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Abstract

Objectives: Evidence-based medicine depends on the timely synthesis of research findings. An important source of
synthesized evidence resides in systematic reviews. However, a bottleneck in review production involves dual screening of
citations with titles and abstracts to find eligible studies. For this research, we tested the effect of various kinds of textual
information (features) on performance of a machine learning classifier. Based on our findings, we propose an automated
system to reduce screeing burden, as well as offer quality assurance.

Methods: We built a database of citations from 5 systematic reviews that varied with respect to domain, topic, and sponsor.
Consensus judgments regarding eligibility were inferred from published reports. We extracted 5 feature sets from citations:
alphabetic, alphanumeric+, indexing, features mapped to concepts in systematic reviews, and topic models. To simulate a
two-person team, we divided the data into random halves. We optimized the parameters of a Bayesian classifier, then
trained and tested models on alternate data halves. Overall, we conducted 50 independent tests.

Results: All tests of summary performance (mean F3) surpassed the corresponding baseline, P,0.0001. The ranks for mean
F3, precision, and classification error were statistically different across feature sets averaged over reviews; P-values for
Friedman’s test were .045, .002, and .002, respectively. Differences in ranks for mean recall were not statistically significant.
Alphanumeric+ features were associated with best performance; mean reduction in screening burden for this feature type
ranged from 88% to 98% for the second pass through citations and from 38% to 48% overall.

Conclusions: A computer-assisted, decision support system based on our methods could substantially reduce the burden of
screening citations for systematic review teams and solo reviewers. Additionally, such a system could deliver quality
assurance both by confirming concordant decisions and by naming studies associated with discordant decisions for further
consideration.
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Introduction

Comparative effectiveness research (CER) identifies the best

treatments, devices, diagnostic tests, and policies for patient care.

Various stakeholders use the information garnered in CER to

guide their healthcare decisions. Thus, timely CER of high quality

is essential for evidence-based medicine (EBM) [1]. In addition to

primary research, much of EBM rests on secondary research, such

as synthesis of medical evidence [2]. To date, an important source

of synthesized evidence resides in the global corpus of systematic

reviews (SRs), mainly supported by large organizations such as the

Cochrane Collaboration [3] and the US Agency for Healthcare

Research and Quality [4]. Although traditional reviews are

preponderant [5], growth in production of SRs is accelerating.

For example, the Cochrane Database of Systematic Reviews

includes 5,591 SRs, an almost six-fold increase since the year 2000

[6]. In 2010, Bastian et al [5] reported that while 75 trials and 11

SRs are published daily, synthesis seriously lags report of evidence

in trials. Clearly, a significant challenge in translational research is

synthesizing scientific output in a timely manner.

A major bottleneck in producing SRs involves labor-intensive,

dual screening of citations and articles [7]. Screening entails two

phases where, in a best-case scenario, at least two reviewers

independently screen the entire set of citations to identify

provisionally eligible studies. Then, at least two reviewers read the

full-texts of reports to determine which studies to include in their

review. The reason for dual review in each phase is to control

human error and bias in judgments. Both the Institute of Medicine

(IOM) and the Patient-Centered Outcomes Research Institute

(PCORI) see quality assurance as desirable. However, recognizing

that screening twice may be infeasible, PCORI softened the IOM

requirement of dual review (IOM standard 3.3.3) [8], stating ‘‘fact-

checking may be sufficient’’ (PCORI SR-1 standard, p. 5) [9].

The long-term goal of our programmatic research is to support

systematic reviewers by reducing the burden associated with

screening citations and by offering guidance as to which studies to
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reconsider based on their judgments, effectively offering quality

assurance or ‘fact-checking.’ Our past and current research is

novel in that we model the first screening phase and use as our

gold standard judgments based on screening citations rather than

judgments based on reading full-text reports. We conduct

independent experiments over several kinds of reviews to

demonstrate generalizability. Moreover, we focus on reviews

where nonrandomized or observational studies are eligible for

inclusion because the screening burden is likely to be greater than

for reviews restricted to randomized controlled trials [10,11].

A handful of research groups are working on closely related

problems, such as reducing the labor associated with regularly

updating reviews, prioritizing work when creating and maintaining

SRs, and improving a Bayesian algorithm for imbalanced data

[12–15]. Perhaps, the most closely related research is by Cohen et

al [16], Wallace et al [17], and Frunza et al [18]. However, these

studies differ from ours with respect to the nature of the gold

standard, study design, performance measures, or vision for a

support system. Bekhuis and Demner-Fushman [10] present a

more detailed review of research on automating screening

methods. An interesting plan for a text-mining pipeline to support

SR production is described by Cohen et al [19] with modules to

reduce screening burden.

Our earlier efforts to classify studies with respect to eligibility for

inclusion in SRs rested on bits of alphabetic text appearing in full

citations (titles, abstracts, and metadata) [10]. For the work

described here, we developed various kinds of feature sets

capitalizing on alphanumeric and semantic information, latent

structure in citations, and concepts in blocks of full-text from SRs.

We then trained and tested a classifier suitable for imbalanced

data, compared performance over feature sets, and demonstrated

that screening burden can be substantially reduced. We also

describe a computer-assisted decision support system and future

development based on performance results and analysis of

classification errors (Figure 1).

Methods

Database
Our nonprobability sample consists of 5 SRs where reviewers

reported that nonrandomized or observational studies were

eligible for inclusion. Further, reviewers had to have screened at

least 1000 citations and identified at least 1% as provisionally

eligible for full-text review. The latter criterion was essential as a

large number of reviews are empty or infeasible, i.e., investigators

find zero or 1 eligible study [20,21]. The reviews cover various

domains, topics, and sponsoring organizations, including the

Cochrane Collaboration and the US Agency for Healthcare

Research and Quality (AHRQ). Two are diagnostic (detection of

malaria [22] and galactomannan for invasive aspergillosis [23]);

two are therapeutic (treatment of ameloblastoma of the jaws [24]

and monitoring the effect of an antibiotic in patients with organ

transplants [25]); and one is epidemiological (prevention of

influenza in the elderly [26]).

