648 research outputs found

    Plasticity in bilateral superior temporal cortex: effects of deafness and cochlear implantation on auditory and visual speech processing

    Get PDF
    While many individuals can benefit substantially from cochlear implantation, the ability to perceive and understand auditory speech with a cochlear implant (CI) remains highly variable amongst adult recipients. Importantly, auditory performance with a CI cannot be reliably predicted based solely on routinely obtained information regarding clinical characteristics of the CI candidate. This review argues that central factors, notably cortical function and plasticity, should also be considered as important contributors to the observed individual variability in CI outcome. Superior temporal cortex (STC), including auditory association areas, plays a crucial role in the processing of auditory and visual speech information. The current review considers evidence of cortical plasticity within bilateral STC, and how these effects may explain variability in CI outcome. Furthermore, evidence of audio-visual interactions in temporal and occipital cortices is examined, and relation to CI outcome is discussed. To date, longitudinal examination of changes in cortical function and plasticity over the period of rehabilitation with a CI has been restricted by methodological challenges. The application of functional near-infrared spectroscopy (fNIRS) in studying cortical function in CI users is becoming increasingly recognised as a potential solution to these problems. Here we suggest that fNIRS offers a powerful neuroimaging tool to elucidate the relationship between audio-visual interactions, cortical plasticity during deafness and following cochlear implantation, and individual variability in auditory performance with a CI

    Plasticity in bilateral superior temporal cortex: Effects of deafness and cochlear implantation on auditory and visual speech processing

    Get PDF
    While many individuals can benefit substantially from cochlear implantation, the ability to perceive and understand auditory speech with a cochlear implant (CI) remains highly variable amongst adult recipients. Importantly, auditory performance with a CI cannot be reliably predicted based solely on routinely obtained information regarding clinical characteristics of the CI candidate. This review argues that central factors, notably cortical function and plasticity, should also be considered as important contributors to the observed individual variability in CI outcome. Superior temporal cortex (STC), including auditory association areas, plays a crucial role in the processing of auditory and visual speech information. The current review considers evidence of cortical plasticity within bilateral STC, and how these effects may explain variability in CI outcome. Furthermore, evidence of audio-visual interactions in temporal and occipital cortices is examined, and relation to CI outcome is discussed. To date, longitudinal examination of changes in cortical function and plasticity over the period of rehabilitation with a CI has been restricted by methodological challenges. The application of functional near-infrared spectroscopy (fNIRS) in studying cortical function in CI users is becoming increasingly recognised as a potential solution to these problems. Here we suggest that fNIRS offers a powerful neuroimaging tool to elucidate the relationship between audio-visual interactions, cortical plasticity during deafness and following cochlear implantation, and individual variability in auditory performance with a CI

    Cochlear Implant Outcomes and Genetic Mutations in Children with Ear and Brain Anomalies

    Get PDF
    Background. Specific clinical conditions could compromise cochlear implantation outcomes and drastically reduce the chance of an acceptable development of perceptual and linguistic capabilities. These conditions should certainly include the presence of inner ear malformations or brain abnormalities. The aims of this work were to study the diagnostic value of high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in children with sensorineural hearing loss who were candidates for cochlear implants and to analyse the anatomic abnormalities of the ear and brain in patients who underwent cochlear implantation. We also analysed the effects of ear malformations and brain anomalies on the CI outcomes, speculating on their potential role in the management of language developmental disorders. Methods. The present study is a retrospective observational review of cochlear implant outcomes among hearing-impaired children who presented ear and/or brain anomalies at neuroimaging investigations with MRI and HRCT. Furthermore, genetic results from molecular genetic investigations (GJB2/GJB6 and, additionally, in selected cases, SLC26A4 or mitochondrial-DNA mutations) on this study group were herein described. Longitudinal and cross-sectional analysis was conducted using statistical tests. Results. Between January 1, 1996 and April 1, 2012, at the ENT-Audiology Department of the University Hospital of Ferrara, 620 cochlear implantations were performed. There were 426 implanted children at the time of the present study (who were <18 years). Among these, 143 patients (64 females and 79 males) presented ear and/or brain anomalies/lesions/malformations at neuroimaging investigations with MRI and HRCT. The age of the main study group (143 implanted children) ranged from 9 months and 16 years (average = 4.4; median = 3.0). Conclusions. Good outcomes with cochlear implants are possible in patients who present with inner ear or brain abnormalities, even if central nervous system anomalies represent a negative prognostic factor that is made worse by the concomitant presence of cochlear malformations. Common cavity and stenosis of the internal auditory canal (less than 2 mm) are negative prognostic factors even if brain lesions are absent

    Neural Activity During Audiovisual Speech Processing: Protocol For a Functional Neuroimaging Study.

