660 research outputs found

    Novel process concept for cryogenic CO2 capture

    Get PDF
    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed, such as scrubbing, membrane processes and pressure swing adsorption. Amine scrubbing is currently the state of the art technology, in which CO2 is being removed by contacting the flue gas with a solvent in an absorber. Regeneration is carried out by heating the loaded solvent in a stripping column. The main disadvantages of this process are the energy costs related to the regeneration step and solvent losses due to degradation. A promising novel option is to freeze out (desublimate) CO2 from flue gases using cryogenically cooled surfaces. High cooling costs could be minimized by exploiting the cold duty available at Liquefied Natural Gas (LNG) regasification sites. No standard process equipment is available to deal with separations based on desublimation. Therefore, a novel process concept has been developed and investigated in this dissertation, based on the periodic operation of cryogenically cooled packed beds. When feeding a flue gas to a previously cryogenically refrigerated packed bed, CO2 will freeze onto the packing surface, while permanent gases such as N2 pass through the bed unaltered. The amount of CO2 depositing onto the packing reaches an equilibrium value, because the amount of cold energy stored in the packing is limited. Therefore, plugging of the bed is intrinsically circumvented. A front of desublimating CO2 will move through the bed, until breakthrough is observed. At that point, the bed is switched to a recovery step, in which all previously deposited CO2 will be removed by recycling gaseous CO2 through the bed. The energy required for the sublimation of CO2 can be provided to the bed by feeding the flue gas at elevated temperatures during the capture step. A process cycle is finally finished with a cooling step, in which the bed is again refrigerated to its initial temperature. The proposed process concept has several advantages: simple and low cost equipment can be used, large pressure drops can be avoided, deep CO2 removal is possible and CO2, H2O and other impurities can be separated simultaneously. The development in time of axial temperature, gas concentration and mass deposition profiles in the packed beds during the different process steps can be well described using a one-dimensional, pseudohomogeneous, axially dispersed plug flow model, in which the mass and energy balances are solved simultaneously using an advanced numerical scheme. When assuming that no axial dispersion and mass deposition rate limitations occur during the process, the fronts which are developed are very well defined (sharp). Based on this assumption, the process can be well described with a simplified model (the ‘sharp front’ approach). With basic mass and energy conversation laws, the axial temperature, gas composition, and mass deposition profiles and front velocities can be calculated very fast using this model, making it a perfect tool for design and evaluation of the process. In the limit of negligible dispersion in the detailed numerical model, the solution converges to the profiles predicted by the sharp front approach. Outcomes of the sharp front approach show that the specific cooling duty required to capture a certain amount of CO2 increases for lower CO2 concentrations in the feed gas and for higher initial bed temperatures. A small scale experimental setup has been designed and constructed to measure axial temperature profiles and CO2 concentrations at the outlet during the capture step. Experiments have been carried out for N2/CO2 and N2/CO2/H2O mixtures. The results showed that a good separation between the single components is possible. The experimental findings have been compared to results calculated using the numerical model. The front velocities and therefore CO2 breakthrough times and the temperature profiles for different CO2 and H2O concentrations in the flue gas and initial bed temperatures are very well predicted by the developed model. Expressions for mass deposition rates of CO2 are required to accurately describe the process. No information is available in literature, therefore a dedicated experimental setup has been designed and constructed to measure mass deposition rates for different (gas and surface) temperatures, pressures and compositions. It is shown that the rate of desublimation is influenced by the thickness of the CO2 layer deposited onto the cooled surface, indicating the importance of heat transfer through the frost layer. Furthermore, it is found that the presence of N2 in the gas phase has a large effect on the desublimation rates, which indicates the presence of mass transfer limitations. A model has been developed to describe the observed behavior. The frost growth process has been described as a moving boundary problem, in which both mass and heat transfer are taken into account. Based on the experimental results, expressions have been derived to describe the density and heat conductivity of the frost layer. Using these expressions, the model is well able to predict the experimental results. It is shown that under the conditions as prevailing in the packed beds, mass deposition rates are mainly determined by mass transfer from the gas bulk phase to the packing surface. The small scale experimental setup has been used to study the capture step. In order to demonstrate the entire process cycle including the cooling and recovery step, a larger pilot setup has been constructed, containing three beds operated continuously. Test runs of more than 10 hours showed that it is indeed possible to continuously capture CO2 with the proposed concept. Radial temperature differences were observed in the beds, which could be attributed to the influence of the steel wall via simulations with the numerical model after including an additional energy balance for the wall. In a techno-economic evaluation the influence of several process parameters has been investigated; lower initial bed temperatures and higher CO2 concentrations in the feed result in more efficient use of the bed volume. The pressure drop over the system plays an important role in the process economics, due to the high flow rates required in the process. The cryogenic concept has been compared to two competing technologies: amine scrubbing and membrane separation. The results show that the preferred technology highly depends on assumptions related to the availability of utilities. The novel cryogenic capture process can compete with other technologies, provided that cold duty is available at low cost. An alternative promising application for the proposed technology is biogas purification. By operating the capture step at elevated pressures, it is possible to remove CO2 during the regeneration step very efficiently by reducing the pressure. The process performance has been compared with vacuum pressure swing adsorption technology. The required beds for treating a gas mixture containing 45 vol.% CO2 and 55 vol.% CH4 are eight times smaller for the cryogenic packed bed concept and the energy consumption is 22% lower

