle pheno-

typic shifts in an ecological niche. Rather than destroy a single pathogenic member of a commu-

nity, lysogenic phages could be introduced to promote a community structure that is beneficial to 

both the human host and microbial community members (Fig. 3). For example, one could expand 

the capacity of the gut microbiome to degrade dietary components 102. Similarly, phage could be 

used to introduce novel, beneficial traits to community members, such as those involving nutrient 

biosynthesis. In the latter circumstance, it may be difficult to introduce traits that are not purely 

beneficial to a lysogenic phage’s bacterial host, as the energetic effects of synthesizing an unneces-

sary protein impose a selection pressure.

Given the potential power and replicating nature of phages, a number of questions must be 

addressed before they can be more widely adopted including issues related to bio-containment 101. 

Although phages are frequently sold as viruses that ‘can only infect bacteria’, their safety has yet 

to be completely defined. The intravenous administration of phage (e.g., in the case of bacterial 

sepsis) is particularly complex given the immunogenicity of some preparations and rapid clearance 

of phage particles by the reticuloendothelial system of the spleen 103. It is tempting to assume that 

other routes of administration, such as oral cocktails of phage to target the human gut microbi-

ome, would not have such effects. However, phage DNA is detectable by PCR and FISH in serum 
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shortly after oral consumption 104. Other studies have provided evidence of trans-placental passage 

of phage 105. There is data suggesting that enzymes transcribed from phage DNA can be expressed 

in mammalian cells 106, this finding has even led to attempts to use phage as gene therapy vectors 

107, 108.

Despite these concerns, we are exposed to millions of phages every day, including the ones 

from our own microbiota, without significant observable harm. In this spirit, it is interesting to 

consider the potential ‘therapeutic’ use of phages in the context of current efforts to apply micro-

biome-directed therapies 109. Questions that can be asked include whether it is beneficial or detri-

mental for bacterial taxa being considered as candidate probiotics to possess or lack prophages or 

whether phages should be deliberately administered coincident with or preceding introduction of 

a probiotic consortium to help create niches that promote successful invasion and engraftment of 

the consortium.

Future directions

There has been little experimental work done on the ecology of phages in vivo. Germ-free mice and 

mice mono-colonized with different strains of E. coli, including strains isolated from children with 

diarrhea, have been used to examine replication of T4 and T7 phages 110, 111. Gnotobiotic mouse 

models of the human gut microbiota may not only provide better understanding of phage-host 

dynamics, but may also represent a potentially valuable tool for establishing a preclinical pipeline 

designed to evaluate the feasibility of phage therapy. Recent work has shown that transplanting 

intact uncultured human gut (fecal) microbial communities into gnotobiotic mice is efficient, cap-

turing the majority of microbial diversity and microbiome-encoded functions present in the human 

donor’s community in the recipient animals 112, 113. Mice with replicated human gut microbiomes 

can be fed diets resembling those of the human donor to explore diet-microbiome-phage interac-

tions. An additional refinement to this approach is to transplant sequenced collections of bacteria 

(some containing prophage) cultured from a given donor’s fecal sample into recipient mice 113. The 

effects of various perturbations of gnotobiotic mice harboring these microbiota on phage-bacterial 

dynamics can be studied over time under highly controlled conditions.
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Yet another envisioned approach is to assemble defined communities of sequenced mem-

bers of the human gut microbiota in formerly germ-free mice and then to deliberately stage phage 

attacks. VLPs prepared from human fecal samples and introduced into mice containing these se-

quenced collections of cultured microbes from human donors would allow investigators to directly 

determine the bacterial host specificity of the VLP-associated phage, as well as the effects of (i) the 

presence or absence of prophage in community members, (ii) the diet administered to the animals, 

and (iii) the phage’s contribution to mammalian host physiology, including immune function. The 

impact of a staged phage attack on community structure and functions can also be defined in gno-

tobiotic animal models over time and as a function of location along the length of the gut, where 

available nutrient and energy resources vary considerably.

These model systems, coupled with observational data in human fecal samples, should 

help us understand how phages influence metabolism in the gut and possibly how to manipulate it. 

Obtaining answers will almost certainly demand new and more efficient methods for deliberately 

curing bacterial hosts of their prophage. It may also require the application of whole genome trans-

poson mutagenesis methods that are married to next generation sequencing platforms 114 to identify 

the functional contributions of genes in a given prophage. While the journey ahead will certainly 

be demanding, approaches are in hand or can be envisioned that will help propel the ‘new age of 

phage’ forward so that long standing questions can be addressed and new insights can be obtained.
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Figure Legends

Figure 1– Experimental and computational methods for the characterization of the phage 

populations present in the human gut microbiota. See main text for further details. VLP, virus-

like particle.

Figure 2– Potential consequences of a temperate phage lifecycle in the human gut. Viral 

metagenomic show that the phage population associated with the adult human gut microbiota is 

characterized by a relatively low number of virotypes compared to other ecosystems (e.g., soils, 

sediments, marine environments). These gut populations also exhibit high temporal stability of 

virotypes with respect to both viral community structure and nucleotide sequence conservation, 

and a high prevalence of temperate phages. These characteristics suggest that a temperate lifestyle 

is dominant in the distal human gut versus the lytic lifestyle observed in open oceans. (a-c) Il-

lustration of the benefits of this temperate lifestyle on phage-host dynamics. (a) Integration as a 

prophage protects the host from superinfection, effectively ‘immunizing’ the bacterial host against 

infection from the same or closely related phages. Furthermore, the genes encoded by the viral ge-

nome may expand the niche of the bacterial host by enabling metabolism of new nutrient sources 

(e.g., carbohydrates), providing antibiotic resistance, conveying virulence factors, or altering host 

gene expression. This temperate lifecycle allows viral expansion in a 1:1 ratio with the bacterial 

host. If the integrated virus conveys increased fitness to its bacterial host, there will be increased 

prevalence of the host and phage in the microbiota. (b) Induction of a lytic cycle may follow a 

lysogenic state and can be triggered by environmental stress. As a consequence, bacterial turnover 

is accelerated and energy utilization optimized through ‘phage shunts’, where the debris remaining 

after lysis is used as a nutrient source by the surviving population. Furthermore, a subpopulation of 

bacteria that undergoes lytic induction sweeps away other sensitive species and increases the niche 

for survivors (i.e., bacteria that already have an integrated phage). Periodic induction of prophages 

can also lead to a constant diversity dynamic 115, which helps maintain community structure and 

functional efficiency. (c) Novel infections or infections of novel bacterial hosts by phages bring the 
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benefit of horizontally transferred genes, and create selective pressure on the hosts for diversifica-

tion of their phage receptors, which are often involved in carbohydrate utilization.

Figure 3 – Potential strategies for phage therapy. (a) The traditional strategy has been to use 

a lytic phage against pathogenic bacteria. While transiently useful, this approach can lead to rap-

id resistance given positive selection for subpopulations (‘clones’) that are resistant to the lytic 

phage. Note that this is an antiquated approach to phage therapy that can be trivially improved 

by using multiple phages with non-overlapping host resistance patterns, or by selecting for phage 

mutants that overcome host resistance. (b) More recently, synergistic relationships between phage 

and antibiotics have been exploited, where lysogenic phages are introduced that alone do not kill 

the pathogen, but instead decrease its survival when used in concert with antibiotics. An example 

is a phage that inhibits a DNA damage repair system (SOS), which makes bacteria exquisitely sen-

sitive to quinolone-class antibiotics 116. (c) With our growing understanding of the human micro-

biome, it may be possible to take a more nuanced approach  selectively manipulating (enhancing) 

microbial community functions or clearing the way for invasion by probiotic consortia. Strategies 

can be envisioned to benefit both microbes and their host; for example, introducing genes into 

phage genomes that are involved in nutrient biosynthesis (with direct benefits to the bacterial and 

potentially human host), or degradation of nutrients (which may stabilize the representation and 

niches of beneficial microbes, especially during times of acute stress).
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Figure 3.
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Box 1—Phage-bacterial host cell dynamic: lessons learned from environmental ecosystems

Most of life on Earth exists as Bacteria and Archaea in the ocean, sediments, land, and potentially 

the deep biosphere 117. In the early 1980s, people became aware that there are literally millions 

of actively growing microbes per milliliter of seawater. Marine phages were subsequently redis-

covered in 1989 and efforts to characterize the impact of phage lifecycles on planetary-scale bio-

geochemistry were initiated 118-121. As an example of how dramatic phage effects can be, consider 

the widespread cyanobacteria clades Prochlorococcus and Synechococcus. These two unicellular 

algae carry out about half of the world oceans’ primary production. They are infected by cyano-

phages: variations in cyanophage and bacterial concentrations are tied to daily and seasonal cycles 

120. In the 1990s, isolation and characterization of phages infecting Synechococcus and later Pro-

chlorococus not only revealed that cyanophages are widespread, often infecting 40-50% of cyano-

bacteria, but that they kill 10-50% of their hosts daily, 119, 120 rapidly driving the diversification of 

their hosts as they co-evolve resistance 122 and simultaneously driving carbon into a dissolved form 

when bacterial cells lyse. Under lower resource conditions, cyanophages may enter a lysogenic 

state. A growing list of genes that are important for bacterial host metabolism and function have 

been found in marine phages, including photosystem genes that can increase photosynthetic output 

and maintain energy production during infection so that phages can lyse their host cells 51, 123-125. 

Lysogeny may be an important lifestyle under a number of suboptimal conditions, including when 

host abundance or nutrient abundance is low 126. 

Bacteria can use temperate phage to enable invasion of new habitats by sacrificing part of 

the population through phage lysis. The released phage will target competitors but allow bacterial 

kin harboring the prophage to survive since they are resistant to attack by a process called super-

infection exclusion 127-130.

The concept that a virus can have a beneficial effect beyond that experienced by its host 

cells is not conceptually novel. Three-way symbioses have been well described in macro- and 

micro-ecosystems. For example, a symbiotic bacterium that inhabits pea aphids protects them 
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from a wasp that can otherwise lay eggs in the haemocoel of the aphids; a phage-encoded toxin 

expressed by the bacteria confers this protection 131, 132. Drought, heat and cold tolerance are con-

ferred to plants through viruses 127, 133. In Yellowstone National Park, a fungal endophyte infecting 

panic grass confers thermal tolerance, allowing the grass to grow in hot geothermal soils. The fun-

gus alone is not heat tolerant without the virus that infects it 134. In a more phage-related example, 

there is a reported case of phage-associated corynetoxin synthesis in the bacterium Rathayibacter 

toxicus (formerly Clavibacter toxicus) that colonizes ryegrass plants; the toxin makes the grass 

toxic to grazing animals such as sheep 135.

Box 2 – Fundamental technical challenges in viral metagenomics

•	 New and better tools for recovery of VLPs from small amounts of starting microbial 

community biomass, and methods for less biased amplification of extracted nucleic acids 

before shotgun sequencing.

•	 Improved methods for deep-draft assemblies of full-length viral genomes. Particularly 

problematic are the ends of phage genomes, which can be blocked, permuted, or have 

hairpins.

•	 Automation of methods (e.g., MaxiPhi) for performing comparative metagenomics and 

estimating beta and gamma-diversity, in order to describe the pan-virome in a given 

environment.

•	 New and better tools for defining the host specificity of known and novel phages from 

either assembled genomes or VLP-derived short read sequences, and for identifying the 

determinants of microbial host cell range.

•	 Improved methods of experimentally and computationally assigning functions to 

‘conserved’ viral genes with no known functions (illuminating the ‘genetic dark matter’ 

represented by conserved hypothetical genes).
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•	 Better in vitro and in vivo models for determining the phage-bacterial host dynamics and its 

impact on energy availability and niche partitioning in a microbiota.

•	 Experimental and computational methods, and related visualization tools, for efficient 

analyses of temporal variation in model viral-bacterial communities and for measuring the 

effects of perturbations.

•	 Models for predicting the cost/benefit of having prophage present in a candidate probiotic 

species; e.g., weighing invasiveness and persistence in a targeted microbiota.

•	 Methods to test the utility of phages to directly perturb a targeted microbiota in ways that 

facilitate invasion by a probiotic species or species consortium.

Box 3 – Characterizing the eukaryotic gut virome in healthy individuals

The eukaryotic virome can be considered from at least three different perspectives: viruses associ-

ated with the eukaryotic component of a gut microbiota, viruses associated with various human 

cell populations exposed to this microbiota, and viruses associated with ingested food. Metage-

nomic studies of healthy individuals are dominated by bacterial viruses with eukaryotic viruses 

either absent 23 or present at very low abundance 22, 28, 50, 72, 76. RNA viruses are an apparent excep-

tion: while abundant, they appear to be largely derived from ingested food 83. Our limited view of 

the eukaryotic gut virome is largely derived from studies that apply viral metagenomics to identify 

agents associated with gastrointestinal diseases 136-142. These studies identified known enteric vi-

ruses (Adenovirus, Rotavirus, Enterovirus and Norovirus), novel members of Bocavirus, Pico-

birnavirus, Cosavirus, and Anellovirus that are potential human pathogens, as well as novel viruses 

that may be related to diet (Gyrovirus, Nodavirus and members of the Dicistroviridae, Vigaviridae 

and Partitiviridae families). The high prevalence of eukaryotic ssDNA viruses in metagenomic 

datasets had lead to a whole new perspective of the potential importance and diversity of these 

small viruses 143. Although identification of these viruses has come from symptomatic individu-

als, they have also been identified, at similar prevalence, in asymptomatic contacts of those with 
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disease. The broad representation of these eukaryotic viruses in the human gut as well as other 

body habitats has prompted a call to consider the functional significance of the eukaryotic human 

virome 12.The almost ubiquitous presence of human viruses that are not phages and that have not 

been associated with any disease suggests that viruses, especially those acquired in early child-

hood, may be essential for proper immune system development, and that particular host genotypes 

or immunologic constraints may cause normally benign viruses to induce disease states.

Glossary of terms

•	 Lytic phage cycle: State whereby fast exponential viral replication is achieved by using 

the bacterial host’s DNA replication machinery independently of bacterial replication. 

This leads to the synthesis of multiple viral particles per cell and eventually lysis of the 

bacterium.

•	 Lysogenic phage: A state where linear (1:1) replication is achieved by a temperate phage 

through integration of its genome into the bacterial host chromosome (more rarely the 

phage exists as a plasmid). The integrated phage transcribes gene(s) that repress lytic 

action, and in some cases expresses genes that promote the fitness of the bacterial host.

•	 Prophage: temperate phage in a host-incorporated state.

•	 Transduction: transfer of DNA from one bacterial host to another by a phage; a common 

route for horizontal gene transfer.

•	 Superinfection immunity: the ability of a prophage to block superinfection of its bacterial 

host from another phage due to expression of genes that directly modify the phage receptor 

or proteins that block the receptor preventing attachment from other phage with similar 

specificity.

•	 CRISPR: A widespread genetic system in bacteria and archaea that consists of multiple 

copies of palindromic repeats flanking short spacers of viral or plasmid origin, which are 

believed to provide acquired resistance to foreign DNA.
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•	 Kill-the-winner dynamics: A model for the population dynamics of phage–bacteria 

interactions that postulates that an increase in a host population (the winner) is followed by 

an increase in its corresponding phage predator, resulting in an increase in the rate at which 

the winner is killed.

•	 Pan-genome: The global gene repertoire of a bacterial species

•	 Coliphage: A bacteriophage that infects coliform bacteria, in particular Escherichia coli.

•	 Virus-like particle: Particles with physical characteristics resembling viruses but their 

infectivity has not been proven. Is usually used for isolation of viruses from environmental 

samples.

•	 Multiple displacement amplification: Exponential isothermal amplification of a DNA 

template using Phi29 DNA polymerase. The amplification is achieved by attachment of the 

polymerase to newly elongated fragments coupled with strong displacement activity upon 

extension.

•	 Virotype: The lowest level of taxonomical classification achievable by sequence comparison 

among viruses. In most cases is equivalent to species level classification but based on 

percent identity thresholds.

•	 Bacterial phylotype: The lowest level of taxonomical classification achievable by sequence 

comparison among bacterial species.

•	 Deep biosphere: The deepest oceanic regions where life is supported.
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Summary

The human gut contains viruses that infect the bacteria, archaea, and eukaryotes that comprise its 

microbiota. Viral diversity and lifecycles are poorly understood in this and other body habitats. 

Therefore, we sequenced the viromes (metagenomes) of virus-like particles isolated from fecal 

samples collected from adult female monozygotic twins and their mothers at three time points over 

a one-year period. These datasets were compared to datasets of sequenced bacterial 16S rRNA 

gene amplicons and total fecal community DNA. Co-twins and their mothers share a significantly 

greater degree of similarity in their fecal bacterial communities than do unrelated individuals. In 

contrast, viromes are unique to individuals regardless of their degree of genetic relatedness. De-

spite remarkable interpersonal variations in viromes and their encoded functions, intrapersonal 

diversity is very low, with >95% of virotypes retained over the period surveyed, and with viromes 

dominated by a few temperate phage that exhibit remarkable genetic stability. These results in-

dicate that the fecal virome is a highly individualistic component of our gut ecosystems, even 

among people with identical genotypes, and that a predatory viral-microbial dynamic, manifest in 

a number of other characterized environmental ecosystems, is notably absent in the very distal gut.

Results

The diversity of viruses in the gut, and their role in the assembly, maintenance and adaptations of 

the microbiota and its pool of genes (microbiome) remain unclear. Viruses are major predators in 

our microbe-dominated planet. Most genetic diversity on our planet is viral. Viruses move DNA 

between their microbial hosts. Current estimates are that there are ≥10 VLPs per microbial cell, 

with the majority being dsDNA phages1. In many environments, the dominant ecological relation-

ship between viruses and their microbial hosts is predatory and follows Lotka-Volterra (LV)/ Kill-

the-Winner dynamics. LV is characterized by top-down control of microbial communities (i.e., 

microbial biomass is significantly below the carrying capacity of the habitat), rapid microbial and 

viral population shifts, and evidence of ‘Red Queen’ co-evolution (i.e., escape strategies in prey 

population are countered by predator adaption). One manifestation of this arms race is positive 
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selection on loci like bacterial O-antigens and CRISPR elements2,3, and viral tail fibers4. In contrast 

to this predator-prey dynamic, there is another viral life cycle where temperate rather than lytic 

viruses are longer term contributors to microbial host phenotypes through provision of adaptive 

genes. This latter dynamic, which represents a more cooperative view of viral-host interactions, 

can change the metabolic capacities of free living bacteria, obligate intracellular mutualists5, as 

well as the lifestyles of pathogens such as Bacillus anthracis6. In fact, many of the differences 

between closely related microbial strains arise from prophage insertions7,8.

Recent studies of the human gut virome have focused on pathogen discovery9, or have 

analyzed a few individuals without defining the microbial composition of their gastrointestinal 

tracts10-12. In this report, we characterize the fecal viromes of four pairs of adult female monozy-

gotic (MZ) twins and their mothers. All were healthy without a history of gastrointestinal disease 

and none had received antibiotics in the 6-month period prior to sampling. Fecal samples were 

obtained at the beginning of the study, two months later (50±9 days) and 1 year later (364±10 

days) (Table S1): all samples were frozen at -20oC within 30 min after donation, placed at -80oC 

within 36h, and subsequently maintained at -80oC until use. VLPs were purified from 32 fecal 

specimens. Since the yield of VLP DNA from 2-5 g of fecal biomass averaged 500 ng, we per-

formed random amplification of viral genomes contained in VLP preparations to obtain sufficient 

material for shotgun 454 FLX pyrosequencing. After in silico filtering for reads that were exact 

duplicates, or of low quality, or that had significant similarity to the human genome, our final data 

set contained 280,625,127 nt [33,043 ± 12,454 reads (mean±S.D.) per fecal VLP sample; average 

read length, 247±43 nt (mean±S.D.; Table S1)]. We verified the reproducibility of the viral DNA 

amplification/sequencing protocol by sequencing replicates from 5 samples (Table S1 and Meth-

ods). One additional sample was subjected to deeper sequencing (293,654 reads; 70,157,333 nt). 

Bacterial taxa represented in fecal samples were characterized by pyrosequencing of amplicons 

generated by PCR from variable region 2 (V2) of their 16S rRNA genes (1,588–40,583 reads per 

sample). We had previously performed13 shotgun sequencing of total fecal DNA isolated from the 

12 frozen samples obtained at the first time point that were now used to prepare VLPs [average of 

460,328±89,208 (mean±S.D.) reads per sampled microbiome; Tables S2, S3].
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We generated a custom non-redundant viral database (NR_Viral_DB) to facilitate analysis 

of VLP-derived metagenomic datasets. To do so, the NCBI viral RefSeq database was downloaded 

and supplemented with complete viral and bacteriophage genomes from the European Bioinfor-

matics Institute (EBI) database plus prophages identified in 396 sequenced microbial genomes 

(Table S4). To make the database non-redundant, all sequences were compared against each other 

and only those with <95% identity throughout their length were retained. These steps yielded 4,193 

non-redundant sequences (96.2 Mb): 73.3% were eukaryotic viruses while 25.8% were phages and 

prophages; 76.9% of the latter were dsDNA viruses, mostly members of the order Caudovirales. 

The bacterial hosts of these known bacteriophages are principally members of the Proteobacteria 

(54%), Firmicutes (32%) and Actinobacteria (7%). The Bacteroidetes, which together with the 

Firmicutes constitute the dominant bacterial phyla in the adult human gut microbiota14,15 were only 

represented by one viral genome and 20 prophages in this NR_Viral_DB.

A relaxed search against the NR_viral_DB (tblastx; e-value < 1e-3) showed that 81±6% 

(mean±S.D.) of the reads generated in this study did not match to any known viruses (Fig. S1). 

However, most of the identifiable viruses in the 32 VLP-derived viromes were prophage or phage 

generally classified as temperate (Fig. 1). The Podoviridae illustrate this point: while this family 

consists of both lytic and temperate members, in the fecal viral community its dominant repre-

sentatives were temperate (e.g., coliphage P22-like). The predicted hosts of the identifiable phage 

and prophage were members of the Firmicutes and Bacteroidetes (Fig. 1); these phyla, and in par-

ticular the families Ruminococaceae, Lachnospiraceae and Bacteroidaceae, comprised the most 

abundant bacterial taxa in the sampled fecal microbial communities, as defined by 16S rRNA gene 

analysis (Fig. S2).

Two different approaches were used to analyze ‘within VLP sample’ diversity (i.e., alpha 

diversity estimates). First, CD-Hit-est16 was used to cluster reads with ≥90% sequence identity 

over 85% of their length. This allowed us to calculate a cluster-level Shannon index for each 

VLP sample (Table S5) and to define the expected number of virotypes per VLP preparation us-

ing procedures described in Methods  (median of 346; range 52-2773). Second, PHACCS (Phage 
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Communities from Cross Contig Spectra) analysis (see Methods) indicated that each sample con-

tained a median of 35 (range 10-984) predicted virotypes (Table S6; average Shannon Index of 

3.32±0.71). Analysis of 16S rRNA datasets, where noise due to PCR and pyrosequencing artifacts 

and chimeras had been removed, indicated that there were ~800 species-level bacterial phylotypes 

in the first time point fecal communities15. Recent results obtained from deep shotgun sequencing 

of other fecal microbiomes suggest that the number may be <200 (ref. 14). Thus, the ratio of viro-

type to bacterial phylotype in the fecal microbiota of these healthy adults appears to approach 1.

Two complementary methods were employed to define the percentage of shared viral se-

quences between fecal samples obtained at different time points from the same individual and from 

different individuals (beta-diversity estimates). In the first method, we used CD-Hit-est to cluster 

pooled reads from all of the VLP viromes. Hellinger distances were subsequently calculated based 

on a matrix of the number of CD-Hit clusters vs VLP samples to determine relationships between 

samples. The second approach was based on contig assemblies generated from the pooled VLP 

viromes (Maxiphi17; see Methods). Both beta-diversity estimates showed that the same individual 

harbors very similar fecal viral communities over at least a one-year period: i.e., within an indi-

vidual >95% of the viral genotypes were present and their relative abundances showed minimal 

variation (<8% permutation of the rank abundance). This is different than other comparably char-

acterized ecosystems where almost daily changes in beta diversity occur18.

While intrapersonal variation in viromes was minimal, interpersonal variation was very 

high (Fig. S3). To analyze the clustering patterns generated by the distance matrices, 100 ran-

dom sub-samplings of equal number of sequences per sample were used to generate the distance 

matrices, and a consensus UPGMA tree was subsequently produced. These trees showed that the 

main branching pattern clusters samples from the same individual, while there was no significant 

clustering of samples from the same family (Fig. 2 and S4).

To further establish that temperate phages are dominant members of fecal VLP prepara-

tions, we searched for sequence identity between VLP viromes and 121 sequenced human gut 

microbial genomes. We identified 13 different bacterial genomes containing prophages present at 
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high abundance in at least one VLP sample (Table S7). For example, Fig. S5 shows a region of the 

Ruminococcus torques ATCC 27756 genome that contains a predicted ~60Kb prophage. Sequence 

identity plots demonstrated that this prophage was prominently represented in a fecal VLP sample 

from the mother of family 2 [F2M.1 and F2M.1 (R)] where it comprised 18-20% of the reads at 

the first time point; at the two later time points (2 months and 1 year) the phage was still present in 

fecal VLP preparations albeit at lower abundance (0.8 and 1.4% respectively). This phage was not 

detectable in her twin daughters or other individuals in our study.

Given the low diversity of individual fecal viromes and the apparent representation of a 

few high abundance phage, we attempted to assemble partial or complete phage genomes using 

high stringency conditions (see Methods). This effort yielded 5,004 contigs ≥500 bp, 88 of which 

were 10Kb-71.4Kb (Fig. S6). All VLP-derived pyrosequencing reads from all 32 datasets were 

then aligned against these large contigs. The results revealed that virotypes represented by the 

large contigs were present mainly in only one individual where their abundance varied over time 

(Table S8). The nucleotide sequence conservation of these contigs (expressed as percent identity 

between reads from a given VLP sample and the contig) during the 1-year period was astonish-

ingly high within an individual (99.74±0.26%). Only 8 of the 88 contigs were present in more than 

one individual from different families, with an average percent identity of 88.23±1.4% between 

subjects (Table S9).

We next defined functions encoded by the 32 sequenced fecal VLP-derived viromes by 

querying the KEGG and COG databases. The same procedure for functional assignments was used 

for reads in the 12 shotgun fecal microbiome datasets generated from the first time point sample 

from each individual in the 4 families. In addition, reference datasets of COG and KEGG assign-

ments were assembled for all proteins encoded by all viral genomes present in the NR_Viral_DB, 

and in the 121 sequenced human gut microbial genomes (Table S10). Half of the bacterial genes in 

the sequenced genomes had assignable functions [51.6% (COG) and 54.4% (KEGG)], in contrast 

to 20% in the case of genes in the NR_Viral_DB [19.1% (COG) and 11.7% (KEGG)]. The percent-

age of fecal VLP-derived reads with significant hits to the COG and KEGG databases (BLAST 

cutoff, E<10-5) was only 3.2±2.8% (mean±S.D.) and 1.7±1.9% (mean±S.D.), respectively, com-



47

pared to 36.0±6.9% (mean±S.D.) and 23.3±3.1% (mean±S.D.) for reads obtained from the 12 total 

fecal community DNA samples (Fig. S7). Comparison of VLP-derived viromes and the 12 micro-

biomes revealed significant functional differences: ‘Transcription’, ‘Nucleotide Metabolism’, and 

‘DNA Replication and Repair’ were all over-represented in the viromes, while pathways for ‘Car-

bohydrate Metabolism’, ‘Translation’, ‘Lipid Metabolism’, ‘Amino Acid Metabolism’, ‘Energy 

Metabolism’, ‘Membrane Transport’, and ‘Cellular Processes and Signaling’ were significantly 

over-represented in the fecal microbiomes (Fig. S8). This result agrees with previous studies of 

aquatic ecosystems where viruses were significantly enriched for genes related to DNA, RNA syn-

thesis and replication while the corresponding microbial communities were enriched for nitrogen 

and carbohydrate metabolism, and membrane transport19.

Fig. 3 and S9 provide a sample-by-sample view of the proportional representation of 

KEGG and COG categories in sequenced purified VLP-derived viromes and in fecal microbiomes. 

There is only modest interpersonal variation in the distribution of KEGG and COG pathways in 

the microbiomes (R2=0.993±0.005 for KEGG, 0.984±0.013 for COG). Moreover, the distribution 

of these functions is similar to their distribution in the 121 sequenced gut genomes (R2=0.82 for 

KEGG, 0.95 for COG). In contrast, there is marked variation in these functional categories in the 

sequenced VLP-associated viromes (Fig. 3 and S9), although further and deeper analysis of these 

differences was limited by the low percentage of viral reads that were classifiable.

The 88 VLP-derived large contigs (> 10Kb) encode 2,440 predicted proteins, 830 of which 

have significant similarity to viral and bacterial proteins present in the NR_Viral_DB and/or in 

the 121 gut genomes (blastx e-value < 1e-5). Metastats analysis identified a number of significant 

differences in the representation of KEGG and COG annotated functions associated with the large 

contigs compared to the NR_Viral_DB, including pathways related ‘Glycan metabolism’, ‘Cell 

Wall Biosynthesis’, and ‘Transcription’ (Fig. S10). To identify genes that may confer new and 

potentially advantageous functions to viruses present in the distal gut microbiota and/or to their 

microbial hosts, we searched this list of 2,440 proteins present in the 88 large contigs, eliminating 

those with homologs in the NR_Viral_DB, as well as all others whose putative functions suggested 

a viral origin (e.g., polymerases, capsid proteins, holins, etc). We were left with 23 proteins be-
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longing to 16 protein families (Table 1). These proteins, seven of which use iron or sulfur in their 

reactions, are involved in a number of processes associated with the anaerobic gut microbiota. Ho-

mologs of these proteins present in sequenced human gut microbial genomes were subsequently 

retrieved, aligned and approximate maximum likelihood trees generated using FastTree20. The 

results (Fig. 4) indicate that some of the VLP virome-associated proteins are evolving in ways 

that are distinguishable from homologs present in known sequenced bacterial genomes, as is the 

case in the few environmental communities that have been subjected to comparable metagenomic 

studies21.

Integrases are markers of temperate phage. We identified 10 ORFs with homology to inte-

grases in the 88 contigs and 8,955 reads with significant similarity (blastp e-value <1e-4) to 785 

different integrases among the 1,386,331 reads comprising the entire VLP dataset. The number 

of hits to different integrases per VLP sample was then used to construct a distance matrix that 

showed that (i) the diversity among identified integrases was significantly lower within VLP vi-

romes purified from the same individual over time than between individuals, and (ii) there were no 

significant differences between individuals regardless of family relationships (Fig. S11).

As noted above, in most ecosystems where phage-host interactions have been studied in 

detail, lytic lifecycles and Red Queen dynamics appear to dominate22. Metagenomic studies of 

salterns and sludge ecosystems indicate that many of the most apparent genetic changes over time 

are at loci that prevent phage attachment (e.g., outer-membrane proteins and polysaccharides). 

Probably the clearest example of Red Queen dynamics between phage and their hosts are the 

CRISPR elements in sludge2 and acid mine drainage systems3. Similarly, phage genomes often 

show evidence of changes in their tail fibers over time4. Given this paradigm, it is striking that we 

found essentially no evidence of this type of behavior in fecal phages (see Supplementary Discus-

sion for analysis of CRISPRs). In contrast, we found high abundances of dominant phage, present 

in the same individual for extended periods of time, with no significant divergence or mutations in 

their genomes. The presence of integrases in the assembled VLP contigs is also consistent with the 

notion that they represent prominent temperate phage in the fecal microbiota.
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One potential scenario is that phage production occurs via induction of prophages caused 

by energy limitation in the feces; at this point, fecal microbial hosts are effectively at a dead end 

for their associated phage, and the viruses may gain an advantage for transmission by ‘going it 

alone’. Experimental evidence for this scenario is provided by gnotobiotic mice co-colonized for 

two weeks with Marvinbryantia formatexigens, a human gut acetogen that contains three predicted 

prophages in its genome, and Bacteroides thetaiotaomicron, a human gut-derived saccharolytic 

bacterium that harbors two predicted prophages. Normalized RNA-Seq counts, generated from 

cecal contents and fecal samples harvested from the animals at the time of their sacrifice (n=3 

mice)23, revealed that one of the three prophages in M. formatexigens was completely activated 

(all ORFs transcribed) in all fecal samples and in a subset of cecal samples (Fig. 5). In the case 

of the remaining two M. formatexigens prophages, only a few genes were expressed, including 

a pair of adjacent ORFs encoding a HicA family toxin (BRYFOR7601) and a HicB family anti-

toxin (BRYFOR7602) in one of the prophages, and a pair of genes that specify a RelE family toxin 

(BFYFOR9696) and a PHD family anti-toxin (BRYFOR9697) in the other prophage; these two 

gene pairs were constitutively expressed in all fecal samples, in all cecal samples, and during in 

vitro growth in defined medium containing a variety of carbon sources (Fig. 5). Co-expression of 

toxin-antitoxin genes is known to maintain stable integration of phage DNA in bacterial chromo-

somes24,25. Importantly, the one prophage that was fully activated (prophage 2 in Fig. 5) does not 

have a detectable toxin/anti-toxin gene pair. Only two small (2-3 gene) clusters were expressed in 

the two B. thetaiotaomicron prophages in vivo; all of these clusters encode predicted toxin or anti-

toxin genes (Fig. S12). Together, these findings illustrate how a prophage may be liberated from 

its host cell when that cell is present in a fecal community.

Human microbiome projects have been initiated throughout the world in order to define the 

interrelationships between human physiologic status, and/or disease states and microbial commu-

nity structure and function. Our results suggest that a potentially important dimension should be 

incorporated to these metagenomic studies; namely, one that targets VLPs recovered from various 

body habitat-associated communities (Fig. S13 and Supplementary Discussion). Comparisons of 

the functions embedded in both dominant and sub-dominant phages present in these communities 
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may provide informative molecular signatures (biomarkers) of the microbiota and its human host, 

of microbial community responses to impending or fully manifest disease states, and of the extent 

to which community health or pathology endures after apparent recovery of the human host from 

a disease or therapeutic intervention. In addition, gnotobiotic mice harboring defined collections 

of human gut symbionts inoculated with VLP-derived viromes should provide informative mod-

els for further dissection of various aspects of the interactions of phage and their microbial hosts 

in different regions of the gut, including an assessment of whether LV dynamics operate in more 

proximal regions of the intestine where energy generated from dietary components may be more 

available.

Methods Summary

Sample collection.

The Missouri Adolescent Female Twin Study (MOAFTS26) is composed of female twin pairs born 

in the state of Missouri between 1975-1986, and their mothers. Procedures for obtaining informed 

consent and sample collection were approved by the Washington University Human Studies Com-

mittee.

DNA extraction and 454 Pyrosequencing.

Aliquots of frozen fecal samples (2-5 g) were processed for isolation of VLPs by serial filtra-

tion, followed by cesium chloride gradient ultracentrifugation27. VLPs were lysed in a solution 

containing Proteinase K and 10% SDS. DNA was extracted with 10% cetyltrimethylammonium 

bromide/0.7M NaCl and amplified using the illustra™ GenomiPhi™ V2 kit (GE Healthcare). The 

resulting DNA was used for multiplex shotgun 454 FLX pyrosequencing. For further details about 

VLP purification, extraction of VLP DNA, assembly of pyrosequencer reads, and data analysis see 

Methods.
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Figure Legends

Figure 1. Classification of viruses present in VLP preparations generated from fecal samples 

collected from four families of MZ twins and their mothers. Prophage are classified based on 

their bacterial host taxonomy. Prominent bacterial phyla are represented by different colors (Pro-

teobacteria, blue; Firmicutes green; Bacteroidetes, red; Actinobacteria, black). Class-level taxa 

within these phyla are noted. Phage and eukaryotic viruses are sorted according to taxonomy. 

Nomenclature used for VLP preparations from fecal biospecimens: F, family; T1, co-twin 1; T2, 

co-twin 2; M, mother of co-twins. Time points (1-3), and technical replicates (R) produced from a 

given sample are noted. The color bar at the bottom of the figure provides a reference key for the 

percent coverage of a viral genome in the NR_Viral_DB by reads from given VLP virome dataset 

(data normalized using 14,000 randomly selected reads/dataset).

Figure 2. Beta-diversity analysis: clustering of fecal VLP-associated viromes and bacterial 

16S rRNA data. Unrooted, jack-knifed (100 iterations) consensus UPGMA trees obtained from 

Hellinger-based distance matrices are shown for bacterial 16S rRNA data (a) and VLP-derived 

viromes (b). The color key provides information about the family (F), and family member. Bars 

represent Hellinger distances.

Figure 3. A sample-by-sample view of the proportional representation of KEGG second level 

pathways in sequenced VLP-associated viromes and gut microbiomes. Known or predicted 

proteins encoded by viruses in the NR_Viral_DB, fecal VLP-derived viromes, 121 sequenced 

reference human gut-associated microbial genomes, and fecal microbiomes are shown. See Fig. 1 

for sample nomenclature.

Figure 4.  Representative phylogenetic trees of bacterial proteins present in large contigs 

assembled from VLP-viromes with no homologs in the NR_Viral_DB. Multiple alignment 

of the indicated viral protein (highlighted in red) with all proteins from 121 human gut microbial 

genomes that harbored the same domain or motif was performed using Muscle28. Approximate 
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maximum likelihood trees were generated using FastTree20. Bars represent the number of amino 

acid substitutions per position.