    Get PDF
    BACKGROUND The field of health information management (HIM) focuses on the protection and management of health information from a variety of sources. The American Health Information Management Association (AHIMA) Council for Excellence in Education (CEE) determines the needed skills and competencies for this field. AHIMA's HIM curricula competencies are divided into several domains among the associate, undergraduate, and graduate levels. Moreover, AHIMA's career map displays career paths for HIM professionals. What is not known is whether these competencies and the career map align with industry demands. OBJECTIVE The primary aim of this study is to analyze HIM job postings on a US national job recruiting website to determine whether the job postings align with recognized HIM domains, while the secondary aim is to evaluate the AHIMA career map to determine whether it aligns with the job postings. METHODS A national job recruitment website was mined electronically (web scraping) using the search term "health information management." This cross-sectional inquiry evaluated job advertisements during a 2-week period in 2021. After the exclusion criteria, 691 job postings were analyzed. Data were evaluated with descriptive statistics and natural language processing (NLP). Soft cosine measures (SCM) were used to determine correlations between job postings and the AHIMA career map, curricular competencies, and curricular considerations. ANOVA was used to determine statistical significance. RESULTS Of all the job postings, 29% (140/691) were in the Southeast, followed by the Midwest (140/691, 20%), West (131/691,19%), Northeast (94/691, 14%), and Southwest (73/691, 11%). The educational levels requested were evenly distributed between high school diploma (219/691, 31.7%), associate degree (269/691, 38.6%), or bachelor's degree (225/691, 32.5%). A master's degree was requested in only 8% (52/691) of the postings, with 72% (42/58) preferring one and 28% (16/58) requiring one. A Registered Health Information Technologist (RHIT) credential was the most commonly requested (207/691, 29.9%) in job postings, followed by Registered Health Information Administrator (RHIA; 180/691, 26%) credential. SCM scores were significantly higher in the informatics category compared to the coding and revenue cycle (P=.006) and data analytics categories (P<.001) but not significantly different from the information governance category (P=.85). The coding and revenue cycle category had a significantly higher SCM score compared to the data analytics category (P<.001). Additionally, the information governance category was significantly higher than the data analytics category (P<.001). SCM scores were significantly different between each competency category, except there were no differences in the average SCM score between the information protection and revenue cycle management categories (P=.96) and the information protection and data structure, content, and information governance categories (P=.31). CONCLUSIONS Industry job postings primarily sought a high school diploma and associate degrees, with a master's degree a distant third. NLP analysis of job postings suggested that the correlation between the informatics category and job postings was higher than that of the coding, revenue cycle, and data analytics categories. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/38407

    Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation

    Get PDF
    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus

    The Benefit of Cross-Modal Reorganization on Speech Perception in Pediatric Cochlear Implant Recipients Revealed Using Functional Near-Infrared Spectroscopy

    Get PDF
    Cochlear implants (CIs) are the most successful treatment for severe-to-profound deafness in children. However, speech outcomes with a CI often lag behind those of normally-hearing children. Some authors have attributed these deficits to the takeover of the auditory temporal cortex by vision following deafness, which has prompted some clinicians to discourage the rehabilitation of pediatric CI recipients using visual speech. We studied this cross-modal activity in the temporal cortex, along with responses to auditory speech and non-speech stimuli, in experienced CI users and normally-hearing controls of school-age, using functional near-infrared spectroscopy. Strikingly, CI users displayed significantly greater cortical responses to visual speech, compared with controls. Importantly, in the same regions, the processing of auditory speech, compared with non-speech stimuli, did not significantly differ between the groups. This suggests that visual and auditory speech are processed synergistically in the temporal cortex of children with CIs, and they should be encouraged, rather than discouraged, to use visual speech

    Preoperative brain imaging using functional near-infrared spectroscopy helps predict cochlear implant outcome in deaf adults

    Get PDF
    Currently it is not possible to accurately predict how well a deaf individual will be able to understand speech when hearing is (re)introduced via a cochlear implant. Differences in brain organisation following deafness are thought to contribute to variability in speech understanding with a cochlear implant and may offer unique insights that could help to more reliably predict outcomes. An emerging optical neuroimaging technique, functional near-infrared spectroscopy (fNIRS), was used to determine whether a preoperative measure of brain activation could explain variability in CI outcomes and offer additional prognostic value above that provided by known clinical characteristics. Cross-modal activation to visual speech was measured in bilateral superior temporal cortex of profoundly deaf adults before cochlear implantation. Behavioural measures of auditory speech understanding were obtained in the same individuals following six months of cochlear-implant use. The results showed that stronger preoperative cross-modal activation of auditory brain regions by visual speech was predictive of poorer auditory speech understanding after implantation. Further investigation suggested that this relationship may have been driven primarily by group differences between pre- and post-lingually deaf individuals. Nonetheless, preoperative cortical imaging provided additional prognostic value above that of influential clinical characteristics, including the age-at-onset and duration of auditory deprivation, suggesting that objectively assessing the physiological status of the brain using fNIRS imaging preoperatively may support more accurate prediction of individual CI outcomes. Whilst activation of auditory brain regions by visual speech prior to implantation was related to the CI user’s clinical history of deafness, activation to visual speech did not relate to the future ability of these brain regions to respond to auditory speech stimulation with a CI. Greater preoperative activation of left superior temporal cortex by visual speech was associated with enhanced speechreading abilities, suggesting that visual-speech processing may help to maintain left temporal-lobe specialisation for language processing during periods of profound deafness

    Cross-modal functional connectivity supports speech understanding in cochlear implant users

    Get PDF
    Sensory deprivation can lead to cross-modal cortical changes, whereby sensory brain regions deprived of input may be recruited to perform atypical function. Enhanced cross-modal responses to visual stimuli observed in auditory cortex of postlingually deaf cochlear implant (CI) users are hypothesized to reflect increased activation of cortical language regions, but it is unclear if this cross-modal activity is adaptive or mal-adaptive for speech understanding. To determine if increased activation of language regions is correlated with better speech understanding in CI users, we assessed task-related activation and functional connectivity of auditory and visual cortices to auditory and visual speech and non-speech stimuli in CI users (n = 14) and normal-hearing listeners (n = 17) and used functional near-infrared spectroscopy to measure hemodynamic responses. We used visually presented speech and non-speech to investigate neural processes related to linguistic content and observed that CI users show beneficial cross-modal effects. Specifically, an increase in connectivity between the left auditory and visual cortices-presumed primary sites of cortical language processing-was positively correlated with CI users\u27 abilities to understand speech in background noise. Cross-modal activity in auditory cortex of postlingually deaf CI users may reflect adaptive activity of a distributed, multimodal speech network, recruited to enhance speech understanding
    • …
    corecore