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Screening references is a time-consuming step necessary for systematic reviews
and guideline development. Previous studies have shown that human effort can
be reduced by using machine learning software to prioritise large reference col-
lections such that most of the relevant references are identified before screening
is completed. We describe and evaluate RobotAnalyst, a Web-based software sys-
tem that combines text-mining and machine learning algorithms for organising
references by their content and actively prioritising them based on a relevancy
classification model trained and updated throughout the process. We report an
evaluation over 22 reference collections (most are related to public health top-
ics) screened using RobotAnalyst with a total of 43 610 abstract-level decisions.
The number of references that needed to be screened to identify 95% of the
abstract-level inclusions for the evidence review was reduced on 19 of the 22 col-
lections. Significant gains over random sampling were achieved for all reviews
conducted with active prioritisation, as compared with only two of five when
prioritisation was not used. RobotAnalyst's descriptive clustering and topic mod-
elling functionalities were also evaluated by public health analysts. Descriptive
clustering provided more coherent organisation than topic modelling, and the
content of the clusters was apparent to the users across a varying number of
clusters. This is the first large-scale study using technology-assisted screening to
perform new reviews, and the positive results provide empirical evidence that
RobotAnalyst can accelerate the identification of relevant studies. The results
also highlight the issue of user complacency and the need for a stopping criterion
to realise the work savings.

1 INTRODUCTION

Systematic reviews seek to answer specific research ques-
tions and form unbiased, evidence-based conclusions by
combining information from all relevant studies. They
are used to compare treatments, diagnostic tests, health
Piotr Przybyła and Austin J. Brockmeier contributed equally to this work.

service organisations, prevention strategies, etc and to
develop evidence-based guidelines on health and social
policy and clinical practice.1-3 Coarsely, a systematic
review involves at least five stages: formulation of the
research question and inclusion criteria, literature search
to identify a set of possibly relevant references, initial rel-
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evancy screening based on reference and abstract, further
screening based on the full text, and evidence extraction
and synthesis of findings.

While all stages are resource-intensive, designing lit-
erature database searches and performing abstract-level
screening are tasks that are increasingly time-consuming
due to the ever-growing corpus of published literature.4

Information specialists must design search strategies that
are sufficiently sensitive to gather all relevant studies while
specific enough to limit the result size. This is especially
challenging in public health, because the research ques-
tions are often broad and the inclusion criteria, expressed
in terms of the traditional PICO framework (popula-
tion, problem, patient; intervention; comparison, control,
comparator; and outcome), involve broad definitions for
populations and complex interventions. Furthermore, the
definitions of interventions lack consistency across stud-
ies. As a result, literature searches for public health evi-
dence often have low specificity and return large volumes
of references to be screened at the title and abstract level.

Screening references is a lengthy process, and double
screening with two reviewers is recommended to avoid
missing references.1,5 Given that the estimated screen-
ing time per reference (title and abstract) is between
30 seconds6 and 1 minute7 and the estimated time to
discuss and resolve an inclusion disagreement between
reviewers is approximately 5 minutes per reference,
screening 5000 references will last between 83 to 125 hours
per reviewer.7 The estimated costs are also considerable:
amounting to £13 000 for a single review.7

This burden motivates the use of computational tools
to assist manual screening to reduce the workload in
cases of low specificity.8 For example, search tools can
be used to select a small initial subset of the references
sharing a certain characteristic, eg, the presence of a
keyword or its synonyms. Furthermore, machine learn-
ing algorithms that learn from a human screener's deci-
sions can be harnessed to prioritise the remaining unseen
references by their predicted relevancy.9 With prioritisa-
tion, it may be possible to perform a partial screening and
still identify the vast majority, for example, 95%, of the rel-
evant references.9 Prioritisation may also enable different
screening or review paradigms, such as living systematic
reviews10,11 or updates,12,13 since more relevant references
are found earlier than with manual screening.14

RobotAnalyst* is a Web-based screening system that
leverages algorithms from information retrieval, text min-
ing, natural language processing, and machine learning to
assist reviewers in prioritising references and exploring a
reference collection using automatic terminology extrac-
tion, topic modelling, and descriptive clustering. While
RobotAnalyst has been purposefully designed to handle
the challenges of terminological variation and low speci-

*http://nactem.ac.uk/robotanalyst/.

ficity in the large collections encountered with public
health reviews, these challenges are ubiquitous and it
can be applied to any screening task at the title and
abstract level.

The potential benefit of incorporating machine learning
into the systematic review toolkit has been showcased by
numerous retrospective studies (simulations of the screen-
ing process using previously screened collections9,13,15-31)
and some prospective studies32,33 that have explored
different machine learning approaches. Yet, before
semi-automated tools with functionality like RobotAna-
lyst become widely adopted within the systematic review
community, there is a need for real-world evaluation,
user feedback, and discussion to understand the benefits
and potential risks. While multiple software solutions33-36

leverage machine learning prioritisation to assist review
screening, published evaluations have mainly been lim-
ited to cross-validation of previously completed reviews.
There is a lack of studies where the screening—from start
to finish—is completed with computer-assisted prioriti-
sation. Real-world evaluations of semi-automated tools'
performance by reviewers are necessary to confirm their
theoretical benefits and ensure that they actually sup-
port review and guideline development.37 In particular,
real-world evaluation can be used to track metrics such as
decision accuracy and time per decision across the screen-
ing process. This is important to assess additional aspects,
such as software interface design and real-time operation.

We have conducted an evaluation of RobotAnalyst
for technology-assisted screening at two sites. Multiple
reviews were performed for public health guidelines and
new surveillance reviews within the National Institute for
Health and Care Excellence (NICE).† Another review was
conducted by reviewers from the Cochrane Switzerland
group,‡ at the Institute of Social and Preventive Medicine
(IUMSP), Lausanne University Hospital, to inform patient
safety and quality of hospital care. Results from both sites
highlight the ability of RobotAnalyst to prioritise relevant
references early in the screening process.

In addition to prioritisation, RobotAnalyst offers func-
tionality for the exploration of reference collections
via descriptive clustering38-41 and topic modelling.42-45

These techniques take text documents, such as refer-
ence abstracts, and divide them into a set of clusters
or topics, each associated with a subset of references
that share similar vocabulary. References with the same
topic or cluster may be thematically related even if there
are no common keywords they all share. Furthermore,
the topic proportions of each reference can be used

†NICE conducts systematic reviews to identify effective interventions and
inform the development of public health guidelines http://www.nice.org.
uk/guidance.
‡http://swiss.cochrane.org/.
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to find related references, and as a feature represen-
tation for machine learning.26,29,36 Primarily, clusters
and topics, supplemented with automatically generated
descriptions,40,41,46 allow reviewers to explore the thematic
coverage44,47 and locate relevant references,48,49 without
having to explicitly form keyword queries, within diverse
collections. Searching and screening diverse collections
are especially useful for supporting development of pub-
lic health guidelines that involve multiple complex ques-
tions. Analysts from NICE have performed an evaluation
of the coherence of RobotAnalyst's clustering and topic
modelling and the descriptiveness of the keyword lists.