    Green coffee based CO2 adsorbent with high performance in postcombustion conditions

    Get PDF
    An environmentally friendly and low cost adsorbent, PPC (patent application filed González (2013)), produced from an abundant residue from the food industry, coffee grounds, is presented and evaluated as CO2 adsorbent in postcombustion conditions. PPC is a high bulk density pelletized carbon with adequate properties for its use in fixed-bed adsorption applications. The equilibrium capacity for CO2 at low partial pressures, relevant for the postcombustion case, in the 25–50 °C temperature range is superior to that of reference carbons, both in mass and volume basis. PPC presents equilibrium selectivity for CO2 over N2, with CO2/N2 equilibrium separation factor values of 15–25 at 50 °C and 130 kPa for CO2 concentrations between 9% and 31%. Moreover, it presents fast adsorption kinetics, which makes it a good candidate for rapid swing adsorption cycles. Different VSA cycle configurations were carried out at 50 °C in the fixed-bed adsorption unit to evaluate the performance of the adsorbent in cyclic operation. The adsorbent did not show any sign of deactivation over extended operation.Work carried out with financial support from the Spanish MINECO (Project ENE2011-23467), co-financed by the European Regional Development Fund (ERDF). M.G.P. acknowledges funding from the CSIC (JAE-Doc program), and A.S.G. acknowledges a contract from the MINECO (FPI program); both programs are co-financed by the European Social Fund.Peer reviewe

    Separation of CO2/N2 onto Shaped MOF MIL-160(Al) Using the Pressure Swing Adsorption Process for Post-combustion Application

    Get PDF
    Adsorption processes have already been considered as an appealing technology for carbon capture and climate change mitigation. Accordingly, this work investigated the capacity of shaped MIL-160(Al) as a water stable bioderived Al dicarboxylate microporous metal-organic framework for separation of carbon dioxide and nitrogen concerning postcombustion application. First, breakthrough experiments of carbon dioxide and nitrogen were accomplished at 313 K and 4.0 bar. Then, a set of equations/relations were considered to model the dynamic fixed-bed tests, in which the outcomes proved the capacity of the developed model for such a purpose. Next, a pressure swing adsorption (PSA) process with five steps, including pressurization, feed, rinse, blowdown, and purge, was planned and validated using performed experiments in a laboratory-scale PSA setup. In the end, an industrial PSA process was designed to attain a better grasp of the capacity of MIL-160(Al) for postcombustion application. The results indicated an exciting potential of this adsorbent for postcombustion carbon capture, with the purity and recovery of carbon dioxide around 67.3 and 99.1%, respectively.This work was financially supported by LA/P/0045/2020 (ALiCE), UIDB/50020/2020, and UIDP/50020/2020 (LSRE-LCM), funded by national funds through FCT/ MCTES (PIDDAC). It also received financial support by national funds through FCT/MCTES (PIDDAC): CIMO, UIDB/00690/2020 (DOI: 10.54499/UIDB/00690/2020) and UIDP/00690/2020 (DOI: 10.54499/UIDP/00690/2020), and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020). The authors also acknowledge Kyung-Ho Cho and U-Hwang Lee from the Korea Research Institute of Chemical Technology (KRICT), Republic of Korea, for their contributions in the shaping MIL-160(Al). M.K. acknowledges research grants awarded by the Foundation of Science and Technology of Portugal (FCT) under SFRH/BD/140550/2018 project and the University of Porto under FEUPBioGasUpGMIL160 project.info:eu-repo/semantics/publishedVersio