To build a database of citations, we re-ran MEDLINE [27] and

Embase [28] searches that appeared in the reviews, limiting to

records added no later than the reported search dates. This limit

precluded retrieving citations for studies that could have been

eligible, but were not seen by the reviewers. We also enriched

retrieval sets by manually searching for provisionally included

studies that were not automatically retrieved. This was important

because the percentage of eligible studies is typically relatively

small and eligible studies are the positive examples we wished to

identify. Note that MEDLINE and Embase searches returned

citations with titles, abstracts, and metadata rather than full texts,

which mirrored the experience of the review teams. Additionally,

we retrieved full texts for the reports in which the searches

appeared. The database therefore consists of published, full-text

reports for 4 SRs and 1 protocol, and datasets for citations that

would have been retrieved by the reviewers. On average, we

recovered 94% of the citations screened by the review teams.

We labeled citations as include or exclude based on published flow

charts, tables, and reference lists. Thus, the labels reflect the

consensus judgments of reviewers, each of whom has domain

expertise.

Feature sets
Given our earlier findings [10], we overweighted titles by

writing the title twice in each full citation.

We then extracted the following five feature sets per review:

Alphabetic features. We converted text to lower case,

tokenized on non-alphabetic characters and white space, deleted

stop words, selected tokens (features or strings of text) between 3

and 100 characters long, and Porter stemmed to normalize [29].

Porter stemming strips suffixes so that morphological variants of

words map to the same stem or root. For example, vaccination and

vaccines map to vaccin after stemming. We pruned tokens occurring

in fewer than 3 citations. Most of the features were unigrams

(single tokens). However, we also extracted bigrams (adjacent pairs

of tokens) from titles to further overweight information from this

field.

Alphanumeric features+. We extracted features with em-

bedded numbers or punctuation, such as h3n2, a/fujian/411/2002,

and case-control. We also extracted alphabetic features without

stemming, journal names, bigrams from titles, and strings of

numbers interrupted by punctuation, such as 2004–2005. We

replaced em and en dashes with hyphens and did not prune.

Indexing terms. We extracted terms in the indexing field by

matching regular expressions (see Software section). Terms came

from MeSH [30] or Emtree [31], the controlled vocabularies for

MEDLINE and Embase, respectively.

Concepts in SRs. This feature set consists of concepts that

review authors used to describe their research topic and criteria for

inclusion and exclusion of studies. For example, we identified

concepts for patients, conditions, treatments, diagnostic tests,

outcomes of interest, and study designs. This strategy broadly

followed the well-known Patient, Problem, Intervention, Compar-

ison, and Outcome (PICO) strategy [32,33] used by researchers to

structure their comparative effectiveness questions. We used titles

and blocks of text from the abstracts and methods sections. We

also used snippets of text in the introductions to disambiguate

acronyms. To build a lexicon of concepts appearing in the

excerpts, we used the Metathesaurus of the NLM Unified Medical

Language System v. 2012AB [34] in combination with an in-house

version of IndexFinder [35]. We enriched the SR lexicon with

direct semantic neighbors of concepts, as well as study designs

from our terminology [36,37]. The latter was necessary as MeSH

exactly covers just 19% of the terms that methodologists use for

study designs and most of the missing terms do not appear in any

other UMLS resource [36]. We also used our version of

IndexFinder [35] to locate concepts appearing in citations, after

splitting on lines.

Topic model features. To explore whether latent topics

could be useful for classification, we fit Latent Dirichlet Allocation

(LDA) topic models to citations per review using alphanumeric+

features. LDA, introduced by Blei, Ng, and Jordan [38], extends

Probabilistic Latent Semantic Analysis [39] by placing a Dirichlet

prior on the distribution of topic probabilities. For interested
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readers, we recommend a paper by Steyvers and Griffiths [40].

Before we could use topics (T) as features, we had to find an

optimal T per review. To do this, we implemented a method

described in [41] setting the Dirichlet hyperparameters al-

pha = 50/T and beta = 0.1, varying T. Choosing T is a model

selection problem where the best T maximizes the log likelihood of

the model given the data. Here, the data were the alphanumeric+

features or ‘words’ (w) in the corpus. We therefore needed to

compute the P(w|T), which is computationally intractable.

However, one can approximate P(w|T) by computing the

harmonic mean over a set of samples from P(w|z,T), where z is

a vector of word assignments to T. Assignments z are sampled

from the posterior distribution P(z|w,T). To generate samples, we

used a Gibbs sampler, a Markov chain Monte Carlo algorithm

available in the Mallet Toolkit [42], and then computed the

likelihoods using equation 2 in Griffiths and Steyvers, p. 5229

[41]. Once we selected T and used the settings for alpha and beta

just described, we fit topic models per review and computed

Kullbach-Leibler (KL) divergences using software we developed to

build datasets for machine learning (see Software section).

Each citation was represented as a vector of features with the

following weights: term frequency x inverse document frequency

(p. 109, [43]) for the alphabetic, alphanumeric+, and indexing sets;

term frequency for concepts in SRs; and topic probabilities plus

KL divergences for the topic model set. We reduced set size by

selecting features if information gain was $0.001.

Software
To extract features from citations, we developed standalone

Java programs or used RapidMiner v.5.2 [44,45]. We also

developed an Evidence in Documents, Discovery, and Analysis

(EDDA) extension with two open source plugins written in Java for

the RapidMiner (RM) community [46]. One plugin is a wrapper

that integrates topic-modeling code from the MALLET Toolkit

[42] into RM processes. The user can build a topic model for a

corpus of text files and compute KL divergences to compare

probability distributions for citations and classes; our implemen-

tation is symmetric [40]. The distributions are defined by the topic

probabilities for a given citation as compared to the median topic

probabilities for the include class or the exclude class. This operator

Figure 1. Computer-assisted screening task. Depicts a computer-assisted, decision support system for systematic reviewers. Instead of
screening an entire set of citations twice, reviewers divide the labor. The system could further reduce screening burden, as well as offer quality
assurance by confirming concordant decisions and naming studies that need to be reconsidered. A and B are random halves of the citations from a
review. A|B = independent test of classifier on A dataset given model from training on B; B|A = independent test of classifier on B dataset given model
from training on A. TN = true negative; FN = false negative; TP = true positive; FP = false positive; m = confusion matrix that displays classification
results for an independent test.
doi:10.1371/journal.pone.0086277.g001
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produces a citation by feature dataset with topics and/or KL

divergences as features. The second plugin integrates the Java

Regex utility for regular expressions into RM text processes. It

produces a citation by feature dataset based on a series of Regex

matches, where each regular expression is a feature. The EDDA

extension is freely available online [46].

