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Abstract

Citation screening is a labour-intensive part of the process of a systematic
literature review that identifies citations eligible for inclusion in the review.
In this paper, we present an automatic text classification approach that aims
to prioritise eligible citations earlier against ineligible ones and thus reduces
the manual labelling effort that is involved in the screening process. e.g. by
automatically excluding lower ranked citations. To improve the performance
of the text classifier, we develop a novel neural network-based feature extrac-
tion method. Unlike previous approaches to citation screening that employ
unsupervised feature extraction methods to address a supervised classifica-
tion task, our proposed method extracts document features in a supervised
setting. In particular, our method generates a feature representation for doc-
uments, which is explicitly optimised to discriminate between eligible and
ineligible citations. The generated document representation is subsequently
used to train a text classifier. Experiments show that our feature extraction
method obtains average workload savings of 56% when evaluated across 23
medical systematic reviews. The proposed method outperforms 10 baseline
feature extraction methods by approximately 6% in terms of the WSS@95%
metric.
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1. Introduction

Systematic reviews of the effects of interventions constitute the corner-
stone of modern evidence-based medicine (Greenhalgh et al., 2014). High
quality reviews, such as those produced by Cochrane, are frequently used to
inform healthcare guidelines and to provide policy makers with the best and
most up-to-date evidence on a specific medical topic (Volmink et al., 2004).

However, owing to the proliferation of the published literature (Bastian
et al., 2010), the manual production of a systematic review has become a
time-consuming process, with an average completion time of approximately
2.4 years (Bekhuis & Demner-Fushman, 2012). In addition, Shojania et al.
(2007) reported that 23% of the published systematic reviews need to be
updated with new relevant studies within 2 years from the time they are
completed. In practice, this means that review authors are required to repeat
the same resource-intensive tasks of the systematic review pipeline, such as
literature searches, citation screening, data extraction and evidence synthesis,
at regular intervals.

To reduce the average completion time of systematic reviews, we present
a novel text mining method that semi-automates the citation screening task,
i.e. a critical process of the systematic review pipeline that identifies rele-
vant citations for inclusion in the review (O’Mara-Eves et al., 2015)). Our
text mining method requires a seed of manually labelled citations to learn
to discriminate between relevant/positive and irrelevant/negative instances.
In succession, the trained classifier is used to automatically process the un-
labelled citations, minimising the manual labelling effort that is associated
with the citation screening task.

In practical application scenarios, our text mining method can be used to
aid (human) systematic reviewers in screening more efficiently citations for
inclusion in a review. More specifically, a human reviewer needs to manually
label only a subset of the citations, i.e. a training dataset. This manually
labelled subset of citations is used to train the underlying text classification
algorithm, which is subsequently used to automatically label the remain-
ing unlabelled citations. In addition to systematic reviews, our proposed
method can be used in a wide range of different application areas relevant to
expert and intelligent systems, such as information retrieval (Sethi & Dixit,
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2015), text categorisation (Mirończuk & Protasiewicz, 2018), knowledge dis-
covery (Bandaru et al., 2017) and recommendation systems (Wei et al., 2017).
Text categorisation task, e.g. sentiment analysis (Cambria, 2016), constitutes
a direct application area of our method. The conducted experiments demon-
strate that the proposed method can substantially improve text classification
performance. Moreover, our method could be integrated with text search en-
gines, e.g. Apache Solr (Smiley et al., 2015), in order to learn to identify
documents that are relevant to individual user preferences.

In the context of citation screening, existing text mining methods can
be coarsely classified into: a) automatic text classification (Cohen et al.,
2006; Frunza et al., 2010; Bekhuis & Demner-Fushman, 2012; Adeva et al.,
2014) and b) automatic screening prioritisation (Cohen, 2008; Cohen et al.,
2012, 2015; Howard et al., 2016) techniques. Both types of methods fol-
low a similar approach to firstly train a supervised classification algorithm,
e.g. Support Vector Machines (Wallace et al., 2010), Naive Bayes (Matwin
et al., 2010), Random Forest (Khabsa et al., 2016), on a subset of the ci-
tations that are manually labelled with include/exclude codes by human
reviewers. The trained classification algorithm is subsequently used to auto-
matically process the remaining unlabelled citations. In an automatic text
classification setting, the trained model is used to discriminate between el-
igible and ineligible citations in the unlabelled set and it can therefore be
used to directly automate the underlying process. Although automatic text
classification methods have been shown to achieve substantial workload sav-
ings (Cohen et al., 2006; Frunza et al., 2010), Bekhuis & Demner-Fushman
(2012) noted that such methods may not always converge to a high recall per-
formance of at least 95%, which is a key requirement of the citation screening
task.

Automatic screening prioritisation techniques, including our proposed
method, aim at re-ordering the citations in the unlabelled set so that citations
that are likely to be eligible for inclusion in the review are ranked higher than
ineligible citations (Howard et al., 2016). In contrast to automatic text clas-
sification approaches that frame the screening task as a binary classification
problem, automatic screening prioritisation methods assign a classification
confidence value to each citation rather than a binary label. The confidence
value determines the likelihood of a citation being relevant to the review
and it is used by the model to prioritise the unlabelled citations. Automatic
prioritisation methods can reduce the screening workload, considering that
human reviewers need to process only the top ranked citations, whereas the

3



lower ranked citations are automatically excluded from the review (Cohen
et al., 2015; O’Mara-Eves et al., 2015).

The vast majority of existing semi-automatic citation screening methods
adopts unsupervised document representation techniques, such as bag-of-
words, to address an inherently supervised classification task. Therefore, the
induced feature representation of documents naturally ignores the readily
available class-membership information of manually labelled citations. In
this paper, we present a new supervised feature representation technique
that leverages the class-membership information of the manually screened
citations to generate informative document features. The proposed method
uses a multi-layer feed forward neural network to learn a latent representa-
tion of documents that encodes discriminative and class-specific information
about the citation screening task.

More specifically, our proposed feed forward neural network is trained on
the manually labelled citations, while the hidden layers of the network are
iteratively optimised to better discriminate between eligible and ineligible
studies. We then extract an embedded feature representation of documents
using the fixed weights of the hidden layers. The document embeddings can
be integrated with any classification algorithm used for automatic screening
prioritisation. Following previous approaches (Wallace et al., 2010; Cohen
et al., 2015), we use a Support Vector Machine with a linear kernel to assign
a classification confidence to each citation set and we rank the citation list
in order of relevance to the review.

To further improve the performance of our neural network-based feature
extraction method, we investigate pre-training techniques that aim to en-
hance the initialisation process of the feed forward neural network. In our
approach, we employ a deep denoising autoencoder (Vincent et al., 2010),
a type of unsupervised neural network that learns to denoise an artificially
corrupted version of the input feature space. The reconstructed version of
the input feature space is subsequently used to initialise the feed forward
component of our method.