Figure 5. Gnotobiotic mice reveal in vivo activation of the transcriptome of a Marvinbryantia 

formatexigens prophage. Shown are the three predicted prophages present in M. formatexigens 

and the levels of expression of their ORFs in cecal and fecal micobial communities harvested from 

gnotobiotic mice co-colonized with Bacteroides thetaiotaomicron. Expression levels for genes in 

each prophage genome are from normalized RNA-Seq read count data (see color key; normaliza-

tion based on sequencing effort and length of each predicted ORF). Active expression is defined 

as a normalized read count >100. R, technical replicate shows the reproducibility of the method 

for performing RNA-Seq analysis. RNA-Seq data are also presented for each prophage genome 

in M. formatexigens during mid-log phase growth in defined medium containing different carbon 

sources (NAG, N-acetylglucosamine).  Red arrows indicate the position of toxin/anti-toxin gene 

pairs. Green arrows denote genes with hypothetical functions that are expressed in more than 50% 

of the conditions tested. ORF designations for the first and last genes in the predicted genomes of 

each prophage are provided.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Table

Table 1. Proteins encoded by 88 large viral contigs assembled from fecal VLP viromes that have 

no homologs in the NR_Viral_DB and whose functions are involved in processes associated with 

the anaerobic gut microbiota

No of 
ORFs Name Description

5 N-acetylmuramoyl-L-alanine 
amidase

Cleaves the amide bond between N-acetyl-
muramoyl and L-amino acids in bacterial cell 
walls  [EC 3.5.1.28]

3 Thymidylate synthase Involved in folate biosynthesis pathway [EC 
2.1.1.148]

2 6-pyruvoyl tetrahydropterin syn-
thase

Involved in folate biosynthesis pathway [EC 
4.2.3.12]

1 Anaerobic nitric oxide reductase 
transcription regulator

NifA

1 Fe-S Oxidoreductase Radical SAM domain-containing protein

1 Anaerobic ribonucleoside-triphos-
phate reductase activating protein

Transcription factor involved in the anaerobic 
de-novo synthesis of nucleotides

1 ExsB Transcription factor involved in the regulation 
of succinoglycan levels

1 Phosphoadenosine phosphosulfate 
reductase family

Involved in synthesis of cysteine [EC 1.8.4.8]

1 Ferritin Dps family protein Participates in oxygen defense

1 Glycosyltransferase family 25 Involved in peptidoglycan biosynthesis

1 Glycosyltransferases family 2 Involved in peptidoglycan biosynthesis

1 Methylglyoxal synthase Involved in pyruvate metabolism [EC 4.2.3.3]

1 Iron/manganese superoxide dis-
mutases, C-terminal domain

Involved in oxygen defense [EC 1.15.1.1]

1 Thioredoxin Involved in oxygen defense, can act as elec-
tron donor for reductases

1 S-adenosylmethionine decarboxyl-
ase

Involved in biosynthesis of polyamines

1 Cysteine desulfurase NifS, involved in Fe-S cluster biosynthesis.

Legend – This list of proteins includes (i) two transcriptional regulators (a homolog of ExsB in-

volved in regulation of succinoglycan levels29; and an anaerobic nitric oxide reductase regulator 

belonging to the sigma 54 family); (ii) an anaerobic ribonucleoside triphosphate reductase activat-
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ing protein that uses S-adenosylmethionine (SAM), an iron-sulfur cluster, and a reductant for the 

de-novo anaerobic synthesis of nucleotides30-32; (iii) other SAM-related proteins (Fe-S oxidoreduc-

tase, and a SAM-decarboxylase that uses SAM for synthesis of spermidine and spermine, which in 

turn stimulate RNA polymerases and stabilize the DNA helix respectively33), (iv) three oxidative 

stress-related proteins (an iron/manganese superoxide dismutase, thioredoxin, and a ferritin Dps 

family protein); (v) a methylglyoxal synthase homolog involved in pyruvate metabolism, (vi) a 

thymidylate synthase and a 6-pyruvoyl tetrahydropterin synthase, both involved in folate metabo-

lism; (vii) a member of the phosphoadenosine phosphosulfate reductase family that participates in 

the cysteine biosynthesis and uses thioredoxin as electron donor; (viii) cysteine desulfurase (nifS), 

which plays an important role in Fe-S cluster biosynthesis by catalyzing removal of sulfur from 

cysteine to produce alanine; and (ix) a group of proteins involved in peptidoglycan synthesis [a 

member of CAZy Glycosyltransferase family 2 (GT2), a GT25 member, and five N-acetylmuram-

oyl-L-alanine amidases; note that acquisition of this last group of enzymes is intriguing in light of 

evidence that some phages can subvert normal bacterial pathways for surface glycan biosynthe-

sis6].
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Methods

Purification of VLPs.

Viral purification was performed with minor modifications of the procedure described in an earlier 

publication27. In brief, a 2-5 g aliquot of each pulverized fecal sample was re-suspended in 25 mL 

SM buffer [100 mM NaCl, 8 mM MgSO4, 50 mM Tris (pH 7.5) and 0.002% gelatin (wt/vol)]. Fol-

lowing centrifugation  (2,500 x g for 10 min at room temperature), the resulting supernatant was 

removed and passed sequentially through 0.45µm and 0.22µm Whatman filters to remove residual 

cells. The filtrate was then adjusted with CsCl to a density of 1.12g/mL and deposited on top of a 

3 mL step gradient prepared using 1mL CsCl solutions with densities of 1.7 g/mL SM buffer, 1.5 

g/mL, and 1.35 g/mL. Samples were centrifuged for 2h at 60,000 x g (4ºC) in a SW41 swinging 

bucket rotor (Beckman). The 1.5 g/mL layer was recovered since material in this density range is 

known to be enriched for bacteriophages27. At each step of the purification procedure, an aliquot of 

the sample was viewed under an epifluorescence microscope after viral particles had been stained 

with SYBR-gold; this allowed us to document the presence of VLPs and note whether a decrease 

in the representation of bacterial and eukaryotic cellular elements had occurred.

Extraction of viral DNA.

After the 1.5 g/mL layer was collected from the step gradient, chloroform was added (0.2 volumes) 

and the solution was centrifuged for 5 min at 2,500 x g. The aqueous phase was treated with DN-

Ase (Sigma Aldrich; final concentration 2.5U/mL) to remove residual host and bacterial DNA. To 

extract the virions, 0.1 volume of 2M Tris HCl/ 0.2 M EDTA, 1 volume of formamide, and 100µL 

of a 0.5M EDTA solution were added per 10mL of sample, and the resulting mixture was incubated 

at room temperature for 30 min. The sample was subsequently washed with 2 volumes of ethanol 

and pelleted by centrifugation for 20 min at 8,000 x g at 4ºC. The pellet was washed twice with 

70% ethanol and re-suspended in 567µL of TE buffer, followed by 30µL of 10% SDS and 3µL of 

a 20 mg/mL solution of Proteinase K (Fisher Scientific; cat no. AC61182-0500). The mixture was 
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incubated for 1h at 55ºC, and 100 µL of 5M NaCl and 80µL of a solution of 10% cetyltrimethyl-

ammonium bromide/0.7M NaCl were subsequently introduced. After a 10 min incubation at 65ºC, 

an equal volume of chloroform was added and the mixture was centrifuged (5 min at 8,000 x g; 

room temperature). The resulting supernatant was transferred to a new tube and an equal volume 

of phenol/chloroform/isoamyl alcohol (25:24:1) was added, followed by centrifugation (5 min at 

8,000 x g; room temperature). The supernatant was recovered and an equal volume of chloroform 

was introduced. Following centrifugation, the supernatant was collected and 0.7 volumes of iso-

propanol used to precipitate the DNA. After another centrifugation step (15 min at 13,000 x g at 

4ºC), the material was washed (500µL of cold 70% ethanol), air dried, and resuspended in 50µL 

of TE. An aliquot of the purified DNA was used as a template in polymerase chain reactions that 

contained universal primers directed at bacterial 16S rRNA and eukaryotic 18S rRNA genes; this 

assay was used to confirm the absence of detectable contaminating non-viral DNA.

Amplification of VLP-associated DNA.

Shotgun 454 pyrosequencing requires 3–5µg of DNA for library preparation. The typical yield 

from our fecal VLP DNA isolation procedure was 500ng/sample. Therefore, WGA (Whole Ge-

nome Amplification) was performed using reagents and protocols in the illustra™ GenomiPhi™ 

V2 kit (GE Healthcare) to generate sufficient material for library construction. Ten to 50ng of puri-

fied VLP DNA were mixed with 9µL of ‘Sample Buffer’ from the kit and heat denatured at 95ºC 

for 3 min. Nine microliters of ‘Reaction Buffer’ and 1µL of ‘Enzyme Mix’ were then added and 

the solution incubated for 90 min at 30ºC. Three separate WGA reactions were performed for each 

viral DNA preparation to minimize potential bias in amplification. The amplified products from 

each sample were subsequently pooled and purified (QIAGEN DNeasy kit).

To test for bias in the amplification and sequencing of VLP-DNA preparations that had 

been subjected to WGA, we analyzed the VLP sample from individual F3T1.1 where the yield of 

DNA was sufficient to perform shotgun pyrosequencing with un-amplified as well as with ampli-

fied subsamples. We pooled 16,567 reads derived from WGA DNA, and 18,845 reads from the 
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unamplified aliquot and clustered them using the procedures used for alpha diversity calculations 

(see CD-Hit Clustering below). We found that 98.4% of the sequences from the un-amplified 

DNA were also present in the WGA reads while 91.96% of the WGA sequences were represented 

in the un-amplified sample dataset. This difference could be due to sequencing of amplified low 

abundance viral DNAs that were not sequenced in the unamplified sample. WGA is also known to 

preferentially amplify small ssDNA viruses18.

Multiplex shotgun pyrosequencing of VLP viromes.

DNAs, purified from each of 12 VLP preparations, were labeled with a different MID (Multiplex 

Identifiers; Roche). Equivalent amounts of the barcoded samples were then pooled prior to a run 

of 454 FLX pyrosequencing.  Shotgun reads were filtered by removing (i) all duplicates (defined 

as sequences whose initial 20 nucleotides are identical and that share an overall identity of >97% 

throughout the length of the shortest read; duplicates are a known pyrosequencing artifact34), (ii) 

reads with degenerate bases (‘N’s), and (iii) sequences with significant similarity to human refer-

ence genomes  (BLASTN with e-value < 1E-5) in order to ensure the de-identification of samples.

Bacterial 16S rRNA gene amplification and sequencing.

An aliquot (500mg) of each frozen pulverized fecal sample was re-suspended in a solution con-

taining 500µL of extraction buffer [200mM Tris (pH 8.0), 200mM NaCl, 20mM EDTA], 210µL 

of 20% SDS, 500µL of phenol:chloroform:isoamyl alcohol (25:24:1) and 500µL of a slurry of 0.1-

mm diameter zirconia/silica beads (BioSpec Products). Cells were mechanically disrupted using a 

bead beater (BioSpec Products) set on high for 2 min at room temperature, followed by extraction 

with phenol:chloroform:isoamyl alcohol and precipitation with isopropanol. DNA obtained from 

three separate aliquots of each fecal sample were pooled and used for amplification of bacterial 

16S rRNA genes.

Approximately 330bp amplicons, spanning variable region 2 (V2) of bacterial 16 rRNA 

genes were generated by using PCR and (i) modified primer 8F (5´- GCCTTGCCAGCCCGCT-
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CAGTCAGAGTTTGATCCTGGCTCAG-3’) which consisted of 454 primer B (underlined) and 

the universal bacterial primer 8F (italics) and (ii) modified primer 338R (5’ GCCTCCCTCGC-

GCCATCAGNNNNNNNNNNNNCATGCTGCCTCCCGTAGGAGT 3’) which contained 454 

primer A (underlined), a sample specific, error correcting 12-mer barcode35 (N’s), and the bacterial 

primer 338R (italics).

Four replicate polymerase chain reactions were performed for each pooled fecal DNA sam-

ple. Each 20µL reaction contained 100ng of gel purified DNA (Qiaquick, Qiagen), 8 µL 2.5X Ho-

tMaster PCR Mix (Eppendorf), and 0.3 µM of each primer. The PCR program consisted of initial 

denaturation at 95ºC for 2 min followed by 30 cycles of denaturation (95ºC for 20 sec), annealing 

(52ºC for 20 sec) and amplification (65ºC for 1 min). Replicate PCRs were subsequently pooled 

and purified using Ampure magnetic purification beads (Agencourt). DNA was quantified using 

Picogreen (Invitrogen) and an equimolar amount of each sample was used for multiplex 454 FLX 

amplicon pyrosequencing.

Bacterial 16S rRNA data processing and analysis.

16S rRNA reads were analyzed using QIIME36: fasta, quality files and a mapping file indicating the 

barcode sequence corresponding to each sample were used as inputs. The QIIME pipeline takes 

this input information and split reads by samples according to the barcode, and classifies reads into 

OTUs based on sequence similarity. It also performs taxonomical classification using the RDP-

classifier37, builds a de-novo taxonomic tree of the sequences based on sequence similarity, and 

creates a sample x OTUs table that can be used, together with the tree, for calculating alpha and 

beta diversity.

Custom Non Redundant viral database (NR_Viral_DB).

All complete viral and bacteriophage genomes available in the European Bioinformatics Institute 

(EBI) database were downloaded, as were all complete prophage genomes present in the SEED da-

tabase and all entries for the taxid 10239 (Viruses) in RefSeq between 1Kb – 500Kb. The database 
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was complemented with prophage sequences identified from a survey of 396 sequenced microbial 

genomes (Table S4) using the software tool PhageFinder38. To make the database non-redundant, 

all sequences were compared against each other and only those with <95% identity throughout 

their length were retained.

CD-Hit Clustering.

CD-Hit-est is a software tool designed for clustering nucleotide sequences by similarity16. We used 

CD-Hit-est to cluster the pooled reads obtained from all viral samples. Hierarchical clustering was 

performed based on continuous reduction of the required percentage overlap between reads (from 

99% to 85%) while maintaining a sequence identity of ≥90%. A sample x CD-Hit cluster table 

was subsequently generated, analogous to an OTU table. The table was analyzed using QIIME to 

generate alpha diversity estimates (as Shannon indices) as well as beta diversity matrices based on 

Hellinger distances.

Viral alpha and beta diversity.

These estimates were based on a pipeline composed of several software programs: GAAS39, Cir-

conspect17, PHACCS40, and MaxiPhi17. Circonspect (http://sourceforge.net/projects/circonspect/) 

was used to form cross-contig spectra of 3x coverage. To ensure stringent assembly, contigs in 

Circonspect were determined by Minimo (available in the AMOS package at http://sourceforge.

net/projects/amos/) instead of TIGR Assembler. Contig assembly parameters were 98% similar 

sequences overlapping by at least 35 bp. Viral average genome length was then estimated using 

GAAS (http://sourceforge.net/projects/gaas/) (tblastx against complete NCBI RefSeq viral ge-

nomes, minimum 30% similarity, minimum 70% relative length).

For each pair of samples to compare, the input for MaxiPhi was their cross-contig spec-

trum and average genome length. Building on PHACCS (http://sourceforge.net/projects/phaccs/), 

MaxiPhi ran a Monte-Carlo simulation to determine how many virotypes samples had in common 

(percent shared), and how many of the most abundant ones changed their abundance rank (per-
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cent permuted). Using VLP reads from each individual sample assembled against themselves as 

internal controls, the best average genome length for each beta-diversity computation was found 

as the length within 20% of the input value that produced the percent shared and percent permuted  

closest to 100 and 0% respectively for both controls.

The entire viral diversity analysis was done at several levels: between time points for each 

individual, between twins for each family, between twin and mother for each family, and between 

all families. Input viral metagenomes were pooled as necessary, e.g., for the co-twin comparison,  

sequences from all 3 time points from each twin were merged.

PHACCS calculates expected number of virotypes by estimating Shannon indexes from 

contig spectra. To compare the results with an independent method, Shannon indexes derived from 

CD-Hit clustering were determined: the expected number of clusters per sample was divided by 

the expected number of clusters per virotype, as determined by the average genome size given by 

GAAS and the mapping of clusters per Kb of viral contigs.

Assembly and analysis of phage genomes.

The 454 Newbler assembler Software Release 2.0.01.14 was used for assembly of viral genomes. 

Default parameters were employed except for minimum identity between the sequences (98%) and 

minimum overlap (100bp). These stringent conditions diminish the risk of false assembly between 

reads from different viruses41.

We created an online tool for visualizing assembled viral contigs (http://gordonlab.wustl.

edu/phage_omics/). Each contig with a length >10Kb generated from the assembly was blasted 

against a non-redundant set of proteins encoded by viruses present in our NR_Viral_DB (contains 

entries deposited in public databases as of May, 2009), as well as translated ORFs present in 121 

sequenced microbial genomes representing cultured representatives of the human gut microbiota. 

ORF prediction was performed using glimmer342.  ORFs were subsequently annotated based on 

blastx searches (e-value < 1E-5) of the KEGG (v51), COG/String (v843), PFAM (v2344), and TI-
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GRFAM (v745) databases. All features and annotations for each contig were included in a MySQL 

database and displayed using lightweight genome viewer46.

All processed pyrosequencing reads from each VLP sample were blasted (blastn e-value 

<1e-5) against each of the contigs. Significant hits were recorded and the positions used for plot-

ting cumulative coverage. The length of the alignment was used to calculate a normalized cover-

age value47. Percent similarity of each read to the contig was also calculated and averaged for total 

percent identity calculations.

Functional assignment of reads and statistical analyses.

All available pyrosequencing reads from fecal microbiomes and VLP-derived viromes were used 

to query (blastx e-value <1e-5) the KEGG (v51) and COG/String (v843) databases. The same da-

tabases were queried (blastp, e-value < 1e-5) with known and predicted proteins encoded by the 

121 reference sequenced human gut microbial genomes, and by all viral genomes (excluding pro-

phages) in our NR_Viral_DB.  After best blast hits were assigned to COG categories or KEGG 

second level pathways, Metastats19 was used to identify significant functional differences (p<0.05) 

between fecal virome and microbiome datasets.

Prophage Coverage Plots.

Prophage present in the 121 gut microbial genomes were identified using PhageFinder. Each iden-

tified prophage was then extracted in silico together with 50Kb of flanking bacterial genomic se-

quences. Nucmer48 was subsequently used to map all VLP pyrosequencer reads (defaults settings) 

onto this set of extracted sequences. Mummerplot, which like Nucmer is part of the Mummer 

package48, was employed to generate sequence identity plots (threshold, > 80% similarity). The 

prophage genome coordinates of the matches and the sequence identity with VLP reads were used 

to generate tables of ‘percent coverage’ and ‘fold-coverage’.



71

Search for integrase genes.

All integrase protein sequences were extracted from the NR_Viral_DB and from the 121 sequenced 

human gut-associated microbial genomes. VLP pyrosequencing reads were blasted against this da-

tabase of extracted sequences (blastp, e-value <1e-4) and the best blast hit stored for every read. 

The number of reads from a given sample that were similar to a given integrase in the database 

was recorded and used to generate a Hellinger-based distance matrix between samples (QIIME).

CRISPR spacers represented in viral metagenomes.

Seventy-four available human gut microbial genomes, representing members of the most predomi-

nant bacterial families present in the human fecal microbiota, were used to search for CRISPR 

elements with CRISPR-Finder49. CRISPRs were identified in 48 of these genomes: they contained 

a total of 95 different repeat sequences and 2,196 spacers. The direct repeats were subsequently 

compiled into a database, which in turn was used to search each of our fecal microbiome datasets 

(Program cross_match50; parameters: -minmatch 7 -maxmatch 12 -gap1_only -screen -minscore 

10). Spacers were then extracted from all microbiome pyrosequencer reads where at least 2 match-

es for the same CRISPR repeat were identified and the intervening spacer was ≥10 nucleotides. 

All of these spacers from the microbiomes and 121 sequenced reference genomes were pooled to-

gether, and used to screen all VLP-derived pyrosequencing reads using cross_match (parameters: 

-minmatch 14 -maxmatch 14 -gap1_only -screen -minscore 10). Virome reads with hits to microbi-

ome or reference genome CRISPR spacers over >90% of the length of their spacers were recorded.

Gnotobiotic mouse experiments.

All studies with mice used protocols approved by the Washington University Animal Studies 

Committee. Methods for co-colonization of adult germ-free adult male C57Bl/6J mice with Mar-

vinbryantella formatexigens and Bacteroides thetaiotaomicron, harvesting their cecal contents, 

preparation of rRNA-depleted RNA from cecal contents and fecal samples for subsequent cDNA 

synthesis, Illumina GA-IIx sequencing of cDNA, plus mapping and normalization of the result-
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ing reads are described in another publication23. RNA-Seq datasets used for our analysis of pro-

phage gene expression can be found under GEO accession numbers GSM544893, GSM544900, 

GSM544858, GSM544866, GSM544940, GSM544944 (in vivo data) and GSM544856, 

GSM544873, GSM544835, GSM544947, GSM544872, GSM544917, GSM544931, GSM544871, 

GSM544883, GSM544863, GSM544865 (in vitro data).

Statistical tests.

Statistical tests were performed and heatmaps were produced using the R package51.
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Supplementary Discussion

The value of purifying VLPs for viral metagenomic projects

When each of the 32 fecal VLP-associated viromes, sequenced to an average depth of 7.8±2.9 Mb 

(per sample) was used to query the 12 microbiomes sampled to an average depth of 92.2 ± 17.5 

Mb, we noted that 55.8±32.4 % (mean ± SD) of viral sequences generated from the VLP preps 

from a given human host were detectable in that individual’s sequenced fecal microbiome. When a 

deeply sampled VLP-virome (70.16 Mb) was used to query 0.91 Gb of pyrosequencer reads from 

the corresponding deeply sequenced fecal microbiome15, the percentage of VLP-derived sequenc-

es found in the fecal community DNA sample was 76.14% (Fig. S13). Using the same BLAST 

E-value threshold cutoff, we performed a reciprocal analysis, asking what percentage of the total 

sequences present in each of the microbiome datasets matched to sequences present in VLP data-

sets generated from fecal samples collected from that human host. The results disclosed that viral 

reads represented 3.5±2.2% (mean ± SD) of total fecal community DNA sequences in the case 

of the 12 more shallowly sequenced microbiomes, and 2.5% in the case of the deeply sequenced 

microbiome and its corresponding deeply sequenced virome (Fig. S13a). These findings support 

a view that at the present time isolating VLPs is an efficient and direct way to characterize phage 

populations associated with a given (fecal) microbial community.

CRISPRs

Clusters of Interspaced Short Palindromic Repeats (CRISPR) elements are stretches of DNA com-

posed of short palindromic repeats (23-47bp) that flank short “spacers” composed of viral DNA; 

their presence in a bacterial genome represents a key component of host defense against bacte-

riophage attack2,3. We used CRISPR-Finder49 to search sequenced human gut microbial genomes; 

CRISPR elements were detected in 48 of 74 human gut bacterial species queried and in a promi-

nent human gut archaeon (Methanobrevibacter smithii) (see Table S10 for the list of genomes). 

We identified a total of 95 different direct repeats and 2,196 different spacers. These direct repeats 

were subsequently used to interrogate the fecal microbiome datasets to identify reads that con-

tained at least two copies of the same direct repeat. The spacers interposed between these repeats 
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were subsequently extracted, and together with the spacers from the 121 sequenced human gut 

microbial genomes used to search for sequences with high similarity in VLP viromes (defined 

by Cross_match; maximum of 1 gap allowed and similarity over ≥ 90% of its length). This effort 

yielded 1,262 reads that were similar (≥90% identity) to a spacer sequence. Sixteen of the 38 VLP 

viromes (including technical replicates of samples from members of families F1-4 and the deeply 

sequenced virome) had hits to spacers derived from fecal microbiomes. In the 12 sequenced fe-

cal community microbiomes for which there were corresponding VLP preparations, the only hits 

to the viromes were spacers represented in another individual’s microbiome (Table S11). In this 

analysis of fecal microbiome datasets from a single time point, and at this depth of shotgun se-

quencing of the microbiome, the absence of detectable viral sequences with significant similarity 

to bacterial spacers in a given individual’s fecal microbiome suggests that viruses to which their 

bacterial communities were resistant are not represented in the corresponding VLP preparation. If 

temperate phage dominate in the fecal microbiome, we would not expect such resistance to appear 

at least as judged by the representation of CRISPR spacers in viromes and microbiomes. How-

ever, additional and deeper shotgun datasets of total fecal microbial community DNA need to be 

generated from samples collected at all time points surveyed for each individual in order to further 

assess whether resistance does or does not occur.

Eukaryotic viruses represented in VLP viromes

Although 73% of the sequences in the NR_Viral_DB belong to eukaryotic viruses, none of the 

VLP samples yielded reads covering more than 50% of the genome of any known eukaryotic 

virus (tblastx, e-value < 1e-3). Eukaryotic viruses with hits throughout more than 20% of their 

genomes included: (i) six non-human Herpesviridae with 22–49% genome coverage; (ii) one Mac-

ulavirus (Grapevine_fleck_virus; 39% coverage of its 7,564bp genome); (iii) one Aquareovirus 

(Aquareovirus_A_segment_11;  26% coverage of this 783bp segment of its genome); (iv) one 

Parapoxivirus (Bovine_papular_stomatitis_virus; 22% coverage of its 134,431bp genome); and 

(v) one human Rotavirus (Human_rotavirus_G3_segment_11;  21% coverage of this 1,043bp ge-

nome segment).
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Supplementary Figure Legends

Suppl. Figure 1. Percent of pyrosequencing reads generated from VLP preparations that 

map to the NR_Viral_DB. Sample-by-sample distribution of the percentage of VLP-derived 

reads with hits (tblastx, e-value < 1e-3) to the NR_Viral_DB. See the legend to Fig. 1 in the main 

text for an explanation of the nomenclature used to designate samples.

Suppl. Figure 2. Correlating family-level bacteria taxa present in fecal samples with the 

known bacterial hosts of bacteriophage present in the NR_Viral_DB and their identified ho-

mologs in fecal VLP metagenomic datasets.  The Universal Bacterial 16S rRNA tree in Green-

genes was downloaded (http://greengenes.lbl.gov/Download/Taxonomic_Outlines/), collapsed at 

a family level based on NCBI taxonomy, and branches colored according to their assigned phyla. 

The left panel corresponds to distribution and relative abundance (1.0 = most abundant) of the dif-

ferent samples according to 16S rRNA data. The middle panel shows the distribution and percent 

coverage of bacteriophage genomes from the NR_Viral_DB by VLP-derived reads; phage ge-

nomes are classified according to their host taxonomy. The right panel shows the distribution and 

relative abundance of the known bacterial hosts of phage present in the NR_Viral_DB. Columns 

are sorted by individual and time points of fecal sampling. Green arrows point to ssDNA phage 

from Chlamydia and Bdellovibrio known to be preferentially amplified by WGA methods17. For 

sample abbreviations see Fig 1 in the main text.

Suppl. Figure 3. Representative Monte Carlo simulations for cross contigs defining intraper-

sonal vs interpersonal variation in VLP DNA viromes. Monte Carlo simulations for the percent 

shared viral genotypes (virotypes) and percent permuted rank abundance of virotypes between 

pairs of fecal VLP samples. Colors indicate the likelihood score for a given position. Intra-personal 

variation is displayed in panels a-c: F4M.2 vs F4M.3 (a); F2T1.1 vs F2T1.3 (b); F1T2.2 vs F1T2.3 

(c). Inter-personal variation is illustrated in panels d-f: F3M vs F3T1 (d); F2T1 vs F2T2 (e); F4T1 

vs F4T2 (f).
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Suppl. Figure 4. Beta-diversity analysis. Branch support for the trees displayed in Fig. 2.  

Hellinger-based UPGMA trees for bacterial 16S rRNA data and VLP-derived viromes are dis-

played in panels a and b, respectively. The color key provides information about family (F) and 

the family member.

Suppl. Figure 5. Percent similarity plots of VLP virome reads mapping to a predicted pro-

phage in Ruminococcus torques ATCC 27756. The genes present within the ~60 Kbp prophage 

are shown in green, and those present on either strand of the flanking bacterial genome are shown 

in black at the bottom of the figure. Pyrosequencer reads, generated from fecal VLPs, prepared at 2 

or more time points from a co-twin (T2) and her mother (M) belonging to family 2 (F2) and having 

≥80% identity with prophage genes, are displayed as blue dots (each dot represents a single read 

with a hit to the positive strand of the prophage) or red dots (negative strand hits).

Suppl. Figure 6. Length distribution of viral contigs assembled from VLP-derived pyrose-

quencing reads. A frequency histogram of contig length is shown.

Suppl. Figure 7. Percentage of fecal virome and microbiome reads with significant hits to 

COG categories and KEGG second level pathways. Sample by sample percentage of reads 

with significant hits (blastx, e-value cutoff <1e-5) to (A) COG (STRING v7) and (B) KEGG (v44) 

databases.

Suppl. Figure 8. KEGG and COG annotations reveal significant differences in functions 

between fecal VLP-associated viromes and microbiomes. Only COG-categories (panel A) and 

KEGG second level pathways (panel B) with significant differences in their representation be-

tween fecal microbiomes and VLP-associated viromes are shown  (mean ± s.e.m plotted; p < 0.05; 

two sample t-test calculated using Metastats).

Suppl. Figure 9. A sample-by-sample view of the proportional representation of COG catego-

ries in sequenced VLP-associated viromes and gut microbiomes. Blastx assignment (e-value 

cutoff <1e-5) of reads to functional categories. Shown from top to bottom are proteins from viruses 



78

in the NR_Viral_DB and fecal VLP-derived viromes, plus proteins from 121 sequenced human 

gut-associated microbial genomes and fecal microbiomes. See Fig. 1 for sample nomenclature.

Suppl. Figure 10. Comparison of the representation of KEGG and COG groups in proteins 

encoded by large VLP-derived contigs and in the NR_Viral_DB. Searches (blastp, e-value 

<1e-5) were performed against the STRING COG database (panel a) and KEGG (results for sec-

ond level pathways are shown in panel b).

Suppl. Figure 11. Sequence diversity of integrase genes in VLP viromes. The number of pyro-

sequencer reads in each VLP sample with significant hits to known integrases present in the NR_

Viral_DB and in prophages found in 121 human gut microbial genomes were identified and used 

to generate a distance matrix. Average distances among technical replicates (two shotgun datasets 

produced from a given VLP DNA preparation), among samples obtained from the same individual 

over time (intrapersonal variation), and samples obtained from co-twins, twins and their mothers 

or unrelated individuals, are graphed (mean ± s.e.m). The significance of differences between the 

groups was calculated using Student’s t-test. *** p< 0.001; ** p<0.01, ns, p>0.05.

Suppl. Figure 12. Normalized RNA-Seq counts for predicted prophages in Bacteroides the-

taiotaomicron VPI-5482. RNA-Seq was performed using rRNA-depleted RNA samples prepared 

from cecal and fecal contents harvested from gnotobiotic mice co-colonized for 2 weeks with B. 

thetaiotaomicron and M. formatexigens (n=3 animals). Expression levels are shown for each ORF 

(see color key for normalized read counts; normalization based on sequencing effort and length of 

each predicted ORF).  Active expression is defined as a normalized read count >100. This strain 

of B. thetaiotaomicron contains two prophages. One of the prophages (labeled 1) contains a linked 

pair of highly expressed ORFs encoding an Xre family anti-toxin (BT4733) and a putative toxin 

(BT4732) while the other prophage contains a cluster of three highly expressed genes [two hypo-

thetical proteins flanking a Xre family anti-toxin (BT4035)].

Suppl. Figure 13. Representation of VLP pyrosequencer reads in fecal microbiomes and vice 

versa. The percentage of reads from fecal microbiomes with significant similarity to VLP-derived 
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reads (blastn, e-value <1e-7) is represented as a blue wedge within the red pie charts. This wedge 

is expanded to the right in the form a second blue pie chart that shows the percentage of reads from 

each of the different time point VLP preparations that have significant similarity with reads from 

the fecal microbiome from time point 1. (a) The percentage of shared reads between the deeply se-

quenced F5T2 VLP preparation and corresponding deeply sequenced fecal microbiome (293,654 

and 2,579,680 reads, respectively). (b) Data derived from shallowly sequenced fecal viromes and 

microbiomes.
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Supplementary Figures
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0 10 20 30 40 50 60 70 80 90 100 

Percent assignable reads

F1T1.1 
F1T1.3 
F1T2.1 

F1T2.1(R) 
F1T2.2 
F1T2.3 
F1M.1 
F1M.2 

F2T1.1 
F2T1.1(R) 

F2T1.2 
F2T1.3 
F2T2.1 

F2T2.1(R) 
F2T2.2 
F2M.1 

F2M.1(R) 
F2M.2 
F2M.3 

F3T1.1 
F3T1.2 
F3T1.3 
F3T2.1 
F3T2.2 
F3T2.3 
F3M.1 
F3M.2 

F5T2.1 
F5T2.1(R) 

F4T1.1 
F4T1.2 
F4T1.3 
F4T2.1 
F4T2.3 
F4M.1 
F4M.2 
F4M.3 

F4M.3(R) 



81

Suppl. Figure 2
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Suppl. Figure 3
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Suppl. Figure 4
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Suppl. Figure 5
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Suppl. Figure 6
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Suppl. Figure 7
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Suppl. Figure 8
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Suppl. Figure 10
Percent assignable functions
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Suppl. Figure 11
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Suppl. Figure 12
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Suppl. Figure 13
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Supplementary Tables

Suppl. Table 1. Sequencing effort for VLP preparations from 32 fecal samples obtained from 

4 sets of MZ twins and their mothers. Technical replicates were performed on 6 DNA samples 

involving independent whole genome amplification and shotgun 454 FLX pyrosequencing. Sam-

ple F5T2.1 was subjected to deeper sequencing. NA, a fecal specimen was not available in suf-

ficient quantity to purify VLPs at this time point.

Suppl. Table 2. Sequencing effort for bacterial 16S rRNA genes present in the fecal micro-

biota of study participants.

Suppl. Table 3. Shotgun sequencing effort for fecal community DNA (microbiome) samples.

Suppl. Table 4. List of 396 sequenced microbial genomes used to identify prophage sequences 

for the NR_Viral_DB.

Suppl. Table 5. CD-hit cluster-based alpha diversity metrics.

Suppl. Table 6. PHACCS-based alpha diversity metrics.

Suppl. Table 7. Matrix of VLP samples x reference human microbial gut genomes where sig-

nificant coverage to prophages in the microbial host was identified. (a) Percent of the prophage 

genome covered by reads from a given VLP sample. (b) Fold coverage per bp of the prophage ge-

nome, normalized to 10,000 reads.  Yellow highlights instances where the prophage was covered 

over more than 50% of its length.

Suppl. Table 8. Matrix of VLP samples x the 88 large contigs assembled from the aggregate 

VLP dataset showing  (a) the percentage of the contig covered by reads from a given VLP 

sample and (b) fold-coverage per bp of each contig. Data are normalized by randomly mapping 

14,000 reads per VLP sample. Yellow highlights instances where a given contig has ≥50% cover-

age with reads from a given VLP virome.
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Suppl. Table 9. Contig x VLP sample matrix of contigs present in more than one VLP sample. 

The percent identity between VLP-pyrosequencer reads and the corresponding contig is shown. 

Dashes indicate that no reads corresponding to the contig were present in the VLP sample (thresh-

old; minimum of 80% overlap with the contig over the length of the read).

Suppl. Table 10. List of 121 sequenced human gut-derived microbial genomes used for gen-

erating a reference list of KEGG second level pathways and COG assignments. The presence 

or absence of CRISPRs in the genomes of the 74 organisms used to search for these elements is 

noted.

Suppl. Table 11. The number of VLP reads with similarity over more than 90% of their 

length to CRISPR spacers present in either the fecal microbiome of the same individual or in 

a reference gut-associated microbial genome. Counts are normalized  (10,000 reads per sample). 

The bottom row shows the number of spacers identified in each fecal microbiome sample (see 

Supplementary Discussion for further definition of the criteria used to select spacers from the fecal 

microbiome datasets to query VLP datasets).
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Summary

The microbial diversity, interpersonal variations, and dynamism of the human gut microbiota make 

the task of identifying the factors that define community configurations, both structural and func-

tional, extremely challenging. Bacterial viruses (phage) are the most abundant biological group 

on Earth, and are more diverse than their bacterial prey/hosts. To characterize their role as agents 

shaping gut community structure, adult germ-free mice were colonized with a defined model com-

munity composed of 15 sequenced human gut symbionts, seven of which harbored prophages. 

One bacterial member (Bacteroides cellulosilyticus WH2) was represented by a library of >25,000 

isogenic transposon mutants covering 80% of the genes in its genome. Once assembled, the com-

munity was subjected to a staged phage attack with a pool of live or heat killed virus-like particles 

(VLPs) purified from the fecal microbiota of five humans. Shotgun sequencing of DNA isolated 

from the input pooled human VLP preparation, gut microbiota samples collected over time from 

the gnotobiotic mice, including purified fecal VLPs, revealed an ordered, reproducible sequence of 

attack extending over a 25 day period involving five phage, none described previously. This sys-

tem allowed us to associate phage present in the input VLP preparation with bacterial hosts, show 

that surviving members of the first bacterial species attacked did not contain detectable deletions, 

insertions or SNPs fixed in the population, determine that one of the five phages was present in 

four of the humans used to construct the VLP pool but that only one virotype from one donor was 

selected by the model human microbiota, plus characterize the prominent induction of a lambdoid 

prophage in B. cellulosilyticus that preceded introduction of the exogenous phage, and using trans-

poson mutagenesis, establish the dramatic fitness advantage that one of its loci conferred on its 

bacterial host. Together, these results provide a defined community-wide view of the operations of 

a phage-bacterial host dynamic in the gut ecosystem.

The human gut is home to tens of trillions of microbial cells representing all three domains 

of life, although most are bacteria. These organisms collaborate and compete for functional niches 

and physical locations (habitats). Together, they form a continuously functioning microbial meta-

bolic ‘organ’. The broad taxonomic (e.g., phylum-level) stability of the gut community observed 
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in individuals over time after the first 3 years of life, and the contrasting high diversity at finer 

taxonomical levels, fit a Constant Diversity dynamics model 1,2 where phage maintain high bacte-

rial strain-level diversity through lysis of their host strains; the resulting emptied niche is filled 

with either an evolved resistant bacterial strain or a taxonomically closely related bacterial species. 

These dynamics have been observed in open marine environments 1. However, recent metage-

nomic studies that characterized the gut virome of healthy individuals by purifying and sequencing 

virus-like particles (VLPs) from feces showed that the most abundant viruses are temperate phage 

3-5. In a study of adult monozygotic twins and their mothers, sampled over the course of a year, 

viral community structure showed high inter-personal variation with a contrasting stability within 

an individual over time, both at the level of sequence conservation and relative abundance 3. These 

observations suggested that a temperate lifestyle rather than a predator-prey relationship character-

izes the phage-host bacterial cell dynamic in a healthy distal human gut.