Study design
We used a Weka complement naı̈ve Bayes (cNB) classifier [47]

available in RM that is suitable for imbalanced data where one

class is much smaller than the other. To find the best set of cNB

parameters for normalization and smoothing, we used the RM

Grid Parameter Optimization operator. This operator returned

the parameter set associated with best average performance over

the cells of a grid. The size of the grid was determined by all

combinations of our settings for normalization (true, false) and

smoothing (.001, .250, .500, .750, 1.0). Within each of 10 cells in

the grid, we ran 562-fold cross-validations, where each fold was

stratified with respect to percentage of eligible studies. Thus, the

total number of iterations was 100. We trained the classifier on

half the data using the best parameter set and then conducted an

independent test on the other half. Note that we used

ReferenceFiler, an in-house Java program, to randomly select

citations in a retrieval set to split the data in half, stratifying with

respect to the percentage of studies eligible for provisional

inclusion in a given review (Figure 2).

An important aspect of this design is that we optimized the

parameters for the cNB classifier with respect to recall and

precision simultaneously. To do this, we optimized with respect to

F3, a summary measure of performance and weighted harmonic

mean that overweights recall relative to precision (see [43],

p. 144):

F3~ 10|Precision|Recallð Þ= 9|PrecisionzRecallð Þ ð1Þ

Using F3 rather than recall with a floor for precision as we did in

[10] substantially reduced the total number of misclassified studies,

especially the number of false positives, and was still faithful to

reviewer behavior when screening citations. Additionally, this

design facilitated direct estimation of reduction in screening

burden (RSB) and yielded stable estimates of performance because

we could average outcomes over the two tests per review.

To simulate a two-person team where each person screened half

the citations once, we randomly split the data into two halves (A

and B). We then trained on A and tested on B and vice versa,

preserving the machine-learning paradigm of independent tests.

The rationale for the A|B and B|A setup is that training on half

the data simulated building a model of judgments for one reviewer

that could then be applied to the other reviewer’s judgments.

Misclassified studies therefore could reflect discordant decisions

between persons A and B.

We assume by virtue of our design that RSB for the first pass

through the citations was 50% because review of the entire set was

conducted once instead of twice. In this study, we focused on RSB

for the second pass through the citations, which we operationa-

lized as simply (100% – mean classification error %). Mean

classification error equals (100% – accuracy %) averaged over the

independent tests. More specifically, it equals the percentage of

Figure 2. EDDA workflow. An overview of the project workflow. EDDA = Evidence in Documents, Discovery, and Analysis. Reference Filer = in-
house Java program that sorts citations into folders; resultant datasets A and B are random halves of the citations stratified with respect to eligibility
for provisional inclusion in a systematic review; citations include titles, abstracts, and metadata. RapidMiner is an open source, data mining suite.
cNB = Weka complement naı̈ve Bayes classifier available in Rapid Miner; suitable for imbalanced data typical of systematic reviews. Grid Parameter
Optimization operator searches for best performance over a grid; dimensions based on combinations of parameter settings.
doi:10.1371/journal.pone.0086277.g002
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(false positives+false negatives) averaged over the A|B and B|A

tests.

Overviews of the computer-assisted screening task and study

workflow appear in Figures 1 and 2, respectively.

Evaluation of performance
Reviewers are overly inclusive when they screen citations

because they are loath to exclude a study prematurely. In other

words, they maximize recall at the expense of precision during the

first screening phase. Consider, if we trained a classifier to label all

studies as include, recall would be perfect, precision would be the

percentage of provisionally eligible studies, and all the errors

would be false positives. However, the cost of perfect recall implies

maximal screening burden and uninformative feedback—‘unin-

formative’ because no feedback is possible regarding excluded

studies, both true and false negatives. To be worthwhile, a

classifier must return performance better than this baseline to

ensure reduced labor and informative feedback.

We conducted 50 independent tests: 5 reviews 65 feature sets

62 tests (A|B and B|A). We statistically compared overall mean

performance (F3) for cNB by feature set and review to a baseline

F3 (assuming recall = 100% and precision = % eligible). To

compare performance across feature sets, we computed nonpara-

metric tests of mean recall, precision, F3, and classification error

using Friedman’s two-way analysis of ranks for related samples

where the two ‘ways’ were reviews and feature sets [48].

Results

EDDA database
The median total number of citations retrieved across datasets

was 2846 (range: 1816 to 10796). The median percentage of

provisionally eligible studies was 5.8% (range: 4.3% to 12.5%).

The percentage of included studies was similarly distributed across

the A and B random halves. (Table 1)

Feature sets
The alphanumeric+ feature set was much larger than the other

sets. (Table 2) However, size was considerably reduced after

filtering by information gain. This was primarily because many of

the alphanumeric+ features were uninformative strings of numbers

with internal punctuation. The SR concepts set was the smallest

followed by the topic model set. Note that fitting topic models

substantially reduced the dimensionality of the alphanumeric

feature space. A sample of features by type for the influenza review

is displayed in Table 3.

Performance
All tests of summary performance (mean F3) surpassed the

corresponding baseline F3: one-tailed Z-tests, Z ranged from 24.35

(ameloblastoma, SR concepts) to 72.06 (organ transplant, alpha-

betic), P,0.0001. Baseline F3 values appear online in a

supplementary table (Results S1). Over all conditions, mean F3

ranged from 52.52% to 90.73%; mean recall from 59.68% to

96.81%; mean precision from 13.82% to 72.38%; and mean

classification error from 1.91% to 26.08%. (Table 4) Mean RSB

for the second pass through the citations ranged from 73.92% to

98.09% (Results S1).