In summary, the key contribution of RobotAnalyst is the
combination of active learning prioritisation with content,
metadata, and topic and cluster-based search. Reviewers
can use the search capabilities to identify the initial set
of inclusions and exclusions, before using active learning
to prioritise. This is ignored in other evaluations based on
cross-validation of previously completed reviews. Further-
more, during screening, the inclusion ranking itself can
be filtered using Boolean queries based on specific terms,
clusters, or topics. This human-in-the-loop ranking thus
augments purely machine prioritisation.

2 RELATED WORK

The earliest study of machine learning to emulate
the inclusion decisions for systematic reviews was the
work of Cohen et al.9 Previously, machine learning
had been demonstrated to be as effective for retriev-
ing general categories (therapy, diagnosis, aetiology,
and prognosis) of high-quality studies for evidence-based
medicine literature50,51 as hand-tuned Boolean queries.52

Subsequent studies15-25,26-29,32,33,36 have explored different
feature spaces (words or multiword patterns, MeSH terms
from PubMed metadata, unified medical language sys-
tem (UMLS) for nomenclature, and topical or thematic
features) and machine learning models and techniques
such as naive Bayes, support vector machine (SVM), and
logistic regression. Others have incorporated out-of-topic
inclusions53 and unscreened references.30,31

Most previous studies of machine learning for system-
atic reviews have a fixed training and test set of references.
In these cases, a user screens a portion of references (either
random or based on publication year for an update); the
machine learns from the screened portion and predicts
the relevant references within the remainder of references
(the test set). Finally, only the references predicted as rel-
evant are screened manually by a human reviewer. In
this scenario, two reviewers (human and machine) have
screened every inclusion. A similar scenario involves two
human reviewers that each screen half of the collection to

train two independent classification models. Each model
provides relevancy predictions on the other half, and dis-
crepancies are resolved by the humans.18

A key issue with these scenarios is the low specificity
within the training set. This poses a problem since identify-
ing all or nearly all of the inclusions is essential for system-
atic reviews, but off-the-shelf machine learning algorithms
offer predictions under the assumption that misclassifica-
tions, eg, predicting an inclusion instead of an exclusion
or vice versa, are equally unwelcome. This is not the case
in systematic reviews, where unnecessary inclusions dur-
ing abstract-level screening (by being overly inclusive) can
later be discarded, while missing relevant references vio-
lates the purpose of systematic reviews.1 Without adjust-
ment, the classification model may perform poorly with
imbalanced samples. To overcome this, principled adjust-
ments and various ad hoc techniques, such as subsampling
or reweighting, have been explored.

Active learning54-56 is the process of using a classification
model's predictions to iteratively select training data. It
provides an alternative scenario for prioritising the screen-
ing process from the beginning to the end, which naturally
ameliorates the imbalanced sample problem. After train-
ing with a small set of references screened by a human,
active learning proceeds by prioritising references based
on their predicted relevancy and the confidence of this pre-
diction. One objective of active learning is to select training
examples that improve the model as quickly as possible
such that it can eventually be applied to the remaining
references. In this case, the references which have the
lowest confidence in their model predictions are screened
first.22,23,26,30,31,54 Another approach is relevancy-based
prioritisation, where the references with the highest
probability of being relevant are screened first24,26,29,31,33

(a process known as relevancy feedback57 or certainty-
based screening26). Essentially, active learning uses new
screening decisions made by the user to improve the
prioritisation throughout the process. Furthermore,
active learning naturally handles the imbalanced sample
problem by including references with a substantial chance
of being relevant.

In the rest of this section, we review screening sys-
tems currently used in applications for systematic review-
ing. Prioritisation performance for some of these systems
has been measured, but the nature of the evaluation
settings varies.

EPPI-reviewer34 is a tool for reference screening avail-
able through a Web-based interface for a subscription fee.§
It contains automatic term recognition using several meth-
ods, including Termine from the National Centre for Text
Mining,58 which, as described in the EPPI-reviewer user

§https://eppi.ioe.ac.uk/cms/er4/.

https://eppi.ioe.ac.uk/cms/er4/
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manual,¶ could be used to find relevant references based
on terms found in previous inclusions. References can
also be clustered using Lingo3G software.# Reference pri-
oritisation is not generally available to all users, but it
has already been tested for scoping reviews,59 which dif-
fer from systematic reviews by taking into accounts much
larger sets of possibly eligible references and having eli-
gibility criteria developed iteratively during the process.
EPPI-reviewer was used in two scoping reviews, contain-
ing over 800 000 and 1 million references, and provided
substantial workload reduction (around 90%). One should
note though that because of collection sizes, not all ref-
erences were manually screened, so recall was estimated
using random samples from the whole reference set.

Specifically designed for facilitating screening based on
active learning, Abstrackr33 is a free online open-source
tool‖ that uses the dual supervision paradigm, where the
classification rules are not only automatically learned from
screening decisions but also provided explicitly by users as
lists of words, whose occurrence in text is indicative for
reference inclusion. Another interesting extension is col-
laborative screening, which takes into account different
levels of experience and costs of reviewers working on the
same study in an active learning scenario.60,61 The under-
lying classifier is an SVM over n-grams (word sequences).
A prospective evaluation using relevancy-based prioritisa-
tion was performed by an assistant, who used decisions
by a domain expert to resolve dubious cases. An indepen-
dent evaluation62 was performed on four previous reviews
(containing 517, 1042, 1415, and 1735 references). In this
case, only the inclusions were evaluated by a reviewer,
while exclusions were judged by verifying whether they
were present in the published reviews (ie, the references
were included after full-text screening). The reported work
saved was 40%, 9%, 56%, and 57%, respectively.