For evaluation, we conduct a series of experiments to investigate the per-
formance of our supervised feature induction method when applied to the
citation screening task of 23 publicly available systematic review datasets
from the medical domain (Cohen et al., 2006; Howard et al., 2016). Ex-
perimental results demonstrate that our proposed feature extraction method
can reduce the number of items that need to be manually screened without
decreasing the sensitivity of the review, i.e. at least 95% of relevant studies
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are identified by the semi-automatic screening method. Moreover, our neural
network-based feature extraction method shows substantial performance im-
provements when compared to 10 baseline feature extraction methods. The
contributions of this paper can be summarised as follows:

1. We develop a new neural network-based feature extraction method to
accelerate the citation screening task of systematic reviews.

2. We conduct large-scale experiments across a total number of 23 medical
systematic reviews datasets to evaluate the effectiveness of the proposed
method.

3. Our feature extraction method yields significant workload savings of at
least 10% in 22 out of 23 review datasets.

4. Our method outperforms 10 baseline feature extraction methods by
approximately 6%, in terms of the average workload saving (Cohen
et al., 2006).

5. We make the source code of our tool publicly available at: github.

com/gkontonatsios/DAE-FF.

2. Related Work

Prior work to semi-automatic citation screening, concerning both docu-
ment classification and document ranking techniques, has investigated the
use of different document representation techniques, such as bag-of-words
(BoW), topic modelling, bibliographic metadata or a combination of the
above, to improve the performance of the underlying text classification al-
gorithm. Moreover, existing document representation techniques used for
semi-automatic citation screening have been evaluated across a number of
domain topics, including clinical medicine (Cohen et al., 2006; Wallace et al.,
2010), social science (Miwa et al., 2014) and software engineering (Marshall
& Brereton, 2013).

The BoW model is a standard document representation technique that
has been widely adopted by previous semi-automatic citation screening meth-
ods (Cohen et al., 2006; Frunza et al., 2010; Kim & Choi, 2012; Wallace et al.,
2010). In the BoW model, each document is represented as a sparse, high-
dimensional feature vector, wherein the dimensions of the vector correspond
to words or phrases that occur in the document. Bekhuis & Demner-Fushman
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(2012) demonstrated that an automatic text classification method trained
on BoW features achieved substantial workload savings of 35%-46% on two
medical systematic reviews. Moreover, the authors showed that single-word
features yielded an optimal performance when compared to bi-gram or tri-
gram features, i.e. phrases consisting of two or three words, respectively.
However, a limitation of the BoW model is that the resulting feature space
consists of a large number of word-features and therefore the model is as-
sociated with increased memory and computational costs when applied to
large-scale systematic review datasets (Forman, 2003).

Feature selection methods, e.g. forward feature selection (Cohen et al.,
2015) or information gain filters (Bekhuis & Demner-Fushman, 2012), have
been previously used to reduce the size of the BoW space, although Adeva
et al. (2014) reported that such feature selection methods result in insignifi-
cant performance improvements.

Several studies proposed using bibliographic metadata to enhance the
BoW space with additional features. Wallace et al. (2010) presented an
automatic text classification system, trained via active learning, that used
multiple feature types, including BoW, the publication type and indexing
keywords. Each feature type was firstly used to train a text classification
model. The screening decisions made by individual classification models
were subsequently combined using a voting scheme. The experiments that
they conducted showed that their ensemble classification model that ex-
ploited multiple feature types obtained a robust performance by reducing
the screening workload of 4 medical reviews by 40%-50%. Although, bib-
liographic metadata can be used to improve upon the performance of the
BoW feature space, Miwa et al. (2014) noted that such bibliographic fea-
tures may not always be available for every citation or domain topic (e.g. so-
cial science). In response, the authors used an unsupervised topic modelling
method, namely Latent Dirichlet Allocation (LDA) (Blei et al., 2003), to
automatically identify latent topics in a collection of documents. Experi-
mental results demonstrated that automatically identified topics can be used
to complement potentially missing bibliographic metadata.

One-hot encoding feature extraction methods (e.g. as BoW features and
bibliographic metadata) are strong baselines which yield a robust perfor-
mance across a wide range of different classification tasks(Mirończuk & Pro-
tasiewicz, 2018). Moreover, one-hot encoding methods are easy to implement
while the underlying feature model is highly interpretable(Wang & Manning,
2012). However, one-hot encoding methods are known to discard the order
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and the semantics of words and phrases (Mikolov et al., 2013; Le & Mikolov,
2014). In practice, this means that the text classifier, trained on one-hot
encoding features, may yield a decreased performance due to the high ambi-
guity of the technical terminology used in complex, multi-disciplinary topics
(e.g., public health) (Miwa et al., 2014; Hashimoto et al., 2016).

In a study closely related to our work, Hashimoto et al. (2016) presented a
variation of the widely popular paragraph vectors (PV) model (Le & Mikolov,
2014), a document representation technique for extracting informative doc-
ument features. The PV model is a neural network-based feature extraction
method that follows a distributional semantics approach to better account
for words and documents semantics. More specifically, the PV model trains
a shallow neural network, consisting of one hidden layer, by maximising the
conditional probability of a word given its context and the document that
it appears. Hashimoto et al. (2016) modified the original implementation of
the PV method in order to model each document as a distribution of latent
topics. The authors further showed that their proposed PV method achieved
a superior performance on complex, multi-disciplinary reviews when com-
pared to the LDA topic modelling method. However, a limitation of the
PV model is that it follows an unsupervised approach to feature representa-
tion and therefore the generated feature space is not explicitly optimised to
discriminate between eligible and ineligible studies.

The main advantage of our method when compared to previous feature
extraction methods is that it follows a supervised approach to extract dis-
criminative document features. Moreover, our method generates a dense and
low-dimensional feature space which is easier to manage when compared to
the sparse and high-dimensional feature space produced by the BoW model.
We further show that our supervised feature extraction method can enhance
the performance of semi-automatic citation screening when compared to pre-
viously used unsupervised feature extraction methods, including BoW, bib-
liographic metadata, a low dimensional projection of the BoW space using
the Singular Value Decomposition, a topic-based feature extraction method
based on Latent Dirichlet Allocation (Bekhuis & Demner-Fushman, 2012;
Miwa et al., 2014; Mo et al., 2015; Howard et al., 2016) and a topic-based fea-
ture induction method which exploits a shallow neural network (Hashimoto
et al., 2016). Moreover, we report statistical significant improvements over
the baseline methods in several review datasets.
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Figure 1: Architecture of the automatic screening prioritisation framework

3. Methodology

In this section, we detail the methodology that we follow to semi-automate
the citation screening process of systematic reviews. Firstly, we describe the
automatic screening prioritisation framework that we use to evaluate different
feature representation methods. We then provide implementation details of
our proposed neural network-based feature extraction method.