The ranks for mean F3, precision, and classification error were

statistically different across 5 feature sets averaged over 5 reviews;

the P-values for Friedman’s test were .045, .002, and .002,

respectively. (Table 4) Differences in ranks for mean recall were

not statistically significant (P = .739). The following is an ordered

list of feature types arranged from high to low relative to mean F3:

alphanumeric.alphabetic.topics.SR concepts.indexing. Re-

markably, performance associated with terms in citations assigned

by indexers was very similar to performance associated with

concepts extracted from full-text reports written by systematic

reviewers. Note that each dataset in our database has a

corresponding published report (4 SRs and 1 protocol). The

selected text blocks from the SRs would have appeared in earlier

protocols and, as such, include information available to the

reviewers when they screened citations.

Follow-up pairwise comparisons for significant tests of ranks

averaged over reviews tended to be significant when comparing

smaller feature sets to larger ones; comparisons for alphabetic vs

alphanumeric features and SR concepts vs indexing were always

nonsignificant. However, a more nuanced analysis by feature type

and review revealed quite variable performance, which suggests

that two-way interactions exist (Results S1).

Discussion

In this study, we improved earlier research [10,49] by not using

performance criteria better suited for information retrieval filters,

e.g., see papers from the Haynes group [50,51]. Instead, we

relaxed the insistence on very high recall (sensitivity) and

substantially reduced the total number of misclassified studies,

both false positives and false negatives. Additionally, we assumed

that humans screened a complete set of citations once rather than

twice and that labor was divided between teammates. Division of

labor is particularly likely for large reviews. For example, a recent

study of medication management involved dual screening of about

Table 1. Number and allocation of citations per systematic review.

Influenza Malaria Galactoa Organ Transb Ameloblastoma

A exclude 2593 1245 1052 5155 811

A include 154 177 47 243 57

Subtotal (% eligible)c 2747 (5.6%) 1424 (12.4%) 1100 (4.3%) 5398 (4.5%) 868 (6.7%)

B exclude 2575 1246 1053 5154 890

B include 163 178 47 244 58

Subtotal (% eligible) 2738 (6.0%) 1422 (12.5%) 1099 (4.3%) 5398 (4.5%) 948 (6.1%)

Total (% eligible) 5485 (5.8%) 2846 (12.5%) 2199 (4.3%) 10796 (4.5%) 1816 (6.3%)

aGalacto = Galactomannan.
bOrgan Trans = Organ Transplant.
c% eligible = percentage provisionally eligible for inclusion in a review; judgments based on screening citations (titles and abstracts) by domain experts.
doi:10.1371/journal.pone.0086277.t001
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33,000 citations by a team of reviewers (see Figure 1 in McKibbon

et al [52]). Assuming a single complete review of citations with

division of labor distinguishes our approach from Frunza et al [18]

and from those involving active learning [17], a method that

obviates the need for a complete set of labels, but requires

interactive feedback and acceptance of automated exclusion. It is

unclear which type of system will be adopted by systematic

reviewers in the future, especially since head-to-head comparisons

are not possible given differences in system design and perfor-

mance measures. However, our system is in keeping with current

PCORI standards, as it will offer computer-assisted decision

support to resolve discordant decisions when a dual review is not

feasible [9].

Interestingly, our setup for a two-person team could generalize

to both larger teams and solo reviewers. For example, if more than

two people were to split the screening task, we could model pairs of

reviewers as we did here. If the team consisted of an odd number

of people, we could apply the model from one person more than

once. Identifying an expert could also be useful for training, as we

could point out discordant decisions between expert and novice. If

the initial list of labels were based on just one reviewer’s

judgments—which is not uncommon—we could still use this

setup to point out where the computer disagrees with the reviewer,

presumably because the person was inconsistent. Regardless of

team size, discordant decisions may indicate human fallibility. This

is not far-fetched given our analyses of misclassified studies (see

below).

Based on the findings of this study, the envisioned production

system could reduce labor by 88% to 98% for the second pass

through the citations if we were to use the alphanumeric+ feature

set (Results S1). This is markedly better than our earlier results

[10]. If one considers the 50% reduction in labor by assuming a

single rather than dual review, the overall reduction in labor is

38% to 48%. Reviewers would not consider further the very large

set of TNs, but would discuss discordant decisions (FPs and FNs) to

reach consensus. They would then have a set of provisionally

positive studies consisting of the TPs returned by the system and a

handful of studies identified in their reconsideration of discordant

decisions. In the final phase, they would read the full texts of

provisionally positive studies in the adjusted set to make a final

adjudication regarding inclusion in the review.

Feature sets
To understand how performance might depend on the type of

feature, we compared five different sets with the goal of selecting

the best set for future development of a production system.

Although tests of ranked performance averaged over reviews

suggested that the alphanumeric+ set was best, post hoc pairwise

comparisions indicated its statistical equivalence with the alpha-

betic set. Note that averaging ranks over reviews is appropriate

when reviews are treated as sampling units. Nevertheless, more

nuanced analyses for review and feature type combinations

revealed considerable variability. Rather than prematurely select-

ing the alphanumeric+ set as ‘best,’ a study is in progress that

involves joining feature sets per review, de-duplicating, and testing.

It is possible that the most informative set could be a

heterogeneous mix of types and, if so, would build on results

reported in studies of features in the context of work prioritization

by Cohen [14] and identification of clinically rigorous research by

Kilicoglu et al. [53].

Taking another tack, we tried to evaluate the relative

contribution of feature types by using their prediction probabilities

in a kernel logistic regression model [54]. The results were very

disappointing. Although precision was good, recall was quite

variable and overall performance for three of five datasets

(influenza, organ transplantation, and malaria) did not surpass

the baseline. We believe this is because the feature sets overlap

quite a bit.

Regarding topic modeling in biomedicine, this method has been

employed by mainly computational biology and bioinformatics

Table 2. Feature set size by systematic review before and after filtering for information gain.