    Process intensification for post combustion CO₂ capture with chemical absorption: a critical review

    Get PDF
    The concentration of CO₂ in the atmosphere is increasing rapidly. CO₂ emissions may have an impact on global climate change. Effective CO₂ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend. Compared with pre-combustion carbon capture and oxy-fuel carbon capture approaches, post-combustion CO₂ capture (PCC) using solvent process is one of the most mature carbon capture technologies. There are two main barriers for the PCC process using solvent to be commercially deployed: (a) high capital cost; (b) high thermal efficiency penalty due to solvent regeneration. Applying process intensification (PI) technology into PCC with solvent process has the potential to significantly reduce capital costs compared with conventional technology using packed columns. This paper intends to evaluate different PI technologies for their suitability in PCC process. The study shows that rotating packed bed (RPB) absorber/stripper has attracted much interest due to its high mass transfer capability. Currently experimental studies on CO₂ capture using RPB are based on standalone absorber or stripper. Therefore a schematic process flow diagram of intensified PCC process is proposed so as to motivate other researches for possible optimal design, operation and control. To intensify heat transfer in reboiler, spinning disc technology is recommended. To replace cross heat exchanger in conventional PCC (with packed column) process, printed circuit heat exchanger will be preferred. Solvent selection for conventional PCC process has been studied extensively. However, it needs more studies for solvent selection in intensified PCC process. The authors also predicted research challenges in intensified PCC process and potential new breakthrough from different aspects

    Sorption direct air capture with CO2 utilization

    Get PDF
    Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO2 from discrete sources as “synthetic tree” when compared with current CO2 capture technologies, e.g., amine based post-combustion capture. It is considered as one of the emerging carbon capture technologies in recent decades and remains in a prototype investigation stage with many technical challenges to be overcome. The objective of this paper is to comprehensively discuss the state-of-the-art of DAC and CO2 utilization, note unresolved technology bottlenecks, and give investigation perspectives for commercial large-scale applications. Firstly, characteristics of physical and chemical sorbents are evaluated. Then, the representative capture processes, e.g., pressure swing adsorption, temperature swing adsorption and other ongoing absorption chemical loops, are described and compared. Methods of CO2 conversion including synthesis of fuels and chemicals as well as biological utilization are reviewed. Finally, techno-economic analysis and life cycle assessment for DAC application are summarized. Based on research achievements, future challenges of DAC and CO2 conversion are presented, which include providing synthesis guidelines for obtaining sorbents with the desired characteristics, uncovering the mechanisms for different working processes and establishing evaluation criteria in terms of technical and economic aspects

    Technical analysis of CO2 capture pathways and technologies

    Get PDF
    The reduction of CO2 emissions to minimize the impact of the climate change has become a global priority. The continuous implementation of renewable energy sources increases energy efficiency, while the reduction of CO2 emissions opens new options for carbon capture technologies to reduce greenhouse gases emissions. The combination of carbon capture with renewable energy balancing production offers excellent potential for fuels and chemical products and can play an essential role in the future energy system. This paper includes a critical review of the state of the art of different CO2 capture engineering pathways and technologies including a techno-economics analysis and focusing on comparing these technologies depending on the final CO2 application. The current cost for CO2 capture is in the range of 60–110 USD/t, likely to halve by 2030. This review offers technical information to select the most appropriate technology to be used in specific processes and for the different carbon capture pathways, i.e., Pre-combustion, Post-Combustion and Direct Air Capture. This comparison includes the CO2 capture approach for biomethane production by biogas upgrading to substitute fossil natural gas and other alternatives fuels production routes which will be introduces in future works performed by this review authors.Funding for open access charge: Universidad de Málaga / CBUA

