146 research outputs found

    Next-generation, personalised, model-based critical care medicine : a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them

    Get PDF
    © 2018 The Author(s). Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care

    Decision support for blood glucose control in critically ill patients:development and clinical pilot testing of the Glucosafe system

    Get PDF

    Real-world evidence for the management of blood glucose in the intensive care unit

    Full text link
    Glycaemic control is a core aspect of patient management in the intensive care unit (ICU). Blood glucose has a well-known U-shaped relationship with mortality and morbidity in ICU patients, with both hypo- and hyper-glycaemia associated with poor patient outcomes. As a result, up to 40-90% of ICU patients receive insulin, depending on illness severity and variation in clinical practice. Generally, clinical guidelines for glycaemic control are based on a series of trials that culminated in the NICE-SUGAR study in 2009, a multicentre study demonstrating that tight glycaemic control (a target of 80-110 mg/dL) did not improve patient outcomes compared to moderate control (<180 mg/dL). However, there remain open questions around the potential for more personalised blood glucose management, which real-world evidence sources such as electronic medical records (EMRs) can play a role in answering. This thesis investigates the role that EMRs can play in glycaemic control in the ICU using open access EMR databases, covering a heterogenous 208 hospital USA based patient cohort (the eICU collaborative research database, eICU-CRD) and a large tertiary medical centre in Boston, USA (MIMIC-III and MIMIC-IV). This thesis covers: i) curation and characterisation of the eICU-CRD cohort as a data resource for real-world evidence in glycaemic control; ii) investigation of whether blood lactate modifies the relationship between blood glucose and patient outcome across different subgroups; and iii) the development and comparison of machine learning and deep learning probabilistic forecasting algorithms for blood glucose. The analysis of the eICU-CRD demonstrated that there is wide variety in clinical practice around glycaemic control in the ICU. The results enable comparison with other data resources and assessment of the suitability of the eICU-CRD for addressing specific research questions related to glycaemic control and nutrition support. Informed by this descriptive analysis, the eICU-CRD was used to examine whether blood lactate modifies the relationship between blood glucose and patient outcome across different subgroups. While adjustment for blood lactate attenuated the relationship between blood glucose and patient outcome, blood glucose remained a marker of poor prognosis. Diabetic status was found to influence this relationship, in line with increasing evidence that diabetics and non-diabetics should be considered distinct populations for the purpose of glycaemic control in the ICU. The forecasting algorithms developed using MIMIC-III and MIMIC-IV were designed to account for the intrinsic statistical difficulties present in EMRs. These include large numbers of potentially sparsely and irregularly measured input variables. The focus was on development of probabilistic approaches given the measurement error in blood glucose measures, and their potential conversion into categorical forecasts if required. Two alternative approaches were proposed. The first was to use gradient boosted tree (GBT) algorithms, along with extensive feature engineering. The second was to use continuous time recurrent neural networks (CTRNNs), which learn their own hidden features and account for irregular measurements through evolving the model hidden state using continuous time dynamics. However, several CTRNN architectures are outperformed by an autoregressive GBT model (Catboost), with only a long short-term memory (LSTM) and neural ODE based architecture (ODE-LSTM) achieving comparable performance on probabilistic forecasting metrics such as the continuous ranked probability score (ODE-LSTM: 0.118±0.001; Catboost: 0.118±0.001), ignorance score (0.152±0.008; 0.149±0.002) and interval score (175±1; 176±1). Further, the GBT method was far easier and faster to train, highlighting the importance of using appropriate non-deep learning benchmarks in the academic literature on novel statistical methodologies for analysis of EMRs. The findings highlight that EMRs are a valuable resource in medical evidence generation and characterisation of current clinical practice. Future research should aim to continue investigation of subgroup differences and utilise the forecasting algorithms as part of broader goals such as development of personalised insulin recommendation algorithms