N features (n if IG$0.001)a

Alphabetic Alphanumeric+ Indexing Topic model SR conceptsb

Influenza

Ac 6880 (4759) 52013 (10404) 5392 (5251) 1602 (1601) 821 (681)

B 6982 (4740) 52231 (13043) 5361 (5226) 1602 (1601) 821 (697)

Malaria

A 4901 (3274) 35947 (10481) 1391 (1353) 902 (901) 575 (519)

B 4937 (3249) 36375 (10272) 1382 (1318) 902 (901) 575 (531)

Galactomannan

A 4026 (2757) 27960 (6423) 1012 (1000) 602 (594) 449 (359)

B 4057 (2761) 27561 (6422) 1060 (1048) 602 (601) 449 (352)

Organ Transplant

A 11765 6680) 72807 (15005) 5577 (5435) 1902 (1894) 793 (571)

B 11856 6294) 72529 (13872) 5521 (4617) 1902 (1901) 793 (587)

Ameloblastoma

A 3247 (2303) 19311 (5043) 563 (556) 602 (601) 351 (279)

B 3352 (2422) 20712 (5311) 611 (601) 602 (600) 351 (290)

aIG = information gain.
bSR = systematic review.
cA and B refer to random halves of the data.
doi:10.1371/journal.pone.0086277.t002

Decision-Support System for Systematic Reviewers

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e86277



investigators. For example, a search on 15 July 2013 of Embase,

which includes MEDLINE records, indicated that Neurocomputing

and BMC Bioinformatics accounted for 42% of just 38 hits.

However, researchers are beginning to explore its usefulness in

other areas, such as query expansion for document retrieval [55]

and feature selection for automated indexing [56]. To our

knowledge, using topics and KL divergences as features to classify

studies for systematic reviews was novel. The strategy we used was

semi-supervised in that we first fit a topic model to generate

features ignoring the labels (unsupervised) and then computed KL

divergences given the labels (supervised). Compared to other

feature engineering efforts, fitting topic models and creating

features was relatively slow. Although we have not ruled out using

such features in future work, it may be that this method is more

suitable for unsupervised discovery in text—its initial purpose.

Regarding extraction of SR concepts as features, our strategy

was also novel for this task. However, closely related efforts were

carried out by Dalal et al [13] who mapped query terms from two

updated SRs to citations and by Frunza et al [18] who used

protocol questions from a single review to build multiple classifiers.

The surprising similarity of performance associated with

concepts in a handful of SRs written by a few reviewers as

compared to terms assigned by indexers in thousands of citations

was at first puzzling. On reflection, the similarity may be explained

by the role of expert searchers, such as librarians and informa-

tionists. Specifically, expert searchers translate the information

needs of reviewers expressed in protocols that later appear in

published SRs. To do this, they develop queries using terms in the

controlled vocabularies of electronic databases, including MED-

LINE and Embase. These terms then show up in the indexing of

the retrieved citations. Thus, the link between concepts in SRs and

indexing demonstrates the apparent value of librarians and

informationists who support systematic reviewers. Moreover, it

probably justifies federal funding for inclusion of informationists in

comparative effectiveness research [57].

Table 3. Sample of features by type for the influenza review.

Alphabetic Alphanumeric+ Indexing Topic model SR concepts

ag aged *Aged topic_00001 Old_age

elderli elderly Aged cells Elderly_population_group

influenza influenza *Influenza Vaccines autologous Influenza_vaccination

vaccin vaccines Influenza Vaccines virology Aged_80_and_over

influenza_vaccin influenza_vaccination elderly measured prevention_control

epidemiolog epidemiology/prevention 80 and over virus-specific Nursing_Homes

agent vaccines/adverse immunology t-lymphocytes therapeutic_aspects

advers agents/ae Influenza A virus/ cytotoxicity Vaccines

epidem h3n2_epidemic (Antigens, Viral) activity Sudden_death

Case case-control Serology and
Transplantation

ctl Mortality_Vital_Statistics

Control 1990–1991 Case-Control Studies cytotoxic Respiratory_Tract_Infections

Commun community-dwelling case report … historical_cohort_design

Sydnei a/Sydney/05/97 adverse effects topic_00002 case_comparison_design

Journal new_england_journal_of_medicine 147205-72-9 (CD40
Ligand)

observed Chronic_obstructive_asthma_with …

Blind double_blinded Interferon-gamma/bi cytokines/bl

cytokine

il-10

obtained

il-6

assay

results

blood

cytokines

…

topic_01600

…

include_divergence

exclude_divergence

Note: For alphabetic and alphanumeric+ sets, features with an underscore between pairs of words came from titles. For the indexing set, features mainly came from
MeSH and Emtree; an asterisk indicates a major concept. For topic model set, number of topics determined prior to training (see Methods); based on alphanumeric+

features; Kullbach-Leibler (KL) divergences from mediods for include or exclude class. SR = systematic review. For SR concepts, lexicon consists of UMLS concepts
(including parent and children) in SRs and study design terms.
doi:10.1371/journal.pone.0086277.t003
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Limitations and future work
Simulation. Randomly sorting consensus judgments into two

sets of citations was a strength of our simulation for reasons

described in the Methods section. However, it was also a

limitation. In reality, users would submit their judgments to a

decision support system for feedback regarding their decisions

before reaching consensus. The implication is that the estimated

RSB based on our simulation may be optimistic. Still, reviewers do

use a priori selection criteria and they usually run through

calibration exercises before screening in earnest, which suggests

decisions across reviewers may be reasonably coherent. If not

coherent, decision support could be perceived as particularly

valuable. For example, discordant decisions could be more

common when a team consists of expert and novice reviewers,

or methodologists and substantive domain experts.

Domain, complexity, and updates. We had expected that

classification performance might vary with the type of systematic

review. This appears to be true, although performance varies with

domain and complexity rather than topic per se. For example, our

test results over all conditions tended to be better for diagnostic

reviews (malaria [22] and detection of galactomannan for invasive

aspergillosis [23]) and worse for complicated reviews (influenza

[26] and organ transplantation [25]). For example, classification of

the malaria and galactomannan citations returned the best overall

performance (F3) for each feature set, whereas classification of the

influenza and organ transplantation citations returned the worst

performance. This pattern prevails over all performance measures,

with few exceptions, and may be because the diagnostic reviews

addressed a single research question, whereas the complex reviews

addressed three to five questions, including one question on

adverse effects. The latter point is important because reports of

adverse effects often appear in publication types such as comments

or case studies that would otherwise render them ineligible for

inclusion. Classifying such reports will become increasingly

important as the Cochrane Collaboration recently issued a new

mandatory standard stating that potential adverse effects must be

addressed in SRs [58].