SWIFT-Active Screener** is a Web-based interface for
systematic reviews with active learning prioritisation.36

Similar to RobotAnalyst, it uses bag-of-words features (the
counts of distinct words within the title and abstract)
and the topic distributions estimated by latent Dirichl
et allocation,43,63 and prioritises references using a logistic
regression model. The differences are SWIFT's inclusion
of MeSH terms and RobotAnalyst's use of a linear SVM
for the classification model rather than logistic regression.
SWIFT-Active Screener implements a separate model to
predict the number of inclusions remaining to be screened,

¶https://eppi.ioe.ac.uk/CMS/Portals/35/Manuals/ER4.7.0%20user
%20manual.pdf.
# https://carrotsearch.com/lingo3g/.
‖http://abstrackr.cebm.brown.edu/.
**https://www.sciome.com/swift-activescreener/.

which can be used as a signal for the reviewer to stop
screening. The system is interoperable with a related desk-
top application, SWIFT-Review,†† which is freely available.
A cross-validation evaluation36 across 20 previously com-
pleted reviews, including 15 from Cohen et al,9 has shown
consistent work saved over sampling.

Rayyan35 is a free Web application‡‡ for systematic
review screening. The machine learning model28 is an
SVM-trained classifier that uses unigrams, bigrams, and
MeSH terms and suggests relevancy using a 5-star system.
It was evaluated on data from Cohen et al,9 and a pilot
user study on two previously completed Cochrane reviews
(273 and 1030 references) was undertaken for qualita-
tive evaluation. The interface provides a simple tool for
noting exclusions reasons and supports visualisation of a
similarity graph of references.

Another Web-based system for screening references is
Colandr.§§ The system has an open-source code base and
uses a linear model that is applied to vector representations
of references based on word vectors.64,65

Besides screening prioritisation, there are other
text-mining tools to assist study selection for systematic
reviews.66 For some systematic reviews, the inclusion
criteria dictate that the reference describes a randomised
control study or that the study uses certain methodologies
(eg, double-blinding) to ensure quality. Tools to auto-
matically recognise these69,67-70,71 can be used to generate
tags to filter references. Study selection can also benefit
from fine-grained information extraction from full article
text, eg, to find sentences corresponding to PICO criteria
elements,72 or from efforts to automatically summarise
included studies.66

In summary, numerous studies have evaluated auto-
matic classification for systematic reviews; some of which
have been implemented within end-user systems, but their
evaluations have been limited to either simulations involv-
ing previously completed reviews or partial reviews that
have not been verified by complete manual screening. To
the best of our knowledge, our work is the first large-scale
user-based evaluation that performs new screening tasks
from start to finish.

3 METHODS

In this section, we firstly describe RobotAnalyst's core
functionality and implementation. An overview of the
user interfaces is presented in Appendix A. Secondly, we
describe the evaluation methodology.

††https://www.sciome.com/swift-review/.
‡‡https://rayyan.qcri.org/.
§§http://www.colandrcommunity.com/.

https://eppi.ioe.ac.uk/CMS/Portals/35/Manuals/ER4.7.0%20user%20manual.pdf
https://eppi.ioe.ac.uk/CMS/Portals/35/Manuals/ER4.7.0%20user%20manual.pdf
https://carrotsearch.com/lingo3g/
http://abstrackr.cebm.brown.edu/
https://www.sciome.com/swift-activescreener/
https://www.sciome.com/swift-review/
https://rayyan.qcri.org/
http://www.colandrcommunity.com/
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3.1 System functionality
To support screening, RobotAnalyst's interface allows a
user to combine searches based on content, clusters, or
topics with active learning prioritisation. As shown in
Figure 1, the input to the screening process is a collection
of references, and the output is the subset of relevant refer-
ences included for further review or synthesis. The user's
screening decisions inform the classification model, which
in turn affects the prioritisation of references in the active
learning loop.

An initial batch of references (selected at random or via
a focused search) with manual screening decisions is used
to train an initial classification model, which recommends
further references for screening. If a user chooses to screen
them, the decisions, in turn, are used to train a better clas-
sification model, which will suggest further references. In
every iteration of this active learning loop, a classifier is
improved by having more training data and, as a result, can
provide better predictions and suggestions.

Although a reviewer can use the system's relevance
scores in many ways, relevancy-based prioritisation,26

where the references the system deems as the most likely
to be relevant are screened, is the suggested approach. Pri-
oritising the relevant references earlier in the screening
process31 is considered beneficial for gaining an under-
standing of the area14 or in cases when the reviewer does
not plan to screen the whole collection.9

As soon as new screening decisions have been made,
the user can trigger the retraining process to update the
system's predictions and the inclusion confidence for each
reference by using the new decisions to train the classi-
fication model. Updating the model frequently may pro-
vide more accurate predictions for prioritising the relevant

references. However, to avoid excessive computation and
to provide a stable user experience, the training is man-
ually triggered by the user, with the system issuing a
reminder after 25 decisions without an update.

An important feature of RobotAnalyst is its flexibility.
A user can choose to select references for screening using
the search functionality, the system's inclusion confidence
for prioritisation, or a combination of both. Since model
retraining is triggered manually, users can focus on assess-
ing a large portion of the collection before rebuilding the
model or choose to make frequent updates to get the most
accurate predictions. The system does not attempt to sub-
stitute for the reviewer but rather to aid the reviewer
throughout the screening process.

3.2 System implementation
RobotAnalyst is implemented as a server-side
Web application, which means that all screening process
data are stored and processed on a remote server while the
interface is accessible as an interactive Web page using a
standard Web browser.

When a user uploads a reference collection (in RIS
file format,73 which describes each reference by its title,
abstract, and metadata), each reference is converted into
two text documents corresponding to title and abstract.
These documents are subsequently processed by

1. text-mining and automatic term detection,
2. generating a topic model based on contents of abstracts

to find references that discuss similar topics while
allowing variations in vocabulary,

3. creating a feature representation for descriptive clus-
tering to divide the collection into groups of similar

l ll

l

l

l

l l

l
l

FIGURE 1 An information flow diagram of the information processing and user interaction available in RobotAnalyst
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references that can be browsed via lists of associated
keywords,

4. and building the feature representations for the
active-learning classification model used for predicting
the relevant references and prioritising them.

The original content and metadata along with the
extracted information (topics, clusters, and terms) are
indexed for collection-specific search using Apache Solr
search server.¶¶ The Solr database also stores the user's
screening decisions and user-supplied notes along with the
machine-generated classification predictions.

The text-mining pipeline begins by passing the title and
abstract through the GENIA tagger,74 which records the
part of speech of each word and its lemma (the word's
base form before affixing plurals, tense markers, etc.). To
identify multiword terms for searching, we use the C-value
method implemented in Termine to identify candidate
terms in each reference based on multiword noun phrases.

For topic modelling, we use the latent Dirichlet
allocation (LDA) model,43 a standard model that assumes
each text is a mixture of topics with the proportion of
topics varying between the texts. We use the MALLET63

toolkit to create an LDA model with 300 topics## based
on the text from the titles and abstracts (prior parameters
are set as 𝛼 = 1

300
and 𝛽 = 0.01 and optimised every 50

iterations). The LDA model has multiple uses: It is used
as a visual-aided search interface for selecting references
according to topics, for a similarity measure to compare
references via the cosine distance between their topic vec-
tors, and as additional input features for the classifier. For
the former, each topic is described by the set of the 5 most
frequent words and the set of 45 references most associated
to it.

