13,446 research outputs found

    A question of trust: can we build an evidence base to gain trust in systematic review automation technologies?

    Get PDF
    Background Although many aspects of systematic reviews use computational tools, systematic reviewers have been reluctant to adopt machine learning tools. Discussion We discuss that the potential reason for the slow adoption of machine learning tools into systematic reviews is multifactorial. We focus on the current absence of trust in automation and set-up challenges as major barriers to adoption. It is important that reviews produced using automation tools are considered non-inferior or superior to current practice. However, this standard will likely not be sufficient to lead to widespread adoption. As with many technologies, it is important that reviewers see “others” in the review community using automation tools. Adoption will also be slow if the automation tools are not compatible with workflows and tasks currently used to produce reviews. Many automation tools being developed for systematic reviews mimic classification problems. Therefore, the evidence that these automation tools are non-inferior or superior can be presented using methods similar to diagnostic test evaluations, i.e., precision and recall compared to a human reviewer. However, the assessment of automation tools does present unique challenges for investigators and systematic reviewers, including the need to clarify which metrics are of interest to the systematic review community and the unique documentation challenges for reproducible software experiments. Conclusion We discuss adoption barriers with the goal of providing tool developers with guidance as to how to design and report such evaluations and for end users to assess their validity. Further, we discuss approaches to formatting and announcing publicly available datasets suitable for assessment of automation technologies and tools. Making these resources available will increase trust that tools are non-inferior or superior to current practice. Finally, we identify that, even with evidence that automation tools are non-inferior or superior to current practice, substantial set-up challenges remain for main stream integration of automation into the systematic review process

    Simulation in manufacturing and business: A review

    Get PDF
    Copyright @ 2009 Elsevier B.V.This paper reports the results of a review of simulation applications published within peer-reviewed literature between 1997 and 2006 to provide an up-to-date picture of the role of simulation techniques within manufacturing and business. The review is characterised by three factors: wide coverage, broad scope of the simulation techniques, and a focus on real-world applications. A structured methodology was followed to narrow down the search from around 20,000 papers to 281. Results include interesting trends and patterns. For instance, although discrete event simulation is the most popular technique, it has lower stakeholder engagement than other techniques, such as system dynamics or gaming. This is highly correlated with modelling lead time and purpose. Considering application areas, modelling is mostly used in scheduling. Finally, this review shows an increasing interest in hybrid modelling as an approach to cope with complex enterprise-wide systems

    Technology Assisted Reviews: Finding the Last Few Relevant Documents by Asking Yes/No Questions to Reviewers

    Get PDF
    The goal of a technology-assisted review is to achieve high recall with low human effort. Continuous active learning algorithms have demonstrated good performance in locating the majority of relevant documents in a collection, however their performance is reaching a plateau when 80\%-90\% of them has been found. Finding the last few relevant documents typically requires exhaustively reviewing the collection. In this paper, we propose a novel method to identify these last few, but significant, documents efficiently. Our method makes the hypothesis that entities carry vital information in documents, and that reviewers can answer questions about the presence or absence of an entity in the missing relevance documents. Based on this we devise a sequential Bayesian search method that selects the optimal sequence of questions to ask. The experimental results show that our proposed method can greatly improve performance requiring less reviewing effort.Comment: This paper is accepted by SIGIR 201

    A focus on cross-purpose tools, automated recognition of study design in multiple disciplines, and evaluation of automation tools: a summary of significant discussions at the fourth meeting of the International Collaboration for Automation of Systematic Reviews (ICASR)

    Get PDF
    The fourth meeting of the International Collaboration for Automation of Systematic Reviews (ICASR) was held 5–6 November 2019 in The Hague, the Netherlands. ICASR is an interdisciplinary group whose goal is to maximize the use of technology for conducting rapid, accurate, and efficient systematic reviews of scientific evidence. The group seeks to facilitate the development and acceptance of automated techniques for systematic reviews. In 2018, the major themes discussed were the transferability of automation tools (i.e., tools developed for other purposes that might be used by systematic reviewers), the automated recognition of study design in multiple disciplines and applications, and approaches for the evaluation of automation tools

    Feature engineering and a proposed decision-support system for systematic reviewers of medical evidence