    Performance Evaluation of Smart Decision Support Systems on Healthcare

    Get PDF
    Medical activity requires responsibility not only from clinical knowledge and skill but also on the management of an enormous amount of information related to patient care. It is through proper treatment of information that experts can consistently build a healthy wellness policy. The primary objective for the development of decision support systems (DSSs) is to provide information to specialists when and where they are needed. These systems provide information, models, and data manipulation tools to help experts make better decisions in a variety of situations. Most of the challenges that smart DSSs face come from the great difficulty of dealing with large volumes of information, which is continuously generated by the most diverse types of devices and equipment, requiring high computational resources. This situation makes this type of system susceptible to not recovering information quickly for the decision making. As a result of this adversity, the information quality and the provision of an infrastructure capable of promoting the integration and articulation among different health information systems (HIS) become promising research topics in the field of electronic health (e-health) and that, for this same reason, are addressed in this research. The work described in this thesis is motivated by the need to propose novel approaches to deal with problems inherent to the acquisition, cleaning, integration, and aggregation of data obtained from different sources in e-health environments, as well as their analysis. To ensure the success of data integration and analysis in e-health environments, it is essential that machine-learning (ML) algorithms ensure system reliability. However, in this type of environment, it is not possible to guarantee a reliable scenario. This scenario makes intelligent SAD susceptible to predictive failures, which severely compromise overall system performance. On the other hand, systems can have their performance compromised due to the overload of information they can support. To solve some of these problems, this thesis presents several proposals and studies on the impact of ML algorithms in the monitoring and management of hypertensive disorders related to pregnancy of risk. The primary goals of the proposals presented in this thesis are to improve the overall performance of health information systems. In particular, ML-based methods are exploited to improve the prediction accuracy and optimize the use of monitoring device resources. It was demonstrated that the use of this type of strategy and methodology contributes to a significant increase in the performance of smart DSSs, not only concerning precision but also in the computational cost reduction used in the classification process. The observed results seek to contribute to the advance of state of the art in methods and strategies based on AI that aim to surpass some challenges that emerge from the integration and performance of the smart DSSs. With the use of algorithms based on AI, it is possible to quickly and automatically analyze a larger volume of complex data and focus on more accurate results, providing high-value predictions for a better decision making in real time and without human intervention.A atividade médica requer responsabilidade não apenas com base no conhecimento e na habilidade clínica, mas também na gestão de uma enorme quantidade de informações relacionadas ao atendimento ao paciente. É através do tratamento adequado das informações que os especialistas podem consistentemente construir uma política saudável de bem-estar. O principal objetivo para o desenvolvimento de sistemas de apoio à decisão (SAD) é fornecer informações aos especialistas onde e quando são necessárias. Esses sistemas fornecem informações, modelos e ferramentas de manipulação de dados para ajudar os especialistas a tomar melhores decisões em diversas situações. A maioria dos desafios que os SAD inteligentes enfrentam advêm da grande dificuldade de lidar com grandes volumes de dados, que é gerada constantemente pelos mais diversos tipos de dispositivos e equipamentos, exigindo elevados recursos computacionais. Essa situação torna este tipo de sistemas suscetível a não recuperar a informação rapidamente para a tomada de decisão. Como resultado dessa adversidade, a qualidade da informação e a provisão de uma infraestrutura capaz de promover a integração e a articulação entre diferentes sistemas de informação em saúde (SIS) tornam-se promissores tópicos de pesquisa no campo da saúde eletrônica (e-saúde) e que, por essa mesma razão, são abordadas nesta investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à aquisição, limpeza, integração e agregação de dados obtidos de diferentes fontes em ambientes de e-saúde, bem como sua análise. Para garantir o sucesso da integração e análise de dados em ambientes e-saúde é importante que os algoritmos baseados em aprendizagem de máquina (AM) garantam a confiabilidade do sistema. No entanto, neste tipo de ambiente, não é possível garantir um cenário totalmente confiável. Esse cenário torna os SAD inteligentes suscetíveis à presença de falhas de predição que comprometem seriamente o desempenho geral do sistema. Por outro lado, os sistemas podem ter seu desempenho comprometido devido à sobrecarga de informações que podem suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de algoritmos de AM na monitoria e gestão de transtornos hipertensivos relacionados com a gravidez (gestação) de risco. O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global de sistemas de informação em saúde. Em particular, os métodos baseados em AM são explorados para melhorar a precisão da predição e otimizar o uso dos recursos dos dispositivos de monitorização. Ficou demonstrado que o uso deste tipo de estratégia e metodologia contribui para um aumento significativo do desempenho dos SAD inteligentes, não só em termos de precisão, mas também na diminuição do custo computacional utilizado no processo de classificação. Os resultados observados buscam contribuir para o avanço do estado da arte em métodos e estratégias baseadas em inteligência artificial que visam ultrapassar alguns desafios que advêm da integração e desempenho dos SAD inteligentes. Como o uso de algoritmos baseados em inteligência artificial é possível analisar de forma rápida e automática um volume maior de dados complexos e focar em resultados mais precisos, fornecendo previsões de alto valor para uma melhor tomada de decisão em tempo real e sem intervenção humana