3.1. Automatic Screening Prioritisation Framework

Figure 1 shows the overall architecture of the automatic screening priori-
tisation framework that we use in our experiments. We follow the same ex-
perimental settings reported elsewhere in the literature (Cohen et al., 2006),
by randomly partitioning the initial citation list into two equal sized sets,
namely labelled and unlabelled. Both sets consist of 50% of the citations,
whereas there is no overlap between the citations in the labelled set and the
citations in the unlabelled set.

The labelled set is manually annotated by a human reviewer with in-
clude/exclude codes and it is used by the text classification method to learn
to discriminate between eligible and ineligible studies. It should be noted
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that in our experiments we use publicly available datasets which were man-
ually annotated with include and exclude codes in prior work Cohen et al.
(2006); Wallace et al. (2010); Howard et al. (2016).

The text classification method firstly uses a feature extraction component
to transform the textual content of citations into a numerical representation,
i.e. feature vectors. In our approach, we develop a new supervised feature
extraction method that uses a neural network model to generate a discrimi-
native feature representation of documents. Document features extracted by
our method are then used as input to a linear SVM classifier. The proposed
supervised feature extraction method is described in the following section,
Section 3.2.

The linear SVM classifier is trained to discriminate between eligible and
ineligible citations, given the document features extracted previously. More
specifically, a linear SVM constructs a linear hyperplane to best separate
eligible from ineligible citations. After training the linear SVM model, we
use the trained model to prioritise the citations in the unlabelled set, so
that higher ranked citations are more likely to be eligible for inclusion in the
review than lower ranked citations. More specifically, we rank the unlabelled
citations according to the classification confidence of a citation being relevant
to the eligible class. The classification confidence of a citation is computed
based on the signed-margin distance of the feature vector for that citation to
the SVM hyperplane, i.e. the higher the distance, the higher the classification
confidence. Once the citations are prioritised in order of relevance to the
eligible class, the top ranked citations are included in the review, whereas the
lower ranked citations are deemed ineligible and they are thus automatically
excluded from the review. Following previous studies Howard et al. (2016)
we fix a cut-off threshold (i.e. minimum confidence value that discriminates
between eligible and ineligible studies) at a recall level of 95%.

3.2. Supervised Feature extraction

Figure 2 illustrates the architecture of our supervised feature extraction
method. The proposed method coordinates two types of neural networks: a)
a denoising autoencoder and b) a feed forward network.

A denoising autoencoder (Vincent et al., 2010) aims to reconstruct the
input BoW feature space given an artificially corrupted version of the BoW
space. More specifically, consider X = {x(1), · · · , x(i), · · · , x(k)} a set of k
input BoW feature vectors where x(i) ∈ Rd is the BoW vector of the i-th
citation. Each BoW feature vector consists of d word-dimensions, where
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each dimension corresponds to a word that appears in the title or in the
abstract of a citation. The value of a word-dimension is the raw frequency
of that word in a given citation.

Previous studies have demonstrated how a denoising autoencoder learns
meaningful data representations by learning to remove the input noise in the
data, in contrast to conventional autoencoders which are trained on cleaned
input data (Vincent, 2011). Based on this, we artificially corrupt the input
BoW feature using additive Gaussian noise of a standard deviation σ = 0.5,
so that x̃(i) is the corrupted version of x(i).

The goal of an one-layer denoising autoencoder is to firstly encode the
corrupted feature vector x̃(i) into a lower dimensional representation y(i) ∈ Rh

using the encoder mapping function:

y(i) = f(Wx̃(i) + b) (1)

where f is a non-linear activation function, such as the logistic sigmoid func-
tion, W is the weight matrix and b is the bias vector.

The encoded representation y(i) is then mapped back, i.e. decoded, into
a BoW reconstruction z(i) ∈ Rd through the decoder mapping function:

z(i) = f(W ′ỹ(i) + b′) (2)

The parameters {W, b} and {W ′, b′} of the encoder and decoder function,
respectively, are optimised using the Adadelta optimiser (Zeiler, 2012), a
variation of the stochastic gradient descent algorithm, by minimising the
cross entropy of the reconstruction error according to:

LH(X,Z) = −
k∑

i=1

xi log zi + (1− xi) log(1− zi) (3)

In our approach, we use a straightforward variation of the one-layer de-
noising DAE, namely a deep DAE, which simply adds additional interme-
diate hidden layers into the network to learn more complex non-linear pro-
jections of the input data (Hinton & Salakhutdinov, 2006). Moreover, we
use three different DAEs to learn potentially different reconstructions of the
BoW space. The experiments that we conducted, presented in Section 4.5.3,
demonstrate that a multi-branch model architecture that uses multiple DAE
components obtains a statistically significantly better performance, in com-
parison to a single-branch architecture that uses only a single DAE compo-
nent. Each DAE consists of 5 hidden layers, whereas we vary the dimen-
sionality of the first and last hidden layer across the three DAEs to obtain
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Figure 2: Architecture of the supervised feature extraction method

different reconstructions of the BoW space. The reconstructed output of each
DAE is then used to initialise the supervised feed forward neural network.
This type of unsupervised pre-training, where the feed forward neural net-
work is initialised by deep DAEs, has been previously shown to substantially
improve the performance of the feed forward network (Erhan et al., 2010).

The feed forward neural network consists of 6 hidden fully connected
layers, i.e. {L1, L2 · · · , L6}, and an output softmax layer L7 that is used to
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compute the probability distribution over the eligible and ineligible class for
a given citation. The first three hidden layers of the network {L1, L2, L3}
are parallel to each other, i.e. there is no connection between the units of
the three layers, and they are initialised by the output reconstructions of
the three DAEs, namely {z1, z2, z3}, respectively. The three parallel layers
are subsequently concatenated into a wide fully connected layer L4 of 3072
units. Following the wide layer, we coordinate two additional hidden fully
connected layers, i.e. L5 and L6, of 1024 units. We should further note that
the size of the hidden layers is empirically defined. In section 4.5.3, we report
the performance of the DAE component when using hidden layers of varying
dimensionality.

The feed forward neural network is trained in a supervised manner by
minimising the cross entropy between the probability distribution of the gold
standard classes and the probability distribution of classes estimated by the
softmax layer. The weights of the feed forward network are fine-tuned during
training using vanilla stochastic gradient descent.