Additionally, when a review is an update, as the influenza

review is [26], much can change, including the team, the searches,

and even aspects of the research question [13]. Moreover, if the

interim is long enough, concept drift may be a problem [59,60].

To test the hypothesis that change affects classification, we selected

citations screened in the original influenza review and extracted

alphanumeric+ features. Note that an updated review incorporates

new evidence into an earlier version and reviewers make

inferences over the pooled citations [7]. As expected, performance

for the original review was better than for the updated (pooled)

review. Specifically, mean precision improved by 48% (from

30.08% to 44.45%) and mean classification error rate by 28%

(from 12.31% to 8.88%). This suggests that a decision support

system should model judgments from review versions separately if

selection criteria have changed. Moreover, change across updates

has implications for prioritization research (e.g., see [13]),

especially since Cochrane review teams are expected to update

every two years [7].

Misclassification. We analyzed 24 extreme cases of mis-

classification for five review and feature type pairs where the

prediction probabilities derived from Bayesian confidences were

very high. This was quite illuminating. For example, all of the

selected false negatives (14/14) were in fact accurate when

compared with final reviewer decisions recorded in published

tables. In other words, reviewers included these studies when

screening citations, but later excluded them after reading full texts.

Usually, the published reasons had to do with clearly specified

exclusion criteria. In this case, we would not want to change the

computer’s prediction, even though recall would improve, because

feedback could obviate the need to read full text and therefore

could save reviewers labor. On the other hand, 42% (10/24) of the

misclassified cases were missing abstracts. To redress the apparent

effect of paucity of information, we will create proxy abstracts in a

new study by populating empty fields with text from segments of

corresponding primary articles. Note that the percentage of empty

abstracts ranged from 4% (ameloblastoma review) to 24% (organ

transplant review). As for false positives, we should be able to

Table 4. Mean performance of the cNB classifier by
systematic review and feature set.

Alphanumeric+ Alphabetic Topics
SR
concepts Indexing

F3 (%)a

Ameloblastoma 75.11 74.52 71.51 68.22 68.68

Influenza 65.52 57.16 61.97 59.38 63.11

Galactomannan 87.31 90.73 74.73 78.88 74.13

Malaria 88.09 89.30 86.42 83.33 81.85

Organ
transplant

57.82 64.39 59.17 54.24 52.52

Mean rankb, d 4.20 4.00 3.00 2.00 1.80

Recall (%)

Ameloblastoma 80.01 79.98 78.27 87.78 81.76

Influenza 76.44 59.68 73.63 76.33 77.70

Galactomannan 89.37 96.81 96.81 95.74 92.55

Malaria 90.98 95.77 93.80 92.67 90.69

Organ
transplant

59.77 71.87 74.95 74.14 80.31

Mean rankb, e 2.20 2.90 3.10 3.40 3.40

Precision (%)

Ameloblastoma 49.15 46.47 40.39 26.89 28.21

Influenza 30.08 42.00 25.83 19.82 23.50

Galactomannan 72.38 58.12 24.51 30.51 26.64

Malaria 68.75 55.55 50.60 43.73 43.78

Organ
transplant

46.05 33.25 20.45 17.05 13.82

Mean rankb, d 4.80 4.20 2.60 1.60 1.80

Classification error (%)

Ameloblastoma 6.66 7.15 8.73 20.31 14.39

Influenza 12.31 7.16 13.82 19.24 15.90

Galactomannan 1.91 3.14 12.92 9.51 11.33

Malaria 6.33 10.09 12.20 15.78 15.74

Organ
transplant

5.06 7.78 14.29 18.90 26.08

Mean rankc, d 1.20 1.80 3.40 4.40 4.20

aBaseline F3 (%): Ameloblastoma = 40.20; Influenza = 38.96;
Galactomannan = 31.00; Malaria = 58.82; Organ transplant = 32.03. All mean F3
values surpassed the baseline values, one-tailed Z-tests, P,0.001.
bHigher ranks associated with better performance.
cLower ranks associated with better performance.
dMean ranks significantly different for F3, precision, and classification error:
Friedman’s test of mean F3 ranks (4 df) = 9.760, P = .045; Friedman’s test of
mean precision ranks (4 df) = 16.480, P = .002; Friedman’s test of mean
classification error ranks (4 df) = 16.480, P = .002.
eFriedman’s test of mean recall ranks (4 df) = 1.980, P = .739, NS.
doi:10.1371/journal.pone.0086277.t004
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devise rules or regular expressions to accurately exclude studies

when the interventions or outcomes of interest are missing. Finally,

we will explore using Boolean strategies that librarians use [61] in

post-classifier filters to exclude studies with ineligible designs.

Conclusions

Our results point to a promising computer-assisted decision

support system for systematic review teams and solo reviewers. It

seems likely that a future system based on our methods could

substantially reduce the burden of screening. Additionally, such a

system could deliver quality assurance both by confirming

concordant decisions and by naming studies associated with

discordant decisions for further consideration.

Supporting Information

Results S1 Review by Feature Set Results. A more detailed

presentation of the performance results for B|A and A|B
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number of misclassified citations.

(XLSX)

Acknowledgments

We thank Mr. Corey Stein for his help in developing datasets for the

EDDA database. We also thank Ms. Lucy Cafeo for help with manuscript

preparation.

Author Contributions

Conceived and designed the experiments: TB DDF. Performed the

experiments: TB. Analyzed the data: TB ET KJM. Contributed reagents/

materials/analysis tools: ET KJM. Wrote the paper: TB. Developed

software: ET KJM. Reviewed the final manuscript: TB DDF ET KJM.

References

1. Patient-Centered Outcomes Research Institute (PCORI) Mission and vision.

Available: http://www.pcori.org/about-us/mission-and-vision/. Accessed 19
July 2013.