    Computerized advice on drug dosage to improve prescribing practice

    Get PDF
    International audienceComputerized advice on drug dosage to improve prescribing practice (Review) 1 Copyright © 2013 The Cochrane Collaboration. Published by JohnWiley & Sons, Ltd. Data collection and analysis Two review authors independently extracted data and assessed study quality.We grouped the results from the included studies by drug used and the effect aimed at for aminoglycoside antibiotics, amitriptyline, anaesthetics, insulin, anticoagulants, ovarian stimulation, anti-rejection drugs and theophylline. We combined the effect sizes to give an overall effect for each subgroup of studies, using a random-effects model. We further grouped studies by type of outcome when appropriate (i.e. no evidence of heterogeneity). Main results Forty-six comparisons (from 42 trials) were included (as compared with 26 comparisons in the last update) including a wide range of drugs in inpatient and outpatient settings. All were randomized controlled trials except two studies. Interventions usually targeted doctors, although some studies attempted to influence prescriptions by pharmacists and nurses. Drugs evaluated were anticoagulants, insulin, aminoglycoside antibiotics, theophylline, anti-rejection drugs, anaesthetic agents, antidepressants and gonadotropins. Although all studies used reliable outcome measures, their quality was generally low. This update found similar results to the previous update and managed to identify specific therapeutic areas where the computerized advice on drug dosage was beneficial compared with routine care: 1. it increased target peak serum concentrations (standardized mean difference (SMD) 0.79, 95% CI 0.46 to 1.13) and the proportion of people with plasma drug concentrations within the therapeutic range after two days (pooled risk ratio (RR) 4.44, 95% CI 1.94 to 10.13) for aminoglycoside antibiotics; 2. it led to a physiological parameter more often within the desired range for oral anticoagulants (SMD for percentage of time spent in target international normalized ratio +0.19, 95% CI 0.06 to 0.33) and insulin (SMD for percentage of time in target glucose range: +1.27, 95% CI 0.56 to 1.98); 3. it decreased the time to achieve stabilization for oral anticoagulants (SMD -0.56, 95% CI -1.07 to -0.04); 4. it decreased the thromboembolism events (rate ratio 0.68, 95% CI 0.49 to 0.94) and tended to decrease bleeding events for anticoagulants although the difference was not significant (rate ratio 0.81, 95%CI 0.60 to 1.08). It tended to decrease unwanted effects for aminoglycoside antibiotics (nephrotoxicity: RR 0.67, 95% CI 0.42 to 1.06) and anti-rejection drugs (cytomegalovirus infections: RR 0.90, 95% CI 0.58 to 1.40); 5. it tended to reduce the length of time spent in the hospital although the difference was not significant (SMD -0.15, 95% CI -0.33 to 0.02) and to achieve comparable or better cost-effectiveness ratios than usual care; 6. there was no evidence of differences in mortality or other clinical adverse events for insulin (hypoglycaemia), anaesthetic agents, antirejection drugs and antidepressants. For all outcomes, statistical heterogeneity quantified by I2 statistics was moderate to high. Authors’ conclusions This review update suggests that computerized advice for drug dosage has some benefits: it increases the serum concentrations for aminoglycoside antibiotics and improves the proportion of people for which the plasma drug is within the therapeutic range for aminoglycoside antibiotics. It leads to a physiological parameter more often within the desired range for oral anticoagulants and insulin. It decreases the time to achieve stabilization for oral anticoagulants. It tends to decrease unwanted effects for