    Carbon dioxide capture and utilization by VPSA: a sustainable development

    Get PDF
    El continu increment en l'ús de les energies renovables i els objectius per a la reducció de les emissions de diòxid de carboni (CO2) requereixen canvis significatius tant a nivell tècnic com a nivell normatiu. La captura i utilització de diòxid de carboni (CCU, per les sigles en anglès) és un mètode eficaç per aconseguir la mitigació del CO2 i al mateix temps mantenir de forma segura els subministraments d'energia. Si bé la demanda a la reducció de les emissions de CO2 està augmentant, l'eficiència energètica i el cost dels processos de captura de CO2 segueixen sent un factor limitant per a les aplicacions industrials. En el present treball s'estudia l'ús del procés d'adsorció per oscil·lació de pressió i buit (VPSA, per les sigles en anglès) amb adsorbents d'alta selectivitat per separar el CO2 dels gasos de combustió, com un mètode alternatiu al procés d'absorció tradicional amb amines. Es realitza un estudi preliminar mitjançant Anàlisi Tèrmica per determinar la capacitat d’adsorció i el comportament cíclic de la captura de CO2 per deu adsorbents comercials, inclosos els tamisos moleculars de carboni (CMS) i les zeolites. L'anàlisi es va fer amb CO2 pur, N2 pur i mescles dels dos gasos en la proporció 15%/85% que correspon a la composició d’un gas de combustió normal; s’usen les zeolites comercials 13X, 5A, 4A sense i amb aglomerants i tres tamisos moleculars de carboni (CMS) en l’interval de pressió de 0 a 10 bar i a 283K, 298K, 232K i 323 K de temperatura. Els resultats s’han ajustat amb els models Toth, Sips i Dual Site Langmuir (DSL). Es va realitzar una selecció entre deu adsorbents comercials per a la captura de CO2, inclosos els tamisos moleculars de carbó (CMS, per les sigles en anglès) i les zeolites. Es van determinar les propietats texturals, la capacitat d'adsorció i el comportament cíclic dels adsorbents per comparar el seu comportament a la separació del diòxid de carboni del nitrogen. Posteriorment, es van mesurar les isotermes d'adsorció d'un sol component en la balança de suspensió magnètica a quatre temperatures diferents (283, 298, 232 i 323 K) i en un ampli marge de pressions (de 0 a 10 bara). Les dades sobre les isotermes de components purs es van correlacionar utilitzant els models Toth, Sips i Dual Site Langmuir (DSL). Es van dissenyar i construir tres unitats de laboratori per realitzar l'experimentació del procés VPSA. La primera unitat es va usar per a la producció i el control de mescles gasoses de CO2 i N2 a una pressió màxima de 9 bara. En la segona unitat es van dur a terme la determinació dels equilibris d'adsorció amb una barreja de composició semblant a la dels gasos de combustió (15/85% de CO2/N2 v/v). Amb el programa Aspen Adsorption® es va simular el sistema experimental, obtenint que les prediccions del model DSL reprodueixen suficientment bé els resultats experimentals de les corbes de ruptura i els perfils de temperatura en el llit fix. A més, es van fer estudis dinàmics per avaluar les zeolites 5ABL i 13XBL usant el procés VPSA discontinu per a la separació CO2 de N2. La unitat dos es va dotar d'un sistema de control amb una interfície PLC que facilita la seva operació i automatització, usant una estratègia de control desenvolupada en aquest treball. En base als resultats obtinguts amb la unitat dos, tant experimentals com simulats, es va trobar que la zeolita 13XBL era la més adequada per al procés VPSA proposat. Els resultats experimentals es van emprar per alimentar el disseny de la unitat dos a Aspen Adsorption® i validar el model usat que al seu torn es va utilitzar per realitzar un disseny complet d'experiències de dos factors (26) en configuració continua. La tercera unitat experimental consta de tres columnes d'adsorció on es va incloure l'estratègia de control desenvolupada per la unitat dos i es va incloure la recirculació dels corrents rics en N2 i CO2. Es van dur a terme tres experiments del procés VPSA cíclic de 8 passos canviant els paràmetres de control del procés automatitzat i usant la zeolita 13XBL com adsorbent. Es va aconseguir satisfer els objectius en termes puresa de CO2 (> 80%) i consum energètic (<2.5 kWh/kgCO2). Sobre la base dels resultats experimentals i simulats, es va realitzar una demostració a escala pilot de la captura de CO2 del gas de combustió d'una caldera de vapor en una planta industrial a situada a la província de Barcelona.La planta pilot de captura de CO2 consta d'un procés de pretractament dels gasos de combustió, una unitat VPSA acoblada amb una unitat de deshumidificació i una aplicació industrial per a l'ús del CO2. A la unitat de pretractament, els gasos de combustió es van refredar de 70ºC a 25ºC i es van desnitrificar. A la unitat de deshumidificació, es va eliminar el vapor d'aigua del gas desnitrificat mitjançant adsorció sobre alúmina. Posteriorment, es va emprar el procés VPSA de vuit passos amb tres columnes usant zeolita 13XBL, en la qual es va obtenir un corrent enriquit de CO2 de 85 a 95% de puresa de CO2, amb una recuperació del 48 a 56%, una productivitat de 0,20-0,25 gCO2/(gads·h) i un consum energètic