For descriptive clustering, we use spectral clustering of
the documents (title and abstract combined) to form the
clusters and a statistical selection process to determine a
set of words and multiword terms that succinctly describe
each cluster.41 Spectral clustering75 operates on the cosine
similarities between the bag-of-words vector representa-
tion of the abstracts and titles using the term frequency
inverse document frequency (TF–IDF) weighting.76 The
vocabulary is limited to words that occur at least five times
in the collection and are not present in the stop-words list.
The spectral clustering algorithm relies on the truncated

¶¶http://lucene.apache.org/solr/.
##The topic proportions are used as features that smoothly consolidate
the occurrences of words from the same topic. In practice, the optimal
number of topics depends on the collection and screening task. If too few
topics are used, the topics would not be sufficiently specific to improve the
prioritisation. If too many are used, they would not provide any advantage
over the word occurrences themselves. To arrive at 300 topics, we had
followed previous work26,29 and the MALLET user guide, which suggests
between 200 to 400 topics.

eigen-decomposition of an N-by-N matrix, where N is the
number of references in the collection. To scale to large col-
lections, this similarity matrix is never explicitly created;
instead, the matrix-vector multiplications required for the
eigen-decomposition are computed as a series of sparse
matrix multiplications. The spectral representation is clus-
tered using spherical k-means, 10 replicates, a maximum
of 100 iterations, and the scalable k-means++ oversam-
pling initialisation algorithm77 with the parameters l = 2k
and r = 5, where k is the number of clusters.

The list of keywords (both words, lemmatised
words, and terms identified using Termine) used to
describe each cluster are selected as the most informative
features for the cluster. Specifically, the algorithm firstly
selects keywords positively correlated with the cluster
and then uses the conditional mutual information max-
imisation criterion78 for greedy forward selection with
redundancy reduction. The number of keywords used for
each cluster is selected by statistical model order selection
using the Bayesian information criterion79 after fitting a
model to predict the cluster membership based on the
presence of the keywords.41 The keywords for each cluster
are sorted based on their coefficient weights. A user can
select the number of clusters from the multiples of five up
to 100 clusters.

The system's inclusion confidence is provided by a
binary classification model that can be updated after each
screening decision using all prior decisions as training
data. As input to the classification model, each reference
is represented as a vector of features corresponding to the
count of words occurring in the title and abstract and
also the topic model proportions. Using the inferred topics
as features has been previously shown to improve accu-
racy in screening prioritisation.26 Specifically, references
are represented by three sets of features:

1. an L2-normalised‖‖ bag-of-words representation of the
title based on TF-IDF scores of all lemmatised words
not present in the stop-words list,

2. an analogous bag-of-words representation for the
abstract,

3. and the topic-proportion vector estimated by Gibbs
sampling from the LDA model.

Past screening decisions (references labelled for either
inclusion and exclusion) provide the training examples for
a linear model fit with an L2-regularised L2-loss function
using the dual formulation of the support vector classifier
implemented in LIBLINEAR80 with the default parame-
ter values: constraint violation cost parameter C = 1 and
stopping criterion 𝜖 = 0.1. By design, a support vector

‖‖This ensures the sum of the squared values of the feature vector equals
1.

http://lucene.apache.org/solr/
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TABLE 1 Details of reference collections used in the evaluation experiments, including their topical areas
(surv denotes surveillance reviews), origin (with relevant NICE guideline if applicable), overall size, and
percentage of relevant references (averaged in case of parallel reviews)

Collection Topic Origin Size Specificity, %

TUB Tuberculosis NICE a 4678 2.42
BC Behaviour change: individual approaches NICE b 1502 13.72
BC-S Behaviour change: individual approaches (surv) NICE b 937 21.66
BC-C Choice architecture in behaviour change (surv) NICE b 959 15.33
WC-D Walking and cycling (surv, database search) NICE c 304 27.30
WC-C Walking and cycling (surv, citation search) NICE c 468 12.18
WC-F Walking and cycling (surv, focused search) NICE c 86 9.30
PAP Physical activity and pregnancy NICE 320 11.88
WGP Weight gain and pregnancy NICE 110 11.82
PW-S Preventing excess weight gain (surv, self-weighing) NICE d 157 8.28
PW-E Preventing excess weight gain (surv, eating patterns) NICE d 719 5.15
WM Weight management (surv) NICE e 665 29.62
SH Sexual health NICE f 3760 1.36
QSH Quality and safety in hospitals IUMSP 4964 18.63
LD Learning difficulties NICE 2148 0.28
OCM Osteoarthritis: care and management (surv) NICE g 2986 15.00
HB Hepatitis B: diagnosis and management (surv) NICE h 1523 3.81

aGuideline: https://www.nice.org.uk/guidance/ng33. bGuideline: https://www.nice.org.uk/guidance/ph49. cGuideline:
https://www.nice.org.uk/guidance/ph41. dGuideline: https://www.nice.org.uk/guidance/ng7. eGuideline: https://www.nice.
org.uk/guidance/ph47. fGuideline: https://www.nice.org.uk/guidance/ng68. gGuideline: https://www.nice.org.uk/guidance/
cg177. hGuideline: https://www.nice.org.uk/guidance/cg165.

classifier can handle cases when the number of features is
greater than the number of references, which is typically
the case with a bag-of-words representation. The classifica-
tion model is applied to the entire set of references and the
output values are converted to inclusion confidence values
(between 0 and 1) by applying the logistic function. Finally,
each confidence value is converted to either an inclusion
or exclusion prediction by applying a user-chosen thresh-
old. The time necessary to update a model depends on the
total number of labelled references. It is shorter (a few sec-
onds) at the beginning of screening and longer towards
the end of a screening process. For example, training on
5000 references can be completed in 1 minute. Further-
more, a user can continue to screen references using the
current prioritisation after triggering the model update
process, avoiding any lost time.

3.3 Evaluation
To assess the usefulness of RobotAnalyst for accelerating
screening, we performed a real-world evaluation by asking
reviewers at two institutions to use the system to perform
screening tasks. During the evaluation period (reviews
were started on or after September 2015 and completed
by August 2017), 22 collections were screened completely,
ie, a reviewer made a relevance decision for every refer-
ence. All collections were used with no post hoc selection.

