1,488 research outputs found

    Deep brain stimulation in schizophrenia

    Get PDF
    Deep brain stimulation (DBS) has successfully advanced treatment options of putative therapy-resistant neuropsychiatric diseases. Building on this strong foundation more and more mental disorders in the stadium of therapy-resistance are considered as possible indications for DBS. Especially schizophrenia with its associated severe and difficult to treat symptoms is gaining attention. This attention demands critical questions regarding the assumed mechanisms of DBS and its possible influence on the supposed pathophysiology of schizophrenia. Here we synoptically compare current approaches and theories of DBS and discuss the feasibility of DBS in schizophrenia as well as the transferability from other psychiatric disorders successfully treated with DBS. For this we consider recent advances in animal models of schizophrenic symptoms, results regarding the influence of DBS on dopaminergic transmission as well as data concerning neural oscillation and synchronization. In conclusion the use of DBS for some symptoms of schizophrenia seems to be a promising approach, but the lack of a comprehensive theory of the mechanisms of DBS as well as its impact on schizophrenia might void the use of DBS in schizophrenia at this point

    Episodic memory dysfunction and hypersynchrony in brain functional networks in cognitively intact subjects and MCI: A study of 379 individuals

    Get PDF
    Delayed recall (DR) impairment is one of the most significant predictive factors in defining the progression to Alzheimer’s disease (AD). Changes in brain functional connectivity (FC) could accompany this decline in the DR performance even in a resting state condition from the preclinical stages to the diagnosis of AD itself, so the characterization of the relationship between the two phenomena has attracted increasing interest. Another aspect to contemplate is the potential moderator role of the APOE genotype in this association, considering the evidence about their implication for the disease. 379 subjects (118 mild cognitive impairment (MCI) and 261 cognitively intact (CI) individuals) underwent an extensive evaluation, including MEG recording. Applying cluster-based permutation test, we identified a cluster of differences in FC and studied which connections drove such an effect in DR. The moderation effect of APOE genotype between FC results and delayed recall was evaluated too. Higher FC in beta band in the right occipital region is associated with lower DR scores in both groups. A significant anteroposterior link emerged in the seed-based analysis with higher values in MCI. Moreover, APOE genotype appeared as a moderator between beta FC and DR performance only in the CI group. An increased beta FC in the anteroposterior brain region appears to be associated with lower memory performance in MCI. This finding could help discriminate the pattern of the progression of healthy aging to MCI and the relation between resting state and memory performance

    Fluctuations in instantaneous frequency predict alpha amplitude during visual perception.

    Get PDF
    Rhythmic neural activity in the alpha band (8-13 Hz) is thought to have an important role in the selective processing of visual information. Typically, modulations in alpha amplitude and instantaneous frequency are thought to reflect independent mechanisms impacting dissociable aspects of visual information processing. However, in complex systems with interacting oscillators such as the brain, amplitude and frequency are mathematically dependent. Here, we record electroencephalography in human subjects and show that both alpha amplitude and instantaneous frequency predict behavioral performance in the same visual discrimination task. Consistent with a model of coupled oscillators, we show that fluctuations in instantaneous frequency predict alpha amplitude on a single trial basis, empirically demonstrating that these metrics are not independent. This interdependence suggests that changes in amplitude and instantaneous frequency reflect a common change in the excitatory and inhibitory neural activity that regulates alpha oscillations and visual information processing

    Dynamics of EEG rhythms support distinct visual selection mechanisms in parietal cortex: A simultaneous transcranial magnetic stimulation and EEG study

    Get PDF
    Using repetitive transcranial magnetic stimulation (rTMS), we have recently shown a functional anatomical distinction in human parietal cortex between regions involved in maintaining attention to a location [ventral intraparietal sulcus (vIPS)] and a region involved in shifting attention between locations [medial superior parietal lobule (mSPL)]. In particular, while rTMS interference over vIPS impaired target discrimination at contralateral attended locations, interference over mSPL affected performance following shifts of attention regardless of the visual field (Capotosto et al., 2013). Here, using rTMS interference in conjunction with EEG recordings of brain rhythms during the presentation of cues that indicate to either shift or maintain spatial attention, we tested whether this functional anatomical segregation involves different mechanisms of rhythm synchronization. The transient inactivation of vIPS reduced the amplitude of the expected parieto-occipital low-alpha (8 - 10 Hz) desynchronization contralateral to the cued location. Conversely, the transient inactivation of mSPL, compared with vIPS, reduced the high-alpha (10 - 12 Hz) desynchronization induced by shifting attention into both visual fields. Furthermore, rTMS induced a frequency-specific delay of task-related modulation of brain rhythms. Specifically, rTMS over vIPS or mSPL during maintenance (stay cues) or shifting (shift cues) of spatial attention, respectively, caused a delay of alpha parieto-occipital desynchronization. Moreover, rTMS over vIPS during stay cues caused a delay of delta (2-4 Hz) frontocentral synchronization. These findings further support the anatomo-functional subdivision of the dorsal attention network in subsystems devoted to shifting or maintaining covert visuospatial attention and indicate that these mechanisms operate in different frequency channels linking frontal to parieto-occipital visual regions