de 1.48 kWh/kgCO2. El CO2 recuperat es va usar per reemplaçar l'ús d'àcids minerals en l'etapa de regulació del pH de la planta de tractament d'aigües residuals existent a la fàbrica. Per tant, el procés desenvolupat és una alternativa efectiva per separar el CO2 dels punts d'emissió de gasos de combustió industrial i utilitzar el CO2 recuperat com a matèria primera per a aplicacions industrials. L'ús de CO2 capturat en aquestes fonts d'emissió té dos avantatges clars. D'una banda, es van reduir les emissions de CO2 a la atmosfera. De l'altra, va permetre reutilitzar i transformar un contaminant ambiental en compostos neutres.El continuo incremento en el uso de las energías renovables y los objetivos para la reducción de las emisiones de dióxido de carbono (CO2) requieren cambios significativos tanto a nivel técnico como a nivel normativo. La captura y utilización de dióxido de carbono (CCU, por sus siglas en inglés) es un método eficaz para lograr la mitigación del CO2 y al mismo tiempo mantener de forma segura los suministros de energía. Si bien la demanda en la reducción de las emisiones de CO2 está aumentando, la eficiencia energética y el costo de los procesos de captura de CO2 siguen siendo un factor limitante para las aplicaciones industriales. En el presente trabajo se estudia el uso del proceso de adsorción por oscilación de presión y vacío (VPSA, por sus siglas en inglés) con adsorbentes de alta selectividad para separar el CO2 de los gases de combustión, como un método alternativo al proceso de absorción tradicional con aminas. Se realizó una selección entre diez adsorbentes comerciales para la captura de CO2, incluidos los tamices moleculares de carbón (CMS, por sus siglas en inglés) y las zeolitas. Se determinaron las propiedades texturales, la capacidad de adsorción y el comportamiento cíclico de los adsorbentes para comparar su comportamiento en la separación del dióxido de carbono del nitrógeno. Posteriormente, se midieron las isotermas de adsorción de un solo componente en la balanza de suspensión magnética a cuatro temperaturas diferentes (283, 298, 232 y 323 K) y en un amplio margen de presiones (de 0 a 10 bara). Los datos sobre las isotermas de componentes puros se correlacionaron utilizando los modelos Toth, Sips y Dual Site Langmuir (DSL). Se diseñaron y construyeron tres unidades de laboratorio para realizar la experimentación del proceso VPSA. La primera unidad se usó para la producción y el control de mezclas gaseosas de CO2 y N2 a una presión máxima de 9 bara. En la segunda unidad se llevaron a cabo las mediciones de los equilibrios de adsorción con una mezcla de composición semejante a la de los gases de combustión (15/85% de CO2/N2 v/v). Con el programa Aspen Adsorption® se simuló el sistema experimental, obteniendo que las predicciones del modelo DSL reproducen suficientemente bien los resultados experimentales de las curvas de ruptura y los perfiles de temperatura en el lecho fijo. Además, se hicieron estudios dinámicos para evaluar las zeolitas 5ABL y 13XBL usando el proceso VPSA discontinuo para la separación CO2 de N2. La unidad dos se dotó de un sistema de control con una interfaz PLC que facilita su operación y automatización, usando una estrategia de control desarrollada en este trabajo. En base a los resultados obtenidos con la unidad dos y su simulación, se encontró que la zeolita 13XBL era la que la más adecuada para el proceso VPSA propuesto. Los resultados experimentales se usaron para alimentar el diseño de la unidad dos en Aspen Adsorption® y validar el modelo usado que a su vez se utilizó para realizar un diseño completo de experiencias de dos factores (26) en configuración discontinua. La tercera unidad experimental consta de tres columnas de adsorción donde se incluyó la estrategia de control desarrollada para la unidad dos y se incluyó la recirculación de las corrientes ricas en N2 y CO2. Se llevaron a cabo tres experimentos en el proceso VPSA cíclico de 8 pasos cambiando los parámetros de control del proceso automatizado y usando la zeolita 13XBL como adsorbente. Se logró satisfacer los objetivos en términos pureza de CO2 (>80%) y consumo energético (<2.5 kW·h/kgCO2). Sobre la base de los resultados experimentales y simulados, se realizó una demostración a escala piloto de la captura de CO2 del gas de combustión de una caldera de vapor en una planta industrial situada en la provincia de Barcelona. La planta piloto de captura de CO2 consta de un proceso de pretratamiento de los gases de combustión, una unidad VPSA acoplada con una unidad de deshumidificación y una aplicación industrial para el uso del CO2. En la unidad de pretratamiento, los gases de combustión se enfriaron de 70ºC a 25ºC y desnitrificaron. En la unidad de deshumidificación, se eliminó el vapor de agua del gas desnitrificado mediante adsorción con alúmina. Posteriormente, se empleó el proceso VPSA de ocho pasos con tres columnas usando zeolita 13XBL, en la que se obtuvo una corriente enriquecida de CO2 de 85 a 95% de pureza de CO2, con una recuperación del 48 a 56%, una productividad de 0.20 a 0.25 gCO2/(gads٠h-) y un consumo energético de 1.48 kWh/ kgCO2. El CO2 recuperado se usó