The collections screened vary in many aspects as detailed
in Table 1. Most of the screening tasks were performed at
NICE; the remaining and two were conducted at IUMSP to
inform patient safety and quality of hospital care for older
patients in Switzerland. The collections differed greatly in
size, ranging from a small collection of 86 references to a
large one of almost 5000. The percentage of relevant refer-
ences varied from 0.28% (just 6 out of 2148) to almost 30%.
The extremely low relevancy rate represents a challenge
for machine learning classification, since the prioritisation
can only be used once at least one relevant reference has
been screened.

3.3.1 Screening tasks
Two experiments were conducted: controlled and uncon-
strained. In the controlled experiment, two collections,
Tuberculosis and Behaviour change, were each screened by
three independent reviewers, following procedures using a
defined subset of the system's functionality:

1. screen all references using relevancy-based active
learning (AL);

2. choose topics whose descriptive keywords match a
user's keyword list defined a priori, screen all of these
topics' references, and then continue with the rest of the
collection in random order (topics);

https://www.nice.org.uk/guidance/ng33
https://www.nice.org.uk/guidance/ph49
https://www.nice.org.uk/guidance/ph41
https://www.nice.org.uk/guidance/ng7
https://www.nice.org.uk/guidance/ph47
https://www.nice.org.uk/guidance/ph47
https://www.nice.org.uk/guidance/ng68
https://www.nice.org.uk/guidance/cg177
https://www.nice.org.uk/guidance/cg177
https://www.nice.org.uk/guidance/cg165
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3. or a combination of the above procedures: firstly, screen
references from relevant topics, then continue accord-
ing to relevancy-based active learning (topics + AL).

The aim of these experiments was to compare the per-
formance of these techniques in prioritising relevant refer-
ences.

In the unconstrained experiments, reviewers, having
been familiarised with the system's capabilities, used the
system to perform various new abstract screening tasks.
The reviewers were free to use any features of the system
they found helpful in finding relevant references (descrip-
tive clustering was not enabled).

A total of 16 screenings were performed in this man-
ner without controlling how the reviewer performed the
screening. By examining the database records, we could
determine which screenings were AL-based, ie, when ref-
erence selection was driven primarily by relevancy-based
prioritisation with other search functions used either very
infrequently. Even if the screening was AL-based, at the
beginning of the task, the reviewer must use other capabili-
ties or use the default sorting order, which was alphabetical
by author name. With the unconstrained experiments, the
baseline is screening from a random order.

One of the collections (Quality and safety in hospitals)
was screened four times. Two reviewers screened with-
out any prioritisation using Covidence*** as the systematic
review software. Then two other reviewers (one junior
and one senior) used RobotAnalyst. The conflict-resolved
decisions from the first two reviewers serve as a baseline
decision set, allowing us to assess the performance of the
reviewers using prioritisation.

3.3.2 Performance measures
The main objective is to prioritise the references such that
the relevant references are identified first. To quantify the
performance of the prioritisation, we use two measures:
work saved over sampling at 95% (WSS@95%) and the area
under the recall curve (AUR). Both measures are based on
recall, which is the proportion of all relevant references
identified. Recall can only be computed once the collection
has been fully screened.

Specifically, WSS@95% measures the percentage of the
collection that does not need to be screened if the reviewer
were to stop screening upon achieving 95% recall,††† com-
pared with screening in random order.9 Precisely,

WSS@95% = 0.95 − TP(iR95) + FP(iR95)
N

= 0.95 − iR95

N
,

(1)

***https://www.covidence.org/.
†††In practice, it is not possible for a reviewer to know exactly when the
desired recall has been achieved.

where N denotes the number of references, while TP(i) and
FP(i) are the number of relevant and irrelevant references,
respectively, found after screening i references (TP(i) +
FP(i) = i), and iR95 denotes the number of references
screened when 95% recall is firstly achieved.

iR95 = min
i∈{1,· · ·,N}

recall(i)≥0.95

i (2)

recall(i) = TP(i)
TP(i) + FN(i)

, (3)

where FN(i) is the number of relevant references that have
not been screened. During the initial screening, this num-
ber is unknown; consequently, WSS@95% can only be
computed after the entire collection is screened.

To test the significance of the prioritisation, we use an
exact test based on the distribution of WSS@95% under the
assumption of a random ordering of the references. The
probability that 95% recall is achieved after screening i ref-
erences (ie, TP(i) = r = ⌈0.95R⌉ inclusions, where R is
the total number of relevant references) is given as

P(iR95 = i) =

(
N−R
i−r

)(
R

r−1

)
(

N
i−1

) R − r + 1
N − i + 1

. (4)

The first term in the expression corresponds to the prob-
ability, given by the hypergeometric distribution, of a sam-
ple of i − 1 references (taken without replacement) having
r − 1 inclusions, and the second term is the probability
of observing the rth inclusion as the ith reference. The
Pvalue is the probability of achieving 95% recall with iR95
or fewer references under the null hypothesis.

WSS@95% focuses on the workload at the fixed moment
when 95% of relevant references are found, but depending
on the review type, eg, scoping reviewing and update, the
workload required at different recall levels may be more
important. For example, a reviewer may be interested
in how quickly the assisted screening can find 10%
or 99% of the relevant references. This motivates the
AUR metric, which averages the workload across all recall
levels81. AUR is calculated as

AUR = 1
N − 1

2
R

N∑
i=1

TP(i)
TP(i) + FN(i)

. (5)

Because of the normalisation factor N − 1
2

R, the optimal
value of AUR equals 1 for perfect prioritisation, ie, when
all relevant references are screened before any exclusions.

4 RESULTS

Tables 2 and 3 show the evaluation results of the controlled
and unconstrained experiments, respectively. In the cases

https://www.covidence.org/
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TABLE 2 Results of the controlled experiments performed on
two reference collections, each screened using three procedures in
parallel, with performance measured using WSS@95% and AUR
metricsa

Collection WSS@95% AUR Strategy
TUB * 70.74% 0.9078 AL only

* 69.67% 0.9196 topics + AL

* 11.65% 0.7699 topics only
BC * 29.89% 0.7983 AL only

* 46.53% 0.8040 topics + AL
-1.80% 0.4729 topics only

aValues of WSS@95%, which were significantly greater than expected by
random sampling (exact test, significance level of 0.01), are starred.