To improve our understanding of viral-bacterial host dynamics in the gut, we constructed 

a gnotobiotic mouse model containing a simplified defined microbiota composed of 15 prominent 

human gut-derived bacteria whose genomes have been sequenced (Table S1). This 15-member 

community was used as bait for a staged attack that involved oral gavage of VLPs purified from 

human fecal samples. This system allowed us to document the capture of novel viruses present in 

the VLP preparations by members of the defined model human gut community, while at the same 

time tracking induction of native prophages.

Results

Our experimental design consisted of three groups of germ-free C57BL/6J mice (n=5/group). Each 

group was kept in a separate gnotobiotic isolator, where each mouse was individually caged. The 

first group of mice was gavaged with the 15-member bacterial consortium at 8 weeks of age; 3 

weeks later they were each gavaged with a pool of VLPs isolated from five fecal samples obtained 

from five healthy humans (‘live VLP group’). A second group of mice (‘heat-killed VLP group’) 

was also colonized with the 15-member bacterial community but three weeks later received a 
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heat-killed version of the VLPs used in the first group. The third group did not receive a gavage of 

bacteria at 8 weeks of age (‘germ-free group’); three weeks later they were gavaged with the same 

live VLP pool given to group 1. Fecal samples were collected from members of each treatment 

group at frequent intervals (Fig. S1). All mice in all groups were fed the same sterilized, low fat, 

plant polysaccharide-rich mouse chow ad libitum.

Neither the bacterial gavage nor the VLP inoculum contained components that appeared to 

compromise gut barrier/immune function or perturb overall health status. At the time of sacrifice, 

none of the treatment groups exhibited any significant differences in total body weight or adipos-

ity (as judged by epididymal fat pad weight as a percentage of total body weight) (p=0.3957 and 

p=0.4794, respectively; Kruskal-Wallis test; Table S2). FACS analysis did not reveal any signifi-

cant differences between the groups in the CD4+ and CD8+ T cell compartments of their spleens or 

mesenteric lymph nodes (MLN), as judged by CD44 and CD62L T-cell activation markers, Ki-67+ 

(proliferation marker), and FoxP3+ (CD4+ Treg cells marker) (data not shown). For the germ-free 

group, Illumina shotgun sequencing (50 nt reads); of ileal and colonic contents obtained at the time 

of sacrifice revealed that the VLP inoculum did not contain bacteria taxa (or bacterial spores) that 

could establish themselves in the guts of recipient animals (Table S3).

Fecal microbial biomass (defined as ng DNA/mg wet weight of feces) increased linearly 

and abruptly in the four days following introduction of the 15-member community in the ‘live 

VLP’ and ‘heat-killed VLP’ groups (Fig. S2a). Fecal DNA concentrations correlated significantly 

(R2=0.837) with the results of fecal bacterial cell counting by flow cytometry (Fig. S2b). Since 

the genome sequences of the 15 bacterial species were known, we used COmmunity PROfiling by 

Sequencing (COPRO-Seq) 6, a method based on short read (50nt) shotgun sequencing of total fecal 

community DNA, to quantify the relative abundance of each taxon as a function of time after ini-

tial colonization and after the staged VLP attack (2,544,433 ± 96,255 (mean ± SEM) reads/sample; 

Table S3). Principal coordinates analysis (PCoA) of a Hellinger distance matrix constructed from 

the COPRO-Seq datasets showed that most of the variation in composition over time occurred 

during the period of initial community assembly (Fig. S3a). Changes in the relative abundance of 
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community members also occurred following gavage of the live but not heat-killed VLP prepara-

tion (Figs. 1 and S4).

To identify which exogenously administered VLP-associated viruses might be causing the 

observed structural rearrangements in community configuration, we modified our previously re-

ported method for purifying VLPs 3 so that it could be applied to individual mouse fecal samples. 

We then sequenced DNA isolated from the purified VLP preparations [n=27; 2 fecal pellets/VLP 

preparation, each amplified by MDA; multiplex 454 FLX shotgun pyrosequencing (Titanium 

chemistry) yielded 49,819±6,983 reads/sample (mean± SEM); Fig. S1, Table S4]. To discriminate 

between activation of endogenous prophages in members of the 15-member community versus 

novel viruses derived from the exogenously administered VLP preparation, reads generated from 

the input human VLPs were mapped to the sequenced genomes of community members and to 

the mouse genome. We used reads that did not show a significant match to either dataset, together 

with COPRO-Seq reads from total mouse fecal DNA that did not map to any of the 15 bacterial 

genomes or to mouse DNA, to characterize viral genomes that were not represented in the starting 

15-member community.

In total, five viral genomes that had not been described previously were assembled and an-

notated from these analyses. These viruses were detected in the gut communities of mice that had 

received the live VLP preparation but not in the heat-killed VLP group) (Fig. 1, Fig. S5, Table S5). 

A sequential and reproducible pattern of change in the abundances of these viruses was observed 

among individually caged mice harboring the 15-member community.

The first virus to significantly increase in abundance (ϕHSC01, for Human Synthetic Com-

munity phage 01) was a 37 kbp circular DNA virus; beginning with the time of its first detection in 

feces 2-3 days after animals where gavaged with the live VLP preparation, its marked increase in 

abundance correlated with a decrease in the abundance of a component of the model community, 

Bacteroides caccae, (R2= -0.446; p-value 3.2x10-8 after Bonferroni correction) (Fig. 1b, d). Prior 

these changes, B. caccae had represented 7.29±0.5% of the microbiota on the day before that VLPs 



101

were administered. No other community member showed a statistically significant inverse correla-

tion, suggesting that this bacterium was a host for ϕHSC01. The drop in relative abundance in B. 

caccae abundance was abrupt, decreasing 74.5±3.7% relative to pre-treatment levels within 1 d 

of gavage of the live VLP preparation and returning to 75.8±5.2% of the pre-VLP gavage values 

within 3-6 d (Fig. 1). This 4-fold decrease was independently validated using qPCR (from 3.4 x 105 

to 7.8 x104 genome equivalents/mg of fecal pellet; data not shown). The spike in viral abundance, 

just like the coincident reduction in B. caccae abundance, was remarkably consistent in terms of 

their magnitude and time course among the individually caged members of the treatment group.

The ϕHSC01 viral genome not only encodes typical phage proteins (terminase, tail protein, 

DNA polymerase, helicase and methyltransferase; Table S5A), but also (i) a protein containing 

a Bacteroidetes-associated BACON domain (PF13004) characterized by a carbohydrate-binding 

module postulated to target glycoproteins and possibly host mucin 7, and (ii) a Helix-turn-helix 

(HTH) transcription regulator belonging to the MerR superfamily that is sensitive to stress re-

sponses (e.g., oxygen radicals 8).

We used deep shotgun sequencing of total fecal community DNA isolated from samples 

obtained 9-19 d after bacterial gavage and 9-25 d after VLP gavage to compare the B. caccae ge-

nome before and after attack with live versus heat killed VLPs. Pooling the sequencing reads from 

these four groups of samples allowed us to assemble the B. caccae genome at an average cover-

age of 30X per treatment group, giving us enough resolution to identify mutations that could be 

responsible for conferring viral resistance to B. caccae. The results did not reveal deletions, inser-

tions or SNPs that were unique to the live VLP treatment group after the viral gavage and fixed in 

more than 10% of the B. caccae population (See Supplementary Discussion). One interpretation of 

these results is that (i) the gut environment consists of a number of microhabitats, some of which 

are occupied by B. caccae in ways that make it inaccessible to viral attack, and (ii) the rise of B. 

caccae following the staged phage attack is not due to emerging resistance to the virus but rather 

is a manifestation of an expansion of an uninfected population after the virus is washed out of the 

ecosystem. An alternative, but not mutually exclusive, possibility is that resistance is acquired in 
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one or more regions of the genome that are difficult to sequence and/or assemble. Incorporation of 

short fragments of viral DNA within a locus flanked by short spacer repeats (CRISPR elements) 

leads to bacterial resistance to viruses whose genomes have sequence similarity to the incorporated 

sequences9. B. caccae does not contain any discernable CRISPR loci or associated proteins (Table 

S1). Moreover, no other prominent community members accumulated new spacers during the 

course of the experiment (see Supplementary Discussion).

The second virus to show an increase in its abundance, ϕHSC02, had dynamics that in-

versely correlated with the abundance of a prominent community member Bacteroides ovatus 

(abundance prior to these changes was 15.8±0.9%). Expansion of this virus and the attendant 

decrease in B. ovatus were first detected two days after the ‘crash’ of B. caccae (i.e., within 5 d of 

the live VLP gavage) and coincided with the onset of recovery of the B. caccae population (Fig. 

1b-e). The absence of detectable reads mapping to this virus in feces collected just 10 days after 

VLP gavage, and the lack of reads from this assembled viral genome mapping to any of the other 

bacterial genomes in the 15-member community during the course of the experiment, provided 

evidence for its lack of integration; i.e., ϕHSC02 was lytic. All four predicted proteins encoded by 

the 6.2 kb ϕHSC02 phage (Fig. 1e) exhibit significant similarity to the Alpavirinae. The Alpaviri-

nae are a recently described sub-family of Bacteroides phage 10 that belong to the Microviridae, a 

family composed of lytic single-stranded DNA viruses previously associated with Enterobacteria-

ceae (e.g., Escherichia coli PhiX174) and obligate intracellular pathogens (e.g., Chlamydia and 

Mycoplasma spp. phage 11). The genomes of two members of the Alpavirinae 11 isolated from hu-

man feces have lengths similar to that of ϕHSC02 (6,251 and 6,171 nt) and share 85% nucleotide 

sequence similarity over more than 90% of their genomes with ϕHSC02. VP1, the major structural 

protein involved in host recognition, exhibited overall amino acid similarities of 85.9 and 84.3% 

in pairwise comparisons to the VP1 proteins of the other two phage; in contrast, the loop in VP1 

predicted to be responsible for host recognition only had 67.5% and 67.1% similarity (Fig. S6) 

suggesting that ϕHSC02 may have a host specificity distinct from the other two family members.

The 6- to 8-fold reductions in relative representation of these two members of the model 

human gut microbiota (B. caccae and B. ovatus) was observed during the 7 day period after ga-
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vage with live VLPs (days 20-23 and 23-27 of the experiment, respectively) and was followed by 

a return from their nadir to a level of abundance in feces comparable to those found in the control 

heat-killed VLP treatment group: this rise occurred over a 7-8 day period (Fig. 1b,d). As these 

organisms increased their abundance, we documented transient decreases in Bacteroides cellulosi-

lyticus plus the two Bacteroides thetaiotaomicron strains present in the community. At the same 

time, levels of Parabacteroides distasonis, Clostridium symbiosum, Clostridium scindens, and 

Ruminococcus obeum rose. These changes were limited to the group of mice that had received the 

live VLP preparation: i.e., their abundances changed significantly when compared to heat-killed 

VLP group (Fig. S4). In contrast, levels of Eubacterium rectale, Bacteroides uniformis, and Dorea 

longicatena remained indistinguishable between the two treatment groups (Fig. S4).

The rise and fall of these organisms in the live VLP group occurred during a period when 

three other novel viruses appeared: ϕHSC03 (153.4 kb), ϕHSC04 (104.2 kb), ϕHSC05 (95.7 kb). 

These viruses, first detected 7 days after VLP gavage, subsequently increased in abundance in the 

fecal microbiota to approximately equivalent levels and persisted during the remaining 14 d of the 

experiment (Fig. S5A-F). Unlike the distinctive negative correlation between the rise and fall of 

ϕHSC01 and B. caccae abundances, and subsequently ϕHSC02 and B. ovatus abundances, the si-

multaneous appearance and rise of ϕHSC03, ϕHSC04 and ϕHSC04, their subsequent persistence, 

and the coincident complex patterns of change in abundances of bacterial community members of 

during this latter period of experiment made it difficult for us to assign candidate bacterial hosts 

for these three previously undescribed phages.

During the 25 d period when this reproducible, sequential pattern of appear-

ance of members of the exogenous human fecal VLP preparation was documented (order, 

ϕHSC01èϕHSC02èϕHSC03/ ϕHSC04/ϕHSC05), fecal microbial biomass, as defined by fecal 

DNA levels, changed no more than 2-fold in members of the live VLP treatment group. Moreover, 

biomass was not significantly different between recipients of live versus heat-killed VLP prepa-

rations at comparable time points in the experiment (Fig. S2A-Wilcoxon matched-pairs signed 

rank test; p-value = 0.459). These observations highlight another facet of the resiliency of the gut 

microbiota.
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We next used our gnotobiotic mouse model to address the question of whether similar 

virotypes represented across different humans may have shared or distinct bacterial host specifici-

ties. To determine whether ϕHSC01, ϕHSC02, ϕHSC03, ϕHSC04, and ϕHSC05 were distributed 

among all of the human VLP donors or whether they were unique to particular individuals, we 

generated a hybrid-assembly using reads from the original VLP-derived viromes from each of the 

five donors as well as from the pooled VLP preparation used for gavage (see Methods). The hybrid 

assembly yielded 159 contigs greater than 2 kbp. Most contigs were derived from viruses present 

in single donors: four of the five viruses described above were from VLPs that originated from a 

fecal sample obtained from a co-twin in family 2 (F2T1.2) or family 4 (F4T1.2) (Fig. 3). How-

ever, one of the novel viruses, ϕHSC05, was observed in 4 of the 5 individuals used to construct 

the VLP pool. Mapping reads from each original human donor fecal virome to ϕHSC005 revealed 

that the virus recovered from the mice likely comes from individual F3T1.2 since the average 

percent identity (%ID) of reads from this person’s virome mapping to the novel viral genome is 

equivalent to the percent identity obtained from VLPs isolated from mouse fecal samples [for hu-

man VLP donor F3T1.2, 87.5% of the reads with 98.45±0.02 (mean ±SEM) %ID mapped to the 

assembled phage; for VLPs isolated from mouse recipients of the pooled human VLP preparation 

at the terminal time point, 26.4% mapped reads with 98.6±0.01%ID]. In the case of the other indi-

viduals, the novel virotype detected in mice was present at significantly lower abundance (Fig. 3) 

and/or had lower percent sequence identity (for human VLP donor F2M.2, 20.2% mapped reads 

with 97.91±0.03%ID; F2T1.2, 72.5% mapped reads with 96.95±0.01%ID; F4T2.2, 27.2% mapped 

reads with 96.40±0.02%ID; F4T1.2, 0.01% mapped reads with 98.25±0.65%ID). Thus, while the 

nucleotide sequence similarity is very high for this virus across the five different humans used to 

create the pooled fecal VLP preparation, the host specificity of the different virotypes may not be 

the same, with resulting selection for only one in the defined model human gut microbiota. These 

results not only illustrate the utility of gnotobiotic mice for identifying candidate bacterial hosts for 

human gut-associated phage, but also for identifying differences in the properties among related 

virotypes derived from different human donor gut viromes.
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Another question that can be addressed in a gnotobiotic animal model that is not readily 

determined in humans is whether the time course and magnitude of change in bacterial abundance 

observed in feces is representative of changes that occur along the length of the gut: i.e., do chang-

es in the abundance of phage and their host bacterial cells occur coincidently throughout the gut, 

or is there a critical bio-geographical component of some of these interactions; does a phage attack 

limited to the proximal intestine produce a rapid and dramatic reduction in the representation of its 

bacterial host, followed by recovery as it is transported towards the distal colon? To address these 

questions, we collected intestinal contents from the proximal and distal small intestine, cecum 

and colon, as well as a fecal sample from all mice in the live and heat-killed treatment groups at 

the time of their sacrifice (25 d after the staged VLP attack). All gut samples were processed for 

COPRO-Seq analysis, while an aliquot of cecal contents was used to isolate VLPs for subsequent 

shotgun sequencing of viral DNA (Table S4). The results revealed no detectable phage in any of 

the segments in any of the mice that received the heat-killed VLP preparation (Fig. S7a). In the 

live VLP treatment group, neither ϕHSC03, ϕHSC04, nor ϕHSC05 exhibited significant differ-

ences in their relative abundances between the distal small intestine and distal colon, and between 

luminal contents and feces (Fig. S7a). Moreover, at the time of sacrifice, there were no significant 

biogeographic differences in the relative abundance of bacterial species within members of a treat-

ment group or between the two treatment groups (Fig. S7b). Thus, at least at the time of sacrifice, 

feces portrayed the proportionality of these three viral-bacterial community relationships in a man-

ner representative of more proximal regions of the gut.

Intestinal transit time in the mouse is in the order of several hours 12. The fact that ϕHSC03, 

ϕHSC04 and ϕHSC05 first appeared in members of the live VLP treatment group 7 days after the 

single gavage of pooled human fecal VLPs suggests that an intra- and/or extracellular compart-

ment exists that harbors components of the administered human fecal phage population. Pseudo-

lysogeny, a state where phages exist in a host bacterial cell without multiplying or synchronizing 

their replication with the host 13 could represent one potential mechanism for persistence. Extracel-

lular sequestration, for example through binding of carbohydrate binding modules, present in viral 
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capsular proteins 14, to mucus or epithelial cell surface glycans represents another potential mecha-

nism for persistence. COPRO-Seq analysis of fecal samples obtained from mice in the germ-free 

treatment group that lacked the 15-member bacterial community and were gavaged with the live 

VLP preparation alone revealed no detectable VLPs at any time point, including in cecal samples 

harvested at the end of the experiment (Table S4). Therefore, we were able to conclude that persis-

tence of ϕHSC03, ϕHSC04 and ϕHSC05 was dependent upon the presence of a bacterial cellular 

component.

Identification of prophage activation in the 15-member model community – The classical 

lysogenic state consists of a phage integrated in a host bacterial chromosome as a prophage. Pro-

phage are thought to provide super-infection protection from other viruses that use the same or 

similar receptors as the integrated virus on the surface of their bacterial hosts 15,16. Thirteen of the 

15 bacterial species in the model human gut microbiota had predicted prophage in their genomes 

(Table S1). To verify these predictions and assess the capacity of these prophage to undergo in-

duction to lytic phage, we used reads obtained from shotgun pyrosequencing of DNA isolated 

from two sources; (i) VLPs purified from fecal samples collected at weekly intervals from animals 

gavaged with the pooled live human VLP preparation, and (ii) VLPs purified from cecal samples 

obtained at sacrifice. Instead of mapping randomly throughout bacterial genomes (implying a 

background level of bacterial DNA contamination in the purified VLPs), the VLP reads mapped 

to one or more of the predicted prophage. In total, we identified 10 prophages derived from seven 

bacterial genomes that had the capacity to undergo induction in vivo (Fig. S8).

B. cellulosilyticus WH2 has two prophages, one of which (prophage 1) exhibited the great-

est fold induction among these 10 prophages. Induction was observed in all mice 5-9 d after initial 

gavage of the 15-member consortium prior to introduction of either live or heat-killed VLPs at day 

20 of the experiment. Induction occurred at the end of the period of initial bacterial community 

assembly, right after microbial biomass reached its peak (Fig. S2a), suggesting a potential role of 

bacterial density in the induction process. Induction correlated with a decrease in the relative abun-

dance of its bacterial host (Fig. 3a,b). There was specificity: the other B. cellulosilyticus prophage 
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did not exhibit significant levels of induction at any time point surveyed during the experiment 

(Fig. 3c; Fig. S8).

The inducible 45 kbp B. cellulosilyticus WH2 prophage 1 has traditional a lambdoid ge-

nome architecture. Mapping VLP reads to the bacterial genome allowed us to identify the pro-

phage insertion site at an arg-tRNA gene, with the corresponding duplicated region generating 

the attachment (att) sites (Fig. 3e). Lambdoid replication machinery generates concatemers of the 

genome that are linearized at cos sites before being packed inside the viral capsid. As expected 

from sequences obtained from VLP-derived DNA, no reads were obtained spanning the region 

containing the potential cos sites (Fig. 3e), highlighting the quality of the VLP purification.

Starting from the cos sites, the prophage 1 genome contains a group of genes that are con-

served and organized in a way common to lambdoid viruses of the Siphoviridae family 17; there 

was a cos site, followed by small and large terminases, portal protein, protease, the major head 

protein, several small capsid structural proteins, the major tail protein, tape measure protein, and 

ending with the integrase next to the att site. Searching the genomes of 38 human gut Bacteroides 

(Table S6), we identified four other species, including another strain of B. cellulosilyticus (DSM 

14838) that contained homologs of all or most of the tail and capsid proteins in a syntenic arrange-

ment (Fig. 3d). Moreover, homologs of four hypothetical genes in B. cellulosilyticus prophage 1 

are present in 35-37 of the 38 available Bacteroides genomes.

The B. cellulosilyticus WH2 population in the 15-member community was represented by 

a library of 26,750 isogenic mutants with each mutant strain containing a single randomly inserted 

modified mariner transposon (Tn) in the bacterial genome (78.8% of predicted ORFs contain in-

sertions covering the first 80% of each gene; average of 5.3 insertions/ORF). Because the modi-

fied Tn had engineered recognition sites for the type II restriction endonuclease MmeI at its ends, 

16 nt of flanking chromosomal DNA could be excised together with the Tn after MmeI digestion 

of community DNA and sequenced, permitting the location and abundance of each transposon 

mutant in the library to be determined. Comparing the number of reads for each mutant in the 
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‘output’ population subjected to a given selection to the number of reads generated from the ‘input’ 

population provides information about the effect each transposon insertion had on the fitness of the 

organism under the selection condition applied 18,19.

Tn insertion sequencing (INSeq) analysis of DNA prepared from fecal samples collected 

before, during and after prophage 1 induction showed a dramatic enrichment for transposons locat-

ed within a ~600 bp intergenic region positioned between the ORFs encoding its putative rha pro-

tein 20 and cI repressor at the time of phage induction 5 -9 days after introduction of the 15-member 

bacterial community) (Fig. 4a). This enrichment did not reflect clonal expansion of a single mutant 

strain within a given animal, but rather expansion of one or more of 10 independent mutants, each 

harboring a single transposon insertion within this intergenic region. The number and sites of these 

insertion mutants varied between animals (Fig. 4a). Moreover, no Tn insertions were observed 

within the ORF encoding the putative cI repressor in the input library, nor in any of the output fecal 

samples (Fig. 4a), suggesting an essential role for the repressor in bacterial host fitness.

We subsequently defined the time course of clonal expansion of bacteria containing Tn 

insertions in this intergenic region positioned between cI and rha to quantify the fitness effects of 

disrupting this part of the prophage genome. Reads mapping to this intragenic locus represented 

77.9±4.6% (mean ± SEM) of all Tn reads in fecal samples collected between 5 and 9 days after 

bacterial gavage (range, 61.3-96.9%). This result contrasts with 0.0059% (mean value) of all Tn 

reads in the input library, 0.025% in samples obtained 3 days after gavage (before prophage induc-

tion had occurred), and an average of 0.0136% for any other gene in the B. cellulosilyticus genome 

throughout the experiment.

We subsequently performed a sliding window analysis to determine if any other 600bp 

region of the B. cellulosilyticus WH2 genome containing a Tn insertion went through a clonal 

expansion analogous to that documented for the cI-rha intergenic region during the first 31 days of 

the experiment in mice belonging to the live and heat-killed VLP treatment groups (Fig. 4b). The 

results revealed that on average any given 600 bp window with a Tn decreased its abundance over 
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time, usually to less than 0.001% of the B. cellulosilyticus WH2 population. Only 5-10% of the 

windows other than the cI-rha intergenic region exhibited any enrichment over time with less than 

0.1% of the windows reaching levels >1% of the population. However, all of these other enrich-

ments occurred 11 days or more following gavage when the bacterial host population was recover-

ing from prophage induction (Fig. 4b). (COPROSeq analysis indicated that the relative abundance 

of B. cellulosilyticus WH2 in the community fell from 18.1±0.23% on day 3 to 12.2±1.68% on day 

7, and recovered to 17.9±0.31% on day 13, Fig. 3a,b). Importantly, strains with the Tn-containing 

cI-rha intergenic region selected for during prophage 1 induction subsequently maintained high 

relative abundance (~4%) in the B. cellulosilyticus population in both the live VLP and heat-killed 

VLP treatment groups (Fig. 4b).

Together, these results indicate that prophage 1 induction is restricted in time (i.e., non-

recurring over the course of the experiment), insensitive to attack of other members of the defined 

human gut microbiota by exogenous human fecal phage, and does not affect the long-term fitness 

of its B. cellulosilyticus WH2 host (as judged by its constant relative abundance in the community 

following the period of induction). One interpretation of our findings is that reads mapping to the 

cI-rha intergenic region originate only from induced viral particles. The INSeq mutant library was 

constructed so that there was only one Tn insertion per genome. Thus, in this first scenario, inser-

tions in the intergenic region promote induction, with the ratio of phage genomes to prophage-

containing B. cellulosilyticus genomes achieving values up to 95:5. However, this interpretation 

seems unlikely; the results shown in Fig. 4 reveal that high numbers of Tn reads from the cI-rha 

intergenic region persist even after prophage induction was completed, indicating their origins 

from a prophage integrated into the host bacterial genome. Another interpretation that we favor is 

that the reads from the Tn-containing cI-rha intergenic region originated from uninduced prophage 

in host cells resistant to phage infection. “Suicide bomber” is a term describing a survival mecha-

nism for bacterial cells: after a danger signal such as DNA damage is detected, native prophage are 

induced with resulting destruction of the host cell and production of viral particles; these phage 

subsequently infect other sensitive bacterial hosts except those harboring the prophage which are 
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protected through super-infection immunity. In this interpretation of our data, expansion of mutant 

strains with Tn insertions in the intergenic region between cI and rha, but not within either of these 

two genes, reflects their ability to sense a danger signal but their inability to induce the prophage. 

This renders them resistant to the phage attack that affects other members of the mutant popula-

tion, allowing their rapid expansion into the emptied niche.

Prospectus

Our results illustrate how gnotobiotic mice containing defined consortia of sequenced human gut 

bacterial symbionts provide a tractable system for characterizing phage-bacterial host dynamics 

for those seeking basic principles that shape the configuration adaptations, and resiliency of the 

microbiota, as well as those who wish to develop new diagnostic and therapeutic approaches, 

including phage therapy. This model allows complex mixtures of VLPs, isolated from previously 

frozen fecal samples obtained from human donors representing ages, physiologic or disease states, 

or geographic regions/cultural traditions of interest, introduce them into mice harboring a model 

defined human gut microbiota community, and use the microbiota as ‘filter’ to identify and as-

semble the genomes of previously unknown (or known) phages present in the human donor vi-

romes and link them to bacterial hosts present within the model community. Miniaturization of 

methods for preparing VLPs from single mouse fecal pellets collected over time provided a way 

for purifying these phages as they appear in an ordered sequence in the model community and at 

the same time verifying that they have lytic activity. The system has ‘forensic’ capabilities, allow-

ing distinction of very closely related virotypes present in multiple human gut microbiota based 

on their differential ability to establish themselves in recipient gnotobiotic mice. These capacities 

not only provide a discovery pipeline that complements metagenomic surveys of the human gut 

virome by identifying phage ‘buried’ in large gut microbiome datasets, but facilitate identification 

of phage that can be used as experimental tools to deliberately manipulate model microbial com-

munities, as well as new candidate therapeutic agents. These gnotobiotic models, and the associ-

ated experimental and computational approaches described in this report, provide an opportunity 
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to achieve deeper understanding of what a temperate viral-bacterial host dynamic means in the gut 

ecosystem. For example, our data reveal that lytic attacks can have a short effective time frame 

and suggest that determinants of the success, duration and effects of an attack go beyond the pres-

ence of a particular phage and its bacterial host and even modification of the host bacterial cells 

genome. Induction of prophage present in the genomes of members of the model community can 

be differentiated in these models from effects of introduction of and attack by (exogenous) lytic 

phages, while prophage-associated fitness determinants can be identified by whole genome trans-

poson mutagenesis of their bacterial hosts.
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Figure Legends

Fig. 1 – Sequential changes in the relative abundance of two members of the model human 

gut microbiota and correlation with the appearance of two novel phages. (a) Average relative 

abundance plot for each bacterial species as a function of time for either the ‘Live VLP’ or the 

heat-killed VLP treatment groups. The color key next to the plot indicates the identity of the bacte-

rial species. (b,c) Plots of the relative abundance (fraction of the total community; mean ± SEM; 

n=5 animals/treatment group) of B. caccae and B. ovatus in the fecal microbiota of gnotobiotic 

mice as a function of time prior to and after gavage with live purified VLPs pooled from the fecal 

microbiota of five human donors, or a control heat-killed version of the same VLP preparation 

(time of gavage indicated by the upward pointing arrow; t=0 refers to the time of introduction of 

the 15-member consortium of sequenced human gut bacterial taxa into germ-free animals). The 

change in abundance of these Bacteroides occurs in a reproducible sequence among individually 

caged mice that received live but not heat-killed VLPs. (d,e) Changes in the abundance of two 

phages, derived from the human donor VLP sample, in the fecal microbiota of recipient gnotobiot-

ic mice. Viral abundance negatively correlates with bacterial abundance in the group that received 

live but not heat-killed VLPs. Differences in the time course of change in bacterial and viral abun-

dances are highlighted by the light green and yellow, leading us to propose that ϕHSC01 targets B. 

caccae as its host while B. ovatus serves as host to ϕHSC02. Insets in panels d and e are assembled 

genome sequences for ϕHSC01 and ϕHSC02. The location of genes in the positive strand (green) 

and negative strand (red) strand are shown; those that have significant sequence similarity to to 

known viral genes are colored blue (blast E value < 10-5; Table S5). The inner plot represents 

GC skew based on 200 bp windows (yellow, G/C ratio is greater than the average for the genome; 

purple, ratio is lower than the average).

Fig. 2 - Heat map of the cross-assembly between different input human VLP samples. To 

determine whether the viruses identified in gnotobiotic mice were distributed among all of five 

human VLP donors or whether they were unique to particular individuals, a cross-assembly was 

generated that included (i) reads from each fecal VLP-derived virome from each individual human 
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fecal sample used to generate the input pool of VLPs for the staged viral attack, (ii) reads from 

the pooled human VLPs introduced into mice by gavage, and (iii) reads generated from VLPs 

purified from mouse fecal samples. The cross assembly pipeline consisted of the following steps 

(in order): (i) normalizing coverage by clustering the reads at 95% global identity (CD-HIT) and 

picking up to 5 representatives per cluster, (ii) de novo assembly of the representative read set, (iii) 

mapping all raw reads to the resulting contigs, (iv) de novo assembly of leftover reads, (v) merging 

the assemblies from (ii) and (iv) and extending them by using the MIRA assembler to map back 

all raw reads, (vi) employing Phrap to consolidate the assembly, (vii) mapping reads back to the 

assembly and checking for chimeras, and (viii) checking for contig redundancy, overlapping ends 

and circular contigs using BLAST. Shown are the normalized abundances of the different contigs 

(n=159) greater than 2 kbp (rows), including those assembled from the human phage identified in 

gnotobiotic mice. Each column presents data for the five individual human-donor fecal VLP-de-

rived viromes plus the pooled VLP sample introduced into gnotobiotic mice. (FX, family number; 

M, mother of twin pair; TX, co-twin 1 or 2 in a given monozygotic twin pair; .X, one of 3 time 

points where feces were collected from the human donor over the course of a year). Abundance is 

shown as the log(10) transformation of RPKM (reads per kb of contig per million 454 reads; see 

Supplemental Methods and main text for further details). Rows representing the five novel viruses 

isolated, and their corresponding human donor are enlarged for visualization purposes.

Fig. 3 - Prophage induction in B. cellulosilyticus WH2. (a,b) COPRO-Seq analysis of the rela-

tive abundance (mean ± SEM) of the bacterial host and its associated prophage 1 in the fecal mi-

crobiota of individually caged mice partitioned into two separate gnotobiotic isolators (one where 

animals subsequently received live human fecal derived VLPs and the other heat-killed VLPs on 

day 20). Relative abundance was measured independently based on reads mapping to prophages 

and reads mapping to all other regions of the bacterial genome. Equivalent abundances for these 

reads indicate that the phage is in an uninduced lysogenic state; increases in the proportional num-

ber of reads mapping to the prophage genome indicate phage induction. Prophage 1 induction and 

a concomitant decrease in the relative abundance of its bacterial host occurred in mice five days 
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after introduction of the 15-member bacterial community, after the exponential rise in community 

biomass had ceased (see Fig. S2a), but before human VLPs were administered. (c) Data for B. cel-

lulosilyticus prophage 2 showing its lack of induction in the live VLP treatment group. (d) A subset 

of genes in prophage 1 that are conserved in the genomes of four other human gut Bacteroides. 

Only genes conserved in synteny with B. cellulosilyticus WH2 prophage 1 are shown together with 

the average protein similarity for their protein products. Each box represents a predicted ORF. See 

panel e for the color code for ORF annotations. (e) VLP-derived 454 pyrosequencing reads from 

fecal samples obtained from mice in the group that received the live VLP pool, as well as from 

mice that received the heat-killed control, mapped to a 150 kbp fragment of the B. cellulosilyticus 

WH2 genome containing one of its two prophage (prophage 1). The y-axis corresponds to the 

log(10) of the read coverage (blue) for a given position along the prophage genome. Note that no 

reads were obtained in the region containing the potential cos sites (downward pointing red arrow) 

emphasizing the quality of the VLP purification procedure (see main text). Colors represent the 

different products of ORFs that are characteristic of this and other lambdoid phage. The intergenic 

region positioned between ORFs encoding the rha protein and cI (the lambda repressor) is high-

lighted; strains with transposon insertions in this region dramatically increase their representation 

after prophage 1 induction.

Fig. 4 - INSeq reveals clonal selection for Tn mutants with insertions in the region between 

genes encoding the rha protein and cI homolog of prophage 1 in B. cellulosilyticus WH2. 

(a) Heatmap of log-transformed, normalized abundance of reads (reads per million, RPM) that 

mapped to a site of transposon insertion in the BACWH2_5233 gene (rha homolog) or the inter-

genic region between the rha homolog and the BACWH2_5232 gene (cI homolog). Each row rep-

resents a time point 3-9 days after bacterial gavage with the 15-member model human gut micro-

biota (prior to subsequent gavage with either live or heat-killed VLPs). All mice were individually 

caged. Fecal samples collected from five mice in each treatment group were characterized (M1-M5 

in the live VLP group; M6-M10 in the heat-killed VLP control group). Each column represents the 

total number of normalized reads, in a window of 20 bp, obtained with a given fecal DNA sample. 
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Tick marks between nucleotides 7,078,320 and 7080,520 of the B. cellulosilyticus WH2 genome 

represent 100 bp increments. The bottom four rows labeled ‘input’ represent the read distribution 

for four technical replicates of the INSeq analysis for the input B. cellulosilyticus mutant library. 

There is no change on the representation of Tn insertion mutations in either of the genes in the 

output library. In contrast, a marked increase in the representation of Tn insertion at 10 sites in the 

intergenic region is seen over the time period sampled. The number and abundance of Tn mutants 

represented in each mouse differ. The increase in representation of Tn mutants correlates with the 

time of induction of prophage 1 (see Fig. 2 for induction levels. The 600bp window referred to 

as the cI-rha intergenic region in the main text and panel b is shown as a thin green line in the 

Figure. Note that no Tn mutants were identified in BACWH2_5232 (cI homolog). (b) Insertions 

in a 600bp intergenic region downstream of the putative cI regulator in B. cellulosilyticus WH2 

prophage 1 provides a fitness advantage to the host that is maintained over time. The number of 

Tn reads per million (RPM) obtained by INSeq analysis of fecal DNA was calculated for a 600bp 

intergenic region between the cI regulator and the putative rha protein. The relative abundance of 

bacterial cells harboring this Tn insertion as a fraction of the total B. cellulosilyticus WH2 popula-

tion is represented by the RPM value at any given time point. Mean values ± SEM for the mice 

in each treatment group are plotted for 13 different time points sampled during the first 31 days 

of the experiment. Live VLPs (panel A) or heat killed VLPs (panel B) were introduced at day 20 

(downward arrow). A sliding window of 600bp was used, at intervals of 100bp, to scan the whole 

B. cellulosilyticus WH2 genome (except the 600 bp cI-rha intergenic region) in order to quantify 

the abundance of mutants containing Tn insertions. The resulting distribution of reads is plotted 

for any given time point with lines at the 25th, 50th, 75th , 99th and 100th quantiles (100th = maxi-

mum value of Tn reads observed within a 600 bp window). Shaded areas represent the area where 

25-75% of the data (RPM/600 bp window) falls (i.e., the second and third quartiles). In general, 

the abundance of Tn mutations falls over time with less than 10% of the Tn-containing windows 

increasing in their abundance. The relative abundance of bacterial strains harboring Tn-containing 

cI-rha intergenic mutants was maintained at significantly higher levels than all other mutants, in-

dicating its importance to the fitness of their bacterial hosts.
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Figures
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Fig. 2.
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Fig. 3.
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Fig. 4.
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Methods

Gnotobiotic mouse husbandry

All experiments involving mice were performed with protocols approved by the Washington Uni-

versity Animal Studies Committee. Germ-free mice belonging to the C57BL/6J inbred strain were 

maintained in plastic gnotobiotic isolators under a strict 12 h light/dark cycle and fed a standard, 

autoclaved low-fat/plant polysaccharide-rich chow diet (B&K Universal) ad libitum. Three groups 

of age-matched germ-free animals (n=5 per group) were kept individually caged in three separate 

isolators. At ~8 weeks of age, mice from two groups were colonized with a single gavage of 300 

µL of supplemented TYG medium 21 containing an overnight fresh culture of 15 sequenced human 

gut-derived bacterial species (~6x108 CFU per strain). One of the 15 strains, B. cellulosilyticus 

WH2, was represented as a library of >25,000 isogenic transposon mutants (see INSeq analysis 

below).

Introduction of VLPs purified from human fecal samples into gnotobiotic mice

Five frozen de-identified fecal samples from healthy adult humans were selected for isolation of 

VLPs. These fecal samples had been collected previously as part of a study of the viromes of four 

healthy adult monozygotic twin pairs and their mothers. Recruitment and sampling of these indi-

viduals over the course of one year had been performed using a protocol approved by the Wash-

ington University HRPO 3.