para reemplazar el uso de ácidos minerales en la etapa de regulación del pH de la planta de tratamiento de aguas residuales existente en la fábrica. Por lo tanto, el proceso desarrollado es una alternativa efectiva para separar el CO2 de los puntos de emisión de gases de combustión industrial y utilizar el CO2 recuperado como materia prima para aplicaciones industriales. El uso de CO2 capturado en estas fuentes de emisión tiene dos ventajas claras. Por un lado, redujeron las emisiones de CO2 a la atmósfera. Por otro lado, permitió reutilizar y transformar un contaminante ambiental en compuestos neutros.The continuously increasing share of renewable energy sources and European Union targets for carbon dioxide (CO2) emission reduction need significant changes both on a technical and regulatory level. Carbon dioxide capture and utilization (CCU) is an effective method for achieving CO2 mitigation while simultaneously keeping energy supplies secure. While the demand for reduction in CO2 emissions is increasing, the improvement of energy-efficiency and the cost of CO2 capture processes remains a limiting factor for industrial applications. The present work studies the Vacuum Pressure Swing Adsorption process (VPSA) using high selectivity adsorbents for separating CO2 from flue gas as an alternative method to the traditional absorption process with amines. A screening analysis for CO2 capture was conducted on ten commercial adsorbents, including carbon molecular sieves (CMS) and zeolites. The textural properties, the adsorption capacities and the adsorbent cyclic behaviors were determined to compare their performance in the context of CO2 separation from nitrogen (N2). Subsequently, the single component adsorption isotherms were measured in a magnetic suspension balance at four different temperatures (283, 298, 232 and 323 K) and over a large range of pressures (from 0 to 10 bara). Data on the pure component isotherms were correlated using the Toth, Sips and Dual Site Langmuir (DSL) models. Three laboratory units were designed and built to perform the VPSA experiments. The first was used for the production and control of CO2 and N2 gas mixtures at a maximum pressure of 9 bara. Adsorption equilibrium measurements with a mixture that resembles the composition of combustion gases (15/85% CO2/N2 v/v) were obtained using the second unit that was built. Afterwards, the Aspen Adsorption® program was used to simulate the experimental system, where the predictions of the DSL model agree with the breakthrough curves and the temperature profiles of the experimental fixed bed results. In addition, dynamic studies were performed to evaluate the zeolites 5ABL and 13XBL using a discontinuous VPSA process for the CO2 separation of N2. The process was automated and operated with a PLC interface, using a control strategy developed in this work. Based on the comparison results of the zeolites, it was found that the 13XBL zeolite was the one most suitable for the proposed VPSA process. The experimental results were verified by numerical simulations in the Aspen Adsorption® software and the validated model was used to perform a two-factor complete design of experiments (26) using 13XBL simulations in a discontinuous configuration. The third experimental unit was built with three adsorption columns which included the developed control strategy and the recirculation of N2 and CO2 rich streams. Three experiments were carried out using zeolite 13XBL as an adsorbent for the proposed 8-step VPSA cyclic process by changing the control parameters of the automated process. Through the experiments, the objectives were achieved in terms of CO2 purity (> 90%) and energy consumption (> 2.5 kWh/kgCO2). Based on the experimental and simulated results, a pilot-scale demonstration plant for CO2 capture from flue gas in an existing industrial boiler in a Spanish company was carried out. The pilot-scale CO2 capture plant consisted of a pre-treatment process for flue gases, a VPSA unit coupled with a dehumidification unit and an industrial application for the use of CO2. In the pretreatment unit the flue gases were cooled from 70°C to 25°C and then denitrified. In the dehumidification unit, the water vapor was removed from the denitrified gas by adsorption with alumina. Subsequently, the three columns’ eight-step VPSA process developed with zeolite 13XBL was used. The results were a product purity of 85 to 95% of CO2, a recovery of 48 to 56%, a productivity of 0.20 to 0.25 gCO2/(gads٠h) and an energy consumption of 1.48 kWh/kgCO2. The recovered CO2 was then used to replace the use of mineral acids in the pH regulation stage of the existing wastewater treatment plant. Therefore, it is concluded that the developed process is an effective alternative to separate the CO2 from the emission points of industrial combustion gases and to use the recovered CO2 as raw material for industrial applications. The use of CO2 captured in these emission sources has two clear advantages. On the one hand, it reduces the CO2 emissions to the atmosphere. On the other hand, it allows the reuse and transformation of an environmental pollutant into neutral compounds