2. Luce BR, Drummond M, Jonsson B, Neumann PJ, Schwartz JS, et al. (2010)

EBM, HTA, and CER: clearing the confusion. Milbank Q 88: 256–276.

3. Cochrane Collaboration. Available: http://www.cochrane.org/. Accessed 7
August 2011.

4. Agency for Healthcare Research and Quality (AHRQ) Evidence-based Practice

Centers. Available: http://www.ahrq.gov/clinic/epc/. Accessed 19 July 2013.

5. Bastian H, Glasziou P, Chalmers I (2010) Seventy-five trials and eleven
systematic reviews a day: how will we ever keep up? PLoS Med 7(9): e1000326.

6. The Cochrane Collaboration Cochrane Database of Systematic Reviews in

numbers. Available: http://www.cochrane.org/cochrane-reviews/cochrane-
database-systematic-reviews-numbers. Accessed 19 July 2013.

7. Higgins JPT, Green S (2008) Cochrane Handbook for Systematic Reviews of

Interventions. Chichester, UK: Wiley.

8. Institute of Medicine of the National Academies (March 2011) Finding What

Works in Health Care: Standards for Systematic Reviews. Washington, DC.

9. Patient-Centered Outcomes Research Institute (December 2012) PCORI
Methodology Standards. Washington, DC. pp. 1–16.

10. Bekhuis T, Demner-Fushman D (2012) Screening nonrandomized studies for

medical systematic reviews: a comparative study of classifiers. Artif Intell Med
55: 197–207.

11. Reeves B, Deeks J, Higgins J, Wells G (2008) Chapter 13: Including Non-

randomized Studies. In: Higgins J, Green S, editors. Cochrane Handbook for
Systematic Reviews of Interventions. Chichester (UK): Wiley.

12. Cohen AM, Ambert K, McDonagh M (2009) Cross-topic learning for work

prioritization in systematic review creation and update. J Am Med Inform Assoc
16: 690–704.

13. Dalal SR, Shekelle PG, Hempel S, Newberry SJ, Motala A, et al. (2013) A pilot

study using machine learning and domain knowledge to facilitate comparative
effectiveness review updating. Med Decis Making 33: 343–355.

14. Cohen AM (2008) Optimizing feature representation for automated systematic

review work prioritization. AMIA Annu Symp Proc.

15. Matwin S, Kouznetsov A, Inkpen D, Frunza O (2010) A new algorithm for
reducing the workload of experts in performing systematic reviews. J Am Med

Inform Assoc 17: 446–453.

16. Cohen AM, Hersh WR, Peterson K, Yen PY (2006) Reducing workload in
systematic review preparation using automated citation classification. J Am Med

Inform Assoc 13: 206–219.

17. Wallace BC, Trikalinos TA, Lau J, Brodley CE, Schmid CH (2010) Semi-
automated screening of biomedical citations for systematic reviews. BMC

Bioinformatics 11: 55.

18. Frunza O, Inkpen D, Matwin S, Klement W, O’Blenis P (2011) Exploiting the
systematic review protocol for classification of medical abstracts. Artif Intell Med

51: 17–25.

19. Cohen AM, Adams CE, Davis JM, Yu C, Yu PS, et al. (2010) Evidence-based
Medicine, the Essential Role of Systematic Reviews, and the Need for

Automated Text Mining Tools. IHI’10. Arlington, Virginia, USA: ACM (978-
1-4503-0030-8/10/11). pp. 376–380.

20. Yaffe J, Montgomery P, Hopewell S, Shepard LD (2012) Empty reviews: a

description and consideration of Cochrane systematic reviews with no included
studies. PLoS ONE 7: e36626.

21. Bekhuis T, Stein CD (2013) Feasibility scans could improve prioritization and

selection of systematic review topics. 21st Cochrane Colloquium. Quebec,
Canada. Available: http://colloquium.cochrane.org/abstracts/feasibility-scans-

could-improve-prioritization-and-selection-systematic-review-topics. Accessed
19 November 2013.

22. Abba K, Deeks JJ, Olliaro PL, Naing CM, Jackson SM, et al. (2011) Rapid

diagnostic tests for diagnosing uncomplicated P. falciparum malaria in endemic
countries. Cochrane Database of Systematic Reviews Issue 7. Art. No.:

CD008122. doi:10.1002/14651858.CD008122.pub2.

23. Leeflang MM, Debets-Ossenkopp YJ, Visser CE, Scholten RJPM, Hooft L, et al.

(2008) Galactomannan detection for invasive aspergillosis in immunocompro-
mized patients. Cochrane Database of Systematic Reviews Issue 4. Art. No.:

CD007394. doi:10.1002/14651858.CD007394.

24. Bekhuis T, Thyvalikakath TP, Oliver R (2009) Interventions for treating
ameloblastomas of the jaws [protocol]. Cochrane Database of Systematic

Reviews doi:101002/14651858CD003975pub2. Chichester, UK: John Wiley &

Sons, Ltd.

25. Oremus M, Zeidler J, Ensom MHH, Matsuda-Abedini M, Balion C, et al. (Feb

2008) Utility of monitoring mycophenolic acid in solid organ transplant patients.

Evidence Reports/Technology Assessments, No 164 AHRQ Publication No 08-
E006. Rockville, MD: US Agency for Healthcare Research and Quality.

Available: http://www.ncbi.nlm.nih.gov/books/NBK38475/. Accessed 24 July

2013.

26. Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorning S, et al. (2010)
Vaccines for preventing influenza in the elderly [updated review]. Cochrane

Database of Systematic Reviews Issue 2 doi:101002/14651858CD004876pub3.

Chichester, UK: Wiley.

27. National Center for Biotechnology Information PubMed.gov: US National

Library of Medicine, National Institutes of Health. Available: http://www.ncbi.

nlm.nih.gov/pubmed/. Accessed 27 May 2013

28. EMBASE: Biomedical Answers. Available: http://www.embase.com/. Accessed

27 May 2013.

29. Porter MF (1980) An algorithm for suffix stripping. Program 14: 130–137.

30. US National Library of Medicine, National Institutes of Health Medical Subject

Headings: MeSH. Available: http://www.nlm.nih.gov/mesh/. Accessed 29

May 2013.