We chose those fecal samples from co-twins in three families whose viromes together 

encompassed the broadest range of diversity present among the 32 samples in our collection [i.e., 

F3T1.2, F4T1.2, F2T1.2, F2M.2, F4T2.2; (F#, family number; T#, co-twin identifier; .X, time 

point)]. A 2-3 g aliquot of each frozen sample was re-suspended by vortexing in 10 mL of SM 

buffer (100mM NaCl, 8mM MgSO4, 50mM Tris (pH 7.5) and 0.002% gelatin (w/v), sterilized by 

0.02 µm filtration (Anotop 10, Whatman, Germany). The suspension was centrifuged at 2500 x 

g at 4oC for 10 min to pellet large particles and bacteria. The supernatant was then passed twice 
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through a 0.45 µm-diameter Sterivix-HV filters (Millipore, MA). A 20 µL aliquot of a 1:10 dilu-

tion of the resulting filtrate containing VLPs was used to confirm the absence of bacterial cells and 

for viral particle enumeration using SYBR Gold and fluorescence microscopy (3.77 ± 2.79 x 109 

VLP/g frozen fecal sample; n= 5 samples). Aliquots (1.2 mL) from each of the 5 VLP preparations 

were pooled and the remaining sample stored at 4oC in 0.1 volumes of chloroform. The pooled 

VLPs were split into three 2 mL aliquots. One of the aliquots was further subdivided into 100 µL 

volumes and heat-killed by incubation at 95oC for 15 min followed by DNase treatment for 1 h [10 

units of DNase Baseline Zero (Epicentre, WI)].

Three weeks after bacterial gavage, mice were gavaged with the pooled, human-derived 

VLPs. To ensure that the gastric pH would not affect the viability of the viral particles, mice were 

fasted for 12 h. Each mouse was then gavaged with 100 µL of 1M NaHCO3 to keep gastric pH at 

7.4 22 followed 10 min later by 300 µL of the VLP pool (3.28x108 VLPs, either live or heat-killed, 

per animal).

Sampling the fecal microbiota of gnotobiotic mice

Fecal samples were collected at the time points shown in Fig. S1. Fecal samples dedicated to VLP 

purification were collected at least once per week. Samples were placed in 1.7 mL screw cap tubes 

immediately after they were produced by the animal and stored at -80oC until further processing. 

After mice were sacrificed, the small intestine was subdivided into two segments of equal length. 

Contents from the proximal and distal small intestinal segments, plus contents obtained from the 

cecum and colon, were snap-frozen in liquid nitrogen and stored at -80oC.

Preparation of VLP DNA from mouse fecal samples

VLP purification and DNA extraction were performed as described previously 3, with some modi-

fications. Since a single mouse fecal pellet had too little viral mass for efficient viral purification, 

pairs of fecal pellets obtained from either one or two mice in a given treatment group at the same 

time point (30-100 mg) were resuspended in 400 µL of SM buffer [filter-sterilized, 0.02 µm pore 
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diameter (Whatman, Germany)]. After homogenization by vortexing for 5 min, samples were cen-

trifuged twice at 2,500 x g for 10 min at 4oC to remove large particles and bacterial cells. The re-

sulting supernatant was filtered once through a 0.45 µm Millex filter (Millipore) and twice through 

0.22 µm Millex filters (Millipore). The volume of the filtrate was adjusted to 200 µL with SM buf-

fer if needed. Each sample was treated with 20 µL of lyzosyme (100 mg/ml) for 30 min at 37oC, 

followed by incubation for 10 min with 0.2 volumes of chloroform. The sample was then centri-

fuged at 2,500 x g for 5 min at room temperature. The aqueous phase was collected and incubated 

with 3 U of DNaseI (Sigma) and 20 µL of 10X DNase buffer (50mM MgCl2, 10mM CaCl2) for 1 

h at 37oC, after which enzyme activity was inactivated by incubation at 65oC for 15 min. To isolate 

DNA, VLPs were incubated with 10 µL of 10% SDS and 1 µL of proteinase K (Sigma, 20 mg/ml) 

for 20 min at 56oC, after which 35 µL of 5M NaCl and 28 µL of 10% cetyltrimethylammonium 

bromide (CTAB)/0.7M NaCl were added, followed by incubation at 65oC for 10 min. The sample 

was then mixed with an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1), vortexed, 

and centrifuged at 8,000 x g for 5 min at room temperature. The resulting aqueous phase was 

mixed with an equal volume of chloroform and spun at 8,000 x g for 5 min at room temperature. 

The resulting aqueous phase was passed through a Qiagen MiniElute purification column (elution 

volume, 30 µL).

Multiple Displacement Amplification (MDA) was performed with Genomiphi v2 (GE 

Healthcare Life Sciences), according to the manufacturer’s instructions [n=4 independent reac-

tions/sample to prevent single amplification bias; reactions were subsequently pooled and the 

DNA product was purified using a Qiagen DNeasy purification kit (elution volume, 75µL)].

Other Methods

Procedures for (i) isolation of total DNA from feces and intestinal contents, (ii) quantifying micro-

bial cell counts in fecal samples by flow cytometry, (iii) preparation of DNA libraries for Illumina 

HiSeq sequencing, (iv) 454 shotgun pyrosequencing of VLP-derived DNA; (v) COPRO-Seq anal-

ysis, (vi) assembly and annotation of novel viral genomes, (vii) cross-contig comparisons, (viii) 
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INSeq analysis of fitness determinants present in the B. cellulosilyticus WH2 prophage, (ix) PCR 

quantification of B. caccae abundance in the fecal microbiota of gnotobiotic mice, and (x) CRISPR 

analysis are described in Supplementary Methods.
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Supplementary Methods

Isolation of total DNA from feces and intestinal contents

Microbial community DNA was extracted in a semi-automated 96-sample format. Starting with 

a single fecal pellet (30-70 mg) or 70-400 mg of frozen intestinal contents (e.g., from the ce-

cum), material was transferred to a 1.7 mL screw cap tube containing 250 µL of sterile 0.1 mm 

zirconia beads (BioSpec Products), and a steel ball (3.97 mm diameter). Using a Tecan Genesis 

Series Robot (Tecan), 800 µL of a 500:210 mixture of 2X buffer A (200mM NaCl, 200mM Tris, 

20mM EDTA) and 20% SDS was added, followed by 563 µL of phenol:chloroform:isoamyl al-

cohol (25:24:1; Ambion). The tubes were capped and mixed using a BioSpec Minibeadbeater-96 

(4 min). The tubes were then centrifuged at 3,200 x g for 4 min. A total of 480 µL of the aqueous 

phase from each sample was subsequently transferred to an Axygen P-DW-11-C 96-well plate 

with a Genesis series robot. Using the Biomek FX laboratory automation workstation (Beckman 

Coulter), 180 µL of the stored aqueous phase was transferred along with 720 µL of a 675:45 mix-

ture of Qiagen buffer PM: 3M sodium acetate (pH 5) to a QiaQuick 96 plate stacked on a Nunc 

260251 plate. After mixing 10 times by pipetting, the plate was centrifuged at 3,200 x g for 4 min. 

The plate was washed twice with Qiagen PE buffer (900 µL per well) and centrifuged at 3,200 x 

g for 2 min. Following another centrifugation step to remove leftover ethanol, the multi-well plate 

was placed on a vacuum manifold to remove residual liquid from the membranes. To elute the 

DNA, 100 µL of Buffer EB (Qiagen) was added to each well, and the plate was left standing for 2 

min before centrifugation at 3,200 x g for 2 min. Purified DNA and leftover aqueous phase were 

stored at -20oC. DNA concentration was measured using the Qubit Quant-IT dsDNA BR protocol 

as recommended by the manufacturer (Invitrogen, Carlsbad, CA).

Quantifying microbial cell counts in fecal samples by flow cytometry

To quantify the number of microbial cells per fecal pellet and to compare the results with fecal 

DNA yields, we used the Bacteria Counting Kit (Cat No B7277, Life Technologies) and the manu-
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facturer’s protocol, with some modifications. In brief, each frozen fecal pellet was weighed and 

transferred to a sterile 2 mL screw cap tube. 500 µL of sample buffer (1X TE, 0.9% NaCl) was 

added, and the pellet was resuspended by vortexing for 5 min. The slurry was allowed to settle 

for 5 min at room temperature and a 10 µL aliquot of the clarified supernatant was transferred to a 

new tube. The remaining suspension was stored at -20oC for extraction of total community DNA. 

Serial dilutions of the clarified sample were performed to a final dilution of 1:10,000 in 200 µL 

of sample buffer containing 1X SYTO BC dye and the kit’s standard counting control beads at a 

concentration of 250 beads/µL. The sample was then passed through a nylon mesh (60 µm pore 

diameter) to remove large particles that could potentially clog the cytometer (note that the control 

beads [6µm diameter] are larger than the bacterial cells and the number of beads present was not 

affected by passage through the nylon mesh). The flow thru was then split into three equal parts 

and each replicate was counted for 1 min in the MXP flow cytometer. Forward and side scatter data 

were collected along with fluorescence data in the 525 nm channel. Gates were drawn on the total 

bacterial cell population, the SYTO BC positive population., and the control beads. Quantifying 

the control beads allowed us to calculate the number of bacterial cells (positive fluorescent cells) 

per mg (wet weight) of fecal material.

To extract DNA from these samples, we added zirconia and steel beads to the resuspended 

pellet described above, along with 300 µL of extraction buffer (118 mM NaCl, 435 mM Tris, 

44mM EDTA, 547mM SDS), so that the final concentration of components was equivalent to 2X 

buffer A (see above) and 20% SDS. At this point, the protocol for extracting total community DNA 

was performed exactly as described above.

Preparation of DNA libraries for Illumina HiSeq sequencing

100 µL of total DNA in TE pH 7.0 (5 ng/µL), was fragmented by sonication in thin-walled 0.2 mL 

8-strip PCR tubes using a BioruptorXL multi-sample sonicator (Diagenode) set on ‘high’; sonica-

tion occurred over the course of 20 min using successive cycles of 30 sec ‘on’ followed by 30 sec 

‘off ‘. Sonicated samples were subsequently cleaned up using the MinElute 96 UF PCR Purifica-
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tion Kit (Qiagen) per the manufacturer’s instructions. Each sonicated DNA sample in each well of 

the 96-well plate was eluted with 22 µL nuclease-free sterile water. For end repair and A-tailing, 

20 µL of sonicated DNA was mixed with 5 µL of a mixture containing 2.5 µL of 10X T4 DNA 

ligase buffer (NEB), 1 µL of 1mM dNTPs (NEB), and 0.5 µL of each of the following enzymes: 

T4 polymerase (NEB, 3 U/µL), T4 polynucleotide kinase (NEB, 10 U/µl), and Taq polymerase 

(Invitrogen, 5 U/µL). The solution was mixed by vortexing and then incubated for 30 min at 25oC 

followed by 20 min at 75oC. Customized Illumina adapters containing maximally distant 4-6 bp 

barcodes (Table S7) were ligated to the A-tailed DNA in a 27 µL reaction by adding 1 µL of 25µM 

adapter mix plus 1 µL of T4 DNA ligase (2,000,000 U/mL; NEB). Adapter mix was prepared by 

mixing 12.5 µL of a 100µM stock of each adapter oligo (constituting the forward and reverse 

strands) and 25 µL of oligo buffer (1X TE, 0.1M NaCl), incubating the mixture at 95oC for 1 min, 

then slowly decreasing the temperature (0.1oC/second) until reaching 4oC. After a 30 min incuba-

tion at 16oC, 2.5 µL of 50mM EDTA was added to stop the ligation reaction. Sets of 24 samples, 

all harboring different adapter sequences, were pooled, and the pool was purified using MinElute 

PCR purification columns according to the manufacturer’s instructions (15 µL final eluate vol-

ume). A 10 µL aliquot of the purified pool was subjected to 2% agarose gel electrophoresis. DNA 

of approximately 200 bp was excised and purified using QIAquick Gel Extraction Kit and Min-

Elute purification columns (Qiagen; 12 µL final elution volume). Finally, 1 µL of the size-selected 

library was used as the template in an enrichment PCR (19 cycles of 98oC for 10 s, 67oC for 30 

s and 72oC for 30 s, using Phusion HF Master mix (NEB) and Illumina’s standard amplification 

primers (Table S7) in a final volume of 25 µL). The PCR product was purified using MinElute 

PCR purification columns and DNA was quantified using the Quant-iT dsDNA High-Sensitivity 

(HS) Assay Kit (Invitrogen). Libraries concentrations were then normalized and an equimolar pool 

was subjected to multiplex sequencing with an Illumina HiSeq 2000 instrument (2.5pM/lane; read 

length, 50 nt).
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454 shotgun pyrosequencing of VLP-derived DNA

Libraries for 454 shotgun pyrosequencing were generated using a protocol similar to that used for 

the Illumina libraries. The protocol differed slightly in that sonication was performed for 8 min in-

stead of 20 min. Each library was purified using Agencourt AMPure XP beads (Beckman Coulter) 

and quantified using the recommended 454 rapid library barcoded fluorescent-labeled adapters and 

a plate reader (Synergy2, Biotek, Winooski, VT). A total of 24 independent adapters were synthe-

sized harboring 24 different multiplex identifier (MID) barcodes. After quantification, normalized 

pools of 24 samples were sequenced using 454 FLX Titanium chemistry. Initial quality filtering of 

the raw data consisted of parsing the sequenced reads by their MID followed by removal of short 

reads (less than 60 nt), reads with three or more ambiguous (‘N’) bases anywhere in the sequence, 

reads with two continuous ‘N’ bases, and replicate reads (reads where the first 20 nt were >97% 

identical).

COPRO-Seq analysis pipeline

A combination of pre-existing standalone software and custom perl scripts were used for perform-

ing COPRO-Seq analysis on our data in a computer cluster environment running Sun Grid Engine. 

For raw Illumina reads, sequences were demultiplexed using the 4 bp barcode at the beginning 

of each read. The short barcode lacks the complexity required for error correction; however, with 

low error rates at the beginning of Illumina reads and a Hamming distance between any two bar-

codes of at least 2, requiring a perfect match to a barcode sequence allowed us to efficiently and 

accurately assign the reads to specific samples. After dividing the sequences by sample, we were 

able to run the downstream analysis in parallel. This downstream processing consisted of first 

screening for adapter sequences that indicated the presence of either short inserts or adapter di-

mer [screening was performed using cross_match (version 1.090518; Green P, 2009, http://www.

phrap.org) with slight modifications to the default parameters (-gap1_only -minmatch 6 -minscore 

10 -gap_init -3 –screen)]. Next, reads were either trimmed back when an adapter sequence was 

seen or removed entirely in the event that: (i) the sequence was shorter than 35 nt after removing 
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the adapter sequence, or (ii) more than 3 N’s were found anywhere in the read. The ‘clean’ reads 

were used to query the 15 sequenced bacterial genomes in the model human microbiota, as well as 

their predicted prophage, using FR-HIT v.0.7 23 with one modification to the default parameters (-c 

90). The mapping file was parsed as described previously 24; in particular, reads mapping uniquely 

to a single genome were used to determine relative abundances, subsequently, exact ties or reads 

mapping equally to more than one genome were weighted based on the relative abundance of the 

genomes involved. Raw counts were then normalized to reads/kb/million mapped reads. Reads 

that did not map to any bacterial genome were then mapped against other known plasmids from 

these bacterial species, PhiX174 (used as the internal control on the Illumina sequencer), and to the 

reference mouse genome. All remaining reads were used for de novo hybrid assembly for identifi-

cation of novel viruses (see below).

Normalized counts for the different bacterial species and virotypes present in each sample 

were used to calculate relative abundances or Genome Equivalents (GE; the latter by normalizing 

the percentage of mapped reads to the length of the genome, and the DNA yield/sample). Matrices 

of either relative or absolute abundances were generated for principal coordinates analysis (PCoA) 

and generation of 3D plots using scripts in QIIME 25 (version 1.3.0-dev). Statistical analysis and 

figure generation were performed in Prism (v6).

Assembly and annotation of novel viral genomes

Reads generated from either VLP-derived DNA (454 FLX pyrosequencer using Titanium chem-

istry) or from total community DNA (Illumina HiSeq2000 instrument) that did not map to any of 

the reference genomes were pooled together and submitted for a hybrid assembly using MIRA 

V3.4.0 26 with minimum overlap of 70nt (454) or 20nt (Illumina) and a minimum relative score of 

90%. Note that raw data from 454 pyrosequencing of VLPs was parsed with essentially the same 

pipeline used for Illumina reads except for the adapter-mapping step that is incorporated by default 

in 454 sfftools. Given that 454 FLX reads are longer than Illumina reads, FR-HIT parameters used 

were –c 90 for percent similarity and –m 40 for minimal length of the alignment. A de novo assem-
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bly was performed for the first round. After assembly, contigs were individually analyzed using 

Tablet v.1.12.09.03 27 to identify potential chimeras in the assembly, and checked using blast for 

overlapping ends either within contigs (indicating a complete, circular phage genome) or between 

contigs (indicating a potential link between two contigs). Raw reads were then mapped to the 

contigs using mapping-based assembly in MIRA, which allows extension of previously assembled 

contigs via the incorporation of new reads at the edges of these contigs. The process was repeated 

five times yielding, in the final iteration, a total of five large circular contigs covering most of the 

non-mapped reads from both the 454 and Illumina datasets. These novel viral genomes were used 

in conjunction with the reference bacterial genomes as a new reference dataset for analysis of the 

relative abundances of the viruses and host bacteria (from the VLP and total fecal community DNA 

shotgun sequencing datasets).

The five viral genomes were annotated first with Glimmer v.3.02 28 trained on all open 

reading frames (ORFs) predicted from viral ref_seq (NCBI). Predicted ORFs were then blasted 

against COG (STRING v.9.0), KEGG (v58), ACLAME (v0.4), CDD (online version), NCBI nr 

(retrieved 13/08/2012), and Phantom (retrieved 01/09/2012) (blastp; threshold < 1e-5, no low re-

dundancy filter).

Cross-contig comparison

To determine which human donors were the source of the viral genomes assembled from the mouse 

fecal VLP and COPRO-Seq datasets, we first retrieved FASTA files of pyrosequencing datasets 

that we had previously generated from each of the five purified human donor VLP DNA prepara-

tions used to create the input pool for our mouse experiments (GenBank ID SRX028824; 3). The 

sequences were pooled together with 454 FLX Titanium sequences obtained from the pooled VLP 

input (71,546 reads). The assembly pipeline consisted of the following steps: (i) CD-HIT v.4.6 29 

was used to cluster reads at 90% global identity from each cluster and the top 5 sequences were 

taken as representatives; (ii) these reads were used for de novo assembly using Newbler v.2.6 

(454 Life Sciences) with default parameters; (iii) FR-HIT was used to map all raw reads to the 
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assembled contigs at 90% identity; (iv) reads that did not map were pooled and re-assembled us-

ing Newbler; (v) contigs >500 bp after both rounds of assembly were pooled together along with 

sequences from the five novel viral genomes and all raw reads were mapped using MIRA in map-

ping assembly mode, which allows for extension at the edges of contigs; (vi) the extended contigs 

were assembled using Phrap; (vii) the Phrap output files: ‘contigs’, ‘singlets’ and ‘problems’ were 

concatenated, re-named and used to map the reads using FR-HIT; (viii) chimeras were identified as 

sudden drops in coverage given by the FR-HIT mapping; contigs were split on chimeric junctions; 

(ix) contigs were sorted by size and then the program Megablast was used to compare ‘all-against-

all’ and to identify contigs that were fully contained within another contig and contigs with over-

lapping ends; and (x) the final set of contigs over 2 kbp was used as a reference set for mapping 

(FR-HIT) all raw reads from each of the fecal VLP-derived viromes from each of the individual 

human fecal samples utilized to generate the input pool of VLPs for the staged viral attack, the 

pooled VLPs used to gavage the mice, and mouse fecal VLP DNA. A matrix of reads per kbp of 

contig sequence per million reads of sample was generated. The matrix was then log transformed, 

and a heat map was built using R 30.

INSeq analysis of fitness determinants present in the B. cellulosilyticus WH2 prophage

Whole genome transposon mutagenesis of B. cellulosilyticus WH2 was performed using protocols 

described in earlier publications 18,21. Total fecal community DNA was isolated from fecal pellets 

obtained from mice belonging to treatment groups 1 and 2 at time points between 3 and 13 d after 

they had received a single gavage of this library of 25,000 transposon mutants together with the 

other bacterial members of the defined community. Each DNA sample was adjusted to 500 ng in 15 

µL of TE buffer and then digested with MmeI (4 U, NEB) in a 20 µL reaction supplemented with 

10 pmoles of a 12 bp DNA with an MmeI restriction site (to improve the efficiency of restriction 

enzyme digestion) 18. The reaction was incubated for 1 h at 37oC and then terminated (80oC for 20 

min). MmeI-digested DNA was subsequently purified using 125 µL of AMPure beads (after wash-

ing the beads once with 100 µL of sizing solution (1.2 M NaCl and 8.4% PEG 8000)). The digested 
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DNA was added to the beads and the solution incubated at room temperature for 5 min. Beads 

were pelleted with a Magnetic Particle Collector (MPC), washed twice (each time using a mixture 

composed of 20 µL TE (pH 7.0) and 100 µL sizing solution, with bead recovery via MPC after 

each wash), followed by two ethanol washes (180µL 70% ethanol/wash) and air-drying for 10 min. 

Samples were resuspended in 18 µL TE (pH 7.0) and the DNA was removed after pelleting beads 

with the MPC. Ligation of adapters was performed in a 20 µL reaction that contained 16 µL of 

purified DNA, 1 µL of T4 Ligase (2000 U/µL; NEB), 2 µL 10X ligase buffer and10 pmoles of bar-

coded adapter (incubation for 1 h at 16oC). Ligations were subsequently diluted with TE (pH 7.0) 

buffer to a final volume of 50 µL, mixed with 60 µL of AMPure beads, and incubated at room tem-

perature for 5 min. Beads with bound DNA were pelleted using the MPC and washed twice with 

70% ethanol as above. After allowing the ethanol to evaporate for 10 min, 35 µL of nuclease-free 

water was added and the mixture was incubated at room temperature for 2 min before collecting 

the beads with the MPC. Enrichment PCR was performed in a final volume of 50 µL using 32µL 

of the cleaned up sample DNA, 10 µL 10X Pfx buffer, 2 µL 10mM dNTPs, 0.5 µL 50mM MgSO4, 

2 µL of 5µM amplification primers (Forward primer: 5’CAAGCAGAAGACGGCATACG3’, Re-

verse primer: 5’AATGATACGGCGACCACCGAACACTCTTTCCCTACACGA3’), and 1.5 µL 

Pfx polymerase (2.5 U/µL; Invitrogen) 22 cycles of denaturation at 94oC for 15 s, annealing at 

65oC for 1 min and extension at 68oC for 30 s. The 134 bp PCR product from each reaction was 

purified [4% metaphore gel; MiniElute Gel extraction kit (Qiagen)] in a final volume of 20 µL, and 

was quantified (Qubit, dsDNA HS Assay Kit; Invitrogen). Reaction products were then combined 

in equimolar amounts into a pool that was subsequently adjusted to 10nM and sequenced (Illumina 

Hi-Seq2000 instrument).

Illumina 50 nt short reads were separated by sample using 4 or 7 nt sample-specific bar-

codes. The remaining read contains either the 5’ or 3’ end of the Tn sequence along with 16-17nt 

of flanking genomic DNA. After trimming of the Tn sequences, reads were mapped to the B. cel-

lulosilyticus WH2 genome, allowing up to 1 nucleotide mismatch. The read counts derived from 

mapping the 5’ or 3’ termini of the transposon were added and a normalized count of reads per mil-
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lion for each insertion position was generated. For the sliding window analysis, normalized read 

counts were added up for every 600bp window throughout the reference genome, while sliding the 

window in increments of 100bp. The final distribution of counts per window for any given sample 

obtained at any given time point were analyzed using the quantile function on R 30 to determine 

the different abundance levels. Final plots of the quantiles over time were generated using Prism 

v6.0a.

PCR quantification of B. caccae abundance in the fecal microbiota of gnotobiotic mice

B. caccae abundance was evaluated using total fecal community DNA isolated from samples ob-

tained 22 or 23 days after gavage of the 15-member community (i.e., 2 and 3 days post viral ga-

vage). Purified B. caccae genomic DNA was used to generate a standard curve. The standard curve 

and amplification plots for the samples [generated using the PCR primer set for region dpg_11, 

see Table S7) were used to calculate the number of genome copies per mg of fecal pellet obtained 

at each selected time point from members of both the live and heat killed VLP treatment groups].

CRISPR analysis

The genome sequences of the bacterial species introduced into gnotobiotic mice were searched us-

ing CRISPR-Finder 31. All Illumina HiSeq reads generated for COPRO-Seq analyses of fecal DNA 

samples were screened for CRISPR repeats using tre-agrep (v0.8) for fuzzy string matching. Any 

read covering the repeat with at most 3 mismatches was retrieved and subsequently screened for 

the presence of known spacers using cross-match. Once spacers that were present in the sequenced 

genome were filtered out, any remaining spacer should correspond to new accumulated spacers; as 

noted in Supplementary Discussion, none were observed.

Supplementary Discussion

A search for fixed mutations in the B. caccae genome that could potentially confer viral 

resistance after the staged attack with pooled human VLPs
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Reads derived from total community shotgun sequencing that mapped to the B. caccae genome 

were selected from fecal samples obtained 11-21 d after introduction of the 15-member model hu-

man microbiota and 11-25 d following VLP gavage. Reads were initially grouped into four datas-

ets: (i) live VLP, pre-VLP gavage, (ii) live VLP, post-VLP gavage, (iii) heat-killed VLP, pre-VLP 

gavage, and (iv) heat killed VLP, post-VLP gavage. A mutation conferring resistance should be 

fixed in the population represented in dataset (ii).

All the reads from (i)-(iv) were pooled and used for mapping assembly (MIRA) while 

keeping track of the dataset from which the reads originated. Thirty-fold coverage of the genome 

was obtained on average per treatment. We identified no single nucleotide substitution specific to 

any given treatment group and fixed in over 10% of the B. caccae population (as defined by the 

sequence coverage at a given nucleotide position). A total of nine loci were identified where there 

was low or no coverage in one compared to the other treatment group, suggesting possible dele-

tions. These loci were selected after filtering for: (i) repetitive regions that can mask true SNPs due 

to variation between the repeats, and (ii) regions with an overall coverage (in all four treatments) 

of less than 25-fold. We designed a pair of PCR primers flanking each of the nine loci in order to 

amplify a product between 270-370 bp (Table S7). DNA from each of the five mice per treatment 

group were selected as templates for the PCR: i.e., (i) fecal DNAs from all mice in treatment group 

1 that had been sampled 17 d following gavage with the 15-member community (live VLP, pre-

VLP gavage group), (ii) fecal DNAs from all mice in treatment group 1 prepared from samples 

obtained 21 d after viral gavage (live VLP, post-VLP gavage group), (iii) fecal DNAs from all mice 

from treatment group 2 sampled 17 days post bacterial gavage (heat-killed VLP, pre-VLP gavage 

group), and (iv) fecal DNAs from all mice in treatment group 2 sampled 21 d after viral gavage 

(heat-killed VLP, post-VLP gavage group).

Amplifications were performed using a MX3000P qPCR instrument (Stratagene) in 25 

µL reaction mixtures that contained 1X Platinum Taq HiFi PCR buffer (Invitrogen), 0.3µM PCR 

primers (Table S7), 2mM MgSO4, 0.2mM dNTPs, 0.1 mg/ml BSA, 0.01% Tween 20, 0.08X 

SYBR Green I (Invitrogen), 0.02 U/µL Platinum Taq (Invitrogen) and total fecal community DNA 
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(10ng). Amplification was performed using 35 cycles of: denaturation at 94oC for 30 s, annealing 

at 50oC for 30 s and elongation at 68oC for 1 min, with fluorescence recorded at the end of elonga-

tion. After amplification, a standard dissociation curve was generated to assess the specificity of 

the amplification, followed by a10 min incubation at 68oC to ensure that the amplified products 

had an A-overhang. PCR products were subsequently purified using the MinElute 96 UF Purifica-

tion Kit (Qiagen; 20µL final elution volume). DNA was quantified (Qubit dsDNA HS Assay Kit; 

Invitrogen) and pooled by treatment group and primer set (100 ng/sample). A total of 500 ng of 

amplified DNA for each treatment group and primer set was added to a 50 µL reaction mixture 

that contained 5 µL of 1µM Illumina adapters (Table S7), 5 µL of 10X T4 ligase buffer, and 1 µL 

T4 Ligase. Ligation was performed for 30 min at 16oC followed by heat inactivation at 65oC for 

10 min. The adapter ligated DNAs were purified using AMPure beads as described above for the 

INSeq protocol (and eluted in 30 µL), quantified (Qubit dsDNA BR Assay Kit; Invitrogen) and a 4 

ng aliquot was used per treatment/primer set for enrichment PCR, as described above for prepara-

tion of Illumina libraries. Barcoded amplicons were subjected to 2% agarose gel electrophoresis to 

confirm their molecular weight and purified using MinElute PCR purification columns (Qiagen). 

After quantification, the different products were pooled in equimolar amounts and sequenced us-

ing an Illumina MiSeq instrument (paired-end, 250 nt reads).

Sequencing reads were split by barcode; for each sample, reads were trimmed by quality 

and the paired-end products were assembled using FLASH 32 (note that assembly of the paired end 

reads is expected under these conditions since the largest PCR product is 370 bp and reads are 242 

bp after removing the 8 bp barcode on each end). Even after quality trimming of the reads, overlaps 

>30 bp were observed, allowing assembly of >80% of the data. Once the amplicons were assem-

bled, they were pooled with the reference sequence and cd-hit-est 29 was used to generate 100% 

identical clusters of sequences. A table of read counts per treatment per cluster was generated; the 

percentage of reads in any cluster that were different than the reference cluster never exceeded 5% 

of the total reads, indicating that no single mutation was fixed in B. caccae at the time points and 

conditions surveyed.
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CRISPR analysis

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) play a role in convey-

ing resistance to foreign DNA through a mechanism that involves accumulation of spacers in the 

bacterial genome that map to short segments in the invading DNA 9. Only 6 of the 15 members of 

the model microbiota contained CRISPR regions; five were members of the Firmicutes; the other, 

Parabacteroides distasonis, is a member of the Bacteroidetes (Table S1). With the sequence cov-

erage observed over time, none of the CRISPR regions appeared to have accumulated new spacer 

sequences. However, this finding has to be interpreted cautiously since none of these bacterial spe-

cies reached a relative abundance greater than 10% at any time point after VLP gavage, thereby 

limiting our coverage.
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Supplementary Figures

Fig. S1 - Experimental design. Three groups of 8-week old male C57BL/6J germ-free mice were 

gavaged with a 15-member community of sequenced human gut bacterial symbionts and/or a pool 

of virus-like particles (VLPs) that had been isolated from frozen fecal samples obtained from five 

healthy human adults. Each group of mice was kept in a separate gnotobiotic isolator and each 

mouse in each isolator was individually caged. Each vertical line represents a day. Arrows denote 

the time of gavage with the 15-member bacterial community (black) and with live or heat-killed 

VLPs. Time points selected for sampling the fecal microbiota of each mouse in each treatment 

group are represented as circles. Samples were subjected to shotgun sequencing of total commu-

nity DNA (COPRO-Seq, yellow circles) and/or shotgun sequencing of purified VLP DNA (blue 

circles).

Fig. S2 - Measurements of fecal microbial biomass in mice gavaged with live or heat-killed 

human VLPs. (A) Plot of fecal DNA yields (mean ± SEM) over time. Microbial biomass achieves 

a maximum value four days after introduction of the 15-member consortium of human gut bacteri-

al symbionts. (B) Correlation between fecal DNA concentration/mass ratios and bacterial cell con-

centration as measured by flow cytometry (n=94 fecal samples). A Pearson correlation of 0.8371 

and an associated p-value of 7 x 10-26 indicated a significant association.

Fig. S3 - Community dynamics of members of the 15-member community as a function of 

time after colonization with the species consortium and type of VLP treatment. PCoA of a 

matrix of Hellinger distances measured using shotgun COPRO-Seq data. Samples are plotted in 

a two-dimensional representation of the first vector (49%) of variance against time. Most of the 

variation is explained by community assembly during the first week of the experiment. The arrow 

corresponds to the time of the VLP gavage. Red and blue dots represent individual samples from 

the two different treatment groups (see Fig. 1 and S4 for additional analysis of changes in the rela-

tive abundance of community members as a function of time and the different treatments).
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Fig. S4 - Changes in relative abundance of bacterial taxa in gnotobiotic mice containing the 

15-member model human gut microbiota prior to and after attacked with a pool of puri-

fied live- or heat-killed human fecal VLPs. Relative abundance (mean ± SEM) is plotted as a 

function of time for the 13 bacterial species not shown in Fig. 1. Data are based on COPRO-Seq 

analysis of fecal samples collected from gnotobiotic animals beginning 15 days after gavage with 

the 15-member model community. The upper pointing arrow at day 20 indicates the time when the 

live or heat-killed human fecal-derived VLP preparation was administered to animals with a single 

gavage. Some but not all of these community members change their representation (either increase 

or decrease) in after introduction of live as opposed to heat-killed VLP preparations.

Fig. S5 - Abundance, genome annotation, and associated bacterial host dynamics of three 

human phage identified in the fecal microbial communities of gnotobiotic mice. (a-f) The 

assembled annotated phage genomes, their changes in abundance in the fecal microbiota of mice 

belonging to the live and heat-killed VLP treatment groups. The circular representation of each 

phage genome illustrates the location of genes in positive (green) and negative (red) strand and 

which genes were found to be significantly similar to known viral genes (blue; blast E value < 10-

5; Table S5). The inner plot represents GC skew based on 200 bp windows (yellow, G/C ratio is 

greater than the average for the genome; purple, ratio is lower than the average). Symbols and line 

patterns differentiate mice within a given treatment group.

Fig. S6 - Sequence variability within the host recognition region of the ϕHSC02 VP1 protein. 

(a) Three dimensional space filling model of the viral capsid of a member of Microviridae (PDB 

identifier SpV4 PDB:1KVP) composed of polymers of VP1 (monomer highlighted in red). (b) 

Individual monomer of the VP1 protein. The fold highlighted in green is the region predicted to 

be involved in host recognition 11. (c) Segment (450aa) of a multiple protein alignment of the VP1 

proteins from the ϕHSC02 virus and two related members of Alphavirinae: human_gut_33_017 

and human_gut_22_017 11 starting from residue 150. Residues lying in the green background box 

correspond to the region highlighted in green in panel B. Alignment conservation is shown by font 
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colors which differentiate identical amino acids (blue) from similar (red) or non-related residues 

(black).

Fig. S7 – Relationship between the abundance of bacterial species and three human-derived 

phage (ϕHSC03, ϕHSC04, ϕHSC05) along the length of the gut of gnotobiotic recipients of 

the pooled live human VLP preparation at the time of sacrifice. (a) Viral abundance for each 

mouse in the indicated treatment group as defined by shotgun sequencing of DNA isolated at the 

time of sacrifice from different portions along the length of the gut. The five columns for each 

mouse (M1-M10) are organized from left to right as follows: proximal small intestine (PSI); distal 

small intestine (DSI), cecum (Ce), colon (Co), fecal sample (Fe). Note that no virus was detected 

in mice that had received the heat killed human fecal VLP preparation. ND: Not detected (Due 

to the lower density of bacteria in the proximal gut, samples from the proximal half of the small 

intestine may harbor phages at levels below what could be detected by COPRO-Seq at the depth of 

sequencing employed). (b) Relative abundance for each of the 15 bacterial members of the model 

human gut microbiota along the length of the gut of mice belonging to the two VLP treatment 

groups. The order of the columns for each mouse is the same as in panel a.

Fig. S8 - Shotgun 454 pyrosequencing data generated from VLPs isolated from mouse fecal 

samples validates predicted prophage regions in bacterial genomes. Mapping of VLP-derived 

shotgun sequencing reads to the genomes of the 15-member model human bacterial community 

assembled in gnotobiotic mice allows identification of prophage that are induced. The number of 

reads mapping to bacterial genomes outside the prophage region was low in all mice. Therefore, all 

hits to any bacterial genome (outside of a prophage region) are depicted in black. Each bar repre-

sents data generated from two fecal pellets obtained from one or two mice within a given treatment 

group at a given time point. Cecal samples were collected at time of sacrifice and are numbered 

according to the mouse ID in each treatment group.
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Supplementary Figures

Fig. S1.
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Fig. S2.
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Fig. S3.
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Fig. S4.
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Fig. S5.
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Fig. S6.
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Fig. S7.
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Fig. S8
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Supplementary Tables

Table S1 - Genomic features of the 15-member community of human gut bacterial symbi-

onts, including their prophage and CRISPR elements.

Table S2 – Body and epididymal fat pad weights at the time of sacrifice.

Table S3 - Samples used for Community Profiling Sequencing (COPRO-Seq).

Table S4 - Description of samples used for VLP-purification and 454 shotgun pyrosequenc-

ing.

Table S5 – Annotation of assembled human gut-derived phage genomes identified in the fe-

cal microbiota of gnotobiotic mice. Annotations are based on the best blast hit (blastp, e-value 

cut-off 10-5) of each predicted protein against six independent protein databases (COG (STRING 

v.9.0), KEGG (v58), ACLAME (v0.4), CDD (online version; cut-off 10-2), NCBI nr (retrieved 

13/08/2012), and Phantom (retrieved 01/09/2012)). (a) phage ϕHSC01. (b) phage ϕHSC02. (c) 

phage ϕHSC03. (d) phage ϕHSC04. (e) phage ϕHSC05.

Table S6 – List of Bacteroides spp genomes retrieved from HMP webserver for homology 

search.