aminoglycoside antibiotics and anti-rejection drugs, and it significantly decreases thromboembolism events for anticoagulants. It tends to reduce the length of hospital stay compared with routine care while comparable or better cost-effectiveness ratios were achieved. However, there was no evidence that decision support had an effect on mortality or other clinical adverse events for insulin (hypoglycaemia), anaesthetic agents, anti-rejection drugs and antidepressants. In addition, there was no evidence to suggest that some decision support technical features (such as its integration into a computer physician order entry system) or aspects of organization of care (such as the setting) could optimize the effect of computerized advice. Taking into account the high risk of bias of, and high heterogeneity between, studies, these results must be interpreted with caution. P L A I N L A N G U A G E S U M M A R Y Computerized advice on drug dosage to improve prescribing practice (Review) 2 Copyright © 2013 The Cochrane Collaboration. Published by JohnWiley & Sons, Ltd. Computerized advice on drug dosage to improve prescribing practice Background Physicians and other healthcare professionals often prescribe drugs that will only work at certain concentrations. These drugs are said to have a narrow therapeutic window. This means that if the concentration of the drug is too high or too low, they may cause serious side effects or not provide the benefits they should. For example, blood thinners (anticoagulants) are prescribed to thin the blood to prevent clots. If the concentration is too high, people may experience excessive bleeding and even death. In contrast, if the concentration is too low, a clot could form and cause a stroke. For these types of drugs, it is important that the correct amount of the drug be prescribed. Calculating and prescribing the correct amount can be complicated and time-consuming for healthcare professionals. Sometimes determining the correct dose can take a long time since healthcare professionals may not want to prescribe high doses of the drugs initially because they make mistakes in calculations. Several computer systems have been designed to do these calculations and assist healthcare professionals in prescribing these types of drugs. Study characteristics We sought clinical trial evidence from scientific databases to evaluate the effectiveness of these computer systems. The evidence is current to January 2012. We found data from 42 trials (40 randomized controlled trials (trials that allocate people at random to receive one of a number of drugs or procedures) and two non-randomized controlled trials). Key results Computerized advice for drug dosage can benefit people taking certain drugs compared with empiric dosing (where a dose is chosen based on a doctor’s observations and experience)without computer assistance.When using the computer system, healthcare professionals prescribed appropriately higher doses of the drugs initially for aminoglycoside antibiotics and the correct drug dose was reached more quickly for oral anticoagulants. It significantly decreased thromboembolism (blood clotting) events for anticoagulants and tended to reduce unwanted effects for aminoglycoside antibiotics and anti-rejection drugs (although not an important difference). It tended to reduce the length of hospital stay compared with routine care with comparable or better cost-effectiveness. There was no evidence of effects on death or clinical side events for insulin (low blood sugar (hypoglycaemia)), anaesthetic agents, anti-rejection drugs (drugs taken to prevent rejection of a transplanted organ) and antidepressants. Quality of evidence The quality of the studies was low so these results must be interpreted with caution