TABLE 3 Results of the unconstrained experiments performed,
each involving screening a collection by a junior or senior reviewer
using all the features of the system, with performance measured
using WSS@95% and AUR metrics, grouped by whether
relevancy-based screening (AL-based) prioritisation was used
throughout a

Collection Reviewer WSS@95% AUR AL-based
BC-C Senior * 6.89% 0.7276 Yes
WC-D Senior * 29.54% 0.8477 Yes
WC-C Senior * 22.35% 0.7904 Yes
PAP Senior * 40.63% 0.8398 Yes
WGP Senior * 36.82% 0.7893 Yes
PW-S Senior * 63.15% 0.8285 Yes
PW-E Senior * 38.81% 0.8369 Yes
WM Senior * 23.72% 0.8374 Yes
SH Senior * 66.17% 0.8858 Yes
QSH Junior * 39.84% 0.8914 Yes
QSH Senior * 31.32% 0.8818 Yes
LD Senior * 50.45% 0.9058 Yes

OCM Senior * 63.99% 0.9377 Yes
BC-S Senior * 9.41% 0.6519 No
WC-F Senior 8.95% 0.5244 No
HB Junior -3.62% 0.7347 No

aValues of WSS@95% which were significantly greater than expected by
random sampling (exact test, significance level of 0.01) are starred.

when reviewers used the system's suggestions (AL-based),
the WSS@95% is significantly better than random order-
ing (exact test, significance level of 0.01). WSS@95% varies
greatly between collections (from 6.89% to 70.74%), but
the average gain is substantial (42.97%). We can see that
the largest gains are achieved for tasks with very low
specificity, ie, 1% to 3%, while tasks with more relevant
references, ie, 30%, have lower values for work saved.
For example, Figure 2 shows the recall and decision time
across the whole process for a systematic review on Qual-
ity and safety in hospitals (senior reviewer ) at IUMSP and
a NICE guideline on Sexual health.

In both cases, recall increases more rapidly than would
be expected with random sampling and the decision time
decreases when the number of relevant references dimin-
ishes in later stages of the process. Gains in both mea-
sures are more prominent when the relevant references
are rarer such as Sexual health, with 1.36% specificity,
as compared with Quality and safety in hospitals with
18.63% specificity. In fact, in the former case, 100% recall
is achieved after screening just 29.84% of the collection. In
contrast, when reviewers did not use AL-based prioritisa-
tion, eg, Behaviour change: individual approaches (surv) as
also shown in Figure 2, the gains measured by WSS@95%
are lower or nonexistent.

When reviewers relied on manual keyword or
topic-based search (not AL-based), WSS@95% does not
show gains but the AUR values are positive (values above
0.5). This is because these techniques enabled a user to
find more relevant references within the search results
that matched a topic or keyword than with random
sampling at the beginning, which increases the AUR.
Subsequently, after these returned results were screened,
reviewers defaulted to random sampling and the early pos-
itive effect is less apparent with WSS@95%. We can rely on
controlled experiments to verify this: for example, Figure 3
compares recall curves for two screening processes of the
same collection (Tuberculosis): one was based on active
learning, and the other one relied on browsing discovered
topics. At the beginning, while the reviewer was able to
choose references belonging to topics that seemed rele-
vant (solid line), the increase in recall is similar to the one
resulting from active learning-based screening. However,
when those topics were depleted (there are only 45 refer-
ences per topic, and some may belong to multiple topics),
the remainder of the collection was screened with no pri-
oritisation (dotted line), which resulted in a slower return
of relevant references. On the same collection, the third
reviewer started by screening topics and then proceeded
to active learning and achieved essentially the same per-
formance, while this combination outperformed strictly
active learning for the Behaviour change.

The controlled experiment results also show that topic
modelling can be effectively used in the initial stages of
screening (topics + AL) without degrading the perfor-
mance versus strictly AL. Using topic-based screening to
kick-start the classifier had either a neutral (Tuberculosis)
or positive (Behaviour change) effect.

Although not yet evaluated for its prioritisation perfor-
mance, descriptive clustering provides a topical organi-
sation of all references within the collection enabling a
reviewer to screen initially by clusters instead of topics.
Furthermore, once a model has been trained, it can be used
to prioritise the clusters by relevance and also prioritise the
references within a cluster. An evaluation of the quality of
descriptive clustering is given in Appendix B.
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FIGURE 2 Cumulative recall curves and median decision times for three screening tasks. The times are smoothed by using the medians
within a sliding window of 51 interdecision intervals. A graphical depiction of WSS@95% is shown as the difference between the recall curve
and recall expected under a randomly sampled ordering of the references [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Cumulative recall curves for the Tuberculosis
collection when using active learning versus topic-based screening
at the beginning followed by random sampling for the remainder
[Colour figure can be viewed at wileyonlinelibrary.com]

Finally, we examine the performance of screening with
prioritisation versus baseline screening. Figure 4 shows
the screening performance across the Quality and safety
in hospitals collection by a senior and junior reviewer in
terms of running recall, which is the recall with respect to
the baseline decision set measured in a moving window
of 50 relevant references. For both reviewers, the recall is

FIGURE 4 Running recall curves for the Hospital care quality
collection, computed by comparing the decisions made by the
senior and junior reviewer at a given stage of the process to a
baseline decision set (see explanation in text) [Colour figure can be
viewed at wileyonlinelibrary.com]

lower (more relevant references in the baseline are marked
for exclusion) in the later stages of the review. In the case
of the senior reviewer, the decrease occurs later and the
recall is not as low, resulting in higher overall agreement
with the baseline.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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5 DISCUSSION

Based on the evaluation results, the potential for saving
work by machine learning–powered prioritisation, as pre-
dicted by previous simulations, has been confirmed in this
real-world user study. Like the previously reported results,
we have observed that the gains depend on the particular
reference collection: From 7% to 71% of the screening effort
could be saved. The prioritisation succeeded in suggest-
ing relevant references across a variety of reviews from the
public health domain, which has less clearly defined and
more complex inclusion criteria than, for example, drug
effectiveness reviews.9 Most importantly, the screening
was conducted by the systematic reviewers from start to
finish, without any intervention by the algorithm design-
ers or modification to the software. This was possible
because of the intuitive and user-friendly Web interface
for searching and organising references. However, despite
this confirmation on the maturity of the tool, there are still
open questions on best practices on using RobotAnalyst to
realise its full potential.

The functionality provided by RobotAnalyst can be
used in multiple ways beyond the start-to-finish screening
explored in the user study. For example, the ability to pri-
oritise and screen by clusters is an interesting scheme that
may be useful for scoping reviews, or as a way to organise
and assess a preliminary literature search strategy. In the
case of a rapid review, 82 it may not be as essential to finish
screening once enough relevant evidence has been iden-
tified. Other use-cases include performing review updates
or deciding if a review needs to be updated.83 For these
cases, a user can upload screened references (inclusion and
exclusions) from a previous review along with new refer-
ences retrieved by literature search. Training and applying
the classification model can prioritise the new references,
and only the predicted inclusions need to be screened.