Table S7 – List of primers, barcodes and adapters used.
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Chapter 4

Preliminary analysis of the gut viromes of healthy and malnourished twins and their family 
members, and future directions
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Introduction

As noted in Chapters 2 and 3, surveys of DNA viruses associated with the gut microbiota of 

healthy adults have revealed a high prevalence of bacteriophages, in particular lysogenic phages 

1-3. There are a number of reasons why a temperate lifestyle can be beneficial. For instance, pro-

phages provide the bacterial host with superinfection immunity, preventing other similar viruses 

to infect the host; phages are capable of transferring bacterial genes and functions with potential 

fitness advantages to new hosts. Additionally, ‘suicide bomber’ refers to a strategy whereby a bac-

terial host under stress (e.g. from signals that lead to DNA damage) induces its prophage leading 

to lysis of other susceptible bacterial hosts except those that harbor the same virus and hence are 

resistant to the infection; this opens niche for the surviving resistant bacteria, and provides nutri-

ents that are the products of bacterial cell lysis 4,5.

One consequence of a lysogenic lifestyle is that alpha-diversity (the number of different 

virotypes) in a given sample is low. Coupled with its high stability over time in healthy individuals, 

the gut virome is a potential biomarker of alterations in the health status of the human host. The 

configuration of the bacterial component of the human gut microbiota is influenced by a number 

factors, including host diet 6-8, cultural traditions, and age 9,10. The microbiota of healthy individu-

als evolves to an adult like configuration during the first three years of life 9.

Under-nutrition is the leading cause of child mortality worldwide 11, Moderate Acute Mal-

nutrition (MAM) is defined by a weight-for-height z score (WHZ) between two and three stan-

dard deviations below the median established by the World Health Organization childhood growth 

standards 12. Severe acute malnutrition (SAM) refers to either marasmus, characterized by extreme 

wasting with WHZ scores below 3 standard deviations, or kwashiorkor, which is associated with 

generalized edema, hepatic steatosis, skin rashes and ulcerations, and anorexia 13,14. Studies of 

twins discordant for SAM revealed that (i) undernutrition is associated with a more immature mi-

crobiota, (ii) transplantation of fecal microbiota obtained from co-twins with kwashiorkor and their 

healthy co-twins into separate groups of germ-free mouse recipients transmits discordant weight 
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loss and microbiota-associated metabolic dysfunction to the recipient animals; and (iii) treatment 

with a therapeutic food produces transient rescue of these metabolic abnormalities but the system 

regresses after treatment is withdrawn. Together, these findings suggest that the microbiome/mi-

crobiota is causally related to undernutrition 10. Based on these findings, I hypothesized that the 

gut virome may be a useful biomarker for identifying features of the microbiota associated with 

SAM and its degree of repair by various therapeutic interventions including food-based therapies.

Results

In this Chapter, I describe preliminary findings from a metagenomic study of the fecal viromes 

of eight monozygotic and 12 dizygotic Malawian twin pairs between 0-30 months of age (Supp 

Table 1, Fig. 1). Twelve of these twin pairs were discordant SAM: in six cases, a co-twin in the 

discordant pair developed kwashiorkor while the other co-twin remained healthy; in the other 

six cases, a co-twin in the discordant pair developed marasmus and the other co-twin remained 

healthy. Based on current clinical practices in Malawi, when one co-twin in a discordant pair is 

diagnosed with SAM both co-twins are treated with a peanut-based Ready-to-Use Therapeutic 

Food (RUTF). In this study, following a period of treatment for 4-8 weeks, children were returned 

to their traditional diets and followed until they reached 36 months of age. Fecal samples, collected 

at time points encompassing the period just before, during and after the nutritional intervention, 

were selected for the current metagenomic study of the gut virome (Fig. 1).

Extracting VLPs from small amounts of fecal microbiota required modifications to the 

original protocol described in Chapter 2. The new protocol, developed for extracting VLPs from 

mouse fecal samples (see Chapter 3), is suitable for purifying VLP-derived DNA from as little as 

50mg of frozen feces (see Chapter 3).

The current study sequenced 231 VLP DNA samples (Table S1; 56,178±2629 (average ± 

SEM) shotgun 454 pyrosequencer reads per sample; Titanium chemistry). Previously, using raw 

pyrosequencing reads from samples only allowed analysis and interpretation of approximately 

20% of the data (Chapter 2). However, I was able to assemble large contigs, in part due to the 



155

extreme diversity between virotypes and the low number of virotypes per sample. Applying im-

proved assembly strategies revealed that a large percentage of the shotgun reads could be as-

sembled yielding complete or almost complete viral genomes. I obtained a total 17,676 contigs 

≥500nt after collapsing contigs that were more than 90% similar over 90% of the contig length. As 

described below, these contigs allowed me to map 85±9% of the reads (Fig. 2A).

Analyzing the size distribution of the contigs as a function of coverage (Fig. 2B), I identi-

fied contigs up to 200,000bp with a large number of contigs between 50-100kb (i.e., the expected 

length of common bacteriophages). There was an over-representation of circular 3Kb and 6Kb 

contigs assigned to the Anelloviridae or Microviridae viral families (both ssDNA circular viruses). 

As noted in Chapter 2, whole genome amplification (MDA) of purified VLP DNA has inherent 

biases for single stranded circular DNAs 15.

De-replication and clustering of contigs assembled from all individual samples produced 

an ‘overall’ VLP-derived contig set. Mapping pyrosequencing reads to this full set of contigs al-

lowed me to generate a ‘sample-by- VLP-derived contig’ abundance matrix equivalent to an OTU 

table. This matrix, which was normalized to contig length and the depth of sequencing per sample, 

was used for intra- and inter-sample diversity analysis.

An initial analysis of the inter-sample variation was performed using hierarchical cluster-

ing from a Hellinger distance matrix (Fig. 3) calculated from the contig abundance table. The 

results showed clear clustering by twin pairs, indicating a shared virome composition. There was 

no statistically significant clustering by health status or by zygosity. Only two branches were com-

posed of samples from different families; the first branch was composed of mothers and older 

siblings and was independent of family of origin, suggesting that the mature/adult virome has a 

significantly different composition than the fecal viromes of infants between 0 and 3 years of age. 

The other branch containing samples from different families was composed of six of the 11 young-

est (<5 months old) donors, suggesting that very early environmental exposures leads to a virome 

profile which is significantly different from that observed later during microbiota assembly. A few 
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other individual samples did not cluster and appeared as isolated branches; these samples corre-

sponded in most cases to the youngest or oldest samples from a given twin-pair, re-enforcing the 

important role that age plays in determining an individual’s early gut virome profile.

I compared the average Hellinger distances measured within an individual over time as 

well as between co-twins, and between twins and their mothers or older siblings (Fig. 4A). Highest 

similarity was observed within an individual over time, followed by between co-twins indepen-

dent of their zygosity. Significantly greater differences were observed between a co-twin and their 

mother or older sibling, or between any two unrelated individuals. These results agree with what 

I had previously observed in monozygotic healthy adult twin pairs living in the USA (Chapter 2), 

except that for healthy adult twin pairs, the co-twin-co-twin distance were almost as different as 

the co-twin-mother distance, while in infants co-twin-co-twin distance although significantly dif-

ferent from self-self are still more similar than co-twin-mom or co-twin-sibling distances. A po-

tential explanation is that individual adults have distinctive viromes that are very stable over time 

and two non-cohabitating adults lack a history shared environmental exposures while the infants 

in this study have a deeply shared history of environmental exposures.

 Self-self and co-twin-co-twin comparisons revealed greater similarities in the case of in-

dividuals with SAM (kwashiorkor or marasmus) compared to healthy individuals (Fig. 4B). This 

observation is in agreement with the finding that there is delayed maturation of the microbiota 

of individuals with kwashiorkor 10 and hence less change as a function of time. This observation 

could also be accentuated by an increase in the number of virotypes present in a given individual, 

since having more viruses at any time point will increase the probability of sharing virotypes over 

time and with related individuals (see below for the results of alpha-diversity analysis).

Principal coordinate analysis is a widely used statistical method that aims to summarize 

the principal drivers of variation among samples in orthogonal vectors which are then sorted by 

their capacity to explain variation in the dataset. The first principal coordinate (PC1) explains the 

highest percentage of variation. In the Malawian infant/child virome, PC1 and PC2 accounted for 
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8.4% of the total variation (Fig. 5). When each axis was plotted as a function of age, it becomes 

obvious that PC1 separates late time points (> 18 months old) while PC2 separates the early time 

points (< 18 months old) and that together they define an age gradient for the fecal virome similar 

to what is observed for the bacterial component of the fecal microbiota 9.

The correlation between virome and age led me to search for viral contigs or virotypes that 

are biomarkers of a given age group. Applying mutual information analysis, I identified a set of 

453 contigs whose presence or absence were significant discriminators of age independent of their 

sample of origin. Fig. 6 shows six different clusters of age-responsive clusters; half decrease their 

representation over time while the other half increases their abundance, including the ‘latest’ clus-

ter that is only correlated with VLP samples obtained from mothers or older siblings and a cluster 

composed only of contigs associated with the Anelloviridae family (see below).

Mutual information analysis was then used to identify VLP-derived contigs significantly 

associated with a given family, individual, or the ‘mothers/siblings’ cluster described in Fig. 3. 

The result was 1245 contigs that were significant discriminators of families or individuals (Fig. 

7); within this set of contigs, 20 were significant discriminators of mothers and older siblings, and 

were essentially absent from any of the infant samples. Furthermore, there was a difference in 

the number of discriminatory contigs for kwashiorkor or marasmus families compared to healthy 

families. I postulated that this could reflect larger viral alpha-diversity in the former families or 

that there were virotypes significantly associated with SAM. Therefore, I estimated alpha-diversity 

based on the number of observed VLP-derived contigs in an abundance matrix normalized to the 

length of the contig as well as rarefied to 10,000 pyrosequencing reads per sample. In agreement 

with the discriminatory contig heatmap, diversity within samples was lower for twin pairs that re-

mained healthy through the study than for twin pairs where one of the co-twins developed kwashi-

orkor or marasmus (Fig. 8A, Kruskal-Wallis non-parametric multiple test). This observation was 

also confirmed when quantifying the number of discriminatory contigs for healthy versus SAM 

(Fig. 8B), although the differences between healthy and marasmus were not statistically differ-

ent, probably due to the limited number of observations (i.e. the number of discriminatory contigs 
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per twin-pair as opposed to the observed number of VLP contigs per sample). Combining these 

observations with the fact that the discriminatory contigs (i) are not conserved for all twins pairs 

containing a co-twin with SAM (marasmus or kwashiorkor) but rather are specific to individuals or 

twin-pairs, and (ii) are present at most time points for a given twin-pair and not just when malnutri-

tion is manifest in a co-twin, suggests that the higher viral alpha-diversity observed at early ages 

in these families can be used as a biomarker of significant risk for disease.

The question that still remains is if there are any significant changes or effects on the vi-

rome due to severe malnutrition episodes or in response to the RUTF treatment Given that most 

of the variation on the dataset is explained by family relationships and age, any further analysis 

needs to control or take into account these two factors. The disadvantage of such analysis is that 

it reduces the number of samples per treatment, and hence the statistical power to identify signifi-

cant correlations. Nonetheless, a preliminary principal coordinate analysis was performed on each 

family aimed at identifying changes as a function of time and health status. In this case, I analyzed 

changes in PC1 (Fig. 9). The position for healthy co-twins along PC1 correlates with age, while 

in twin pairs discordant for SAM this behavior is not always observed; certain twin-pairs exhibit 

variation along the axis even in opposite directions as a function of time. Together, these obser-

vations are consistent with the notion that healthy twin-pairs undergo a more stable maturation 

process of their microbiota, including their virome.

Annotation of the infant Malawian fecal virome

Having demonstrated that contig occurrence can be significantly associated with individual fami-

lies, that their presence/abundance can varies as a function of age, that differences in health status 

correlate with differences in alpha-diversity among fecal virome samples, and that beta-diversity 

measurements are capable of tightly clustering samples derived from the same individual over 

time, I next sought to describe the types of viruses represented by the assembled contigs.

Previous attempts to annotate viral sequences and viral reads derived from human gut asso-

ciated samples have generally classified less than 20% of the data, even when using non-redundant 
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viral databases 2. However, the availability of larger contigs in this study increased my chances of 

achieving accurate annotation.

As noted above, my dataset was enriched for circular contigs (potential indicators of com-

plete viral genomes) at ~6Kb and ~3Kb (Fig. 2B). Recent reports of human gut viromes have 

shown the presence of ~6Kb circular contigs 3,16 associated with a recently described subfamily of 

the Microviridae known as Alpavirinae 17. The Microviridae are ssDNA circular bacteriophages 

with a previously characterized lytic life cycle; they were first associated with intracellular bacte-

rial pathogens and gamma-Proteobacteria such as Escherichia coli (i.e. coliphage PhiX 174). The 

Alpavirinae were initially described as a new subfamily based on characterization of prophages 

present in the genomes of Bacteroides 17, a commonly represented genus in the human gut micro-

biota. Together, these observations led me to attempt to identify contigs that could correspond to 

full or partial genomes associated with the Microviridae and its subfamily Alpavirinae. This effort 

yielded 395 contigs with significant similarity between their predicted proteins and proteins en-

coded by known members of the Microviridae (Supp. Table 2, and Fig. 10A): these 395 contigs 

including most of the circular contigs observed in the ~6Kb range, confirming their high abun-

dance in the human gut. When analyzing their distribution among the different human families 

and individuals (Fig. 10B), I observed that a few contigs were highly prevalent among different 

families while most others were markers of individuals or even specific time points for a given per-

son. Furthermore, a large number (17%) of these contigs were only present in mothers and older 

siblings, indicating that Microviridae and in particular Alpavirinae viruses are associated with a 

mature gut microbiota.

The other set of circular contigs highly represented in the current dataset were ~3Kb. Re-

trieval of Anelloviridae specific proteins from public databases followed by blasting against the 

full set of assembled contigs produced 2414 contigs with significant similarity to members of the 

Anelloviridae family (e.g. Torque Teno Viruses TTV), including most of the ~3kb circular con-

tigs (Fig. 10A). The Anelloviridae family is composed of non-enveloped, ssDNA circular viruses 

that were first described in 1997 18. This family is dominated by TTV (Torque teno virus), TTMV 
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(Torque Teno Mini Virus) and TTMDV (Torque Teno Midi virus) and is currently represented by 

39 distinct genotypes, characterized by their high genetic variability. Since their initial descrip-

tion, anelloviruses have been identified as chronic infecting viruses with no proven causal role in 

disease 14,18. Initially isolated from serum, they have subsequently been found in many tissues and 

body sites, including fecal samples. PCR based studies have identified anelloviruses with preva-

lence of up to 70% in Africa and Asia and 40% in the USA and Europe 19. Anelloviruses have been 

found in young infants 18, including documentation of co-infection with different anelloviruses in 

feces 20. The great number of different Anellovirus genomes identified in the present study and 

the degree of co-infection and persistence observed are new findings (Fig. 10C). Interestingly, the 

abundance of Anellovirus in the current dataset decreases as a function of age, with almost com-

plete absence from fecal samples obtained from mothers and older siblings (Fig. 6). Moreover, the 

low abundance of these viruses in family F57, the oldest twin pairs in the study, recruited at ~20 

months of age and sampled until they were ~30 months old (Fig. 1), supports the conclusion that 

the prevalence of Anellovirus in fecal samples obtained from this cohort decreases rapidly around 

the second year of age.

My preliminary annotation of viral contigs focused mainly on those contigs that showed 

significant discriminatory power among different families. Blastx has been performed between 

contig sequences and a de-replicated protein database composed of viral proteins from the NCBI 

viral refseq database and prophage annotated proteins deposited on Phantome (http://www.phant-

ome. org/). Although comparisons were made against all known viral proteins, the only significant 

hits were to ssDNA viruses (Microviridae, Anelloviridae, Circoviridae, Geminiviridae) or dsDNA 

bacteriophages (Caudovirales) (Fig. 11). The presence of other eukaryotic viruses in these fecal 

samples at lower abundances has been confirmed by amplification and sequencing of two novel 

polyoma viruses recovered from two of the samples by members of David Wang’s laboratory 21,22. 

In total, 168 contigs in this subset of 1245 discriminatory contigs did not show any significant 

similarity to any currently known viral protein. The distribution of the contigs among the different 

families and categories revealed that for mothers and siblings, all the discriminatory contigs were 
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either Microviridae bacteriophages or caudovirales, indicating that adult microbiota is dominated 

by bacteriophages, as was previously reported. There was no significant association of any other 

viral family to either a given human family or to health status, suggesting that the increased diver-

sity observed in marasmus or kwashiorkor twin-pairs cannot be attributed to a specific viral type.

Global conservation of the human gut virome

As noted above, my previous analyses comparing the viromes of healthy USA monozygotic twin 

pairs and their mothers showed that virotypes were highly conserved within an individual over 

time but were highly variable between individuals, suggesting that the viromes constituted per-

sonal fingerprints 2 (Chapter 2). This observation is a consequence of the low alpha-diversity (low 

predicted number of virotypes per individual) and high beta-diversity among individuals (very low 

overlap of the virotypes in terms of presence and abundance between individuals). However, in 

the staged phage attack of a model defined human gut microbiota described in Chapter 3, one of 

the captured phages was present at high abundance in 4 of the 5 human donors used to generate 

the VLP pool used for the attack, indicating that there are shared viruses or virotypes among dif-

ferent individuals. To examine this notion further, I identified a set of 348 contigs that were pres-

ent in at least 20% of the Malawian fecal samples (Fig. 12), indicating that their corresponding 

viruses can be shared among different individuals representing different families. Although I have 

not corroborated that these families share the exact viral strain with the same host specificity, the 

abundance matrix was built based on reads with sequence identity to a given contig of ≥95% over 

at least 50% of the length of the read. Furthermore, some of these VLP-derived contigs are also 

conserved among mothers and older siblings indicating their presence in infant as well as mature 

gut communities.

A further step in assessing the global diversity of these viral contigs was to compare those 

assembled from the Malawi dataset to the 88 large contigs (>10kb) I assembled during my analy-

sis of the fecal viromes of adult USA monozygotic twin pairs 23. A total of 11 of these 88 contigs 

were also present in the Malawian dataset (Supp. Table 2). As an example, alignment of two of 
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the contigs from the USA twin virome study with contigs from the Malawian samples shows the 

high degree of sequence conservation and synteny among the respective contigs (Fig. 13). In ad-

dition to the 11 contigs identified from the previous study of adult healthy USA twins, two of the 

novel viral genomes captured as part of the staged gnotobiotic mouse phage attack (Chapter 3) 

were also identified among the Malawi contigs (Supp. Table 2). Phage ϕHSC02, belonging to the 

Microviridae family, and phage ϕHSC05, which was present in 4 out of the 5 adult VLP donors. 

This latter phage was identified in 22 samples from 13 individuals (including 7 samples from the 

twin pair in Family 47).

As reported on our lab’s analysis of the fecal microbiomes of Malawian twins discordant 

for kwashiorkor 10, transplantation of their intact uncultured gut communities to separate groups 

of germ-free mice transmitted discordant weight loss and metabolic phenotypes: these discordant 

phenotypes were manifest when recipient mice received a macro- and micronutrient deficient Ma-

lawian diet, where partially rescued by RUTF and then re-emerged when animals were returned to 

a representative Malawian diet. This led me to characterize the degree to which the viromes associ-

ated with these human donor samples could be transmitted to recipient mice. Therefore, I analyzed 

VLPs obtained from mice colonized with the microbiota from human donor F56T1 (healthy co-

twin) or F56T2 (co-twin with kwashiorkor), or F57T1 (kwashiorkor co-twin) or F57T2 (healthy 

co-twin). Mapping the VLP-derived pyrosequencing reads revealed reads that mapped to contigs 

present in the human donor’s fecal virome (Fig. 14). Interestingly, in some cases, viral contigs 

identified in mice sampled at varying time points after gavage were not found in the original donor 

microbiota sample, suggesting that the corresponding viruses were either present at levels below 

the limits of detection in the human sample, or were present as prophages in the bacteria at the 

moment of gavage and were later induced.

Conclusions and future directions

The combined development of tools for isolating and characterizing viral particles from small 

quantities of previously frozen fecal samples, together with improvement and/or development of 
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novel computational methods for analyzing viral metagenomic data has allowed me to character-

ize an important component of the human gut microbiota. I have found that phage dominate the 

virome present in the guts of healthy adults living in the USA, that these phages manifest a tem-

perate rather than the lytic lifestyle observed in other environments such as the open ocean. This 

temperate lifestyle is associated with low alpha-diversity: i.e. the virome is composed of a few 

abundant virotypes whose nucleotide sequences are highly conserved within an individual over 

time. In contrast, Malawi twins under two years of age possess a fecal virome that is more variable 

over time and shares a high degree of similarity among co-twins independent of their zygosity, 

highlighting the importance of early environmental exposures. A remarkable finding was the great 

variety of eukaryotic viruses present at high abundance in the fecal microbiota of young Malawian 

infants that rapidly decreased after 24 months of age.

Despite the lack of viral contigs or virotypes that were significantly associated with the on-

set or resolution of episodes of SAM, I observed an overall expansion of the viromes in twin-pairs 

discordant for severe acute malnutrition (manifested by the larger number of contigs present). Al-

though I am not aware of any metagenomic studies of humans describing a comparable expansion 

of the virome, expansion of the virome but not the bacterial component of the gut microbiota has 

been documented in non-human primates during infection with Simian Immunodeficiency Virus 

(SIV) 24.

Advances in DNA sequencing and analysis, combined with gnotobiotic mouse models of 

the human gut microbiota, provide a powerful catalyst for advancing research related to the gut vi-

rome. The result should be new and important insights about the mechanisms by which phage and 

other viruses shape the structure and expressed functions of the microbiota. The phage diversity 

present the planet is immense and largely unknown, but as we continue sampling and analyzing 

diverse environments, conserved proteins and viral modules will be identified that should enable a 

better viral taxonomy. The use of gnotobiotic mouse models and the type of staged phage attacks 

described in Chapter 3 of this thesis should provide new understanding of the factors that define 

the tropism of viruses, and how they persist within the dynamic gut ecosystem. These animal mod-
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els coupled with tools such as whole genome transposon mutagenesis of bacterial hosts and high 

throughput Tn insertion site mapping promise to shed light on the in vivo conditions that modulate/

mediate prophage induction and the role of prophage in maintaining community structure and 

function. Finally, as noted in the Introductory chapter of this thesis, these approaches have value 

to both fundamental as well as applied science efforts and may yield new approaches to diagnosis 

as well as new strategies for microbiota-directed therapeutics.
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Figure legends

Figure 1. Experimental design. Twenty Malawi families were selected to study the gut viromes 

of mono- and dizygotic twin pairs during the first 30 months after birth. Samples used for VLP-

isolation and sequencing are depicted as black squares as a function of time. Color boxes are used 

to differentiate mother and older sibling samples and to denote time points where individuals 

developed marasmus, kwashiorkor, moderate malnutrition or were subjected to RUTF treatment.

Figure 2. Assembly contigs from shotgun datasets of Malawian fecal viromes. (A) Histogram 

of the percent of shotgun pyrosequencing reads per VLP sample that was incorporated into the 

assembly of ~17,000 contigs (> 500nt long). (B) Improvement in assembly strategy and the depth 

of sequencing allowed assembly of contigs up to 200,000 nt and a median coverage of up to 

10,000X. Individual contigs of more than 500nt are classified as linear contigs (blue dots) or as 

circular contigs when there was evidence of overlapping ends (red dots). Note the distribution of 

circular contigs centers at 3Kb, 6Kb, and between 40-100Kb. Contig length and median coverage 

are shown as log 10 transformed values for visualization purposes. Median coverage is expressed 

in integers, hence the step increase of coverage under 10X. Median coverage corresponds to the 

median number of pyrosequencing reads per nucleotide position along the length of a given contig.

Figure 3. Hierarchical clustering of samples indicates a strong familial clustering. UPGMA 

tree generated from Hellinger distances between samples. Colors and cartoon edges represents 

branches from twin pairs in a single family, the only exception was F121 and F57 where a few of 

the later time points for both twins clustered separately. The first branch from top to bottom is not 

collapsed and represents samples from mothers and siblings. Another branch that includes samples 

from different families is composed of fecal VLPs from individuals less than 5 months old. The 

few other samples that did not cluster with their families are shown in black; they usually corre-

spond to the first or last time point for a given twin pair. Initials in parenthesis next to the family 

ID indicate whether the twin-pair remained healthy (H) throughout the study or whether one of the 

co-twins in a discordant pair developed kwashiorkor (K) or marasmus (M) .
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Figure 4. Inter and Intra-personal dissimilarities. (A) Comparison of Hellinger distances with-

in the same individual over time (self-self comparison) or between individuals: co-twin- co-twin 

(in mono- or dizygotic pairs), co-twin-mother or co-twin-sibling, or unrelated individuals. A one-

way ANOVA was performed and a Tukey multiple-comparison test was used to determine the 

significance in the observed difference between the means of the datasets. Different letters indicate 

groups with significant different means (p < 0.05). (B) Comparisons of intra- and interpersonal 

variation: samples are grouped according to the health status of their donors. A lower case (a) 

indicates the datasets with no significant difference in their means when compared to the self-self 

group from concordant healthy co-twins (p > 0.05), indicating that self-self and co-twin - co-twin 

distances in SAM groups were significantly lower than on healthy co-twins.

Figure 5. Principal coordinate analysis based on the Hellinger distances between Malawian 

fecal virome samples. Sample coordinates on the first two principal coordinates (PC1 and PC2) 

are represented as a function of time. PC1 separates viromes from donors older than 18 months 

or age, while PC2 shows a gradient for younger donor samples (< 18 months). Colors represent 

different 6-month age bins. For visualization purposes, older siblings and mothers were arbitrarily 

collapsed into a single age bin.

Figure 6. Subset of VLP-derived contigs having significant association with donor age. Heat-

map of 453 contigs identified by mutual information analysis to be significantly associated with 

age. Samples are sorted by age and VLP derived contigs were clustered based on their appearance 

patterns. Six clusters were identified where the presence of the VLP-derived contigs decreases or 

increases as a function of age. The top cluster was only composed of VLP-contigs with significant 

similarity to the Anelloviridae family. Color intensity represents abundance of a given contig in a 

given sample, expressed as the log of the normalized RPMM [Reads per Million base pair (of the 

contig) per million reads (of the sample)] .

Figure 7. VLP-derived contigs constitute significant discriminators of twin-pairs. A heatmap 

of contigs that are significantly (estimated pvalue < 1e-5) associated with either a given individual 
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or twin-pair are shown. Columns represent individual samples and each row corresponds to a 

single VLP-derived contig. The leftmost set of samples correspond to the samples on Fig. 3 that 

were clustered together without a familial relationship, corresponding to samples under 5 months 

of age. The rightmost set of samples corresponds to all the mothers and siblings present on the da-

taset. All other samples are organized by family; within each family they are organized from left to 

right by co-twin (T1, T2; separated by tick marks) and by ascending age. Intensity of the heatmap 

represents abundance as described in Fig. 6.

Figure 8. Twin-pairs discordant for kwashiorkor or marasmus exhibit an increase in the 

number of VLP-derived contigs. (A) Alpha-diversity analysis of a matrix of reads normalized to 

contig length and rarefied to 10,000 reads per sample. Average ± SEM of the number of observed 

VLP-derived contigs are plotted for each category. A Dunn’s non-parametric multiple compari-

son rank test was performed; * corresponds to a significant difference (p-value < 0.05) between 

the means. (B) The average ± SEM for discriminatory contigs per twin-pair are plotted for each 

category. The same test of significance was performed. Although the difference in mean appears 

larger than in panel A, the limited number of observations (n=6 per category) and the variation 

likely contribute to the lack of statistical significance to the difference between concordant healthy 

co-twins and co-twins discordant for marasmus .

Figure 9. Principal coordinate analysis for Malawi twin-pairs as a function of age. The coor-

dinates on the principal axis of variation (PC1) are plotted as a function of time for each individual 

twin pair. Twin-pairs are separated based on whether they remain healthy throughout the study or 

became discordant for kwashiorkor or marasmus. Time points where a given individual developed 

marasmus, kwashiorkor, moderate malnutrition or were subjected to RUTF treatment are shown 

in different colors.

Figure 10. Abundance of Microviridae and Anelloviriridae families in the assembled dataset. 

(A) VLP-derived contigs, represented as dots, are plotted as a function of contig length and median 

coverage. The figure is built as in Fig. 2B. In this case, contigs with significant similarity to Micro-
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viridae (green) or Anelloviridae (orange) are highlighted. Note the correlation between the circular 

contigs at 6Kb with Microviridae and 3Kb with Anelloviridae. (B) Heatmap of contigs annotated 

as belonging to the Microviridae family. The prevalence of these contigs is higher in mothers and 

older siblings. (C) Heatmap of the abundances of Anelloviridae in the different samples and fami-

lies. Anelloviruses are absent in mothers and older siblings. Sample order and color intensities for 

Heatmaps in panels B and C are as described in Fig. 7.

Figure 11. Taxonomic classification of VLP-derived contigs associated with particular fami-

lies or individuals. The set of 1245 VLP-derived contigs that show significant association with a 

particular individual or twin-pair, was annotated by blasting against a viral non-redundant protein 

database (threshold blastx e-value < 1e-5). Annotations were binned at the family level for ssDNA 

viruses and the order level for dsDNA viruses.

Figure 12. Heatmap of VLP-derived contigs present in at least 20% of samples. A total of 348 

contigs that were present in at least 46 (20%) of the analyzed samples were selected and clustered. 

Many of the contigs are present in multiple samples irrespective of family, age or health status. 

Sample order and color intensities are the same as in Fig. 7.

Figure 13. Multiple alignment between Malawi VLP-derived contigs and healthy adult USA 

twin (MOAFTS) derived VLP contigs. (A) Alignment between MOAFT contig 2803 (~12,000bp) 

and five other Malawian contigs, all originated from different families. Colored blocks in the 

alignment represent significant regions of similarity. Histograms within each block represent the 

percent identity of the particular sequence. Note that the complete 13 kb region is present in same 

orientation and synteny in all five Malawi derived contigs. (B) Alignment between MOAFTS-

derived contig 1331 (~13 kb) and eight different Malawian-derived contigs. In this case, the contig 

is divided into three different colored blocks since in the case of some Malawian contigs the frag-

ment spans the start and end of the assembled contig, suggesting a complete circular viral genome. 

In addition, six of the Malawian contigs are ~58Kb (in the range of the average size of common 

bacteriophage genomes).
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Figure 14. VLP-contigs transferred to germ-free mice. Heatmap of the relative abundance of 

contigs in VLPs prepared from fecal microbiota of co-twins in families 56 and 57 and in VLPs iso-

lated from the fecal microbiota of gnotobiotic mouse recipients of these human donor samples. For 

each human donor, the first set of columns (surrounded by a black box) represent the abundances 

of contigs present at each of the time points (sorted by age, left to right). The black arrow indicates 

the specific time point sample used to gavage germ-free mice. Following the human samples, one 

or more columns represent the abundances of VLP-derived contigs identified in the fecal micro-

biota of gnotobiotic mice sampled at different time points. Color intensities are as described in 

Fig. 6.
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Figures
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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Figure 10.
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Figure 11.
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Figure 12.
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Figure 13.
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Figure 14.
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Supplementary Tables

Table S1. Sample information and pyrosequencing effort of generated viromes.

Table S2. Assembled contigs statistics and preliminary annotation.
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a b s t r a c t

The family Polyomaviridae is comprised of circular double-stranded DNA viruses, several of which are

associated with diseases, including cancer, in immunocompromised patients. Here we describe a novel

polyomavirus recovered from the fecal microbiota of a child in Malawi, provisionally named STL

polyomavirus (STLPyV). We detected STLPyV in clinical stool specimens from USA and The Gambia at

up to 1% frequency. Complete genome comparisons of two STLPyV strains demonstrated 5.2%

nucleotide divergence. Alternative splicing of the STLPyV early region yielded a unique form of T

antigen, which we named 229T, in addition to the expected large and small T antigens. STLPyV has a

mosaic genome and shares an ancestral recombinant origin with MWPyV. The discovery of STLPyV

highlights a novel alternative splicing strategy and advances our understanding of the complex

evolutionary history of polyomaviruses.

& 2012 Elsevier Inc. All rights reserved.

Introduction

Polyomaviruses are small circular double stranded DNA
viruses. Members of the family Polyomaviridae have been isolated
from a variety of human specimen types, as well as from other
hosts, including primates, rodents and birds. The genomes of
polyomaviruses range in size from 4754 to 5387 bp and can be
divided by transcriptional criteria into an early region, a late
region and a non-coding control region (Van Ghelue et al., 2012).
The early region specifies the large tumor antigen (LTAg) and
small tumor antigen (STAg). Rodent polyomaviruses encode an
additional middle tumor antigen (MTAg) (Gottlieb and Villarreal,
2001). The late region encodes the structural proteins VP1, VP2
and VP3. Additionally, avian polyomaviruses harbor a unique VP4
upstream of VP1, VP2 and VP3, that is absent from mammalian
polyomaviruses (Johne and Müller, 2007). The VP4 of avian

polyomaviruses differs from the similarly named SV40 VP4,
which is an opening reading frame within the VP2 transcript
(Daniels et al., 2007). Finally, a limited subset of polyomaviruses
encode an agnoprotein 50 of the late region (Van Ghelue et al.,
2012).

Alternative splicing is a critical mechanism for regulating
expression of different gene products from the early region of
polyomaviruses (Huang and Carmichael, 2009). Three major
forms of the T antigen (LTAg, MTAg and STAg) have been
described, as have multiple alternative forms of the LTAg. While
most polyomaviruses express STAg from an unspliced mRNA
transcript, STAg from rodent polyomaviruses is encoded from an
alternatively spliced transcript. Alternative splicing also results in
LTAg and STAg sharing approximately 80 amino acid (aa) residues
at their N-terminus. Additionally, SV40 encodes a 17 kT protein
that shares the first 131 aa residues with LTAg, followed by 4 aa
residues due to differential splicing (Zerrahn et al., 1993). JCPyV
encodes 3 additional proteins (T0135, T0136 and T0165), which also
similarly share 132 N-terminal aa residues with LTAg, but differ at
the C-terminus due to alternative splicing patterns (Trowbridge
and Frisque, 1995). Similarly, MCPyV encodes a 57 kT antigen by

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/yviro

Virology

0042-6822/$ - see front matter & 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.virol.2012.12.005

n Correspondence to: Departments of Molecular Microbiology and Pathology &

Immunology, Washington University School of Medicine, Campus Box 8230, 660S.

Euclid Ave., St. Louis, MO 63110, USA. Fax: þ1 314 362 1232.

E-mail address: davewang@borcim.wustl.edu (D. Wang).

Virology 436 (2013) 295–303

www.elsevier.com/locate/yviro
www.elsevier.com/locate/yviro
http://dx.doi.org/10.1016/j.virol.2012.12.005
http://dx.doi.org/10.1016/j.virol.2012.12.005
http://dx.doi.org/10.1016/j.virol.2012.12.005
mailto:davewang@borcim.wustl.edu
http://dx.doi.org/10.1016/j.virol.2012.12.005


alternative splicing of the LTAg transcript (Shuda et al., 2008).
Moreover, a truncated form of LTAg expressed by BKPyV results
from alternative splicing of its LTAg transcript (Abend et al.,
2009). Furthermore, alternative splicing can also result in the
translation of a middle tumor antigen (MTAg), although this is
thought to be a feature unique to rodent polyomaviruses (Huang
and Carmichael, 2009). While the 17 kT, 57kT, T0- and truncated T
antigens share their splice donor site with their cognate LTAg
transcripts, the splice donor site of MTAg is shared by STAg
instead. Importantly, many of these proteins expressed from
alternatively spliced early products have been shown to have
transforming potential (Bollag et al., 2000; Boyapati et al., 2003).

Eight new polyomaviruses have been discovered in human
clinical specimens within the last five years (Allander et al., 2007;
Feng et al., 2008; Gaynor et al., 2007; Schowalter et al., 2010;
Scuda et al., 2011; Siebrasse et al., 2012; van der Meijden et al.,
2010), leading to new insights in the fundamental biology and
pathogenesis of polyomavirus. These discoveries, along with the
discoveries of additional animal polyomaviruses have led to a
recent taxonomic proposal for classification of polyomaviruses
(Johne et al., 2011). According to this proposal, polyomaviruses
are broadly classified into three genera, Avipolyomavirus, Wuki-

polyomavirus, and Orthpolyomavirus, primarily based on phyloge-
netic analyses on full-length polyomavirus genomes (Johne et al.,
2011). Polyomaviruses have co-evolved with their hosts over long
evolutionary timescale (Pérez-Losada et al., 2006; Sharp and
Simmonds, 2011). While several intra-strain recombinations have
been observed (Chen et al., 2004; Hatwell and Sharp, 2000), large
scale recombination of polyomaviruses is generally thought to be
rare (Bhattacharjee, 2010; Crandall et al., 2006). However, emer-
ging studies highlight several lineages with inconsistency
amongst topologies constructed from different regions of the
genome, indicative of recombination events (Sauvage et al.,
2011; Schowalter et al., 2010; Siebrasse et al., 2012).

Here, we describe a novel polyomavirus provisionally named
STL polyomavirus (STLPyV). We sequenced the complete genomes
of STLPyV strains from Malawi and Saint Louis and found that they
differed by 5.2% at nucleotide level. We show that the early region
of STLPyV, in addition to the unspliced STAg, undergoes alternative
splicing that would encode for LTAg and a unique 229 amino acid T
antigen (229T) unlike that of previously characterized rodent MTAg
or various modified forms of LTAg, such as 17 kT, T0 or truncated T
antigens. STLPyV is most closely related to MW polyomavirus
(MWPyV) and we establish that their common ancestor had a
recombinant origin. We also developed a sensitive degenerate PCR
assay that detects both STLPyV and MWPyV and used this assay to
screen for STLPyV and MWPyV in clinical specimens from Saint
Louis, USA and Gambia. Both viruses were detected in pediatric
stool specimens, but there was no statistically significant evidence
of association between either virus with diarrheal cases. These
results contribute to a deeper understanding of polyomavirus
diversity, evolution and gene content.