After training the feed forward network, we extract supervised feature
vectors, that correspond to the whole set of the learned data, using the
weight matrix of the wide fully connected layer L4 according to:

h(z) = WL4 · [σL1(z);σL2(z);σL3(z)] (4)

where WL4 is the weight matrix of the wide fully connected layer L4, [·; ·]
denotes feature concatenation and σL1(z), σL2(z) and σL3(z) are Rectified
Linear Unit (ReLU) activation functions (Nair & Hinton, 2010) of the L1, L2

and L3 hidden layers, respectively.
The extracted document vectors, i.e. the output of the connected layer

L4 of our proposed neural network-based feature extraction method, are sub-
sequently used as input to a linear SVM text classifier. We further note that
the feature extraction step is not dependent on the text classification model
and similarly the text classification step does not rely upon the feature ex-
traction method. Consequently, different feature extraction methods can be
used with the same text classifier, and different text classifiers can be used
with the same feature extraction method. In the context of this study, we
seek to assess the performance of our novel feature extraction method and
we therefore evaluate different baseline feature extraction methods against
our proposed method using the same linear SVM text classifier.
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4. Experiments

4.1. Data

We evaluate our proposed supervised feature extraction method on 23
publicly available systematic review datasets from the medical domain. Ta-
ble 1 summarises the descriptive characteristics for each dataset, including
a) the publication source of the dataset, b) the size of the dataset in terms
of number citations that need to be screened, c) the percentage of eligible
citations and d) the availability of bibliographic metadata. Each citation
in the review datasets consists of a title, abstract and a classification label,
i.e. eligible or ineligible, associated with that citation. Moreover, 18 out of 23
review datasets include additional bibliographic metadata for each citation
in the form of Medical Subject Heading (MeSH) tags 1.

We further organise the 23 review datasets into the following 3 groups ac-
cording to their publication source: a) clinical reviews (Wallace et al., 2010),
b) drug reviews (Cohen et al., 2006) and c) SWIFT reviews (Howard et al.,
2016). Both the clinical and the drug review datasets consist of a relatively
small number of citations ranging from 310, for the Antihistamines review, to
4, 751 citations, for the Proton Beam review). The 5 SWIFT review datasets
are substantially larger in size in comparison to the clinical and drug datasets,
containing between 4, 479 and 48, 637 citations. Howard et al. (2016) noted
that the SWIFT review datasets were constructed using broad search strate-
gies, whereas the eligibility criteria of the reviews include multiple study
designs (e.g. human/animal/in vitro clinical trials), which explains the large
size of these reviews. The 3 clinical review datasets are relevant to clinical
or health outcomes of different treatments (e.g. clinical outcomes of Proton
Beam radiation treatment), while the 15 drug review datasets investigate the
efficacy of drug therapies (e.g. Skeletal Muscle Relaxant treatment).

In order to tune the hyper-parameters of our feature extraction method,
we used two development reviews, namely the Statins and the BPA dataset
that consist of 3, 465 and 7, 699 citations, respectively.

4.2. Evaluation Settings

As evaluation metric, we use the widely adopted Work Saved over Sam-
pling at r% recall (WSS@r%) (Cohen et al., 2006; Frunza et al., 2010; Howard

1indexing terms used by the Medline bibliographic database
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Source Dataset
#

citations
(%) eligible
citations

Bibliographic
metadata

Clinical
(Wallace
et al., 2010)

COPD 1,606 12.2 7

Proton Beam 4,751 5.1 7

Micro Nutrients 4,010 6.4 7

ACEInhibitors 2,544 1.6 3

ADHD 851 2.4 3

Antihistamines 310 5.2 3

Atypical Antipsychotics 1,120 13.0 3

Beta Blockers 2,072 2.0 3

Calcium Channel Blockers 1,218 8.2 3

Estrogens 368 21.7 3

Drug
(Cohen
et al., 2006)

NSAIDs 393 10.4 3

Opioids 1,915 0.8 3

Oral Hypoglycemics 503 27.0 3

Proton PumpInhibitors 1,333 3.8 3

Skeletal Muscle Relaxants 1,643 0.5 3

Statins 3,465 2.5 3

Triptans 671 3.6 3

Urinary Incontinence 327 12.2 3

PFOA/PFOS 6,330 1.5 3

SWIFT
(Howard
et al., 2016)

Bisphenol A (BPA) 7,699 1.4 3

Transgenerational 48,637 1.6 3

Fluoride and neurotoxicity 4,479 1.1 7

Neuropathic pain 29,207 17.2 7

Table 1: 23 publicly available review datasets used in the experiments of this paper

et al., 2016; Kanoulas et al., 2017), which estimates the reduction of the (hu-
man) screening workload at a fixed recall level of r%. According to the
WSS@r%, the workload reduction achieved by an automatic prioritisation
method is equivalent to the percentage of citations that are ranked lower
in the prioritised citation lisT, i.e. citations that are automatically excluded
from the review and thus reviewers do not need to manually read those ci-
tations, than the cut-off threshold which is fixed at a recall level of 95%.
The recall performance of the method is the proportion of eligible studies
out of the total number of eligible studies that is ranked higher in the priori-
tised list. Thus, for a given recall performance of r%, the WSS@r% can be
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computed as follows:

WSS@r% =
TN + FN

N︸ ︷︷ ︸
(%) excluded citations

−
penalty term︷ ︸︸ ︷
(1− r) (5)

where TN is the number of true negative predictions, FN the number of false
negative predictions and N the total number of citations. The penalty term,
i.e. 1− r, determines the proportion of citations that is falsely excluded from
the review, i.e. eligible citations that are falsely ranked lower in the prioritised
list.

Previous studies (Cohen et al., 2006; O’Mara-Eves et al., 2015; Wallace
et al., 2010; Bekhuis & Demner-Fushman, 2012) noted that an acceptable
recall performance of an automatic prioritisation method needs to be at least
95%. A lower recall performance of less than 95% may impact the quality
of the underlying review considering that a substantial proportion of eligible
studies is falsely excluded during the screening process. Based upon this, we
fix the recall performance of our automatic prioritisation method at 95% and
we compute the obtained work saved (i.e. WSS@95%) according to:

WSS@95% =
TN + FN

N
− (1− 0.95) =

TN + FN

N
− 0.05 (6)

In addition to the WSS@95% metric, we further compute the precision
performance of our method at a fixed recall level of 95% according to:

precision@95%recall =
TP

TP + FP
, given that recall=95% (7)

For all evaluation tests, we report average values of the WSS@95% and
precision@95%recall metrics over 10 cross-validation folds. More specif-
ically, we follow a stratified 10 × 2 cross-validation setting. Each cross-
validation round firstly partitions the initial dataset into two equally sized
subsets. One subset is used for training and the second subset is used for
computing the evaluation metrics. Both the training and the evaluation sub-
sets consist of the same ratio of ineligible to eligible citations. We repeat this
cross-validation process 10 times and we then average the 10 WSS@95% and
precision@95%recall scores to obtain a final estimate.
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4.3. Automatic prioritisation system

The automatic prioritisation system that we use in our experiments em-
ploys an L2-regularised linear SVM classifier to rank the citations according
to the signed-margin distance between the citation feature vectors and the
SVM hyperplane. We developed the linear SVM classifier using the Scikit-
learn python library (Pedregosa et al., 2011). In order to better account for
the class imbalance between eligible and ineligible citations, we used a re-
duced misclassification cost, i.e. a trade-off between maximising the margin
between the two classes and minimising classification errors, by setting the
regularisation parameter C = 1× 10−6. We used the same hyper-parameter
settings for the SVM classifier across all review datasets and across all feature
extraction methods.