31. Elsevier BV Indexing/Emtree. Available: http://www.elsevier.com/online-

tools/embase/emtree. Accessed 29 May 2013.

32. Huang X, Lin J, Demner-Fushman D (2006) Evaluation of PICO as a
knowledge representation for clinical questions. AMIA Annu Symp Proc: 359–

363.

33. Boudin F, Nie JY, Bartlett JC, Grad R, Pluye P, et al. (2010) Combining
classifiers for robust PICO element detection. BMC medical informatics and

decision making 10: 29.

34. US National Library of Medicine (2009) UMLS Reference Manual. Bethesda,

MD: US National Library of Medicine. Available: http://www.ncbi.nlm.nih.
gov/books/NBK9676/. Accessed 24 July 2013.

35. Zou Q, Chu WW, Morioka C, Leazer GH, Kangarloo H (2003) IndexFinder: a

method of extracting key concepts from clinical texts for indexing. AMIA Annu
Symp Proc: 763–767.

36. Bekhuis T, Demner-Fushman D, Crowley RS (2013) Comparative effectiveness

research designs: an analysis of terms and coverage in Medical Subject Headings
(MeSH) and Emtree. J Med Libr Assoc 101: 92–100.

37. EDDA Group: Bekhuis T, Tseytlin E, Mitchell K (2013) EDDA study design

terminology. National Center for Biomedical Ontology (NCBO) BioPortal
Available: http://bioportalbioontologyorg/ontologies/3247 Accessed 24 July

2013.

38. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. The Journal of
Machine Learning Research 3: 993–1022.

Decision-Support System for Systematic Reviewers

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e86277



39. Hofmann T (2001) Unsupervised learning by probabilistic latent semantic

analysis. Machine Learning 42: 177–196.
40. Steyvers M, Griffiths T (2007) Probabilistic topic models. Handbook of Latent

Semantic Analysis. pp. 424–440.

41. Griffiths TL, Steyvers M (2004) Finding scientific topics. Proceedings of the
National Academy of Sciences of the United States of America 101 Suppl 1:

5228–5235.
42. McCallum AK MALLET: A Machine Learning for Language Toolkit.

Available: http://mallet.cs.umass.edu. Accessed 17 July 2013.

43. Manning CD, Raghavan P, Schutze H (2008) Introduction to Information
Retrieval. New York: Cambridge University Press.

44. Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) YALE (now
RapidMiner): rapid prototyping for complex data mining tasks. Proc ACM

SIGKDD Int Conf on Knowl Discov Data Mining
45. RapidMiner [data mining suite]. Available: http://rapid-i.com/ Accessed 26

May 2013.

46. EDDA Group: Bekhuis T, Mitchell K, Tseytlin E (2013) EDDA extension for
binominal text classification (topic models and regex) [open source code].

Available: http://marketplace.rapid-i.com/UpdateServer/faces/product_
details.xhtml?productId = rmx_edda. Acessed 24 July 2013

47. Rennie J, Shih L, Teevan J, Karger D (2003) Tackling the poor assumptions of

naive Bayes text classifiers. Proceedings of the Twentieth International
Conference on Machine Learning (ICML). Washington, DC

48. IBM SPSS Statistics [computer program], version 20. Armonk, NY.
49. Bekhuis T, Demner-Fushman D (2010) Towards automating the initial

screening phase of a systematic review. Stud Health Technol Inform 160:
146–150.

50. Wilczynski NL, Morgan D, Haynes RB (2005) An overview of the design and

methods for retrieving high-quality studies for clinical care. BMC Med Inform
Decis Mak 5: 20.

51. Wilczynski NL, McKibbon KA, Walter SD, Garg AX, Haynes RB (2013)
MEDLINE clinical queries are robust when searching in recent publishing years.

J Am Med Inform Assoc 20: 363–368.

52. McKibbon KA, Lokker C, Handler SM, Dolovich LR, Holbrook AM, et al.

(2012) The effectiveness of integrated health information technologies across the

phases of medication management: a systematic review of randomized

controlled trials. J Am Med Inform Assoc 19: 22–30.

53. Kilicoglu H, Demner-Fushman D, Rindflesch TC, Wilczynski NL, Haynes RB

(2009) Towards automatic recognition of scientifically rigorous clinical research

evidence. J Am Med Inform Assoc 16: 25–31.

54. Keerthi SS, Duan KB, Shevade SK, Poo AN (2005) A Fast Dual Algorithm for

Kernel Logistic Regression. Machine Learning 61: 151–165.

55. Zeng QT, Redd D, Rindflesch T, Nebeker J (2012) Synonym, topic model and

predicate-based query expansion for retrieving clinical documents. AMIA Annu

Symp Proc 2012: 1050–1059.

56. Jimeno-Yepes A, Wilkowski B, Mork JG, Van Lenten E, Fushman DD, et al.

(2011) A bottom-up approach to MEDLINE indexing recommendations. AMIA

Annu Symp Proc: American Medical Informatics Association. pp. 1583.

57. National Institutes of Health (April 2012) NLM Administrative Supplements for

Informationist Services in NIH-funded Research Projects. Available: http://

grants.nih.gov/grants/guide/pa-files/PA-12-158.html. Accessed 24 July 2013.

58. Chandler J, Churchill R, Higgins J, Lasserson T, Tovey D (December 2012)

Methodological standards for the conduct of Cochrane Intervention Reviews

(version 2.2). Cochrane Library.

59. Del Fiol G, Haug PJ (2008) Infobuttons and classification models: a method for

the automatic selection of on-line information resources to fulfill clinicians’

information needs. J Biomed Inform 41: 655–666.

60. Klinkenberg R, Joachims T (2000) Detecting concept drift with support vector

machines. Proceedings of the Seventeenth International Conference on Machine

Learning (ICML): Morgan Kaufmann. pp. 487–494.

61. Wilczynski NL, McKibbon KA, Haynes RB (2011) Search filter precision can be

improved by NOTing out irrelevant content. AMIA Annu Symp Proc 2011:

1506–1513.

Decision-Support System for Systematic Reviewers

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e86277