Results

Discovery of the novel STL polyomavirus

As part of a broader effort to characterize the human gut virome
in health and disease, we performed shotgun 454 pyrosequencing of
DNA amplified by multiple displacement amplification (MDA) from
the stool of a healthy 15 month child in Malawi. Prior to DNA
extraction, the stool was processed by CsCl ultracentrifugation to
generically enrich for viral particles as described previously (Reyes
et al., 2010). Two reads from this sample shared limited sequence
identity to known polyomaviruses (Fig. 1A). At the time the

sequences were generated, the first read (308 nt) shared only 46%
amino acid identity to the LTAg of Squirrel monkey polyomavirus,
its top scoring hit after tBlastx search to the Genbank nt database.
The second read (87 nt) mapped to a separate region of the LTAg in
California sea lion polyomavirus based (81% amino acid identity).
We recently reported the discovery of another novel polyomavirus,
MWPyV (Siebrasse et al., 2012); sequence analyses indicated that
these two reads were most closely related to, but clearly distinct
from, MWPyV. From these two initial reads, we designed primers to
PCR amplify products that span the two initial pyrosequencer reads
in either direction. The resulting complete circular genome of
4776 bp was sequenced to more than 3X coverage (Fig. 1A). Whole
genome comparison to all known polyomaviruses indicated that this
virus shared the highest nucleotide sequence similarity (64.2%) to
MWPyV, which is less than the 81% criterion outlined in species
classification guidelines from the International Committee on Tax-
onomy of Viruses (ICTV) (Johne et al., 2011). We gave this new
species of polyomavirus the provision name of STLPyV.

We also amplified, cloned, and sequenced to greater than 3X
coverage a second full-length STLPyV strain (WD972). This strain
was amplified, using a similar PCR strategy as the index strain,
from a fecal specimen obtained from a child who had been
enrolled a study of diarrheal diseases conducted at Saint Louis
Children’s hospital (described in detail below). The complete
genome of STLPyV strain WD972 was 4775 bp, which included a
one nucleotide deletion in the non-coding control region com-
pared to the index Malawi strain. Whole genome sequence
analyses indicated that the overall nucleotide sequence identity
between the two STLPyV strains was 94.8% with divergence of up
to 13% within regions of VP1 and LTAg (Fig. 1B).

Genome annotation and alternative splicing of a unique T antigen

mRNA transcript

The STLPyV genome organization and sizes of its predicted
open reading frames were characteristic of known polyoma-
viruses (Fig. 1A and Table 1). Further, the non-coding control
region of STLPyV (nucleotide positions 1–352) contained features
typical of polyomaviruses (Van Ghelue et al., 2012). The ori region
encoded five consensus T antigen binding pentanucleotide
sequence G(A/G)GGC (nucleotide positions 29, 35, 44, 51 and
249) and one non-canonical GTGGC pentanucleotide sequence
(nucleotide position 147) (Cantalupo et al., 2005). In addition,
there was a 17 nucleotide stretch of AT-rich region including the
putative TATA box (nucleotide positions 59–75).

The early proteins encoded by polyomaviruses are translated
from alternatively spliced transcripts. Typically, gene predictions
for LTAg are made based upon the presence of conserved splice
donor and splice acceptor sites defined by alignment of other
polyomaviruses. However, STLPyV lacked the consensus splice
donor sites commonly utilized by most polyomaviruses. More-
over, the rarer splice donor sites identified were incongruent with
the predicted LTAg open reading frame due to an out-of-frame
arrangement when paired with the corresponding splice acceptor
sites. Therefore, we experimentally determined the splice sites
used by STLPyV early mRNA transcripts. To do this, we cloned the
genomic region encoding the putative LTAg of STLPyV (nucleotide
positions 4776–2452) into an expression vector, transiently
transfected the plasmids into 293T cells, and performed RT-PCR
on total cell RNA extracts. Primers were designed to span a 666 bp
fragment of the early region judged most likely to harbor the
splice donor and acceptor sites. As expected, PCR using a plasmid
template containing STLPyV genomic DNA yielded the predicted
band, while RNA extracted from mock-transfected cells did not
amplify any products (Fig. 2A). Surprisingly, we detected three
bands following RT-PCR of STLPyV transfected extracts (Fig. 2A,

E.S. Lim et al. / Virology 436 (2013) 295–303296



STLPyV). Each of the three bands was cloned and sequenced and
subsequently determined to be a unique product. The largest
band represented the unspliced mRNA transcript that yielded a
195 aa open reading frame expected of STAg. The smallest band
represented an mRNA transcript generated by excision of a
345 bp intron, yielding an open reading frame with features
consistent with those expected for a LTAg (660 aa). The LTAg of
STLPyV contained a putative pRb-binding motif (LSCNE beginning

at aa residues 105), an N-terminal DnaJ domain (HPDKGG
commencing at aa residue 42), and a predicted Bub1 binding site
(WDQWW beginning at aa residue 90)—features that are highly
conserved in polyomaviruses (Van Ghelue et al., 2012).

The intermediate band corresponded to an mRNA transcript
derived by splicing of a 115 bp intron that yields a unique open
reading frame of 229 aa; the first 190 aa were shared with the STAg,
the 191st aa encompassed the splice junction and the remaining 38
aa were derived from the second exon. Based on its predicted amino
acid length, we named this putative protein 229T. The splice sites
that generated 229T were unique from the splice sites utilized by
the STLPyV LTAg. Although there is precedence in rodent polyoma-
viruses for splicing of STAg, in those instances the splice acceptor
site is identical to the LTAg splice acceptor, which was not the case
for STLPyV. 229T also differed from the 17 kT and T0 antigens of
SV40 or BKPyV which share common splice sites with their LTAg
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Fig. 1. STLPyV is a novel polyomavirus. (A) Diagram of STLPyV genome based on

strain MA138. Positions of the two reads obtained from the initial 454 pyrose-

quencing of DNA generated by MDA of purified virus particles from the index

Malawian case are indicated in white. Predicted open reading frames of STLPyV

are shown in gray. (B) Diversity plots of nucleotide sequences are shown between

STLPyV MA138 and STLPyV WD972 (blue). Their closest relatives MWPyV MA095

(red) and MWPyV WD976 (orange) are included as reference. The proportion of

DNA sequence difference is indicated (0.1¼10%).

Table 1
Putative proteins encoded by STLPyV (strain MA138).

Protein Putative coding

region(s)

Predicted

size (aa)

Calculated

mass (kDa)

Range (aa) in

other

polyomaviruses

STAg 4776–4189 195 23.0 124–199

229T 4776–4206, 4090–3972 229 27.2 N/A

LTAg 4776–4534, 4188–2452 660 75.9 599–817

VP1 1242–2447 401 43.4 343–497

VP2 353–1264 303 33.2 241–415

VP3 677–1264 195 21.9 190–272

Fig. 2. Alternative splicing of STLPyV early region. (A) Schematic shows mRNA

transcripts expressed from the early region of STLPyV. Exonic regions are indicated

by gray boxes, intronic regions by lines. Arrows above the diagram indicate the

position of primers. 293T cells were transfected with a plasmid expressing STLPyV

LTAg for 48 h. Cells were harvested and lysed for RT-PCR analysis. RT-PCR

reactions were performed with water (Water), STLPyV LTAg plasmid (Control),

RNA harvested from mock-transfected (Mock), STLPyV LTAg transfected 293T cells

(STLPyV). Data are representative of at least three independent experiments. The

three alternatively splice mRNA transcripts were confirmed with a different set of

primers (data not shown) and verified in HeLa cells (data not shown). (B) Diagram

showing the coding region of T antigens, separated by intron regions in dashed

lines. The T0- and truncated T antigens of JCPyV and BKPyV are spliced from LTAg

transcripts in a similar manner as SV40 17KT. (C) Sequences of the splice donor

and acceptor sites for STLPyV LTAg and 229T transcripts (strain MA138). Exon

sequences are highlighted in boxes. The nucleotide sequences of the splice donor

and acceptor sites of STLPyV shown are conserved in the three STLPyV strains

characterized.
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transcripts (Fig. 2B). To verify the alternatively spliced transcripts,
we designed a second set of primers for RT-PCR. Cloning and
sequencing independently confirmed the splice junctions, demon-
strating that the results were not due to an artifact of the initial
primers (data not shown). The splicing patterns were also confirmed
with both primer pairs in HeLa cells indicating that the splice
variants were not cell line specific (data not shown).

We next sequenced a fragment of the STLPyV genome in the
region spanning the splice sites (nt 4731–4066) from an addi-
tional sample from another child in the Saint Louis study found to
be positive for the presence of STLPyV (using a PCR assay
described below) so that we could perform a sequence compar-
ison with the two STLPyV strain. While we observed up to a 3.2%
difference in the nucleotide sequence across the 666 bp region
between the three strains, both 50 splice and 30 sites for LTAg and
229 T were entirely conserved. Thus, we conclude that the early
region of STLPyV has unique alternative splicing features.

Phylogenetic analysis indicates ancient recombinant origin of STL

polyomavirus

To estimate the phylogenetic relationship of the new STLPyV
to other polyomaviruses, we used the LTAg, VP1 and VP2
sequences to construct phylogenies using both Bayesian (BI) and
maximum likelihood (ML) methods. Both methods yielded trees
with similar topologies. Midpoint rooting of the large T antigen
phylogeny, which was the most alignable region across all
polyomaviruses, positioned the avian polyomaviruses (Avipolyo-

mavirus genera) basal to mammalian polyomaviruses (Fig. 3A).
This is consistent with other studies (Pérez-Losada et al., 2006;
Sauvage et al., 2011). Furthermore, the outgroup positioning of
the Avipolyomavirus is consistent with marked differences in the
genomic organization, pathogenesis and biology of the avian
polyomaviruses (Johne et al., 2011). Therefore, the avian poly-
omaviruses were used as an outgroup to root the phylogenies.

The phylogenies of LTAg, VP1 and VP2 showed that both STLPyV
strains are closely related to MWPyV. STLPyV and MWPyV strains
formed a monophyletic clade with high confidence (Fig. 3). However,
the topologies of the LTAg and VP1 derived trees were different.
Within the LTAg region, STLPyV and MWPyV were closely related to
HPyV6 and HPy7 and formed a clade with several Orthopolyomavirus

species including TSPyV, MCPyV, MPyV and HPyV9 (Fig. 3A). Strik-
ingly, in the VP1 region, STLPyV and MWPyV were most closely
related to HPyV6, HPyV7, WUPyV and KIPyV, but clustered with
different Orthopolyomavirus species (SV40, BKPyV, JCPyV and SA12)
(Fig. 3B). Finally, the VP2-derived tree indicated that STLPyV and
MWPyV cluster with the similar Orthopolyomavirus species as in the
LTAg derived phylogeny, whereas HPyV6 and HPyV7 are closely
related to WUPyV and KIPyV. The VP2 region of polyomaviruses has
many insertions and deletions; therefore, it is important to be
cautious about over-interpreting the different branching orders.
Nonetheless, the discordant phylogenetic relationship of the STLPyV
and MWPyV clade in LTAg and VP1 derived trees are indicative of
recombinant events in their common ancestor. HPyV6 and HPyV7 are
also likely recombinant lineages, although the phylogenies suggest
that the evolutionary histories of HPyV6 and HPyV7 as compared to
that of STLPyV and MWPyV are likely distinct because the relation-
ships of all four viruses cannot be adequately explained by the same
recombination events. Thus, our results indicate that STLPyV and
MWPyV share an ancestral recombinant origin.

Molecular characterization demonstrates STLPyV presence in Saint

Louis and Gambia

In order to determine the prevalence of STLPyV, we developed a
PCR assay targeted against the large T antigen region. Since STLPyV is

closely-related to the newly-identified MWPyV (Fig. 3A), we designed
an assay capable of detecting both STLPyV and MWPyV, thus allowing
us to characterize the prevalence of both novel polyomaviruses as
well as to identify additional variants of these two viruses. We
confirmed that the assay amplified a specific 481 bp (STLPyV) or
484 bp (MWPyV) PCR product using plasmids encoding the large
T antigen of STLPyV or MWPyV (Fig. 4A). To validate our PCR assay,
we examined pediatric fecal specimens sent for bacterial culture to
the clinical microbiology laboratory at the Saint Louis Children’s
Hospital. These samples were collected from patients, primarily with
diarrhea, who were examined between July 2009 and June 2010. This
cohort was previously screened for the presence of MWPyV by a real-
time PCR assay and 12 specimens were found to be positive
(Siebrasse et al., 2012). In addition to the 12 samples, the new PCR
assay described in this report identified two additional samples that
were positive for MWPyV, for a total of 14 samples (Fig. 4B, right
column). In the previous study, these two samples yielded detectable
Ct values in the real time assay, but were below the cutoff value used
to define positive samples (data not shown).

Seven samples from the Saint Louis children’s study were
found to be positive for STLPyV (Fig. 4B, left column) demonstrat-
ing that STLPyV can also be found in a geographically separate
region from the initial strain identified in Malawi. Interestingly,
three samples contained both STLPyV and MWPyV (samples
WD972, WD976 and WD1226). These three samples were col-
lected from the same individual, a five year-old lung transplant
recipient who presented with persistent, recurring diarrhea. The
first two samples were taken on consecutive days while the third
sample was collected four months later. The other four STLPyV
samples came from four different individuals.

Previous reports indicate that the prevalence of polyomaviruses is
elevated in immunocompromised patients. Hence, we sought to
understand the prevalence of STLPyV and MWPyV in adult transplant
recipients by screening specimens collected from kidney transplant
patients at Washington University in Saint Louis. Different types of
biospecimens (fecal, urine, nasopharyngeal swab and sera) from
individuals were examined with our PCR assay. We did not detect
STLPyV in fecal samples (n¼237), plasma (n¼261) or nasopharyn-
geal swabs (n¼261) (Fig. 4C). We found that one urine sample was
positive for STLPyV. Interestingly, we did not detect MWPyV in any of
the specimens. The absence of STLPyV and MWPyV in fecal samples
from the adult study was unexpected since the prevalence of STLPyV
and MWPyV in the children we surveyed from St. Louis was about 1%
and 2.2% respectively (Fig. 4B). To verify the integrity of the speci-
mens, we screened urine samples for the presence of JCPyV using a
published real time PCR assay (Siebrasse et al., 2012). Forty-five
samples were positive for JCPyV (data not shown); the 12% pre-
valence of JCPyV in this study is consistent with estimates from other
reports suggesting that the low/lack of STLPyV and MWPyV was not
due to compromised specimen conditions. Thus, the prevalence of
STLPyV and MWPyV in stool samples from our study of adult kidney
recipients is lower than that observed in the children’s study.

Since STLPyV and MWPyV were readily detected in the stool
samples from children, we examined whether STLPyV and MWPyV
are associated with childhood diarrhea by analyzing fecal samples
collected from Gambia as part of the ongoing Global Enteric Multi-
center Study (GEMS) (Kotloff et al., 2012). For each enrolled case
with diarrhea, one healthy control without diarrhea (matched for
age, gender and time of presentation) was randomly selected from
the community. We screened 332 cases and 389 controls for the
presence of STLPyV and MWPy, finding one sample from the
controls and none from the cases to be positive for STLPyV, and
five samples from cases and five from controls to be positive for
MWPyV. Based on these results, we concluded that neither STLPyV
nor MWPyV had a statistically significant association with diarrheal
cases (Fig. 4D, right column).

E.S. Lim et al. / Virology 436 (2013) 295–303298



We next examined the diversity of STLPyV and MWPyV strains
based on the amplicon sequences generated from the positive
samples from the GEMS and St. Louis studies described above.
Phylogenetic analyses indicated that STLPyV and MWPyV sequences
formed distinct clades with high confidence (Fig. 5). The STLPyV
strains formed two monophyletic clades that differed by at least 5%
nucleotide sequence identity between clades, hence we tentatively
designated them as two genotypes. MWPyV strains formed three
monophyletic clades with high confidence, with at least 5% difference
in inter-clade nucleotide sequence identity, which we designated as
three genotypes. A previous study of MWPyV identified members of
two of these clades (Siebrasse et al., 2012); in the present study,
additional members of those two clades were identified as well as the
existence of a third clade. By comparison, the global variation of
WUPyV strains is approximately 1.2%, while the BKPyV strains vary
by up to 5.3% at the nucleotide sequence (Bialasiewicz et al., 2010;
Krumbholz et al., 2009). Thus, this indicates that there is diverse
strain variation in STLPyV and MWPyV.

Discussion

Novel T antigen alternative splicing

Alternative splicing of the early mRNA transcripts of a few
canonical polyomaviruses is well documented. In recent years, as

application of molecular methods dramatically increased the rate of
discovery of new polyomaviruses, many of the genome annotations
have been based on strictly computational analyses and predictions;
there have been few studies that have experimentally defined early
region splicing patterns in these newly identified viruses. Because of
a lack of consensus splice donor and acceptor sites, we experimen-
tally determined the splice junctions in the early transcript of
STLPyV, leading us to identify a unique splicing pattern. As the
predicted protein generated by this splicing event consists of 229 aa,
we have termed this protein 229T. The splicing pattern that yields
STLPyV 229T is distinct from the one that yields rodent MTAgs and
modified versions of LTAg described in other polyomavirus species
(Fig. 2B). STLPyV 229T does not arise from secondary splicing of the
LTAg transcript, as seen in 17kT/T0 antigens. Furthermore, STLPyV
229T splicing is different from the splicing pattern of rodent
polyomaviruses, which rely on the same splice donor site for STAg
and MTAg; instead, STLPyV 229T uses a distinct downstream splice
donor and acceptor site from its LTAg alternative splicing. The
putative open reading frame of STLPyV 229T included the
N-terminal DnaJ domain (HPDKGG) motif, which recruits and
activates ATPase activity of DnaKs in studies of other polyoma-
viruses (Campbell et al., 1997; Srinivasan et al., 1997; Sullivan et al.,
2000). No additional conserved protein motifs were detected using
Motif scan and Prosite. Interestingly, MTAg of MPyV has been shown
to be the major transforming protein (Rassoulzadegan et al., 1982;
Treisman et al., 1981). While we do not have functional evidence for

Fig. 3. Phylogenetic analysis of STLPyV. Phylogenetic relationships of 28 diverse polyomavirus sequences were inferred from alignment of protein sequences from LTAg (A),

VP1 (B) and VP2 (C). Avian polyomaviruses were used as an outgroup to root the phylogenies. STLPyV strains are highlighted in black; MWPyV strains and

Wukipolyomavirus whose members show discordant phylogenetic relationships are indicated by boxes. Internal branch labels indicate Bayesian posterior probabilities. The

ML method yielded trees with similar topologies.
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the role of STLPyV 229T, this raises provocative questions about the
role of STLPyV 229T and whether an analogous T antigen might be
present but unrecognized in other polyomaviruses.

Complex evolutionary history of polyomaviruses

The evolutionary history of polyomaviruses is complex. Phy-
logenetic analysis of individual genes yielded distinct topologies
depending on the locus we analyzed. One constant was the

consistent placement of STLPyV with MWPyV at all loci, suggest-
ing that STLPyV shares an ancestral recombinant origin with
MWPyV. The recombinant nature of these two viruses poses a
conundrum for the current taxonomic scheme for polyoma-
viruses, which cannot accommodate the complex phylogenetic
relationships of polyomaviruses that are becoming apparent. For
example, in addition to the clear recombinant nature of STLPyV
and MWPyV, HPyV6 and HPyV7 (currently members of Wukipo-

lyomavirus genera) are evidently recombinant species as well, as
shown by their discordant phylogenies; they do not form a
monophyletic clade with WUPyV and KIPyV when the LTAg is
analyzed (Fig. 3A and B, compare HPyV6, HPyV7 to WUPyV,
KIPyV). Second, species of the Orthpolyomavirus taxa are para-
phyletic regardless of designating either Avipolyomavirus or
Wukipolyomavirus as the outgroup to root the phylogenies.

Given these issues, the current taxonomic system may need
further refinement with the broad goal of making genus level
taxonomic assignments concordant with phylogenetic structure.
More broadly, these results underscore the importance of asses-
sing phylogeny using multiple loci. Finally, unlike RNA viruses
and ssDNA viruses, dsDNA viruses like polyomaviruses have a low
mutation rate as they rely on the host polymerase for replication
(Duffy et al., 2008). Hence, the clear evidence for recombination
within the family Polyomaviridae is significant because it suggests

Fig. 4. Prevalance of STLPyV and MWPyV. (A) PCR analysis of STLPyV and MWPyV is

shown for control plasmids of the respective LTAg, or representative samples found to

be negative, and positive for STLPyV or MWPyV. Bands corresponds to a STLPyV

(481 bp) or MWPyV (484 bp) PCR product. PCR products for all positive samples were

cloned and sequenced verified. (B) Prevalence of STLPyV and MWPyV in 634 stool

specimens collected from a study of children from Saint Louis, as defined by the

direct PCR assay described in panel A. Numbers in parenthesis indicate frequency.

(C) Results of PCR screening for STLPyV and MWPyV in feces, plasma, nasopharyngeal

swabs (NP), and urine specimens collected from a cohort of adult USA kidney

transplant recipients. Numbers in parenthesis beside each specimen type indicate the

number of specimens screened. (D) Prevalence of STLPyV and MWPyV in a Gambian

diarrheal case control study of children is shown, and is based on the PCR screening

assay. Odds ratio (OR), 95% confidence intervals (CI) and Fisher exact test indicate

that there is no statistically evidence that STLPyV or MWPyV are significantly

associated with diarrheal cases (NS¼not significant).
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that polyomaviruses can compensate for their limited mutational
changes by recombination to gain new, and possibly more
advantageous, genetic information. Indeed, from the multiple
sequence alignments, we observed many clade-specific insertions
and deletions in the late region proteins (data not shown). More-
over, a more extreme recombination between two viruses of
Polyomaviridae and Papillomaviridae has been previously described
(Woolford et al., 2007), corroborating that recombination in Poly-

omaviridae can occur. Thus, recombination events are important
milestones in the evolutionary history of polyomaviruses.

Insight into STLPyV epidemiology

In addition to the index case from Malawi, we detected STLPyV
in fecal specimens collected from Saint Louis and Gambia,
demonstrating that it is geographically widespread. Through the
use of a degenerate PCR assay, we were able to define simulta-
neously the prevalence of both STLPyV and MWPyV in multiple
patient cohorts. In each of the cohorts, STLPyV was found in fewer
fecal samples compared to MWPyV (Fig. 4). Strikingly, both
STLPyV and MWPyV were detected in three serial fecal samples
collected from the same patient. This patient had received a lung
transplant three years previously; however it is unclear whether
immunosuppression contributed to this observation. Further
screening to determine whether this observation is a statistical
anomaly or whether it reflects some underlying biological linkage
between the two viruses is warranted.

Although both viruses were detected in fecal specimens
collected from pediatric patients, we did not detect either virus
in 237 fecal specimens collected from adult renal transplant
patients. Screening of nasopharygeal specimens, serum and urine
from these patients yielded a single urine sample positive for
STLPyV. By contrast we detected JCPyV in 45 (12%) of the urine
samples tested. At this point in time, it is still not known whether
either STLPyV or MWPyV causes bona fide infection in humans.
If we assume that STLPyV does in fact infect humans, its lower
prevalence than JCPyV in adult renal transplant patients may be
the result of one or more of the following factors: (1) STLPyV
infection may be relatively rare; (2) acute STLPyV infection may
occur primarily in children; (3) STLPyV may have a distinct
tropism that is not reflected by the samples tested; (4) the life
cycle of STLPyV may not involve persistence and then reactivation
in the context of immunosuppression.

While there are many outstanding questions regarding the
potential role of STLPyV in human infection, STLPyV and the
recently described MWPyV are the first two polyomaviruses to be
discovered in human stool samples, raising the question as to
whether they may have a primary gastrointestinal tropism.
Together with the frequent detection of WUPyV and KIPyV in
respiratory specimens (Babakir-Mina et al., 2011), and the appar-
ent primary tropism of HPyV6 and HpyV7 for the skin
(Schowalter et al., 2010), these findings demonstrate the ubiquity
of polyomaviruses in different human specimens. As disease
associations have been established for neurotropic polyoma-
viruses (JCPyV), renal-tropic polyomaviruses (BKPyV) and skin-
tropic polyomaviruses (Merkel, TSPyV), it remains to be seen
whether disease associations for the other novel polyomaviruses
will emerge.

Materials and methods

Clinical specimens

The index stool specimen was obtained in January 2009 from a
healthy, 15 month-old male living in Malawi as part of a human

gut microbiome survey of healthy and malnourished children
(Yatsunenko et al., 2012). The sample was processed by CsCl
ultracentrifugation as described previously (Reyes et al., 2010).

This study was approved by the College of Medicine Research
Ethics Committee of the University of Malawi; the Human Research
Protection Office (HRPO) of Washington University in St. Louis,
Missouri, USA; the Institutional Review Board of the University of
Maryland Baltimore, Baltimore, Maryland, USA; the Joint MRC/
Gambia Government Ethics Committee and by the Ethics committee
of the London School of Hygiene and Tropical Medicine, UK.

A panel of 514 stool samples (Saint Louis Children’s cohort)
were collected previously from children age 0–18 years old,
primarily with diarrheal diseases from July, 2009 through June,
2010 (Siebrasse et al., 2012). A total of 237 fecal samples, 261
plasma samples, 261 nasopharyngeal swabs and 373 urine speci-
mens were obtained from adult kidney transplant recipients at
Washington University’s O’Brien Center Kidney Translational
Research Core using a protocol approved by the University’s
HRPO. Patients enrolled in this study were defined as ‘new’
transplant recipients if the samples were obtained within 12
months after they received a kidney or as ‘pre-existing’ transplant
recipients if sampling occurred more than 12 months after the
transplant. In addition, we surveyed 722 fecal samples (332 cases
and 390 controls) that had been collected, using a protocol
approved by the Ethics committee, from children aged 0–5 years
old who living in The Gambia as part of the Global Enterics Multi-
Center Study (GEMS), a study of diarrhea etiologies (Kotloff et al.,
submitted for publication). For each enrolled child with diarrhea,
one healthy control child without diarrhea matched to the case by
age, gender, and time of presentation is randomly selected from
the censused community in which the case resides, matched to
the case by age, gender, and time of presentation.

Sample preparation for high throughput sequencing

From the index Malawi case, DNA was purified from the fecal
sample, amplified by rolling circle amplification and subjected to
FLX Titanium pyrosequencing as previously described (Reyes
et al., 2010). Unique high quality reads with no detectable
similarity to the reference human genome or NCBI nt database
by BLASTn were analyzed by BLASTx alignment against the NCBI
non-redundant (nr) protein database.

Amplification of complete genomes and early region splice sites

The complete genomes of the STLPyV MA138 and WD972
strains were PCR amplified in three overlapping fragments, cloned
and sequenced. DNA from the samples was initially subjected to
rolling circle amplification using the Illustra GenomiPhi V2 kit (GE
Healthcare) prior to PCR amplification. The following primers
were used: (i) STLPyVMA138-P1F (50–GCATTCATAGGGTTTCA-
GAC–30) with STLPyVMA138-P5r (50–GTAGCAGCTGCTATATTAG–
30); (ii) STLPyVMA138-Q2F (50–CCTTCAGGCCTGGATTGTTTTGTTA-
CAGC–30) with STLPyVMA138-P5r; and (iii) STLPyVMA138-P2r
(50–GGCTGGAAAACATAGAGTG–30) with STLPyVMA138-P3F (50–
CTAATATAGCAGCTGCTAC–30). WD972 strain was amplified using
the following PCR primers: (i) STLPyVWD972-P3F (50–CTAATATA
GCAGCTGCTACAGTTG–30) with STLPyVWD972-P5r (50–CAACTGT
AGCAGCTGCTATATTAG–30), (ii) and STLPyVWD972-P3F with
STLPyVMA138-P2r. Amplicons were cloned into pCR4 using TOPO
TA cloning kit (Invitrogen) and sequenced; for the STLPyV MA138
strain primers included, STLPyVMA138-Seq1F (50–CTGATGTTGTT-
GATGTGGTGGCAACCTG–30), STLPyVMA138-Seq1r (50–GTACATC
ACATGTTTCCAAGCATGAAGGC–30), STLPyVMA138-Seq2F (50–CTC
CAGGTAAGGGTTCTGAGCCATCTG–30), STLPyVMA138-Seq2r (50–
GCTTTCAAATTGTGGACCAAGCAATTCACC–30), STLPyVMA138-Seq3F
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(50–GGTAAAGTTGGAGCAGCAGGAGTTGC–30), STLPyVMA138-Seq3r
(50–TGAGAGTAGTAACTTCGGCAGCGAGC–30), STLPyVMA138-Seq4F
(50–ACTGCATCAGGGCCTACTTGAATGTC–30), and STLPyVMA138-Se-
q4r (50–AGTTTCAGGTGATGCTGCTGCCATTG–30), while primers for
the STLPyV WD972 strain consisted of STLPyVWD972-Seq1F
(50–GTACATCACATGTTTCCAAGCATGAAG–30), STLPyVWD972-Seq1r
(50–CTTCATGCTTGGAAACATGTGATGTAC–30), STLPyVWD972-Seq2F
(50–GGTTGTCCTGATACTCTGGGCATTTGG–30), STLPyVWD972-Seq2r
(50–GGAGGACAGTTAATATTTAAGGTTCTGCC–30), STLPyVWD972-
Seq3F (50–GTAGTCCTGCATTTTCAGCTGCCTGTAG–30), and STLPy-
VWD972-Seq3r (50–CAGTGACAGCAACTCCTGCTGCTCCAAC–30).

A segment of STLPyV viral genome that encompasses the early
region splice sites was verified from an additional sample
(WD1226) found to be positive by PCR screening in the Saint
Louis Children’s study. PCR amplification was performed on the
rolling circle amplified sample, using primers STLPyVConSpliceF
(50–CTTCTRGGGCTTCCAGAAGAYTCCTG–30) in combination with
STLPyVConSpliceR (50–TGGGATGCAGAGGTCCCTTCATCATC–30).

Cells and plasmids

293T cells were maintained at 37 1C in Dulbecco’s modified
Eagle’s medium, supplemented with 10% bovine growth serum,
and 1% penicillin-streptomycin, under an atmosphere of 5% CO2/
95% air. The large T antigen region of STLPyV MA138 from
nucleotide positions 4776–2452 was cloned and ligated into a
pCDNA3.1 expression vector.

RT-PCR

293T cells were seeded at 1.7�105 cells/ml. Plasmid DNA
(500 ng) was transfected with TransIT-LT1 reagent (Mirius)
according to the manufacturer’s recommendations. Forty-eight
hours post-transfection, cells were washed with Dulbecco’s
phosphate-buffered saline and removed with 0.05% trypsin. RNA
was purified from the cells using a RNeasy Mini Kit (Qiagen).
Reverse transcription was performed with the OneStep RT-PCR kit
(Qiagen) according to the manufacturer’s instructions. STLPyV
mRNA was amplified with ‘‘forward primer’’ STLSplice1F (50–
CTTCTGGGGCTTCCAGAAGATTCCTG–30) in combination with
‘‘reverse primer’’ STLSplice1r (50–GGATGCAGAGGTCCCTTCATCAT-
CAC–30). A second set of primers was used to independently verify
the splice junction [STLSplice2F (50–GATCAAGCTCTCTCTAGGCAA-
GAAGC–30) in combination with STLSplice2r (50–
GGTGTTGAATTCTGAGTAGAAGAATCAGG–30)]. Bands correspond-
ing to the unspliced, middle T antigen spliced, and large T antigen
spliced transcripts were purified by QIAquick gel extraction kit
(Qiagen), cloned into pCR4 vector using TOPO TA cloning kit
(Invitrogen) and clones from multiple transformed bacterial
colonies were sequenced.

Diversity plots and phylogenetic analyses

Nucleotide sequences of the full-length genome from the
STLPyV MA138, STLPyV WD972, MWPyV MA095 and MWPyV
WD976 strains were aligned by MUSCLE (Edgar, 2004), and minor
editing was done manually. Diversity plots were generated with
Simplot (Lole et al., 1999), employing sliding windows of 300 nt
in 50 nt steps, with Kimura (2-parameter) correction.

Phylogenetic trees were constructed from alignments of the LTAg,
VP1 and VP2 protein sequences from 28 polyomaviruses: avian
polyomavirus (NC_004764, APyV), crow polyomavirus (NC_007922,
CPyV), finch polyomavirus (NC_007923, FPyV), goose hemorrhagic
polyomavirus (NC_004800, GHPyV), trichodysplasia spinulosa-
associated polyomavirus (NC_014361, TSPyV), bornean orangutan
polyomavirus (NC_013439, OraPyV1), chimpanzee polyomavirus

(NC_014743, ChPyV), Merkel cell polyomavirus (HM0-
11557, MCPyV), murine polyomavirus (NC_001515, MPyV), hamster
polyomavirus (NC_001663, HaPyV), human polyomavirus 9
(NC_015150, HPyV9), B-lymphotropic polyomavirus (NC_004763,
LPyV), simian virus 40 (NC_001669, SV40), BK polyomavirus
(NC_001538, BKPyV), JC polyomavirus (NC_001699, JCPyV), baboon
polyomavirus (NC_007611, SA12), California sea lion polyomavirus
(NC_013796, SLPyV), bovine polyomavirus (NC_001442, BPyV), mur-
ine pneumotropic virus (NC_001505, MPtV), squirrel monkey poly-
omavirus (NC_009951, SqPyV), human polyomavirus 6 (NC_014406,
HPyV6), human polyomavirus 7 (NC_014407, HPyV7), KI polyoma-
virus (NC_009238, KIPyV), WU polyomavirus (NC_009539, WUPyV),
MW polyomavirus MA095 strain, (JQ898291, MWPyV MA095), MW
polyomavirus WD976 strain (JQ898292, MWPyV WD976), and the
two strains of STL polyomaviruses (STLPyV MA138 and STLPyV
WD972). Alignments were performed with a probabilistic, multiple
sequence alignment algorithm fast statistical alignment (FSA)
(Bradley et al., 2009). Phylogenies were constructed with MrBayes
v3.2.1 (Huelsenbeck and Ronquist, 2001) using a Bayesian MCMC
inference (BI), and PhyML v3.0 (Guindon and Gascuel, 2003) by the
maximum likelihood (ML) method. MrBayes analyses
(RtREVþ IþGþF) were run for 4,000,000–6,000,000 steps with a
sample frequency set to 500 and a 25% burn-in period. Convergence
and mixing were assessed with Tracer v1.5 (Drummond and Andrew,
2009). Analyses were performed at least twice. Support for ML trees
(LGþ IþGþF) was assessed by 1000 nonparametric bootstraps. The
two methods yielded trees with similar topologies.

For the phylogenetic analysis of STLPyV and MWPyV
sequences obtained from screening, nucleotide sequences were
aligned by Muscle (Edgar, 2004) and primer sequences were
trimmed from the alignment. A phylogeny was constructed by
the neighbor-joining method using the Jukes Cantor method of
correction (Drummond et al., 2011). Consistent results were
obtained with the ML method.

Diagnostic PCR amplification

Standard precautions to avoid end product contamination were
taken for all PCR assays, including the use of PCR hoods and
maintaining separate areas for PCR set up and analysis. For every
88 samples tested, seven no-template negative controls were inter-
spersed between the actual samples. Accuprime hot start Taq
(Invitrogen) was used to amplify 5 ml of extracted samples using
the following PCR program: 95 1C for 5 min, 40 cycles of 95 1C for
30 sec, 55 1C for 30 sec, 72 1C for 29 sec, followed by 72 1C for
10 min. STLPyV and MWPyV were detected with the ‘‘forward
primer’’ STLMWScreenF (50–GRATGAAAYRCWWTTACAGGTTGC-
CACC–30) in combination with the ‘‘reverse primer’’ STLMWScreenr
(50– GTGGWAAAACAACTGTAGCWGCTGC–30) that together generate
a 481 bp (STLPyV) or 484 bp (MWPyV) amplicon from the 30-end of
the large T antigen coding region. Products were visualized follow-
ing electrophoresis on 1.25% agarose gels. Amplicons were purified
by QIAquick gel extraction kit (Qiagen), cloned into pCR4 using
TOPO TA cloning kit (Invitrogen) and clones from multiple trans-
formed bacterial colonies were sequenced to verify their identity.

Accession numbers

The sequences of the two complete genomes of STLPyV have
been entered into the GenBank database under accession num-
bers JX463183 (strain MA138) and JX463184 (strain WD972).
Amplicon sequences from the STLPyV and MWPyV strains have
been deposited under accession numbers JX463185 – JX463215.
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Identification of MW Polyomavirus, a Novel Polyomavirus in Human
Stool
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We have discovered a novel polyomavirus present in multiple human stool samples. The virus was initially identified by shotgun
pyrosequencing of DNA purified from virus-like particles isolated from a stool sample collected from a healthy child from Ma-
lawi. We subsequently sequenced the virus’ 4,927-bp genome, which has been provisionally named MW polyomavirus
(MWPyV). The virus has genomic features characteristic of the family Polyomaviridae but is highly divergent from other mem-
bers of this family. It is predicted to encode the large T antigen and small T antigen early proteins and the VP1, VP2, and VP3
structural proteins. A real-time PCR assay was designed and used to screen 514 stool samples from children with diarrhea in St.
Louis, MO; 12 specimens were positive for MWPyV. Comparison of the whole-genome sequences of the index Malawi case and
one St. Louis case demonstrated that the two strains of MWPyV varied by 5.3% at the nucleotide level. The number of polyoma-
viruses found in the human body continues to grow, raising the question of how many more species have yet to be identified and
what roles they play in humans with and without manifest disease.

Over the past 5 years, seven novel polyomaviruses have been
discovered in humans, including KI polyomavirus (KIPyV)

(2), WU polyomavirus (WUPyV) (13), Merkel cell polyomavirus
(MCPyV) (11), human polyomavirus 6 (HPyV6) (40), human
polyomavirus 7 (HPyV7) (40), trichodysplasia spinulosa-associ-
ated polyomavirus (TSPyV) (45), and human polyomavirus 9
(HPyV9) (42). Polyomaviruses also infect a wide variety of mam-
malian and avian hosts, including the recently described novel
polyomaviruses of bats (Myotis species) (32), sea lions (Zalophus
californianus) (8, 47), multimammate mice (Mastomys species)
(33), canaries (Serinus canaria) (19), orangutans (Pongo species)
(17), squirrel monkeys (Saimiri species) (46), chimpanzees (Pan
troglodytes subsp. verus) (28), and gorillas (Gorilla gorilla) (28).