4.4. Baseline methods

Table 2 shows the hyper-parameter settings for 5 baseline feature ex-
traction methods. With regard to the BoW method, we apply basic pre-
processing steps following recommendations by Matwin et al. (2010). Firstly,
we remove stop words found in NLTK’s stop word list (Bird & Loper, 2004)
and then we convert the original surface form of the words (e.g. therapies)
into their corresponding base forms (e.g. therapi) using the Porter stemmer
(Porter, 2001). After pre-processing the words that occur in the title and
in the abstract of each citation, we construct BoW feature vectors consist-
ing of the 10, 000 most frequent words in the collection. As feature values,
we consider the frequency of occurrence of a word-dimension in a given ci-
tation. Feature weighting techniques, such as term frequency-inverse doc-
ument frequency (tf-idf) weighting, could be potentially used to normalise
word frequency values. However, Matwin et al. (2010) showed that such fea-
ture weighting techniques yield approximately the same performance as the
unnormalised word frequencies on the drug development reviews.

The singular value decomposition (SVD) method is a dimensionality re-
duction technique that projects an input high dimensional feature space into
a dense, lower dimensional space. SVD is different than the widely used
Principal Component Analysis (PCA), as it computes eigenvalues and eigen-
vectors directly on the input data matrix, whereas PCA computes eigenval-
ues and eigenvectors on the covariance matrix of the input data (Wall et al.,
2003). In the context of this study, we use the SVD baseline method to
derive a low dimensional projection of the BoW feature space. The SVD
baseline method is implemented using the Scikit-learn library. It should be
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Baseline method Hyper-parameters

BoW Top (Stemmed) words:
10, 000

SVD eigenvalues: 300
LDA topics: 300, iterations: 500
PV topics: 300, iterations: 500,

document vector: 1, 000,
word vector: 300

MeSH tags
(bibliographic metadata)

––

Table 2: Baseline feature extraction methods with selected parameter settings used in the
experiments of this paper.

noted that no prior work has previously evaluated SVD derived features for
semi-automatic citation screening. We therefore identify optimal parameter
settings, i.e. dimensionality of the projected space according to the top K
eigenvalues, for the SVD method using a grid search method on the same
two development reviews that we used to fine-tune our supervised feature
extraction method. Experimental results showed that an SVD feature space
of 300 dimensions (K=300) yields an optimal WSS@95% performance on
both development reviews.

The two topic modelling methods, namely the Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and Paragraph Vectors (PV) (Hashimoto et al.,
2016) model, represent each citation as a mixture of M latent topics. The
LDA method is a popular feature extraction technique among existing semi-
automatic citation screening systems. Here, we implement a baseline LDA
method using the MALLET library (McCallum, 2002). We further tune the
parameters of the LDA method by setting the number of latent topics to
300 and the number of iterations to 500 as in Miwa et al. (2014). The PV
method (Hashimoto et al., 2016) is an alternative topic modelling feature
extraction technique that it was previously shown to outperform the LDA
method on three public health reviews. In our experiments, we use the
publicly available implementation of the PV method2. Moreover, we use
the same parameter settings as in (Hashimoto et al., 2016) by setting the

2nactem.ac.uk/pvtopic
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dimensionality of the word embeddings to 300, the dimensionality of the
document embeddings to 1, 000, the number of latent topics to 300 and the
number of training iterations to 500.

MeSH tags are single word or multi-word keywords that are manually as-
signed to every citation indexed by the Medline bibliographic database (Lip-
scomb, 2000). MeSH tags aim at summarising the textual content of cita-
tions using a set of descriptive keywords. Considering that MeSH keywords
may not always appear in the title or in the abstract of a citation, MeSH-
based features can potentially provide complimentary information to BoW
features (Trieschnigg et al., 2009). In order to retrieve MeSH tags from the
Medline database, we use the Biopython library (Cock et al., 2009). We then
construct binary feature vectors, where each dimension of the vectors corre-
sponds to a different MeSH tag, while feature values determine the presence
or absence of a MeSH tag in a given citation.

Previous studies investigated the performance of composite features con-
sisting of a column-wise concatenation of different single-view feature spaces
(e.g. BoW-LDA). As an example, Cohen et al. (2015) experimented with
a combination of BoW and MeSH features and showed that such compos-
ite features achieve statistical significant improvements over single-view fea-
tures (e.g. BoW features alone). Similarly, Howard et al. (2016) reported
that BoW-LDA composite features enhance the WSS@95% performance of
an automatic prioritisation method by approximately 4.4% when compared
to single-view BoW features. Based upon this, in addition to the five base-
line methods that extract single-view features, we report the WSS@95%
performance of the following 5 composite features : BoW-LDA, BoW-SVD,
BoW-LDA, BoW-PV, BoW-MeSH and BoW-SVD-LDA-PV.

4.5. Results

4.5.1. Hyper-parameter settings

In this section, we present experiments that we conducted to optimise
the hyper-parameters and the network architecture of our supervised feature
extraction method3. We do not perform any dataset-specific tuning of the
hyper-parameters with the exception of the number of epochs required to
train the DAEs. We show that the number of DAE epochs is sensitive to
the size of the underlying review. Based on this, we use the Statins de-

3All experiments are performed using an NVIDIA TITAN Xp GPU.
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Hyper-parameter Value

size of minibatch (DAE) 32
dropout regularisation 0.7

number of training epochs (FF) 100
size of minibatch (FF) 128

Table 3: Hyperparameter settings of the supervised feature extraction method

velopment review to fix the number of DAE epochs across the 18 review
datasets (i.e. clinical and drug reviews) which are relatively small in size
while the BPA development review is used to tune the number of DAE
epochs across the 5 SWIFT review datasets which are larger in size. The
remaining hyper-parameters, which are summarised in Table 3, are constant
across all datasets. After optimising the number of DAE epochs, we in-
vestigate the WSS@95% performance of our method when using different
network architectures.