    Restoring Consciousness During Seizures With Deep Brain Stimulation

    Get PDF
    Impaired consciousness occurs suddenly and unpredictably in people with epilepsy, markedly worsening quality of life and increasing risk of mortality. Focal seizures with impaired consciousness are the most common form of epilepsy, and are refractory to all current medical and surgical therapies in about one sixth of cases. Restoring consciousness during and following seizures would be potentially transformative for these individuals. Here, we investigate deep brain stimulation to improve level of conscious arousal in a rat model of focal limbic seizures. We found that dual-site stimulation of the thalamic intralaminar central lateral nucleus (CL) and pontine nucleus oralis (PnO) bilaterally during focal limbic seizures restored normal-appearing cortical electrophysiology and markedly improved behavioral arousal. In contrast, single-site bilateral stimulation of CL or PnO alone was insufficient to achieve the same result. These findings support the ‘network inhibition hypothesis’ that focal limbic seizures impair consciousness through widespread inhibition of subcortical arousal. Driving subcortical arousal function would be a novel therapeutic approach to some forms of refractory epilepsy and may be compatible with devices already in use for responsive neurostimulation. Multi-site deep brain stimulation of subcortical arousal structures may benefit not only patients with epilepsy, but also other disorders of consciousness

    What Electrophysiology Tells Us About Alzheimer’s Disease::A Window into the Synchronization and Connectivity of Brain Neurons

    Get PDF
    Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer’s disease (AD), despite a surge in recent validated evidence. This Position Paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity reflecting thalamocortical and cortico-cortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies

    The role of alpha oscillations in premotor-cerebellar connectivity in motor sequence learning: Insights from transcranial alternating current stimulation

    Get PDF
    Alpha oscillations (8-13 Hz) have been suggested to play an important role in dynamic neural processes underlying learning and memory. The goal of this work was to scrutinize the role of alpha oscillations in communication within a cortico-cerebellar network implicated in motor sequence learning. To this end, we conducted two EEG experiments using a serial reaction time task. In the first experiment, we explored changes in alpha power and cross-channel alpha coherence as subjects learned a motor sequence. We found a gradual decrease in spectral alpha power over left premotor cortex (PMC) and sensorimotor cortex (SM1) during learning blocks. In addition, alpha coherence between left PMC/SM1 and left cerebellar crus I was specifically decreased during sequence learning, possibly reflecting a functional decoupling in the broader motor learning network. In the second experiment in a different cohort, we applied 10Hz transcranial alternating current stimulation (tACS), a method shown to entrain local oscillatory activity, to left M1 (lM1) and right cerebellum (rCB) during sequence learning. We observed a tendency for diminished learning following rCB tACS compared to sham, but not following lM1 tACS. Learning-related alpha power following rCB tACS was increased in left PMC, possibly reflecting increase in local inhibitory neural activity. Importantly, learning-specific alpha coherence between left PMC and right cerebellar lobule VIIb was enhanced following rCB tACS. These findings provide strong evidence for a causal role of alpha oscillations in controlling information transfer in a premotor-cerebellar loop during motor sequence learning. Our findings are consistent with a model in which sequence learning may be impaired by enhancing premotor cortical alpha oscillation via external modulation of cerebellar oscillations.:1 List of Abbreviations 2 Introduction 2.1 Motor Learning Stages 2.2 Motor Learning Tasks 2.3 Motor Learning Network 2.4 Theoretical Models of Motor Learning 2.5 Functional Connectivity of Motor Brain Regions 2.6 Effective Connectivity of Motor Brain Regions 2.7 Oscillations in Neuronal Communication 2.8 Alpha Oscillations 2.8.1 Role of Alpha Oscillations in Motor Sequence Learning 2.9 Transcranial Electric Stimulation 2.9.1 Transcranial Alternating Current Stimulation (tACS) 2.10 Summary of Study Rationale 3 Publication 4 Summary 5 List of References 6 Supplementary Materials 7 Contribution of Authors / Darstellung des eigenen Beitrags 8 Declaration of Authorship 9 Curriculum Vitae 10 Publication and Presentation 11 Acknowledgement / Danksagun
    • 

    corecore