Viruses in the Polyomaviridae family typically possess
�5,000-bp circular, double-stranded DNA genomes. The genome
can be divided into three parts—the regulatory region, the early
region, and the late region. The regulatory region, also called the
noncoding control region (NCCR), contains the origin of replica-
tion and promoters for the early and late regions. Transcription
occurs bidirectionally from the regulatory region. The early region
is expressed from a common primary transcript and is alterna-
tively spliced to produce the large T antigen (LTAg) and small T
antigen (STAg) prior to viral replication. LTAg and STAg typically
share the first �80 amino acids. The late region is expressed after
viral replication has begun and encodes the structural proteins
VP1, VP2, and VP3. VP1, the major structural protein, typically
comprises over 70% of the viral particle and is the antigenic por-
tion of the virus to which most natural antibodies are made (20).

Disease associations have been established for some of the hu-
man polyomaviruses. The two well-studied human polyomavi-
ruses BK polyomavirus (BKPyV) and JC polyomavirus (JCPyV)
are important human pathogens. BKPyV is known to cause BK
nephropathy, which can lead to renal allograft failure, and hem-
orrhagic cystitis, while JCPyV is the etiological agent of progres-
sive multifocal leukoencephalopathy (PML). Both viruses are
ubiquitous worldwide, with seroprevalence rates of 55 to 85% for

BKPyV and 44 to 77% for JCPyV (25). Following primary infec-
tion in childhood, BKPyV and JCPyV establish persistent latent
infections that can periodically reactivate, leading to shedding of
infectious virus in the urine (36). Primary infection and periodic
reactivation are typically asymptomatic unless the host is immu-
nocompromised, in which case life-threatening illness can occur
(36). MCPyV is associated with Merkel cell carcinoma (MCC), a
rare but aggressive skin cancer. MCPyV DNA is found in �80% of
MCC tumors and is clonally integrated into a subset of these (14).
TSPyV has been linked to trichodysplasia spinulosa, a very rare
skin condition associated with immunosuppression following or-
gan transplantation (24). It is unclear if the other human polyo-
maviruses play a role in disease.

The recently discovered human polyomaviruses have all been
identified through the use of molecular methods for detection of
viral nucleic acids. WUPyV and KIPyV were discovered using
high-throughput Sanger sequencing (2, 13). MCPyV was identi-
fied using digital transcriptome subtraction, which entails pyrose-
quencing of a cDNA library followed by subtraction of human
reads to identify novel viral sequences (11). HPyV6 and TSPyV
were discovered using rolling circle amplification (RCA) (40, 45),
and consensus PCR primers were utilized to find HPyV7 and
HPyV9 (40, 42).

We used shotgun pyrosequencing of purified virus-like parti-
cles (VLPs) recovered from a fecal sample to discover a novel
polyomavirus in the stool of a healthy child from Malawi. The
virus was also detected in 12 additional stool samples from the
United States, indicating it has a wide geographic distribution. As
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stool is not a sterile site, it is currently unknown whether this
polyomavirus actively infects humans. Finally, we compared the
whole genome nucleotide sequences of the index Malawi case and
a case from St. Louis and found these two strains to have 5.3%
nucleotide variation.

MATERIALS AND METHODS
Human studies. This study was approved by the College of Medicine
Research and Ethics Committee of the University of Malawi and the Hu-
man Research Protection Office of Washington University in St. Louis.
The index stool specimen was obtained from a healthy, breast-fed, 15-
month-old female living in Mayaka, Malawi, in September 2008 as part of
a global gut microbiome survey (48).

A total of 514 stool specimens from St. Louis were tested for MWPyV.
Stool samples were from children, age 0 to 18 years, with diarrhea and
were submitted to the St. Louis Children’s Hospital, St. Louis, MO, mi-
crobiology laboratory for bacterial culture from July 2009 to June 2010.

Sample preparation and 454 pyrosequencing. VLPs were purified as
described earlier (37) with minor modifications. In brief, 50 mg of a fro-
zen fecal sample was resuspended in 400 �l of SM buffer (100 mM NaCl,
8 mM MgSO4, 50 mM Tris [pH 7.5], and 0.002% gelatin [wt/vol]). Fol-
lowing centrifugation (2,500 � g for 10 min at 4°C) and filtration through
0.45- and 0.22-�m-pore-size Millex filters (Millipore) to remove bacterial
cells and large particles, the sample was treated with chloroform (0.2 vol-
umes) for 10 min and centrifuged for 5 min at 2,500 � g. The aqueous
phase was treated with Baseline-Zero DNase (2.5 U/ml) (Epicentre) for 1
h at 37°C to remove free DNA, followed by an incubation at 65°C for 15
min to inactivate the enzyme. To extract VLP-associated DNA, the solu-
tion was treated with 10 �l 10% SDS and 3 �l proteinase K (20 mg/ml) for
20 min at 56°C. Subsequently, 35 �l of 5 M NaCl and 28 �l of a solution of
10% cetyltrimethylammonium bromide-0.7 M NaCl were introduced.
After a 10-min incubation at 65°C, an equal volume of chloroform was
added, and the mixture was centrifuged for 5 min at 8,000 � g at room
temperature. The supernatant was transferred to a new tube, and an equal
volume of phenol-chloroform-isoamyl alcohol (25:24:1) was added, fol-
lowed by centrifugation for 5 min at 8,000 � g at room temperature. The
supernatant was collected, and the DNA was purified using Qiagen
MiniElute columns by following the manufacturer’s instructions, with a
final elution volume of 35 �l.

Purified VLP-derived DNA (1 �l) was used as an input in a 20-�l RCA
reaction mixture using the Illustra GenomiPhi V2 kit (GE Healthcare) as
recommended by the manufacturer (n � four independent reactions).
After 90 min of amplification, the four reactions were pooled and purified
using the Qiagen DNeasy kit. DNA (500 ng) was subjected to 454 FLX
Titanium pyrosequencing.

Analysis of pyrosequencing reads. The individual 454 reads were an-
alyzed using a custom bioinformatics pipeline as previously described (7).
In brief, unique, high-quality reads were aligned against the reference
human genome and the GenBank nucleotide database using BLASTn.
Reads with no hits or hits with an E-value greater than e�5 were then
aligned using BLASTx to the GenBank nr (nonredundant) database, and
reads aligning to viral sequences with the lowest E value were identified.

Complete genome sequencing. PCR primers were designed to span
the gaps between the six reads showing significant similarity to polyoma-
viruses generated by pyrosequencing to obtain an initial whole-genome
sequence. The sequences for these primers are available upon request. The
complete MWPyV genome derived from the index Malawi case (desig-
nated strain MA095, GenBank JQ898291) was sequenced to greater than
3� coverage using four sets of overlapping PCR primers. They were
(listed 5= to 3=) ACTTAAACCATGTTCCTGACTCTGT (ES087) and AC
AGAGATTACAGCACCCATATACT (ES091), GCATCTGCCCTGGTA
CAAACA (ES088) and CAGACAACTCAGAAGTTTCCACCTC (ES092),
GAAGTAGAAGGAGAGGAAAATGCCG (ES089) and TGCTGTTGAG
GATACACAACAAGAC (ES093), and AGGCTGCTTAAAGGCCTATG
AATG (ES090) and CTGAAACACCAGTTGCTCCAGC (ES094). Ampli-

cons from independent PCRs were cloned into pCR4 (Invitrogen) and
bidirectionally sequenced. The complete genome from St. Louis sample
WD976 (strain WD976; GenBank accession no. JQ898292) was amplified
and sequenced to greater than 3� coverage in the same manner, using the
same primer pairs.

Genome annotation. Open reading frames (ORFs) were predicted
using NCBI ORF Finder. The LTAg and STAg ORFs were manually
scanned for conserved splice donor and acceptor sites. Conserved motifs
in the TAgs and in the NCCR were identified using NCBI CD-Search
software (30) and by manual identification. Prediction of putative bind-
ing sites for transcription factors was performed using AliBaba software,
version 2.1 (15). The NCCR region was scanned for palindrome patterns
using the EMBOSS palindrome software (38).

Phylogenetic analysis. Protein sequences associated with the refer-
ence genomes for 27 polyomaviruses were obtained from GenBank;
these included baboon polyomavirus (NC_007611; SA12) (6), bat
polyomavirus (NC_011310; BatPyV) (32), B-lymphotropic polyoma-
virus (NC_004763; LPyV) (34), BKPyV (NC_001538) (43), Bornean
orangutan polyomavirus (NC_013439; OraV1) (17), bovine polyoma-
virus (NC_001442; BPyV) (41), California sea lion polyomavirus
(NC_013796; SLPyV) (8), hamster polyomavirus (NC_001663;
HaPyV) (9), JCPyV (NC_001699) (12), MCPyV (HM011557) (40),
murine pneumotropic virus (NC_001505; MPtV) (31), murine polyo-
mavirus (NC_001515; MPyV) (16), simian virus 40 (NC_001669;
SV40) (27), squirrel monkey polyomavirus (NC_009951; SqPyV) (46),
Sumatran orangutan polyomavirus (FN356901; OraV2) (17), TSPyV
(NC_014361) (45), HPyV6 (NC_014406) (40), HPyV7 (NC_014407)
(40), KIPyV (NC_009238) (2), WUPyV (NC_009539) (13), avian
polyomavirus (NC_004764; APyV) (39), canary polyomavirus
(GU345044; CaPyV) (19), crow polyomavirus (NC_007922; CPyV)
(23), finch polyomavirus (NC_007923; FPyV) (23), goose hemor-
rhagic polyomavirus (NC_004800; GHV) (22), chimpanzee polyoma-
virus (NC_014743; ChPyV) (10), and HPyV9 (NC_015150) (42). The
predicted open reading frames for MWPyV LTAg, VP1, and VP2 were
aligned with the corresponding proteins from the 27 known polyoma-
viruses using Fast Statistical Alignment (FSA) software, version 1.15.2
(5). For the LTAg analysis, unalignable regions were removed, and the
remainder of the alignment was concatenated. Maximum likelihood
trees were generated using PhyML, version 3.0 (18), with 1,000 boot-
strap replicates and the best model as determined by Prot Test soft-
ware, version 2.4 (1); these were RtRev for VP1 and LG for VP2 and
LTAg.

Nucleic acid extraction. Stools which had been frozen at �80°C were
diluted approximately 1:6 in phosphate-buffered saline (PBS) and filtered
through 0.45-�m-pore-size membranes prior to extraction. Total nucleic
acids were extracted using an Ampliprep Cobas automated extractor
(Roche) and eluted in a volume of 75 �l. The samples were arrayed in a
96-well plate for storage at �80°C.

Real-time PCR screening of the St. Louis cohort. A TaqMan real-
time PCR assay was designed to target the MWPyV LTAg using Primer
Express software (Applied Biosystems). Primers and probe used for this
assay were 5=-TGAGAAGGCCCCGGTTCT-3= (ES105), 5=-GAGGATGG
GATGAAGATTTAAGTTG-3= (ES106), and 5=-FAM-CCTCAT-
CACTGGGAGC-MGBNFQ-3= (ES107) (where FAM is 6-carboxyfluo-
rescein). The resulting amplicon was 73 bp. Standard curves were
generated using serial 10-fold dilutions ranging from 5 � 106 to 5 copies
of a positive-control plasmid (plasmid K-p31) per reaction. The 25-�l
PCR mixtures consisted of 5 �l of extracted sample, 1� universal TaqMan
real-time PCR master mix (Applied Biosystems), 12.5 pmol of each
primer, and 4 pmol of the probe. Samples were tested in a 96-well-plate
format, with eight water negative controls (one per row) and one positive
control containing 50 copies of plasmid per plate. The cycling conditions
were 50°C for 2 min, 95°C for 10 min, and 45 cycles of 95°C for 15 s
followed by 60°C for 1 min. Reactions were run on an ABI 7500 real-time
thermocycler (Applied Biosystems). The threshold of all plates was set at a
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standard value, and the data were analyzed using the ABI software. Sam-
ples were counted as positive if their threshold cycle (CT) value was �35.

Nucleotide sequence accession numbers. The sequences reported
here were deposited in GenBank under the accession numbers JQ898291
(index case, strain MA095) and JQ898292 (St. Louis case, strain WD976).

RESULTS
Discovery of a novel polyomavirus by pyrosequencing. MW
polyomavirus was discovered in a stool sample from a child from
Malawi; the sample was collected in September 2008 as part of a
global gut microbiome survey project (48). Following purification
of VLPs by passage through 0.45- and 0.22-�m-pore-sized filters
and subsequent DNase treatment, DNA was extracted from the
VLPs and amplified using the highly processive phi29 polymerase.
The resulting material was subjected to 454 pyrosequencing. Six
reads were identified with limited similarity to known polyoma-
viruses. Three of the initial six reads could be assembled into one
959-bp contig, with the highest scoring BLASTx hit possessing
36% amino acid identity to LPyV STAg. The other three reads all
aligned to the VP1 protein of known polyomaviruses by BLASTx
and shared 64%, 48%, and 59% amino acid identity to JCPyV
VP1, TSPyV VP1, and JCPyV VP1, respectively.

Complete genome sequencing and genome analysis. A series
of PCR primers was designed based on the initial six reads. Se-
quencing of the resulting amplicons yielded a complete genome of
4,927 bp (Fig. 1). ICTV has set the demarcation criteria for pro-
posed new polyomaviruses at 81% nucleotide identity over the
whole genome (21). Based on the limited sequence similarity to
any known polyomaviruses, we named the novel virus MW poly-
omavirus (MWPyV) after its discovery in Malawi. The overall GC
content of MWPyV was 37%, which is very similar to those of
WUPyV (39%), BKPyV (39%), and JCPyV (40%). The MWPyV
genome organization was characteristic of the known poly-
omaviruses and included an early region coding on one strand
for LTAg and STAg and a late region coding on the opposite
strand for the structural proteins VP1, VP2, and VP3. The sizes
of the predicted ORFs were comparable to those of known
polyomaviruses (Table 1).

The TAgs and VP2 were separated by a regulatory region, which
had an A/T-rich tract on the late side of the putative replication ori-
gin. The core origin of replication contained three repeats of the con-
sensus pentanucleotide LTAg binding site, G(A/G)GGC (35) (two
GAGGC and one GGGGC), and one nonconsensus binding site,

TAGGC. Several polyomaviruses (BKPyV, JCPyV, WUPyV, KIPyV,
and SV40) contain an imperfect palindrome sequence followed by
additional LTAg binding sites to the early side of the four binding
sites. Palindrome patterns were identified in MWPyV, but no addi-
tional LTAg binding sites were detected in this area. The regulatory
region contained several predicted transcription factor binding sites,
including multiple binding sites for four factors known to play a role
in BKPyV viral transcription and regulation: Sp1, nuclear factor I
(NFI), AP1, and C/EBP (29). Multiple binding sites were also identi-
fied for HNF-3, USF-2, and Oct-1. Many other transcription factors
were predicted to bind to only one site.

Analysis of the MWPyV LTAg ORF revealed a conserved splice
donor site immediately after amino acid 80; the position of this
site was similar to that found in WUPyV, BKPyV, and JCPyV,
which occur after amino acids 84, 81, and 81, respectively. Two
consensus splice acceptor sites were identified, which would yield
introns of 355 or 463 bp and proteins of 668 or 632 amino acids,
respectively. Examination of the protein sequence of the 632-ami-
no-acid form showed that it lacked the Rb-binding motif, which
was contained in the excised intron. In contrast, the predicted
668-amino-acid protein included the conserved Rb-binding mo-
tif. Based on this analysis, we predicted the LTAg to be 668 amino
acids.

MWPyV LTAg possessed conserved features common to other
polyomavirus LTAgs, including a DNaJ domain containing the
conserved region 1 (cr1) sequence and the highly conserved hexa-
peptide motif HPDKGG. These domains were followed by con-
served region 2 (cr2), which contained the Rb-binding motif
LxCxE (LSCNE in MWPyV), a putative nuclear localization signal
(NLS), a canonical DNA binding domain, and a zinc finger region.
Closer inspection of the zinc finger region revealed a conserved
C2H2 zinc finger motif with the sequence C324, C327, H334,
H339. There are typically three highly conserved amino acids N
terminal to the first cysteine (C324) in this motif, including a
tyrosine 10 amino acids away, an aspartic acid located 18 amino
acids away, and an alanine present 25 amino acids away (35). In
MWPyV, the aspartic acid and alanine residues were conserved,
while the tyrosine was not and was replaced by a leucine. A con-
served leucine-rich hydrophobic region C terminal to the aspartic
acid was also present. Following the zinc finger region, the
MWPyV LTAg contained the highly conserved ATPase-p53 bind-
ing domain, including the two conserved motifs GPXXXGKT and
GXXXVNLE. There was no sequence corresponding to the host
range domain present in SV40, BKPyV, SA12, and JCPyV (35).

In most polyomaviruses, STAg is encoded by a single unspliced
ORF. In HaPyV and MPyV, the STAg transcript is spliced. Anal-
ysis of the MWPyV early region did not reveal an obvious splice
donor site, so the STAg was predicted to be 199 amino acids. As

TABLE 1 Putative proteins encoded by MWPyV (strain MA095)

Protein
Putative coding
region(s)

Predicted
size (aa)

Calculated
mass (kDa)

Range (aa) in
other
polyomaviruses

STAg 4927–4328 199 23.4 124–198
LTAg 4927–4688,

4332–2566
668 77.0 599–817

VP1 1353–2564 403 43.6 343–497
VP2 431–1363 310 34.2 241–415
VP3 761–1363 200 22.8 190–272

FIG 1 Genome organization of MWPyV. ori, origin of replication.
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LTAg and STAg share the first 80 amino acids, the STAg also
contained the DNaJ domain. In the unique C-terminal part of
STAg, there was a conserved cysteine-rich motif, CX5CX7– 8

CXCX2CX21–22CSCX2CX3WFG. This motif was conserved in
MWPyV with the exception of the initial cysteine residue and the
serine residue, which were an isoleucine and a phenylalanine, re-
spectively.

MPyV and HaPyV encode a middle T antigen (MTAg) gener-
ated by alternative splicing; the MWPyV genome was scanned for
splicing motifs similar to those used by MPyV and HaPyV. No
obvious splice sites that would generate an appropriately sized
third T antigen protein were identified, suggesting that MWPyV
likely does not encode an MTAg.

Some polyomaviruses, including JCPyV and BKPyV, also en-
code an agnoprotein in the late region between the NCCR and the
VP2 start codon. Analysis of the MWPyV sequence in this region
yielded one 45-amino-acid ORF on the same strand as the struc-
tural proteins. However, because this ORF was not conserved in
the other completely sequenced MWPyV strain, strain WD976
(described later in this report), we do not believe that MWPyV
encodes an agnoprotein.

Phylogenetic analysis. Maximum likelihood analysis of the
VP1, VP2, and LTAg proteins demonstrated that MWPyV was
highly divergent from all known polyomaviruses (Fig. 2). Analysis

of VP1 sequences showed that MWPyV is midway between the
Wukipolyomavirus and Orthopolyomavirus genera (Fig. 2A). In
contrast, based on VP2 and LTAg sequences, MWPyV clustered
with the clade containing HPyV9, LPyV, HaPyV, MPyV, TSPyV,
MCV, ChPyV, and the orangutan polyomaviruses (Fig. 2B and C).
The discordant phylogenetic relationships suggest that MWPyV
might have been derived from an ancestral recombination event.

Prevalence of MWPyV. A TaqMan real-time PCR assay target-
ing the MWPyV LTAg was designed and validated using a posi-
tive-control plasmid; based on the standard curve, the MWPyV
assay demonstrated a reliable detection limit of approximately five
copies per reaction, yielded a linear regression R2 value of 0.99,
and was 93% efficient. This real-time PCR assay was used to screen
a cohort consisting of 514 stool samples from children at St. Louis
Children’s Hospital presenting with diarrhea. Twelve samples
(2.3%) from the St. Louis cohort tested positive for MWPyV (Ta-
ble 2).

Three of the MWPyV-positive samples were obtained from a
5-year-old lung transplant recipient over a period of 4 months
from August to December 2009 (patient 1; Table 2). This patient
had received a lung transplant 3 years earlier and at the time of
sampling presented with persistent, recurrent diarrhea. Two of the
samples, WD972 and WD976, were obtained on consecutive days
in August 2009, and both samples were positive for Escherichia coli

FIG 2 Phylogenetic analysis of MW polyomavirus. Amino-acid-based trees were generated using the maximum likelihood method with 1,000 bootstrap
replicates. Bootstrap values less than 700 are not shown. (A) VP1; (B) VP2; (C) LTAg.
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serotype O Rough. The patient again presented with diarrhea in
December 2009 (sample WD1226), but this sample had no growth
in the enteric pathogen culture (including E. coli) and was negative
for ova and parasites (Table 2). The other nine samples came from
nine individual patients, ranging in age from 1 to 5 years (Table 2).
Eight of the nine patients were negative for all organisms tested
except MWPyV. Only patient 10 (sample WD1442) was positive
for Campylobacter jejuni.

Strain variation. To assess the extent of sequence variation
between the St. Louis and Malawi isolates, we sequenced the com-
plete genome of MWPyV from St. Louis sample WD976 to greater
than 3� coverage. The two whole-genome sequences diverged by
5.3% at the nucleotide level. Strain WD976 had two insertions (11
bp and 1 bp) in the NCCR, which resulted in a genome size of
4,939 bp. The vast majority of the polymorphisms in the coding
regions resulted in synonymous mutations. One notable mutation
changed the size of the STAg ORF. The predicted TAA stop codon
identified in the MA095 strain was mutated to AAA in WD976,
resulting in a protein prediction of 206 amino acids, seven amino
acids longer than the index genome’s STAg.

DISCUSSION

We used a pyrosequencing strategy to identify a novel polyoma-
virus present in human stool. The initial discovery was in a stool
specimen collected from a healthy child in Malawi. Further
screening by real-time PCR demonstrated the presence of the vi-
rus in 12 stool samples collected from a cohort of patients in St.
Louis, MO. These data demonstrated that MWPyV is geographi-
cally widespread in human populations and can be found on two
continents. As the ICTV polyomavirus subgroup currently has no
systematic naming convention for novel polyomaviruses, we
chose to name this new virus using a two-letter convention fol-
lowing the model of BKPyV, JCPyV, KIPyV, and WUPyV; we
made this decision for two reasons. First, we did not employ the
numerical system used in the naming of HPyV6, HPyV7, and
HPyV9 because we have not yet formally demonstrated that this
virus infects humans and to avoid potential conflicts in temporal
priority in describing novel polyomaviruses. Second, both
MCPyV and TSPyV are named based on putative disease associa-
tions, but no disease association currently exists for our new virus.

Therefore, we chose a two-letter abbreviation reflecting the geo-
graphic location of the index case.

The ICTV polyomavirus subgroup recently defined two mam-
malian genera, Orthopolyomavirus and Wukipolyomavirus, within
the family Polyomaviridae based primarily on phylogenetic anal-
ysis of the late genes (combined VP1 and VP2) (21). Classification
of MWPyV into one of these two genera is confounded by the
distinct phylogenetic tree topologies that were generated for the
VP1 and VP2 proteins (Fig. 2). The different topologies suggest
that MWPyV is derived from an ancestral recombination event.
Such recombination among polyomaviruses has been previously
suggested (40).

We sequenced two complete genomes of MWPyV, one from
the index child in Malawi and one from a child in St. Louis. A high
degree of strain variation (5.3%) was observed between these two
MWPyV strains, which is comparable to the �5% sequence diver-
gence present in strains of BKPyV (26). It contrasts sharply with
the very limited variation (�1.2%) seen with WUPyV worldwide
(3). The primers and probe used in the aforementioned MWPyV
real-time PCR assay were perfectly conserved in both strains and
thus detect both stains with equal efficiency. However, it remains
to be determined whether even greater variation in MWPyV can
be discovered when broader consensus sequence-based assays are
used. Others have speculated that sequence variation in BKPyV
and JCPyV plays a role in viral pathogenesis and disease severity
(4, 44). If MWPyV is ultimately found to be a pathogen, it will be
interesting to determine whether there are strain-dependent
pathogenic phenotypes. Among the differences we observed were
a 7-amino-acid extension of the STAg and an 11-bp insertion in
the NCCR in the WD976 strain versus the index Malawi strain.
The functional consequences of these alterations remain to be
defined.

One critical question is whether MWPyV is a bona fide infec-
tious agent of humans and if so, what disease(s), if any, might be
associated with MWPyV infection. The detection of MWPyV in
stools of children with diarrhea, many of which have no known
infection etiology, raises the possibility that MWPyV might play a
role in human diarrhea. Alternatively, it is possible that MWPyV
does not cause infection in the gastrointestinal tract but has a

TABLE 2 Specimens and patients testing positive for MWPyV

Sample Patient Age Sex CT

Date
(mo/day/yr) Tested positive Tested negative

WD972 1 5 yr 0 mo M 21.68 8/10/09 E. coli serotype O Rough Enteric pathogen culturea (except E. coli),
Giardia, Cryptosporidium, ova & parasite
screen (O&P)

WD976 1 21.85 8/11/09 E. coli serotype O Rough Enteric pathogen culture (except E. coli),
Giardia, Cryptosporidium, C. difficile, O&P

WD1226 1 28.21 12/22/09 Enteric pathogen culture, O&P
WD1239 2 1 yr 0 mo M 31.76 12/29/09 Enteric pathogen culture, C. difficile
WD1314 3 1 yr 5 mo F 30.37 2/11/10 Enteric pathogen culture, rotavirus
WD1300 4 1 yr 8 mo F 34.99 2/4/10 Enteric pathogen culture, rotavirus, viral culture
WD1260 5 1 yr 4 mo F 29.91 1/12/10 Enteric pathogen culture, O&P
WD958 6 1 yr 8 mo M 31.89 8/3/09 Enteric pathogen culture, C. difficile, O&P
WD1039 7 4 yr 3 mo F 31.42 9/14/09 Enteric pathogen culture, C. difficile
WD1233 8 4 yr 9 mo M 32.33 12/25/09 Enteric pathogen culture, rotavirus
WD1055 9 5 yr 5 mo M 30.90 9/22/09 Enteric pathogen culture
WD1442 10 3 yr 0 mo M 32.41 5/24/10 C. jejuni Enteric pathogen culture (except C. jejuni)
a Enteric pathogen culture includes Salmonella, Shigella, E. coli O157, E. coli Shiga toxins not 0157, Yersinia, Aeromonas, Plesiomonas, and Campylobacter.
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tropism for other human organ systems and is shed in stool as a
mode of transmission or simply as a by-product. It is also possible
that MWPyV is a dietary contaminant and does not actively infect
humans. Approaches to answer whether MWPyV is an infectious
agent include serological studies to determine whether the host
mounts an antibody-based immune response to MWPyV and ad-
ditional screening of specimens collected from sterile sites, such as
serum or cerebrospinal fluid. Further studies will be needed to
define whether MWPyV has additional tropisms in the human
body and to assess potential associations with human disease.
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Extensive personal human gut microbiota culture
collections characterized and manipulated in
gnotobiotic mice
Andrew L. Goodman1, George Kallstrom, Jeremiah J. Faith, Alejandro Reyes, Aimee Moore, Gautam Dantas,
and Jeffrey I. Gordon2

Center for Genome Science and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108

Contributed by Jeffrey I. Gordon, February 24, 2011 (sent for review January 21, 2011)

The proportion of the human gut bacterial community that is
recalcitrant to culture remains poorly defined. In this report, we
combine high-throughput anaerobic culturing techniques with
gnotobiotic animal husbandry and metagenomics to show that
the human fecal microbiota consists largely of taxa and predicted
functions that are represented in its readily cultured members.
When transplanted into gnotobiotic mice, complete and cultured
communities exhibit similar colonization dynamics, biogeograph-
ical distribution, and responses to dietary perturbations. More-
over, gnotobiotic mice can be used to shape these personalized
culture collections to enrich for taxa suited to specific diets. We
also demonstrate that thousands of isolates from a single donor
can be clonally archived and taxonomically mapped in multiwell
format to create personalized microbiota collections. Retrieving
components of a microbiota that have coexisted in single donors
who have physiologic or disease phenotypes of interest and
reuniting them in various combinations in gnotobiotic mice should
facilitate preclinical studies designed to determine the degree to
which tractable bacterial taxa are able to transmit donor traits or
influence host biology.

gut bacterial diversity | nutrient–microbe interactions | translational
medicine pipeline for human microbiome

Efforts to dissect the functional interactions between microbial
communities and their habitats are complicated by the long-

standing observation that, formany of these communities, the great
majority of organisms have not been cultured in the laboratory (1).
Methodological differences between culture-independent and
culture-based approaches have contributed to the challenge of
deriving a realistic appreciation of exactly how much discrepancy
exists between the culturable components of a microbial ecosystem
and total community diversity. Table S1 gives examples of these
methodological differences.
The largest microbial community in the human body resides in

the gut: Its microbiome contains at least two orders of magnitude
more genes than are found in our Homo sapiens genome (2).
Culture-independent metagenomic studies of the human gut
microbiota are identifying microbial taxa and genes correlated
with host phenotypes, but mechanistic and experimentally dem-
onstrated links between key community members and specific
aspects of host biology are difficult to establish with thesemethods
alone. The goals of the present study were (i) to evaluate the
representation of readily cultured phylotypes in the human gut
microbiota; (ii) to profile the dynamics of these cultured com-
munities in a mammalian gut ecosystem; and (iii) to determine
whether a clonally arrayed, personalized strain collection could be
constructed to serve as a foundation for reassembling varying
elements of a human’s gut microbiota in vitro or in vivo.

Results
To estimate the abundance of readily cultured bacterial phylo-
types in the distal human gut, primers were used to amplify

variable region 2 (V2) of bacterial 16S ribosomal RNA (rRNA)
genes present in eight freshly discarded fecal samples obtained
from two healthy, unrelated anonymous donors living in the
United States (n = 1 complete sample per donor at t = 1, 2, 3,
and 148 d). Amplicons were subjected to multiplex pyrose-
quencing, and the results were compared with those generated
from DNA prepared from ∼30,000 colonies cultured from each
sample under strict anaerobic conditions for 7 d at 37 °C on
a rich gut microbiota medium (GMM) composed of commer-
cially available ingredients (“cultured” samples; details of the
culturing technique are given in SI Materials and Methods, and
a description of GMM is given in Table S2). The resulting 16S
rRNA datasets were de-noised to minimize sequencing errors (3,
4), reads were grouped into operational taxonomic units (OTUs)
of ≥97% nucleotide sequence identity (ID), and chimeric
sequences were removed (SI Materials and Methods).

In total, 632 distinct 97%ID OTUs were observed in the com-
plete samples, and 316 were identified in the cultured samples.
The average abundance of cultured OTUs in the complete sam-
ples was 0.4%, but the average abundance of uncultured OTUs
(i.e., those observed in the complete but not the cultured samples)
was significantly lower (0.06%; P < 10−6 by an unpaired, two-tailed
Student’s t test, not assuming equal variances) (5).
To evaluate the representation of readily cultured taxa in the

human gut microbiota at varying phylogenetic levels, we assigned
taxonomic designations to each 97%ID OTU (SI Materials and
Methods). Each 16S rRNA read from the complete fecal sample
was scored as “cultured” if it had a taxonomic assignment that
also was identified in the corresponding cultured population. If
a 97%ID OTU in the complete sample could not be placed in
any known taxonomic group, it was scored as “cultured” only if
the same 97%ID OTU was observed in the cultured sample. This
analysis indicated that 99% of the 16S rRNA reads derived
from the complete fecal samples from either donor belong to
phylum-, class- and order-level taxa that are also present in the
corresponding cultured sample; 89 ± 4% of the reads are derived
from readily cultured family-level taxa, and 70 ± 5% and 56 ±
4% belong to readily cultured genus- and species-level taxa, re-
spectively (Fig. 1A Upper). Two alternate taxonomic binning
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methods, the Ribosomal Database Project (RDP) Bayesian
classifier v2.0 and an arbitrary %ID cutoff, produced similar
results (Fig. S1 A–F). Control experiments described in SI
Materials and Methods indicate that at least 98% of the reads
generated from 30,000 pooled colonies are not derived from
nongrowing or lysed bacteria (the percentage of reads from the
original fecal samples that are derived from dead cells is un-
known).
Unsupervised hierarchical clustering of the complete and

cultured microbial communities, across the two donors and four
time points, revealed that cultured samples cluster separately
from those that had not been cultured. Both phylogenetic and
nonphylogenetic metrics segregate cultured samples by donor,
suggesting that the distinctiveness of each donor’s microbiota is
preserved in their collections of readily cultured representatives
(Fig. S1 G and H).
We performed shotgun DNA pyrosequencing to determine

the degree to which predicted functions contained in the com-
posite genomes of the complete human fecal microbial com-
munities were represented in the corresponding collection of
cultured microbes [n = 4 samples (one complete and one cul-
tured from each of two donors); 119,842 ± 43,086 high-quality
shotgun reads per microbiome; average read length, 366 nt]. On
average, 90% of the 2,302 distinct KEGG Orthology (KO) anno-
tations identified in the two uncultured samples also were ob-
served in the cultured communities (Fig. 1B, Fig. S2 A and B, and
Table S3). This high percentage of functional representation also
was observed when the microbiomes were subjected to alternate
annotation schemes. On average, 94% of 929 enzyme commission
(EC) assignments and 95% of 216 level 2 KEGG pathways asso-
ciated with the complete fecal samples also were detected in the
cultured communities (Fig. S2 C–F and Tables S4 and S5).
To compare the functions represented in the complete and

cultured microbiota independent of annotation, we captured
antibiotic-resistance genes from their microbiomes in Escherichia
coli expression vectors. Each E. coli library contained ∼1 GB of
1.5- to 4-kB fragments of microbiome DNA and was screened
against a panel of 15 antibiotics and clinically relevant antibiotic
combinations (Table S6). Genes encoding resistance to the same
14 antibiotics were captured in libraries prepared from complete
and cultured fecal samples (Fig. S2G and Table S7). In one ex-
ample, a screen for DNA fragments that confer resistance to the
aminoglycoside amikacin produced candidate genes from the
microbiomes of both complete and cultured microbial commu-
nities from Donor 1 but not from Donor 2. Two genes conferring
amikacin resistance (either the 16S rRNA methylase rmtD or the
aminoglycoside phosphotransferase aphA-3) were identified in
70% of the DNA fragments captured in selections for this phe-
notype. Direct culturing of the original fecal communities in the
presence of amikacin confirmed that this resistance function is
significantly enriched in the readily cultured microbiota of Donor
1 compared with Donor 2 (P < 0.005 based on triplicate samples;
unpaired, two-tailed Student’s t test assuming equal variances)
(Fig. S2H). PCR analysis showed that many of the amikacin-
resistant fecal strains harbor rmtD or aphA-3. Sequencing the 16S
rRNA genes of a subset of these isolates indicated that rmtD is
present in strains of Bacteroides uniformis, B. caccae, and B. thetai-
otaomicron in this donor (although, notably, not in the sequenced
type strains of these species) and that aphA-3 is contained in the
genome of a member of the genus Desulfotomaculum (order
Clostridiales).
To determine whether a community composed of an individ-

ual’s readily cultured bacteria exhibits behavior in vivo mirroring
that of the individual’s complete microbial community, 9-wk-old
C57Bl6/J germfree mice were colonized with a complete or
cultured microbiota from each of the two human donors (n = 5
recipient mice per sample type). A fecal sample from each donor
was divided after collection, and one aliquot was gavaged directly

into one group of recipient mice; the other aliquot was cultured
on GMM plates for 7 d, as above, harvested, and introduced into
a second group of recipient animals. Mice were maintained on
a standard autoclaved low-fat, plant polysaccharide-rich (LF/PP)
chow diet before and 4 wk after gavage. 16S rRNA analysis of
fecal samples collected from these mice at the end of the 4-wk
period indicated that the complete and the cultured communities
were influenced similarly by host selection: 91 ± 3% of the 16S
rRNA reads identified from mice colonized with a human
donor’s complete fecal microbiota were derived from genus-level
taxa that also were identified in the mice colonized with the
cultured microbial community from the same donor (Fig. 1A
Lower). Importantly, control experiments demonstrated that the
harvested, actively growing colonies gavaged into each germfree
mouse are able to prevent nongrowing species that might be
present on GMM plates from establishing themselves in re-
cipient animals (details are given in SI Materials and Methods).
Luminal material was collected from the proximal, central,

and distal portions of the small intestine, cecum, and colon of
mice colonized with either the complete or cultured communities
from each of the two human donors. V2-directed bacterial 16S
rRNA sequencing revealed similar geographic variations in
community structures (Fig. 1C and Fig. S3 A–C).
To determine whether the similarities in community compo-

sition in vivo extend to similarities in community gene content,
the same fecal DNA samples that had been prepared from these
mice after 4 wk on the LF/PP diet for 16S rRNA analyses were
subjected to shotgun pyrosequencing (n = 4 samples; 87,357 ±
30,710 reads per sample). As with the 16S rRNA analysis,
comparisons of the representation of KOs in the various micro-
biome samples revealed an even greater correlation between
complete and cultured communities after they had been sub-
jected to in vivo selection than before their introduction into
mice (Fig. 1B, Fig. S2 A–F, and Tables S3–S5).
Previous comparisons of adult germfree mice with those that

harbor gut microbial communities (either conventionally raised
animals or formerly germfree animals colonized from mouse or
human donors) have shown that the presence of a complete gut
microbiota is associated with increased adiposity (6, 7). In
comparison, colonization of germfree mice with a single, readily
cultured, prominent human gut symbiont (Bacteroides thetaio-
taomicron) or with a defined community of 12 bacterial species
prominently represented in the distal human gut (8) is in-
sufficient to restore epididymal fat pad stores to levels observed
in conventionally raised animals (data not shown). To assess
whether a complex community of cultured microbes could restore
epididymal fat pad weights to the levels associated with complete
microbial communities, we evaluated mice colonized with the
complete or the cultured fecal communities from the two human
donors. All animals displayed significantly greater fat pad to body
weight ratios than germfree controls, and no significant difference
was observed in adiposity between mice colonized with the donors’
complete or cultured microbiota (Fig. S3D).
We have reported that mice colonized with a complete human