4.5.2. Effect of number of DAE epochs

Figures 3a and 3b illustrate the WSS@95% performance of our method,
i.e. DAE-FF, on an increasing number of DAE epochs across the two devel-
opment reviews, namely Statins and BPA, respectively. We further report
the WSS@95% performance of the BoW baseline method. With regard to
the Statins development review, we observe that the DAE-FF method yields
a maximum WSS@95% score of 0.566 when using 50 DAE epochs. However,
the performance of the method substantially decreases for a larger number of
epochs, e.g. WSS@95% of 0.549 and 0.489 when using 100 and 200 epochs,
respectively.

The WSS@95% performance of the DAE-FF method shows a different
pattern on the larger BPA development review, when compared to the per-
formance recorded on the smaller Statins review. Here, the performance of
the method continuously improves as the number of DAE epochs increases.
An optimal WSS@95% score of 0.792 is observed when training the DAE
components for 150 epochs, whereas for 200 epochs the performance of the
method slightly decreases to 0.782.

4.5.3. Effect of model architecture

We next investigate the performance of our method when using differ-
ent model architectures. More specifically, we compare the performance of
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(a) WSS@95% performance on the Statins develop-
ment review

(b) WSS@95% performance on the BPA develop-
ment review

Figure 3: WSS@95% performance of the proposed method (i.e. DAE-FF) on an increasing
number of DAE epochs across the Statins and BPA development reviews. The figures also
illustrate the WSS@95% performance of the BoW baseline method. The thick lines are
average WSS@95% values. The bands surrounding the thick lines represent the 95%
confidence interval of the mean WSS@95% values across 10 validation rounds.

a baseline model architecture (i.e. model 1) that does not exploit unsuper-
vised pre-training using deep DAE components against 6 model architectures
that use different combinations of the three DAE components (i.e. DAE 1,
DAE 2 and DAE 3) to initialise the feed forward network. We further eval-
uate both single-branch model architectures that use a single DAE compo-
nent (model 2, model 3 and model 4) and multi-branch architectures that
use two (model 5 and model 6) or three (model 7) DAE components. With
regard to the single-branch model architectures, we co-ordinate 4 fully con-
nected layers of 1024 units each following the single DAE component of the
network. The two-branch model architectures consist of 5 fully connected
layers: a) two fully connected layers of 1024 units which are parallel to each
other and they are initialised by the two DAE components of the network,
b) a wide fully connected layer of 2048 units (i.e. concatenation of the first
two parallel layers) and c) two subsequent layers of 1024 units. Finally, our
proposed three-branch model architecture (i.e. model 7) co-ordinates 6 fully
connected layers: a) 3 parallel layers which are initialised by the three DAE
components, b) a wide fully connected layer of 3072 units and c) two layers
of 1024 units.

Table 4 shows the WSS@95% performance of the 7 model architec-
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Model DAE 1 DAE 2 DAE 3 WSS@95%
(1024,512, (2048,512, (3072,512,

256,512,1024) 256,512,2048) 256,512,3072) Statins BPA
model 1 — — — .414∗∗ .687∗∗
model 2 3 — — .514∗∗ .709∗∗
model 3 — 3 — .488∗∗ .697∗∗
model 4 — — 3 .492∗∗ .703∗∗
model 5 3 3 — .534 .786
model 6 3 — 3 .555 .773∗
model 7 3 3 3 .566 .792

Table 4: WSS@95% performance of 7 different network architectures of our method
(i.e. model 1 to model 7) on the two development reviews. The superscript ∗∗ shows
that the corresponding model obtained a statistically significant lower performance when
compared to the WSS@95% performance of model 7 according to a two-tailed paired
t-test at p < .01 level. The superscript ∗ denotes statistically significant difference at
p < .05 level.

tures on the Statins and BPA development reviews. It can be observed
that model 1 (i.e. baseline architecture) obtains the lowest WSS@95% per-
formance across the two development reviews. Our proposed three-branch
model architecture, i.e. model 7, improves upon the performance of the base-
line architecture by ∼ 10% to ∼ 15%. Moreover, model 7 achieved a sta-
tistically significant improvement over the single-branch model architectures
on both development reviews, although performance improvements over the
two-branch model architectures were small and statistically insignificant in
most cases.

4.5.4. Comparison with baseline methods

We evaluate our proposed three-branch DAE-FF method against 5 single-
view baseline methods, i.e. BoW, SVD, LDA, PV and MeSH, on 23 review
datasets. The results in Table 5 show that the DAE-FF method yielded an
optimal WSS@95% performance in 16 out of the 23 review datasets, while
the performance improvements over the baseline methods were statistically
significant in 9 datasets. Moreover, our method obtained the best overall
performance, i.e. the average WSS@95% scores across all 23 datasets, and
improved upon the performance of the 5 baselines by ∼ 10% to ∼ 28%.
The MeSH baseline method achieved the lowest performance, because MeSH
terms are sparsely distributed across the different citations. The remaining 4
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Dataset BoW SVD LDA PV MeSH DAE-FF

COPD .458 .605 .555 .633 — .666
Proton Beam .746 .722 .787 .709 — .816∗∗

Micro Nutrients .510 .597 .430 .590 — .662∗
ACEInhibitors .752 .791 .548 .708 .375 .787

ADHD .744 .712 .485 .481 .567 .665
Antihistamines .048 .053 .042 .211 .192 .310

Atypical Antipsychotics .136 .038 .076 .150 .199 .329∗∗
Beta Blockers .470 .455 .507 .130 .237 .587

Calcium Channel Blockers .177 .262 .234 .169 .130 .424∗∗
Estrogens .288 .292 .360 .271 .238 .397
NSAIDs .719 .698 .569 .593 .331 .723
Opioids .304 .251 .350 .472 .116 .533

Oral Hypoglycemics .081 .046 .106 .055 .065 .095
Proton PumpInhibitors .239 .299 .293 .503 .323 .400

Skeletal Muscle Relaxants .102 .186 .148 .345 .050 .286
Statins .309 .306 .415 .293 .236 .566∗∗

Triptans .417 .356 .331 .295 .241 .310
Urinary Incontinence .291 .504 .443 .451 .220 .531

PFOA/PFOS .773 .794 .797 .833 .405 .848∗∗
Bisphenol A (BPA) .591 .709 .702 .629 .631 .793∗∗
Transgenerational .619 .579 .612 .542 .432 .707∗∗

Fluoride and neurotoxicity .719 .843 .847 .828 — .799
Neuropathic pain .471 .428 .534 .442 — .608∗∗

Average (all datasets) .433 .458 .442 .449 .277 .564

Table 5: WSS@95% performance of our method against 5 single-view feature extraction
baselines. WSS@95% scores are averages across 10 validation runs for each of the 23 review
datasets. The superscript ∗∗ shows that the DAE-FF method achieved a statistically
significant better performance according to a two-tailed paired t-test over all 5 baseline
methods at p < .01 level. The superscript ∗ denotes statistically significant improvements
over the 5 baselines at p < .05 level.

single-view baselines produced approximately the same average WSS@95%
performance.