    Get PDF
    Objectives: Evidence-based medicine depends on the timely synthesis of research findings. An important source of synthesized evidence resides in systematic reviews. However, a bottleneck in review production involves dual screening of citations with titles and abstracts to find eligible studies. For this research, we tested the effect of various kinds of textual information (features) on performance of a machine learning classifier. Based on our findings, we propose an automated system to reduce screeing burden, as well as offer quality assurance. Methods: We built a database of citations from 5 systematic reviews that varied with respect to domain, topic, and sponsor. Consensus judgments regarding eligibility were inferred from published reports. We extracted 5 feature sets from citations: alphabetic, alphanumeric +, indexing, features mapped to concepts in systematic reviews, and topic models. To simulate a two-person team, we divided the data into random halves. We optimized the parameters of a Bayesian classifier, then trained and tested models on alternate data halves. Overall, we conducted 50 independent tests. Results: All tests of summary performance (mean F3) surpassed the corresponding baseline, P<0.0001. The ranks for mean F3, precision, and classification error were statistically different across feature sets averaged over reviews; P-values for Friedman's test were .045, .002, and .002, respectively. Differences in ranks for mean recall were not statistically significant. Alphanumeric+ features were associated with best performance; mean reduction in screening burden for this feature type ranged from 88% to 98% for the second pass through citations and from 38% to 48% overall. Conclusions: A computer-assisted, decision support system based on our methods could substantially reduce the burden of screening citations for systematic review teams and solo reviewers. Additionally, such a system could deliver quality assurance both by confirming concordant decisions and by naming studies associated with discordant decisions for further consideration. © 2014 Bekhuis et al

    VoMBaT: A Tool for Visualising Evaluation Measure Behaviour in High-Recall Search Tasks

    Get PDF
    The objective of High-Recall Information Retrieval (HRIR) is to retrieve as many relevant documents as possible for a given search topic. One approach to HRIR is Technology-Assisted Review (TAR), which uses information retrieval and machine learning techniques to aid the review of large document collections. TAR systems are commonly used in legal eDiscovery and systematic literature reviews. Successful TAR systems are able to find the majority of relevant documents using the least number of assessments. Commonly used retrospective evaluation assumes that the system achieves a specific, fixed recall level first, and then measures the precision or work saved (e.g., precision at r% recall). This approach can cause problems related to understanding the behaviour of evaluation measures in a fixed recall setting. It is also problematic when estimating time and money savings during technology-assisted reviews. This paper presents a new visual analytics tool to explore the dynamics of evaluation measures depending on recall level. We implemented 18 evaluation measures based on the confusion matrix terms, both from general IR tasks and specific to TAR. The tool allows for a comparison of the behaviour of these measures in a fixed recall evaluation setting. It can also simulate savings in time and money and a count of manual vs automatic assessments for different datasets depending on the model quality. The tool is open-source, and the demo is available under the following URL: https://vombat.streamlit.app

    Prioritising references for systematic reviews with RobotAnalyst: A user study

    Get PDF
    Screening references is a time-consuming step necessary for systematic reviews and guideline development. Previous studies have shown that human effort can be reduced by using machine learning software to prioritise large reference collections such that most of the relevant references are identified before screening is completed. We describe and evaluate RobotAnalyst, a Web-based software system that combines text-mining and machine learning algorithms for organising references by their content and actively prioritising them based on a relevancy classification model trained and updated throughout the process. We report an evaluation over 22 reference collections (most are related to public health topics) screened using RobotAnalyst with a total of 43 610 abstract-level decisions. The number of references that needed to be screened to identify 95% of the abstract-level inclusions for the evidence review was reduced on 19 of the 22 collections. Significant gains over random sampling were achieved for all reviews conducted with active prioritisation, as compared with only two of five when prioritisation was not used. RobotAnalyst's descriptive clustering and topic modelling functionalities were also evaluated by public health analysts. Descriptive clustering provided more coherent organisation than topic modelling, and the content of the clusters was apparent to the users across a varying number of clusters. This is the first large-scale study using technology-assisted screening to perform new reviews, and the positive results provide empirical evidence that RobotAnalyst can accelerate the identification of relevant studies. The results also highlight the issue of user complacency and the need for a stopping criterion to realise the work savings
    corecore