microbiota undergo marked changes in microbial community
structure (even after a single day) when shifted from LF/PP chow
to a high-fat, high-sugar Western diet (7). To test whether
a microbial community consisting only of cultured members
recapitulates this behavior in vivo, the four groups of gnotobiotic
mice colonized with the complete or cultured microbes from two
unrelated human donors were monitored by fecal sampling be-
fore, during, and after a 2-wk period when they were placed on
the Western diet (samples were collected at days 4, 7, and 14 of
the first LF/PP phase, then 1 d before and 3, 7, and 14 d after
initiation of the Western diet phase, and finally 1, 3, 8, and 15
d after the return to the LF/PP diet). 16S rRNA-based com-
parisons of fecal communities were performed using both phy-
logenetic and nonphylogenetic distance metrics. With either
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metric, principal coordinates analysis (PCoA) revealed that mice
colonized with the complete or cultured samples maintain
communities that cluster first by donor (principal coordinate 1;
PC1) and that the complete and cultured communities from both
donors respond to the diet shift in a similar manner [principal
coordinate 2 (PC2); Fig. 2 A–C and Fig. S4 A and B]. Like the
transplanted complete microbiota examined here and in pre-
vious reports (7), the cultured microbiota responded to this
Western diet by increasing the relative proportion of repre-
sentatives of one class of Firmicutes (the Erysipilotrichi) and
decreasing the relative proportion of the Bacteroidia class (Fig.
S4C). Notably, of the 18 species-level phylotypes significantly
affected by diet shift in the mice containing the complete
microbiota of both human donors, 14 were detected and dem-
onstrated the same statistically significant response in mice col-
onized with readily cultured taxa (Fig. 2D and Fig. S5).
The fecal microbiomes of LF/PP-fed mice harboring complete

or cultured communities from each of the two unrelated donors
were compared with microbiomes sampled after these mice
consumed the Western diet for 14 d (101,222 ± 24,271 reads per
sample). The representation of level 2 KEGG pathway functions
was highly concordant on both diets, with one exception: Genes
encoding phosphotransferase system (PTS) pathways for carbo-
hydrate transport were significantly overrepresented in Western
diet-fed mice harboring complete or cultured communities from
either donor (Fig. 2E and Fig. S6 A–D). Higher-resolution KO-
level annotations confirmed that the diet-based PTS pathway
enrichment reflected increased representation of multiple car-
bohydrate transporters (Fig. S6 E and F). These results em-
phasize that the similar taxonomic restructuring of complete and
cultured communities in response to diet is accompanied by
similar changes in community gene content.
Because human gut communities composed of readily cul-

tured members exhibit responses to host diet that mirror those
characteristic of a complete microbiota, we explored the possi-
bility that gnotobiotic mice can be used as biological filters to
recover collections of readily cultured microbes, obtained from
selected human hosts, that are enriched for certain properties
[e.g., the ability to prosper (bloom) when exposed to specific
foods or food ingredients]. To this end, fecal samples from mice
colonized with the complete or corresponding cultured human
gut microbial communities from the two unrelated donors and
fed the LF/PP or Western diets were collected directly into an-
aerobic medium and then plated on prereduced GMM plates
(Fig. 3A). After 7-d incubation, V2-directed 16S rRNA profiling
of these plated microbial collections confirmed that these pop-
ulations of cultured microbes can be reshaped deliberately in vivo
and then recovered in vitro (Fig. 3B and Fig. S7). On either diet,
cultured populations showed significantly greater resemblance to
the in vivo communities frommice consuming the same diet than to
the in vivo communities from the same mice consuming the alter-
nate diet (P < 10−11, unpaired two-tailed Student’s t test of within-
donor distances shown in Fig. 3B, assuming equal variances).
We next turned our attention to developing ways to dissect

these recovered populations that display properties of interest
in vivo. The strict anaerobic techniques used here, compounded
with highly diverse colony morphologies across taxa, complicate
efforts to pick and isolate individual colonies at a scale sufficient
to capture the bacterial diversity represented on the culture
plates. Therefore, we used a most probable number (MPN)
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Fig. 1. Comparison of the taxonomic representation of bacterial species
and gene content in complete versus cultured human fecal microbial com-
munities before and after their introduction into gnotobiotic mice. (A) 16S
rRNA sequences from complete microbiota were compared with those
identified from microbial communities cultured from the same human
donors. At each taxonomic level, the proportion of reads in the complete
community belonging to a taxonomic group observed in the cultured sample
is shown in blue; the proportion of reads belonging to a taxonomic group
not observed in the cultured sample (or lacking taxonomic assignment) is
shown in black. Data shown are the average of two unrelated human
donors. In vitro samples refer to comparisons between human fecal samples
and plated material. In vivo samples refer to comparisons between gnoto-
biotic mice colonized with a complete human fecal microbiota and mice
colonized with the readily cultured microbes from the same human fecal
sample. (B) Annotated functions identified in the microbiomes of complete
and cultured human gut communities. Each point represents a KO desig-
nation plotted by relative abundance (average across two donors, per
100,000 sequencing reads). Black points represent KO comparisons between
the in vitro samples; orange points represent comparisons between in vivo
samples. (C) The distribution of taxa and their relative abundance along the
length of the intestine are similar in gnotobiotic mice colonized with com-
plete or cultured human gut communities. Relative abundances of class-level

taxa at six locations are shown; data represent the average of mice colonized
from two unrelated donors. Si, small intestine divided into 16 equal-size
segments and sampled at Si-2 (proximal), Si-5 (middle), and Si-13 (distal).
PCoA suggests that gut biogeography, rather than donor or culturing,
explains the majority (58%) of variance between samples (Fig. S3 A–C).
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technique for creating arrayed species collections in a multiwell
format without colony picking. We first empirically determined
the dilution point for a fecal sample that yields 70% empty wells
(no detectable growth) after inoculation into 384-well trays and
7-d anaerobic incubation. Assuming that the distribution of cells
into the wells follows a Poisson distribution, a dilution that leaves
70% of wells empty should yield nonclonal wells (that is, wells
that received more than one cell in the inoculum) only 5% of the
time; the remainder should be clonal (Fig. S8 F and G). At this
dilution, ten 384-well trays should yield ∼1,000 clonal wells. We
developed the two-step barcoded pyrosequencing scheme out-
lined in Fig. 4A to assign a 16S rRNA sequence to the isolate(s)
present in each turbid well.
We used this approach to create an archived, personalized

culture collection of ten 384-well trays from one of the human
donors. 16S rRNA sequences could be assigned to more than 99%
of growth-positive wells (Table S8). One advantage of clonally
arrayed collections is that the effects of 16S rRNA primer bias
encountered using DNA templates prepared from complex mi-
crobial populations are minimized when wells contain a single
taxon. This point is illustrated by the known bias of most com-
monly used primers against Bifidobacteria spp. (9). Members of

this genus were better represented among the set of 16S rRNA
genes produced from individual wells than among those observed
in complex communities harvested from GMM plates.
After the archived trays had been frozen under anaerobic

conditions and stored at −80 °C for 7 mo, recovery of organisms
from wells exceeded 60%. Full-length 16S rRNA sequences
generated from these recovered strains matched the assignments
from the barcoded pyrosequencing data in every case, suggesting
that the dilutions did follow a Poisson distribution as predicted.
Like 16S rRNA-based community profiling, such collections may
miss rare, but important, members of the microbiota; seeding
additional 384-well trays with the diluted sample will capture
additional phylotypes (Fig. S8H). In total, this individual’s cul-
ture collection contained 1,172 taxonomically defined isolates
from four different phyla, seven classes, eight orders, 15 families,
23 genera, and 48 named bacterial species. Novel isolates were
encountered at the family-, genus-, and species- levels (Table
S8), and 69% of the complete community had a genus-level
representative in the arrayed collection (Fig. 4B). As a frame of
reference, we identified a total of 159 human fecal or gut bac-
terial species from humans worldwide (including pathogens) in
the German Resource Centre for Biological Material (DSMZ)
culture collection (SI Materials and Methods). As such, person-
alized microbiota collections can complement those of interna-
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munities recovered in culture from these animals. Analysis of phylogenetic
(UniFrac) distances between samples produced similar clustering by donor and
host diet (Fig. S7).
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tional repositories by capturing strains that coexist in a shared
habitat where community structure and host parameters can
be measured.
Our ability to capture this level of diversity after MPN dilution

in these arrayed collections indicates that it is unlikely that in-
terspecies syntrophic relationships by themselves are sufficient to
explain the diversity observed on the GMM agar plates. On the
other hand, these personalized arrayed culture collections should
help identify obligate syntrophic relationships (e.g., by analyzing
the patterns of co-occurrence of taxa in wells harboring more
than one phylotype or by comparing arrayed collections in which
one set of trays contains a candidate syntroph deliberately added
to all wells).

Discussion
We find that it is possible to capture a remarkable proportion of
a person’s fecal microbiota using straightforward anaerobic cul-
turing conditions and easily obtained reagents. Variations in
culturing conditions, including components that are not com-
mercially available (e.g., sterile rumen or human fecal extracts)
and other approaches for more closely approximating a native
gut habitat, undoubtedly will allow additional members of the
human gut microbiota to be cultured in vitro (10, 11). These
personal culture collections can be generated from humans
representing diverse cultural traditions and various physiologic
or pathophysiologic states. A key opportunity is provided when
anaerobic culture initiatives are combined with gnotobiotic
mouse models, thereby allowing culture collections to be char-
acterized and manipulated in mice with defined (including
engineered) genotypes who are fed diets comparable to those
of the human donor, or diets with systematically manipulated
ingredients. Temporal and spatial studies of these communities
can be used to identify readily cultured microbes that thrive in
certain physiological and nutritional contexts, creating a discovery
pipeline for new probiotics and for preclinical evaluation of the
nutritional value of food ingredients. Based on their in vivo
responses, clonally archived cultured representatives of a person’s
microbiota can be selected for complete genome sequencing
(including multiple strains of a given species-level phylotype) to
identify potential functional variations that exist or evolve within
a species occupying a given host’s body habitat. Coinciding with
the introduction of yet another generation of massively parallel
DNA sequencers, this approach should also allow vast scaling of
current sequencing efforts directed at characterizing human (gut)
microbial genome diversity, evolution, and function. In addition,
recovered organisms could also be used as source material for
functional metagenomic screens (bio-prospecting). Guided by the
results of metagenomic studies of human microbiota donors,
components of a personalized collection that have coevolved in
a single host can be reunited in varying combinations in gnoto-
biotic mice, potentially after genome-wide transposon mutagen-

esis of selected taxa of interest (8), for further mechanistic studies
of their interactions and impact on host phenotypes.

Materials and Methods
Culturing of Fecal Microbiota. The Washington University Human Studies
Committee reviewed the study design. Freshly discarded fecal samples from
two anonymous unrelated human donors were transferred into an anaerobic
chamber (Coy Laboratory Products) within 5 min of their collection as de-
scribed in SI Materials and Methods and Tables S2 and S9.

Gnotobiotic Mouse Husbandry. All experiments involving mice were per-
formed with protocols approved by the Washington University Animal
Studies Committee. Germfree adult male C57BL/6J mice were maintained in
plastic gnotobiotic isolators. Colonization, housing, diet manipulations, and
control experiments to evaluate the contribution of uncultured cells to mi-
crobial communities from gnotobiotic mice are described in SI Materials
and Methods.

16S rRNA Sequencing and Analysis. The V2 region of bacterial 16S rRNA genes
was subjected to PCR amplification (DNA extraction and PCR protocols are
described in SI Materials and Methods). Metadata for all 500 samples, in-
cluding barcodes, are provided in Table S10. All 16S rRNA pyrosequencing
datasets have been deposited in the National Center for Biotechnology In-
formation (NCBI) Sequence Read Archive (SRA) (accession no. SRA026269).

16S rRNA sequences were filtered to remove low-quality or chimeric
sequences, de-noised, and analyzed using QIIME v1.1 (3) with parameters
described in SI Materials and Methods. To quantify the representation of
cultured and uncultured lineages in microbial communities, the presence or
absence of each phylum-, class-, order-, family-, genus-, or species-level
phylotype assigned to sequences in the complete sample(s) was determined
in the cultured sample(s). Taxonomy was assigned with both SILVA-VOTE (SI
Materials and Methods and Table S11) and RDP Bayesian classifiers. Data
were normalized by the abundance of each taxonomic group in the original
(uncultured) sample. For analysis of microbial communities from mice, tax-
onomic groups observed in fewer than two replicate animals were omitted.
Protocols for creation and 16S rRNA sequencing of arrayed culture collec-
tions are described in SI Materials and Methods and Tables S12 and S13.

Shotgun Pyrosequencing. Aliquots (500 ng) of DNA prepared from selected
complete and cultured microbiota were sheared and ligated to the default
454 Titanium multiplex identifiers (MIDs; Roche Rapid Library Preparation
Method Manual, GS FLX Titanium Series, October 2009) and sequenced using
454 Titanium pyrosequencing chemistry. After filtering of low-quality or host
DNA sequences, reads were queried against the KEGG KO database (v52)
using parameters described in SI Materials and Methods; metadata for each
sample are provided in Table S14, and all shotgun pyrosequencing datasets
are available in the NCBI SRA under accession no. SRA026270. Procedures for
bio-prospecting for antibiotic resistance genes in complete and cultured
microbial communities are described in SI Materials and Methods.
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GOS scaffolds, finding 46 MpnS and 20 HepD
homologs, using a protein basic local alignment
search tool (BLASTP) cutoff value of 10−10 (ta-
ble S2). NoHppE homologswere observed. None
of the HepD homologs were identified when N.
maritimusMpnS was used as the query sequence;
likewise, none of theMpnS homologs were iden-
tified when HepD was used as a query. Thus,
BLASTP clearly differentiates between the two
homologous groups, supporting the assignment of
the recovered sequences as MpnS and HepD pro-
teins, respectively. To independently support these
functional assignments, we constructedmaximum-
likelihood phylogenetic trees including biochem-
ically validatedMpnS, HepD, and HppE proteins
(Fig. 3A and fig. S9). We also used a hierarchical
clustering method to examine all putative and vali-
datedMpnS, HepD, and HppE proteins (fig. S10).
In both cases, robust support for the functional
assignments was obtained. Thus, we conclude that
the recovered GOSMpnS homologs are likely to
be methylphosphonate synthases.

Additional support for the function of the
MpnS homologs was revealed by analysis of
neighboring genes found in GOS DNA scaf-
folds (Fig. 3B and table S3). Many of the near-
by open reading frames are homologous to those
found in the N. maritimus gene cluster, including
the phosphonate biosynthetic genes ppm, ppd,
and pdh, as well as homologs of the sulfatases
and nucleotidyl transferase genes, suggesting
that the GOS scaffolds encode genes for the
synthesis of similar MPn esters. Several other
genes found on the scaffolds provide evidence
for the identity of the organisms in which they are
found. One of the scaffolds includes a 23S ribo-
somal RNA gene that can be confidently placed
within the SAR11 clade between Pelagibacter
species (fig. S11), whereas two of themanC genes
are nearly identical to ones found in Pelagibacter
sp.HTCC7211.Although thempnS gene is absent
in sequenced Pelagibacter genomes, these data
strongly support the conclusion that some mem-
bers of this genus have the capacity to synthesize
MPn.

Relatives of Nitrosopumilus and Pelagibacter
are among the most abundant organisms in the
sea, with global populations estimated at 1028 for
both ammonia-oxidizing Thaumarchaeota (14)
and members of the SAR11 clade (22). Thus, the
observation of mpnS in some members of these
genera is consistent with the idea that MPn syn-
thesis is prevalent in marine systems. To provide
direct support for this notion, we measured the
abundance of the mpnS gene relative to the abun-
dance of typical single-copy genes as previously
described (23). We also quantified the occurrence
of the ppm gene to provide an estimate of the
relative occurrence of phosphonate synthesis in
general (table S4). Based on these data, we es-
timate that ~16% of marine microbes are cap-
able of phosphonate biosynthesis, whereas 0.6%
have the capacity to synthesize MPn. Because
the GOS samples are confined to the upper few
meters of the ocean, extrapolation of this anal-

ysis to the deeper ocean should be viewed with
some skepticism. Nevertheless, the upper 200 m
of the world’s oceans are thought to contain
~3.6 × 1028 microbial cells, with an average gen-
eration time of ~2 weeks (24). Thus, even with
the relatively modest abundance of MPn biosyn-
thesis suggested by our data, it seems quite pos-
sible that these cells could provide sufficient
amounts of MPn precursor to account for the
observed methane production in the aerobic
ocean via the C-P lyase–dependent scenario sug-
gested by Karl et al. (2).
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The Shared Antibiotic Resistome of
Soil Bacteria and Human Pathogens
Kevin J. Forsberg,1* Alejandro Reyes,1* Bin Wang,1,2 Elizabeth M. Selleck,3

Morten O. A. Sommer,4,5† Gautam Dantas1,2†

Soil microbiota represent one of the ancient evolutionary origins of antibiotic resistance and have been
proposed as a reservoir of resistance genes available for exchange with clinical pathogens. Using a
high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo
assembly of short-read sequence data from functional selections (termed PARFuMS), we provide evidence
for recent exchange of antibiotic resistance genes between environmental bacteria and clinical
pathogens. We describe multidrug-resistant soil bacteria containing resistance cassettes against five
classes of antibiotics (b-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that
have perfect nucleotide identity to genes from diverse human pathogens. This identity encompasses
noncoding regions as well as multiple mobilization sequences, offering not only evidence of lateral
exchange but also a mechanism by which antibiotic resistance disseminates.

The continued evolution and widespread
dissemination of antibiotic resistance genes
in human pathogens is a preeminent clin-

ical challenge (1). Environmental reservoirs have
long been implicated as a source of resistance
found in human pathogens (2). However, apart
from certain opportunistic bacterial pathogens,
among which the same species can be found
in the environment or infecting humans (3), ex-
amples of resistance genes from environmental
bacteria with high identity to those of pathogens

are rare (4, 5). The two documented examples are
of Kluyvera and Shewanella isolates, which are
found free-living in environmental settings (5, 6)
yet have resistance genes (CTX-M b-lactamase
and qnrA genes, respectively) with high identity
(100% identity in clinical Kluyvera isolates) to
those of pathogens (4, 5). The limited examples of
resistance genes shared between environmental
microbes and human pathogens raise questions
regarding the clinical impact of environmental re-
sistance. For instance, whether shared resistance
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is confined to genes of particular mechanisms
(such as enzymatic b-lactam cleavage) or applies
to many genes with diverse mechanisms of re-
sistance is unknown. Additionally, whether a sin-
gle horizontal gene transfer (HGT) event between
environment and clinic can result in the de novo
acquisition of a multidrug-resistant phenotype is
unclear. The two previous reports of high-identity
resistance genes shared between environmental
and pathogenic bacteria did not find evidence of
colocalized resistance genes or of syntenic mobi-
lization elements (4, 5), hallmarks of transferable
multidrug resistance (7, 8). Determining the clin-
ical impact of environmental resistance requires a
deeper profiling of environmental reservoirs for
the organisms and genotypes most likely to ex-
change resistance with human pathogens.

Soil, one of the largest and most diverse mi-
crobial habitats on earth, is increasingly recog-
nized as a vast repository of antibiotic resistance
genes (9–13). Not only does soil come into di-
rect contact with antibiotics used extensively in
rearing livestock (14) and plant agriculture (15),
but it is also a natural habitat for the Actinomy-
cete genus Streptomyces, whose species account
for the majority of all naturally produced anti-
biotics (16). Despite numerous studies demon-
strating that soil contains resistance genes with
biochemical mechanisms similar to those in com-
mon pathogens (3, 11–13), the sequence identities
of these genes diverge from those of pathogens
(17), providing little evidence that these resistomes
have more than an evolutionary relationship.
Therefore, whether soil has recently contributed
to or acquired resistance genes from the patho-
genic resistome remains an open question, and
accordingly, the role of soil in the current global
exchange of antibiotic resistance remains poorly
defined.

To examine the capacity of nonpathogenic,
soil-dwelling organisms to exchange antibiotic
resistance with human pathogens, we sought to
select for organisms prone to this exchange. Be-
cause many major clinical pathogens are Proteo-
bacterial (18), we cultured multidrug-resistant
Proteobacteria from the soil (19), with the aim
of enriching for resistance genes shared between
soil and human pathogens. We interrogated the
resistome of the resulting culture collection using
functional metagenomic selections, which are
ideally suited to characterize acquirable resist-
ance because they identify any gene sufficient to
confer resistance to a new host (such as a path-

ogen) (20). To facilitate the rapid and efficient
functional characterization of metagenomic li-
braries, we developed a massively parallel, mul-
tiplexed functional selection platform that enables
simultaneous sequencing, de novo assembly,
and functional annotation of hundreds of resist-
ance fragments from many independent selec-
tions (termed PARFuMS: Parallel Annotation and
Re-assembly of Functional Metagenomic Selec-
tions) (fig. S1) (19).

We applied PARFuMS to a collection of 95
soil-derived cultures (“AB95”), representing bacte-
ria with high-level resistance to various antibiotics.
Cultureswere obtained from 11U.S. soils (table S1),
passaged serially through minimal and rich media
containing one of 18 antibiotics at 1000mg/L (tables
S2 and S3) (21), and subjected to 16S ribosomal
DNA (rDNA) profiling (19). We confirmed that
the culture collection was enriched for Proteo-
bacteria and dominated by traditional soil-dwelling
organisms (such as Pseudomonas and Pandoraea)
(fig. S2). Equal proportions of the 95 cultures were
pooled, and bulk genomic DNA was extracted.
One- to 3-kb fragments of this metagenomic
DNAwere cloned into an expression vector and
transformed into Escherichia coli. The resulting
2.57-Gbmetagenomic library was selected on solid
culture medium containing 1 of 12 antibiotics rep-
resenting amino acid derivatives, aminoglycosides,
amphenicols, b-lactams, and tetracyclines, at con-
centrations to which the host-strain was suscep-
tible (table S4). Resistance was detected against
all 12 antibiotics, and resistance-conferring frag-
ments were sequenced, assembled, and annotated
by using PARFuMS, yielding 161 contigs (N50 >

1.7 kb). Of the 252 open reading frames (ORFs)
identified, 110 (44%) could confidently be anno-
tated as antibiotic resistance genes (by similarity
to a known resistance gene, which was consistent
with functional selection), whereas another 62
(25%) were categorized as resistance-related (Fig.
1, A to C, and table S5).

Of the 110 resistance genes, 18 had 100%
amino acid identity to entries in GenBank, and
another 32 were highly similar (≥90% identity).
Thus, although we recovered several genes previ-
ously identified, most of the resistance genes
discovered (54%) were formerly unknown (Fig.
1D). For instance, we identified a gene confer-
ring D-cycloserine resistance from an AB95 iso-
late (most closely related to Serratia ficara) for
which sequence alone could not predict resist-
ance function (19). The ORF was 92% identical
to a protein of unknown function from Serratia
proteamaculans 568 (CP000826) (Fig. 2A) and
enabled E. coli to tolerate high concentrations
of D-cycloserine (128 mg/mL) (Fig. 2B). The
D-cycloserine resistance protein had low-level iden-
tity to a drug/metabolite transporter (46% identi-
ty over 91% of the sequence; YP_001583420),
indicating that the gene may have efflux-related
function, which is consistent with known mecha-
nisms of D-cycloserine tolerance (22).

Of the 110 AB95 resistance genes, 55 were
b-lactamases. The majority of these sequences
clustered with class C b-lactamases and were dis-
similar to entries currently in GenBank (fig. S3),
which is a common result from metagenomic ex-
periments (11, 20, 23). AB95 b-lactamases were
highly divergent from those of the antibiotic-

Fig. 1. Functional selection of the AB95 soil metagenomic library with 12 antibiotics (19). (A) Bar
chart depicting the number of distinct contigs over 500 base pairs (bp) recovered from selection with
each of the 12 antibiotics. (B) Functional classification of ORFs predicted by PARFuMS, across all selec-
tions. (C) Three representative metagenomic fragments; colors match catergorizations depicted in (B). The
distance between tick marks is 300 bp, and dashed lines indicate common sequence on two distinct
fragments. (D) Amino acid identity between antibiotic-resistance ORFs and the closest hit from GenBank,
across all selections.
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producing Streptomyces, indicating ancient evo-
lutionary relationships (fig. S3 and table S6).
However, several b-lactamases with >99% iden-
tity to sequences from both soil and enteric orga-
nisms were recovered (fig. S3).

We identified 16 sequences, from 10 selec-
tions, with 100% nucleotide identity to antibiotic
resistance genes previously sequenced from clin-
ical isolates of many common human pathogens
(Table 1). A bacterium was considered patho-
genic only if it was isolated from an infection in
a diseased human host. The 16 sequences rep-
resent seven different genes, conferring resist-
ance to five classes of antibiotics (b-lactams,
aminoglycosides, amphenicols, sulfonamides,
and tetracyclines) (Table 1). We discovered mul-
tiple examples of syntenic, soil-derived resistance
genes shared with many common pathogens.
For example, a chloramphenicol-acetyltransferase
with 99.7% identity to K. pneumoniae clinical
isolates was adjacent to both an aminoglycoside-
acetyltransferase and a b-lactamase identical to
genes found in many pathogens (JX009248). Ad-
ditionally, an insert from two selections contained
aadB (an aminoglycoside-adenyltransferase) ad-

jacent to qacED1 (an efflux pump conferring
antiseptic resistance) and sul1 (a dihydropteroate
synthase conferring sulfonamide resistance) in
a class 1 integron-like structure (JX009286). All
three genes andmuch of the surrounding integron
(>2 kb) are 100% identical to numerous clinical
pathogens. The seven soil-derived resistance
genes (Table 1) are globally distributed amongst
human pathogens: Clinical isolates from many
countries and all major continents contain genes
with perfect nucleotide identity to genes from this
set (fig. S4).

To identify soil isolates from the AB95 cul-
ture collection harboring the aforementioned re-
sistance genes, we performed polymerase chain
reactions using primers specific to the bounda-
ries of the predicted ORFs (19). We identified
two organisms isolated from farmland soil con-
taining six of the resistance genes identical to
pathogens, as well as two additional genes with
over 99% identity to those in pathogens (tables
S7 and S8) (19). We confirmed that seven genes
were present in an organism most closely related
to Pseudomonas sp. K94.23 [a member of the
P. fluorescens complex (24)], three originated

from a strain most similar to Ochrobactrum
anthropi, and two were in both genomes (19).
P. fluorescens is not believed to cause human
infection (25), and there are only limited exam-
ples of O. anthropi subgroups known to infect
humans (26). Rather, these two organisms are
predominantly found in environmental settings
(25, 27). The substantial phylogenetic divergence
between these traditionally nonpathogenic soil iso-
lates and numerous human pathogens (table S9)
contrasts with the 100% identity of numerous re-
sistance genes found in both groups, confirming
that these genes moved between species via HGT.

Three ORFs fromO. anthropi and P. fluorescens,
conferring b-lactam, aminoglycoside, and am-
phenicol resistance and representing one gene
shared by both organisms and one specific to
each, were cloned from their genomic DNA,
expressed in E. coli, and verified for resistance
to seven antibiotics (19). In all cases, the ORFs
conferred resistance at concentrations 16-fold
greater than that of an empty-vector control and
enabled growth in a minimum of 128 mg/mL
(and up to 2048 mg/mL) of antibiotic (Table 2).
These results mirror the minimum inhibitory con-
centrations of the source soil strains (Table 2),
demonstrating that the resistance genes retain
functionality even when removed from all native
genomic context, emphasizing their broad host-
range compatibility.

Perfect nucleotide identity between full-length
resistance genes from distinct species implies that
recent HGT has occurred between these orga-
nisms (28)—evidence that has not been previously
reported between a nonpathogenic soil-dwelling
organism and human pathogens. The seven re-
sistance genes we discovered encompass all ma-
jor mechanistic classes of antibiotic resistance (29)
and are identical to genes found in diverse human
pathogens, representing both Gram-negative and
-positive bacteria. Moreover, for five of the soil-
derived contigs that share resistance genes with
pathogens, at least 80% of the contig is identical
to sequence from a clinical isolate, encompassing
coding and noncoding regions alike (the maxi-
mum span of identity is 2.28 kb) (table S10). In
support of recent mobilization, we found 11 dis-
tinct sequences annotated as either an integrase
or transposase from six antibiotic selections. Two
intl1 integrases were adjacent to resistance genes
from both our organisms and pathogens, indicat-
ing a shared mechanism of HGT between soil and
pathogenic bacteria. Four of the contigs assembled
from our set are over 99% identical to a large span
of sequence, found in numerous pathogens, that
contains a high density of resistance genes and
is flanked by multiple mobility elements (Fig. 3).
This cluster of resistance genes exhibits extensive
modularity; many combinations of the individual
resistance elements are present in a multitude of
clinical pathogens.

The closest homologs to each AB95 resist-
ance gene include pathogenic resistance genes
that are chromosomal as well as plasmid-borne,
implying a diverse genetic organization of these

Fig. 2. A gene conferring resistance to D-cycloserine was captured for which sequence was unable to
predict resistance function. (A) Resistance-conferring fragment AB95_CY_48 compared with its closest
hit from the National Center for Biotechnology Information (NCBI) nucleotide collection. ORFs of the
same color indicate homologous sequence; both nucleotide and amino acid percent identities are given
in shaded regions (nucleotide/amino acid). Base-pair coordinates flank sequences, and the distance
between each tick mark is 300 bp. (B) Measurements of absorbance at 600 nm, taken every 15 min,
depict growth of E. coli, containing either AB95_CY_48.2 or an empty vector at clinically relevant con-
centrations of D-cycloserine. Measurements are corrected for background absorbance from media-only
controls and are averages of three trials (19).
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genes. Four of the pathogen-identical genes from
P. fluorescens, conferring resistance to the amino-
glycosides, tetracyclines, amphenicols, and sulfon-
amides, were identified in a plasmid preparation,

implicating conjugation or transformation as po-
tential mechanisms of HGT (table S11). Addition-
ally, we discovered nine integrases/transposases
proximal to resistance genes not yet identified in

pathogens, indicating that additional resistance
genes from these soil bacteria may be available
for HGT with pathogens.

Given the extensive interspecific transfer of
antibiotic resistance, and our data suggesting re-
cent exchange between soil bacteria and clinical
pathogens, we sought to identify routes of dis-
semination between these reservoirs. Possibilities
include direct exchange between soil microbes
and human pathogens or indirect transfer via res-
ervoirs such as the human intestinal microbiota.
Many resistance genes from the intestinal micro-
biota are identical to those found in diverse human
pathogens (20), and accordingly, we compared the
AB95 resistance genes with a set of resistance
genes from cultured intestinal isolates (20), a
collection of 128 representative gut organisms
(table S12), and resistance genes from fecal meta-
genomes (19, 20). Most AB95 resistance genes
were dissimilar to sequences from any intestinal
data set, with the average amino acid identity
ranging from 30.2 to 45.5% (fig. S5). However,
the two cultured data sets contained perfectmatches
to distinct AB95 resistance genes (table S13).
One such AB95 gene (JX009365) was not only
identical to tetA from an intestinal isolate, but also
to numerous pathogens, including A. baumannii,
E. coli, K. pneumoniae, and S. typhimurium, in-
dicating potential interconnections between the
resistomes of the human gastrointestinal tract,
soil, and clinical pathogens.

The exchange of resistance between soil and
pathogens emphasizes the clinical importance of
the soil resistome, regardless of whether resist-
ance genes are moving from soil to the clinic, or
vice versa. Transmission from soil to clinic estab-
lishes soil as a direct source of pathogenic resistance
genes. Movement of resistance from pathogens
into soil means pathogens can transfer resistance

Fig. 3. Comparison of four AB95-derived resistance fragments to five
human pathogenic isolates. The four fragments are depicted along the
bottom, and shading indicates high nucleotide identity between the
fragments and pathogens (NCBI GenInfo numbers identify each patho-
genic isolate). Dark gray shading indicates >99% identity; light gray

shading indicates ~88% identity. Base-pair coordinates flank pathogenic
sequences, and the distance between each tick mark is 800 bp. Red ORFs
represent resistance genes, yellow represents mobility elements, dark blue
represents resistance-associated regulatory elements, and light blue repre-
sents other functions.

Table 1. Nonredundant antibiotic resistance genes with 100% identity to known human pathogens.

Gene name
GenBank

ID
Number of
selections*

Antibiotic
class

Annotation
[mechanism]

Pathogens hit
(GI number)

AB95_PI_68.1 JX009363 4 b-lactam blaP1
[enzymatic
degradation]

A. baumannii (94960156),
K. pneumoniae (114147191),
P. aeruginosa (117321883),
S. typhimurium (12719011),
P. mirabilis (157674381)†

AB95_CH_13.1 JX009364 1 Amphenicol Chloramphenicol
efflux [efflux]

A. baumannii (169147133),
P. aeruginosa (260677483)

AB95_TE_2.2 JX009366 3 Tetracycline tetA(G) [efflux] A. baumannii (169147133),
S. typhimurium (12719011)

AB95_TE_1.1 JX009365 3 Tetracycline tetA [efflux] A. baumannii (169147133),
E. coli (312949035),
K. pneumoniae (290792160),
S. typhimurium (37962716)†

AB95_GE_3.3 JX009367
JX009373

2 Aminoglycoside aadB [covalent
modification]

E. cloacae (71361871),
K. pneumoniae (206731403),
P. aeruginosa (37955767),
S. typhimurium (17383994)†

AB95_GE_3.1 JX009368
JX009374

2 Sulfonamide sul1 [target
modification]

C. diptheriae (323714042)
E. cloacae (71361871),
K. pneumoniae (206731403),
P. aeruginosa (37955767),
S. typhimurium (17383994),
Yersinia pestis (165913934)†

AB95_CH_21.1 JX009369 1 Aminoglycoside aacA4 [covalent
modification]

A. baumannii (164449567),
K. pneumoniae (238865601),
P. aeruginosa (219872982),
S. typhi (34014739)†

*Number of selections in which the entirety of a given gene was captured. †More pathogens exist for which 100%
nucleotide identity was observed than listed
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to soil organisms, of which many can cause noso-
comial infection and may emerge as pathogens,
akin to the rise of A. baumannii.

Powered by PARFuMS, a method for char-
acterizing functional selections at <1% of the cost
of traditional approaches (19), we describe anti-
biotic resistance genes found in nonpathogenic
soil-dwelling bacteria and of all major mechanis-
tic classes (29) with perfect nucleotide identity
to many diverse human pathogens. We also show
that multiple resistance genes are colocalized with-
in long stretches of perfect nucleotide identity and
are flanked by mobile DNA elements. These find-
ings not only provide evidence for recent HGTof
multidrug resistance cassettes between soil and
clinic, but also a mechanism through which this
exchange may have occurred.

TheOchrobactrum and Pseudomonas isolates
originated from farmland soils fertilized with ma-
nure from antibiotic-treated livestock. However,
our current study design did not enable a statis-
tically significant association of pathogen-identical
resistance genes to specific soils. Rather, our re-
sults highlight the fact that soil and pathogenic
resistomes are not distinct, emphasizing the clin-
ical importance of environmental resistance. Our
new method provides the increased throughput
required to power future studies to identify soil
(11), aquatic (5), and other (20) environments prone
to resistance exchange with human pathogens
and to understand how specific anthropogenic
practices influence the likelihood of this dissem-
ination (3, 23).
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TLR13 Recognizes Bacterial 23S
rRNA Devoid of Erythromycin
Resistance–Forming Modification
Marina Oldenburg,1* Anne Krüger,1* Ruth Ferstl,2*† Andreas Kaufmann,3 Gernot Nees,3

Anna Sigmund,1 Barbara Bathke,4 Henning Lauterbach,4 Mark Suter,4,5 Stefan Dreher,2

Uwe Koedel,6 Shizuo Akira,7 Taro Kawai,7 Jan Buer,1 Hermann Wagner,2 Stefan Bauer,3

Hubertus Hochrein,4* Carsten J. Kirschning1*‡

Host protection from infection relies on the recognition of pathogens by innate pattern-recognition
receptors such as Toll-like receptors (TLRs). Here, we show that the orphan receptor TLR13 in mice
recognizes a conserved 23S ribosomal RNA (rRNA) sequence that is the binding site of macrolide,
lincosamide, and streptogramin group (MLS) antibiotics (including erythromycin) in bacteria.
Notably, 23S rRNA from clinical isolates of erythromycin-resistant Staphylococcus aureus and
synthetic oligoribonucleotides carrying methylated adenosine or a guanosine mimicking a MLS
resistance–causing modification failed to stimulate TLR13. Thus, our results reveal both a natural
TLR13 ligand and specific mechanisms of antibiotic resistance as potent bacterial immune evasion
strategy, avoiding recognition via TLR13.

Toll-like receptor 2 (TLR2), TLR4, and
TLR9 are major host sensors of Gram-
negative bacteria, and TLR2 is thought to

be the central detector of Gram-positive bacteria,

whereas other pattern-recognition receptors (PRRs)
such as TLR7 contribute to bacteria sensing as
well (1–7). However, the high sensitivity of mice
lacking expression of these TLRs toGram-positive

Table 2. Minimum inhibitory concentrations of various antibiotics toward both multidrug resistant
soil isolates and E. coli clones expressing selected resistance genes (all concentrations are mg/mL).
AX, amoxicillin; CA, carbenicillin; PE, penicillin; PI, piperacillin; CF, cefdinir; CH, chloramphenicol;
SI, sisomicin; GE, gentamicin; MN, minocycline; OX, oxytetracycline; TE, tetracycline; and blank cells
indicate inhibitory concentrations were not determined.

AX CA PE PI CF CH SI GE MN OX TE

Ochrobactrum soil isolate >2048 >2048 >2048 >2048 <16 512 512 512 <4 256 64
Pseudomonas soil isolate >2048 >2048 >2048 >2048 >1024 1024 >1024 >1024 8 128 32
AB95_PI_68.1 >2048 >2048 2048 2048
AB95_CH_33.1 256
AB95_GE_3.3 >1024 >1024
E. coli + empty

vector control
<16 <32 64 16 <8 <8 <8 <8 <8 8 4
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