Table 6 compares the performance of the DAE-FF method against 5 com-
posite feature extraction methods. The composite baselines augment the
BoW feature space with additional features derived by different single-view
feature extraction methods by column-wide concatenation. More specifically,
we experiment with a column-wide concatenation of two single-view feature
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Figure 4: Average (all datasets) precision@95% recall of our method against 5 composite
feature extraction methods.

spaces (i.e. BoW-SVD, BoW-LDA, BoW-PV, BoW-MeSH) and a column-
wide concatenation of four single-view features spaces (BoW-SVD-LDA-PV).

The results show that the composite feature extraction methods improved
upon the performance of the BoW single-view baseline. Performance gains in
terms of the average WSS@95% range between ∼ 1% to ∼ 6%. The concate-
nation of LDA with BoW features (i.e. BoW-LDA) achieved the best average
WSS@95% of 0.492 among the two-view composite baselines while the four-
view composite method obtained a slightly higher average WSS@95% of 0.5
when compared to the BoW-LDA baseline. The DAE-FF method showed a
superior WSS@95% score in 15 out of the 23 review datasets and a statis-
tically significant improved performance over the 5 composite baselines in 7
datasets. Finally, our method increased the average WSS@95% score of the
composite baselines by ∼ 6% to ∼ 11%.

Figure 4 shows the average precision at recall level of 95% obtained by
our proposed DAE-FF across the 23 review datasets. Here, we observe that
our method shows the best performance by outperforming the 5 composite
feature extraction methods by 3.2% to 6.3%. The composite methods obtain
approximately the same performance with the exception of the BoW-MeSH
that shows a substantially lower average precision at recall level of 95% of
∼ 13%.
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Dataset BoW-
SVD

BoW-
LDA

BoW-
PV

BoW-
MeSH

BoW-
SVD-
LDA-
PV

DAE-
FF

COPD .598 .609 .599 — .640 .666
Proton Beam .734 .778 .733 — .772 .816∗∗

Micro Nutrients .568 .416 .574 — .607 .662∗∗
ACEInhibitors .798 .801 .798 .773 .768 .787

ADHD .719 .624 .719 .738 .633 .665
Antihistamines .053 .229 .054 .273 .253 .310

Atypical Antipsychotics .042 .152 .040 .134 .148 .329∗∗
Beta Blockers .469 .532 .468 .552 .499 .587

Calcium Channel Blockers .249 .308 .250 .398 .291 .424
Estrogens .297 .300 .295 .408 .293 .397
NSAIDs .699 .684 .698 .595 .692 .723
Opioids .256 .318 .255 .332 .296 .533

Oral Hypoglycemics .042 .114 .043 .112 .109 .095
Proton PumpInhibitors .304 .302 .305 0.252 .345 .400

Skeletal Muscle Relaxants .182 .465 .184 .318 .435 .286
Statins .316 .364 .311 .252 .398 .566∗∗

Triptans .366 .437 .361 .241 .445 .434
Urinary Incontinence .500 .381 .504 .426 .362 .531

PFOA/PFOS .819 .833 .796 .815 .826 .848∗∗
Bisphenol A (BPA) .759 .775 .690 .717 .711 .758
Transgenerational .598 .646 .576 .641 .644 .707∗∗

Fluoride and neurotoxicity .835 .778 .835 — .849 .799
Neuropathic pain .484 .472 .441 — .477 .608∗∗

Average (all datasets) .465 .492 0.458 .450 .500 .564

Table 6: WSS@95% performance of our method against 5 composite feature extraction
methods (i.e. column-wide concatenation of different single-view feature spaces).

4.6. Discussion

The results that we obtained demonstrate that our neural network-based
feature extraction method substantially reduced the screening workload of 23
systematic reviews by approximately 56%. However, the workload savings
varied across the 23 reviews from a low WSS@95% score of ∼ 9% on the
Oral Hypoglycemics review to a higher WSS@95% score of ∼ 84% on the
PFOA/PFOS review. Moreover, we observed a weak correlation (R2 = 0.279)
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between the WSS@95% performance and the size of the corresponding re-
view dataset which was statistically insignificant (p = 0.197). This indicates
that our method can obtain meaningful workload savings on both small and
large review datasets.

According to Cohen et al. (2006), a significant and meaningful workload
saving should be at least 10% in terms of the WSS@95% metric. This stems
from the fact that the citation screening process of a systematic review, when
conducted manually, requires on average 332 person hours to be completed.
Therefore, a WSS@95% score of 10%, i.e. 10% of correctly excluded cita-
tions + 5% of incorrectly excluded citations, results in a workload reduction
of ∼ 50 person hours, which according to expert reviewers is a significant
reduction of their citation screening labour. The experiments that we con-
ducted showed that our proposed feature extraction method yields significant
workload savings of at least 10% in 22 out of 23 review datasets and thus it
could be potentially used in practical application scenarios for accelerating
the citation screening task of systematic reviews.

It should further be noted that the workload reduction (i.e. WSS@95%
score) achieved by our method is relative to the size of the underlying review
dataset. As an example, the DAE-FF method obtained approximately the
same WSS@95% performance of 0.7 on both the NSAIDs and the Transgen-
erational dataset. However, the validation sample of the Transgenerational
dataset consists of 24, 318 citations and it is substantially larger than the val-
idation sample of the NSAIDs dataset (196 citations). In practice this means
that a WSS@95% score of 0.7 is equivalent to a workload reduction of 18, 238
citations, which are automatically excluded from the Transgenerational re-
view, while a WSS@95% score of 0.7 translates to a workload reduction of
only 147 automatically excluded citations for the NSAIDs dataset.

4.7. Study limitations and future work

A potential limitation of our proposed method, which also applies to pre-
vious automatic screening methods, is that the WSS@95% metric assumes
that an optimal cut-off threshold, i.e. the minimum value of the ranked list
that discriminates higher ranked eligible studies from lower ranked ineligible
studies, is pre-defined and fixed at 95% recall. However, in practical sce-
narios such a threshold value is difficult to define, considering that the opti-
mal cut-off threshold varies greatly across different reviews (Howard et al.,
2016). Here, threshold estimation techniques, such as the S-D rank opti-
misation (Arampatzis et al., 2009), can be used to approximate an optimal
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threshold value.
A second limitation of our method is that the underlying neural network-

based feature extraction method is trained independently for each systematic
review dataset. As an example, in our experiments we produced 23 neural
network models corresponding to the 23 review datasets. However, different
systematic reviews may share one or more more eligibility criteria (e.g. if
included studies are randomised control trials) and thus learned document
features could be applied to different reviews. As future work, we plan to
investigate the use of domain adaptation and transfer learning in order to
domain adapt a single feature extraction model across multiple reviews.