    Design and simulation of pressure swing adsorption cycles for CO2 capture

    Get PDF
    Carbon capture and storage technologies (CCS) are expected to play a key role in the future energy matrix. Different gas separation processes are under investigation with the purpose of becoming a more economical alternative than solvent based post combustion configurations. Previous works have proved that pressure swing adsorption (PSA) cycles manage to reach similar carbon capture targets than conventional amine process but with approx. a 50% lower specific energy consumption when they are applied at lab scale. These encouraging results suggest that research must be undertaken to study the feasibility of this technology at a low to medium power plant scale. The simulation of PSA cycles is a computationally challenging and time consuming task that requires as well a large set of experimentally measured data as input parameters. The assumption of Equilibrium Theory reduces the amount of empirically determined input variables that are necessary for modelling adsorption dynamics as well as enabling a simpler code implementation for the simulators. As part of this work, an Equilibrium Theory PSA cycle solver (Esim) was developed, the novel tool enables the quantification of the thermodynamic limit for a given PSA cycle allowing as well a pre-selection of promising operating conditions and configurations (high separation efficiency) for further investigation by using full governing equation based software The tool presented in this thesis is able to simulate multi-transition adsorption systems that obey any kind of equilibrium isotherm function without modifying its main code. The second part of this work is devoted to the design, simulation and optimisation of two stage two bed Skarmstrom PSA cycles to be applied as a pre-combustion process in a biomass gasification CHP plant. Simulations were carried out employing an in house software (CySim) in which full governing equations have been implemented. An accurate analysis of the operating conditions and cycle configurations was undertaken in order to improve the performance of the carbon capture unit. It was estimated that the energy penalty associated with the incorporation of the adsorptive pre combustion process was lower for a conventional post combustion solvent unit, leading as well to lower specific energy consumption per unit of captured CO2 and higher overall efficiencies for the CHP plant with installed pre-combustion PSA cycles. This work is pioneer in its kind as far as modelling, simulation, optimisation and integration of PSA units in energy industries is concerned and its results are expected to contribute to the deployment of this technology in the future energy matrix
    corecore