A major challenge to partial screening is the lack of a
reliable threshold to stop screening. This point is ignored
when computing an evaluation measure like WSS@95%,
since the measure is based on the assumption that a user
readily knows when sufficient recall has been reached;
however, in reality, this is not the case. The reported
WSS@95% serves as an upper bound on possible work sav-
ings with a stopping criterion. In practice, more screening
will be necessary to achieve the same level of recall, as
any stopping criterion would need to see a series consist-
ing mainly of exclusions before signalling to stop. Deciding
when to stop can be left to the end-user, eg, if the priori-
tised references are consistently irrelevant, or heuristics84

or statistical approaches (based on an unbiased sample of
the remaining references) can inform this decision. We
intend to investigate this problem in the future, working in
close cooperation with the systematic reviewers to ensure

the solution enables them stop confidently and improve
efficiency.

Another limitation of WSS@95% is that it measures sav-
ings in work in terms of the number of screened references,
while in practice, a reviewer's time is the resource of inter-
est. The two are not equivalent since time per decision is
not constant, as we can observe in Figure 2. In prioritised
(AL-based) screening tasks, the median decision time is
substantially lower in the late stages of the process. On
one hand, this could be explained by the fact that the late
decisions are mostly exclusions, which are easier to make.
On the other hand, the prioritisation can have an impact
on it as well, since having seen most of the relevant docu-
ments, a reviewer could have a better understanding of a
task, which can lead to faster decisions.

Community feedback is necessary to form best prac-
tices for technology-assisted reviews. RobotAnalyst could
be incorporated without changing the screening workflow
in order to alleviate some of the burden of screening large
reference collections without prioritisation. The results of
prioritisation can be considered useful for distributing ref-
erences across a screening team.14 Additionally, some qual-
itative feedback from the evaluation indicates that users
also enjoy the ability to identify relevant references earlier
since they find it less mentally taxing to screen the remain-
ing references having recognised the vast majority of the
relevant references.

However, the running recall measurement shown
in Figure 4 emphasise a possible danger with
machine-assisted prioritisation—depending on their
experience, users may become too complacent with the
machine predictions, such that references that appear
later in the screening are perceived as less relevant by
default, although they may meet inclusion criteria that the
machine failed to recognise because of a lack of any prior
examples. Thus, the user must remain vigilant through-
out the screening process as, presumably, it is easier to
miss a relevant reference when it is surrounded by mostly
irrelevant ones.

Nonetheless, the system offers functionality for ad
hoc quality assurance via random sampling to mitigate
this risk. In this way, unbiased samples can be gener-
ated for checking batches of references. Alternatively,
these random samples could be used to gauge the level
of specificity in the collection and estimate recall. The
functionality could also be extended to track the time
spent screening each reference, which is essential to assess
cost-effectiveness of systematic reviews.7

Our evaluation has been conducted on primarily public
health review questions. Public health questions are com-
plex, involving behaviour, culture, and organisations, and
often need to be described using abstract, fuzzy terminol-
ogy. Screening in this setting is arguably more challenging
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than with clinical research questions, which may have
more well-defined populations, interventions, compara-
tors, and outcomes. Techniques like query expansion, topic
modelling, and descriptive clustering can help explore ter-
minological variation, and machine learning can handle
diverse vocabularies.

Our evaluation of descriptive clustering and topic mod-
elling reported in Appendix B focuses on the coherence
of these organisation techniques and whether the descrip-
tions were meaningful. Our hypothesis is that a user could
use the clustering to find relevant references when begin-
ning screening—an assumption that has been confirmed
for topic modelling but needs evaluation for descriptive
clustering. Alternatively, RobotAnalyst's search capabili-
ties allow a user to perform a focused search via keywords,
clusters, or topics, to find relevant references that may
have distinct vocabulary and are not being prioritised by
the model. That is, focused and topical search capabilities
may be crucial for initialisation and to ensure a complete
coverage when used in conjunction with the automatic
prioritisation. Future works should consider a controlled
study of the impact of the initial choice of references on the
active learning performance. This would require the same
review to be initiated several times by independent users,
each using randomly assigned search strategies (keyword,
cluster, or topic based) within a collection.

While this work used a single model to prioritise ref-
erences, it may be useful to explore the case of multiple
models for different PICO elements or inclusion criteria.
Even in public health, user feedback from NICE reviewers
indicated that while the system was found to perform very
well for single PICO (ie, singular review question) screen-
ing, there was room for improvement with collections
covering multiple review questions.

Evaluating the performance of RobotAnalyst for focused
clinical reviews is another direction of future work. For
reviews with clear PICO-based criteria, it may be neces-
sary to use features with more clinical specificity such
as MeSH terms or automatically recognised entities such
as drug names, proteins, and genes. Using information
extraction techniques for targeting such entities in full arti-
cle text would support inclusion criteria that cannot be
verified based only on the abstract. Using full text provides
more content for the classification model, clustering, and
topic modelling. However, computational processing and
storage would be significantly higher for full text. Further-
more, processing full text is challenging because of access
costs, copyright limitations on third-party processing and
storage, and the technical challenges of reliably extracting
text from PDF documents. To achieve uniform screening,
these issues would have to be overcome for every reference
in a collection.

In summary, this study confirms that references can be
reliably prioritised in public health and points to the poten-
tial benefit of incorporating tools such as search within
collection, topic modelling, and descriptive clustering to
aid initial screening or to ensure coverage of a collec-
tion. The study has a number of limitations including the
following:

• The potential work savings is an upper bound on what is
achievable in reality. Reducing the number of screening
references requires a stopping criterion and the associ-
ated risk of missed relevancy, which may be unaccept-
able in certain cases.

• In terms of the time spent screening, the savings may
be higher or lower than what would be indicated by the
work saved in terms of the number of references, since
the screening times vary per decision and throughout
the process.

• Issues with complacency may be inflating the work sav-
ings estimates, if late in the screening process truly
relevant references were missed.

• Further study is needed to compare using descriptive
clustering, topic modelling, and keyword search to find
the initial set of references before active learning priori-
tisation.

• The evaluation primarily centred on public health
reviews. It would be worthwhile to evaluate the work
savings in other review domains.

Further research and evaluation studies can address sev-
eral of these points. To be efficient, the studies should
be performed on prospective reviews that need multiple
screenings to facilitate paired comparisons.

Machine-assisted prioritisation for systematic reviews is
a paradigm shift away from the traditional manual labour
intensive approach. The potential time savings of using
prioritisation are considerable for large collections with
low specificity. The systematic review community needs
to embrace the new technology to improve efficiency,4

and support further innovation through participation and
community feedback.