5. Conclusions

In this paper, we have presented a text classification method to acceler-
ate the citation screening process of systematic reviews. The method aims to
minimise the human workload involved in citation screening so that human
reviewers need to manually label only a subset of the citations, while the
remaining unlabelled citations are automatically labelled by the text classi-
fication method.

We have demonstrated that by initialising the feed forward neural net-
work using multiple denoising autoencoders of varying dimensionality we can
improve upon the performance of our feature extraction method. We have
further performed a number of experiments to assess the performance of our
method across 23 publicly available systematic review datasets. It was shown
that for 22 out of 23 review datasets the proposed method achieved signif-
icant workload savings on at least 10%, while in several cases our method
yielded a statistically significantly better performance over 10 baseline fea-
ture extraction methods.

Acknowledgements

This work has been carried out as part of the TYPHON Project, which
has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 780251. Our research
was further supported by the NVIDIA Corporation through the donation of
a Titan GPU card.

26



References

Adeva, J. G., Atxa, J. P., Carrillo, M. U., & Zengotitabengoa, E. A. (2014).
Automatic text classification to support systematic reviews in medicine.
Expert Systems with Applications , 41 , 1498–1508.

Arampatzis, A., Kamps, J., & Robertson, S. (2009). Where to stop reading a
ranked list?: threshold optimization using truncated score distributions. In
Proceedings of the 32nd international ACM SIGIR conference on Research
and development in information retrieval (pp. 524–531). ACM.

Bandaru, S., Ng, A. H., & Deb, K. (2017). Data mining methods for knowl-
edge discovery in multi-objective optimization: Part a-survey. Expert Sys-
tems with Applications , 70 , 139–159.

Bastian, H., Glasziou, P., & Chalmers, I. (2010). Seventy-five trials and
eleven systematic reviews a day: How will we ever keep up? PLoS
Medicine, 7 , e1000326.

Bekhuis, T., & Demner-Fushman, D. (2012). Screening nonrandomized stud-
ies for medical systematic reviews: A comparative study of classifiers. Ar-
tificial Intelligence in Medicine, 55 , 197–207.

Bird, S., & Loper, E. (2004). Nltk: the natural language toolkit. In Pro-
ceedings of the ACL 2004 on Interactive poster and demonstration sessions
(p. 31). Association for Computational Linguistics.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.
Journal of machine Learning research, 3 , 993–1022.

Cambria, E. (2016). Affective computing and sentiment analysis. IEEE
Intelligent Systems , 31 , 102–107.

Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke,
A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B. et al. (2009).
Biopython: freely available python tools for computational molecular bi-
ology and bioinformatics. Bioinformatics , 25 , 1422–1423.

Cohen, A. M. (2008). Optimizing feature representation for automated sys-
tematic review work prioritization. In AMIA annual symposium proceed-
ings (p. 121). American Medical Informatics Association volume 2008.

27



Cohen, A. M., Ambert, K., & McDonagh, M. (2012). Studying the potential
impact of automated document classification on scheduling a systematic
review update. BMC Medical Informatics and Decision Making , 12 .

Cohen, A. M., Hersh, W. R., Peterson, K., & Yen, P.-Y. (2006). Reducing
workload in systematic review preparation using automated citation clas-
sification. Journal of the American Medical Informatics Association, 13 ,
206–219.

Cohen, A. M., Smalheiser, N. R., McDonagh, M. S., Yu, C., Adams, C. E.,
Davis, J. M., & Yu, P. S. (2015). Automated confidence ranked classi-
fication of randomized controlled trial articles: an aid to evidence-based
medicine. Journal of the American Medical Informatics Association, 22 ,
707–717.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio,
S. (2010). Why does unsupervised pre-training help deep learning? Journal
of Machine Learning Research, 11 , 625–660.

Forman, G. (2003). An extensive empirical study of feature selection metrics
for text classification. Journal of machine learning research, 3 , 1289–1305.

Frunza, O., Inkpen, D., & Matwin, S. (2010). Building systematic reviews
using automatic text classification techniques. In Proceedings of the 23rd
International Conference on Computational Linguistics (pp. 303–311). As-
sociation for Computational Linguistics.

Greenhalgh, T., Howick, J., & Maskrey, N. (2014). Evidence based medicine:
a movement in crisis? Bmj , 348 , g3725.

Hashimoto, K., Kontonatsios, G., Miwa, M., & Ananiadou, S. (2016). Topic
detection using paragraph vectors to support active learning in systematic
reviews. Journal of Biomedical Informatics , 62 , 59–65.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality
of data with neural networks. science, 313 , 504–507.

Howard, B. E., Phillips, J., Miller, K., Tandon, A., Mav, D., Shah, M. R.,
Holmgren, S., Pelch, K. E., Walker, V., Rooney, A. A., Macleod, M., Shah,
R. R., & Thayer, K. (2016). SWIFT-review: a text-mining workbench for
systematic review. Systematic Reviews , 5 .

28



Kanoulas, E., Li, D., Azzopardi, L., & Spijker, R. (2017). Clef 2017 technolog-
ically assisted reviews in empirical medicine overview. In CEUR Workshop
Proceedings (pp. 1–29). volume 1866.

Khabsa, M., Elmagarmid, A., Ilyas, I., Hammady, H., & Ouzzani, M. (2016).
Learning to identify relevant studies for systematic reviews using random
forest and external information. Machine Learning , 102 , 465–482.

Kim, S., & Choi, J. (2012). Improving the performance of text categorization
models used for the selection of high quality articles. Healthcare Informat-
ics Research, 18 , 18.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and
documents. In Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14) (pp. 1188–1196).

Lipscomb, C. E. (2000). Medical subject headings (mesh). Bulletin of the
Medical Library Association, 88 , 265.

Marshall, C., & Brereton, P. (2013). Tools to support systematic litera-
ture reviews in software engineering: A mapping study. In Empirical
Software Engineering and Measurement, 2013 ACM/IEEE International
Symposium on (pp. 296–299). IEEE.

Matwin, S., Kouznetsov, A., Inkpen, D., Frunza, O., & O’blenis, P. (2010). A
new algorithm for reducing the workload of experts in performing system-
atic reviews. Journal of the American Medical Informatics Association,
17 , 446–453.

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit, .

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems (pp. 3111–3119).
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