    Applying Joint Modelling Regression Approaches in Biomedical Data Science

    Get PDF
    In recent years, the technological revolution is allowing the collection of an enormous amount of data of different types, creating enormously complex databases that require the collaboration of statisticians and clinicians to carry out a biomedical study with guarantees, applying the tools of data science. This requires the development of new statistical techniques. This thesis focuses on joint modelling regression models for multivariate responses. Specifically, we study the cases of two and three continuous outcomes, as well as models for longitudinal and survival data. These techniques are applied in three studies of major epidemiological importance: liver damage and survival in COVID-19 patients, perinatal mental health during the COVID-19 pandemic, and the study of thyroid-related hormones

    Ontology design and management for eCare services

    Get PDF

    On the intelligent management of sepsis in the intensive care unit

    Get PDF
    The management of the Intensive Care Unit (ICU) in a hospital has its own, very specific requirements that involve, amongst others, issues of risk-adjusted mortality and average length of stay; nurse turnover and communication with physicians; technical quality of care; the ability to meet patient's family needs; and avoid medical error due rapidly changing circumstances and work overload. In the end, good ICU management should lead to an improvement in patient outcomes. Decision making at the ICU environment is a real-time challenge that works according to very tight guidelines, which relate to often complex and sensitive research ethics issues. Clinicians in this context must act upon as much available information as possible, and could therefore, in general, benefit from at least partially automated computer-based decision support based on qualitative and quantitative information. Those taking executive decisions at ICUs will require methods that are not only reliable, but also, and this is a key issue, readily interpretable. Otherwise, any decision tool, regardless its sophistication and accuracy, risks being rendered useless. This thesis addresses this through the design and development of computer based decision making tools to assist clinicians at the ICU. It focuses on one of the main problems that they must face: the management of the Sepsis pathology. Sepsis is one of the main causes of death for non-coronary ICU patients. Its mortality rate can reach almost up to one out of two patients for septic shock, its most acute manifestation. It is a transversal condition affecting people of all ages. Surprisingly, its definition has only been standardized two decades ago as a systemic inflammatory response syndrome with confirmed infection. The research reported in this document deals with the problem of Sepsis data analysis in general and, more specifically, with the problem of survival prediction for patients affected with Severe Sepsis. The tools at the core of the investigated data analysis procedures stem from the fields of multivariate and algebraic statistics, algebraic geometry, machine learning and computational intelligence. Beyond data analysis itself, the current thesis makes contributions from a clinical point of view, as it provides substantial evidence to the debate about the impact of the preadmission use of statin drugs in the ICU outcome. It also sheds light into the dependence between Septic Shock and Multi Organic Dysfunction Syndrome. Moreover, it defines a latent set of Sepsis descriptors to be used as prognostic factors for the prediction of mortality and achieves an improvement on predictive capability over indicators currently in use.La gestió d'una Unitat de Cures Intensives (UCI) hospitalària presenta uns requisits força específics incloent, entre altres, la disminució de la taxa de mortalitat, la durada de l'ingrès, la rotació d'infermeres i la comunicació entre metges amb al finalitad de donar una atenció de qualitat atenent als requisits tant dels malalts com dels familiars. També és força important controlar i minimitzar els error mèdics deguts a canvis sobtats i a la presa ràpida de deicisions assistencials. Al cap i a la fi, la bona gestió de la UCI hauria de resultar en una reducció de la mortalitat i durada d'estada. La presa de decisions en un entorn de crítics suposa un repte de presa de decisions en temps real d'acord a unes guies clíniques molt restrictives i que, pel que fa a la recerca, poden resultar en problemes ètics força sensibles i complexos. Per tant, el personal sanitari que ha de prendre decisions sobre la gestió de malalts crítics no només requereix eines de suport a la decisió que siguin fiables sinó que, a més a més, han de ser interpretables. Altrament qualsevol eina de decisió que no presenti aquests trets no és considerarà d'utilitat clínica. Aquesta tesi doctoral adreça aquests requisits mitjançant el desenvolupament d'eines de suport a la decisió per als intensivistes i es focalitza en un dels principals problemes als que s'han denfrontar: el maneig del malalt sèptic. La Sèpsia és una de les principals causes de mortalitats a les UCIS no-coronàries i la seva taxa de mortalitat pot arribar fins a la meitat dels malalts amb xoc sèptic, la seva manifestació més severa. La Sèpsia és un síndrome transversal, que afecta a persones de totes les edats. Sorprenentment, la seva definició ha estat estandaritzada, fa només vint anys, com a la resposta inflamatòria sistèmica a una infecció corfimada. La recerca presentada en aquest document fa referència a l'anàlisi de dades de la Sèpsia en general i, de forma més específica, al problema de la predicció de la supervivència de malalts afectats amb Sèpsia Greu. Les eines i mètodes que formen la clau de bòveda d'aquest treball provenen de diversos camps com l'estadística multivariant i algebràica, geometria algebraica, aprenentatge automàtic i inteligència computacional. Més enllà de l'anàlisi per-se, aquesta tesi també presenta una contribució des de el punt de vista clínic atès que presenta evidència substancial en el debat sobre l'impacte de l'administració d'estatines previ a l'ingrès a la UCI en els malalts sèptics. També s'aclareix la forta dependència entre el xoc sèptic i el Síndrome de Disfunció Multiorgànica. Finalment, també es defineix un conjunt de descriptors latents de la Sèpsia com a factors de pronòstic per a la predicció de la mortalitat, que millora sobre els mètodes actualment més utilitzats en la UCI
    corecore