6 CONCLUSION

We have presented a description and evaluation of Rob-
otAnalyst as a tool to screen and organise references for
systematic reviews on public health and health services
research topics. The evaluation was the first of its kind
in terms of multiple new reviews completed from start
to finish within RobotAnalyst. The results indicate that
substantial gains can be made by using machine learn-
ing to actively prioritise relevant references. The promising
results for descriptive clustering highlight another avenue
for exploring large reference collections. Currently, Rob-



482 PRZYBYŁA ET AL.

otAnalyst provides functionality for searching within a
collection and browsing subsets of the results using seman-
tic similarity based on terminology or topics. These new
interfaces may help reviewers screen large collections of
disparate references arising from complex review ques-
tions. While it is possible to extend and enhance the func-
tionality, there is ample evidence to suggest that machine
learning techniques for prioritising references in system-
atic reviews have matured with multiple systems available
to end-users. More prospective evaluations and open dis-
cussions are needed to spur the community to adopt tools
like RobotAnalyst as the default, rather than the exception.
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APPENDIX A: SYSTEM INTERFACE

In this appendix, we describe RobotAnalyst's interface for
searching, screening, and exporting reference collections.

A.1 Faceted search
To support reviewers seeking specific information, Rob-
otAnalyst provides a search interface for selecting and
analysing a portion of references and for understanding
the overall thematic content. The search interface allows a
reviewer to choose references based on metadata, such as
author or journal name, and content (title and abstract).
Content can be searched using individual words or mul-
tiword terms retrieved by Termine. The search interface
supports faceting, which means that a reviewer can search
within results of a previous search. The interface supports
this iterative process by displaying the most relevant search
terms within the current query and calculating how many
references the refinement would yield. An example search
query is shown in Figure A1.

A.2 Topic model interface
RobotAnalyst's topic-based search tool presents a visual-
isation of the entire collection as a mixture of topics as
shown in Figure A2. Each topic is represented by a circle
whose size is proportional to its prevalence in the collec-
tion. The topics are described by the five words with the
strongest association with the topic; this enables a user to
search for topics containing a relevant word. Alternatively,
a user can explore similar topics by following the lines that
connect topic circles.

http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
https://doi.org/10.1002/jrsm.1311
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FIGURE A1 A screenshot of the search interface with faceting. A
user has searched for references that contain the word intervention
and is exploring further possible refinement based on extracted
terms [Colour figure can be viewed at wileyonlinelibrary.com]

Once a topic is chosen, RobotAnalyst selects the refer-
ences most focused on the topic. RobotAnalyst provides a
fine-grained model with 300 topics.

FIGURE A2 Topic visualisation in RobotAnalyst. A part of the topic visualisation generated for a collection of references related to cancer.
A query for the word breast has highlighted two groups: one corresponding to human breast cancer (described by breast, cancer, and women)
and one corresponding to animal studies (described by rats, sinp, breast, and animals). A link between the two circles means that the topics
are related [Colour figure can be viewed at wileyonlinelibrary.com]

A.3 Clustering interface
The descriptive clustering interface provides an automatic
organisation of a reference collection into a smaller num-
ber of clusters (from 5 to 100 clusters). Each cluster is
described by a list of typical words and terms. Reviewers
can select the number of clusters to be a small num-
ber to see a rough categorisation of the different themes
within the collection, or select more clusters to divide
the collection into numerous fine-grained, but coherent,
groups of references. Once a classification model has been
trained the clusters can be sorted by the proportion of
predicted inclusions. This enables a cluster-based screen-
ing approach that allows reviewers to concentrate on a
relevant cluster of references. An example is shown in
Figure A3. The faceted search can be used in conjunction
with cluster-based search to form precise queries.

A.4 Screening interface
With or without the functionality described above, a user
can screen the references displayed in the results pane.
Each reference is shown with its current relevancy status.
Once a classification model has been trained, the system's
prediction and inclusion confidence are shown for each
reference. Based on these data and inclusion criteria of
the review, the user can make the decision on whether to
include or exclude the reference or mark it as undecided.
The interface is designed to facilitate the rapid processing
of references, while recording automatically information
about the decision time and prioritisation method.

For collections with screening decisions, the search
queries can be combined with filters for the status of the
screening decisions. For example, a reviewer can restrict
the search to those that have already been manually
included, or find the references in a cluster that remain to
be screened.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE A3 A screenshot of the interface with prioritised clusters. A user has elected to screen only the undecided references within the
first cluster (encircled) with the results prioritised by inclusion confidence. The descriptive label for this cluster is “physical, exercise,
lifestyle, physical activity, diabetes, chronic, diabete, dietary, activity, weight, cardiovascular, food, diet, change, healthy,” where the
underlined term is automatically extracted by Termine [Colour figure can be viewed at wileyonlinelibrary.com]

The search functionality can be used by a user to ensure
coverage of the relevancy that may be missed by the
model. For example, if the screened instances all belong
to an isolated cluster, then they will not assist in recog-
nising and prioritising relevant references from another
cluster with distinct vocabulary. After exhausting the rel-
evant instances within the initial cluster, the user could
re-examine the set of clusters looking for another cluster
that could be relevant. This process could continue across
multiple clusters. With this approach, clustering can be
used to explore the space to ensure coverage of all themes.

A.5 Export
RobotAnalyst allows exporting subsets of references in
the RIS file format to be used with other software. Any

screening decisions and manually entered notes are saved
on export as additional fields that will be recognised on
import back into RobotAnalyst. This enables reviewers to
share screening decisions, or to use previous screening
decisions to facilitate a review update.

APPENDIX B: DESCRIPTIVE CLUSTERING
EVALUATION

To ensure that the descriptive clustering organises ref-
erences into meaningful clusters and provides informa-
tive keyword lists, we conducted an evaluation that was
performed by reviewers from NICE. Evaluation tasks
were created for two reference collections from NICE
guidelines, “Behaviour change: individual approaches” and

http://wileyonlinelibrary.com
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TABLE A1 Descriptive clustering outlier detection accuracy of six reviewers split
between two collections (the average accuracy per collection in parentheses)a

Behaviour change Tuberculosis

Spectral clustering 75% 69% 92% (78.67%) 49% 83% 69% (67%)
Topic modelling 63% 15% 75% (51%) 30% 58% 38% (42%)

aReviewers used any apparent coherence of the references and the description to choose an
outlier reference. Accuracy is computed for 100 tasks with a chance rate of 20%.

“Tuberculosis,” the same collections used in the screening
evaluation task.

The first set of tasks assessed the coherence of clusters by
testing whether a reviewer could distinguish an outlier ref-
erence inserted into a set of another cluster's prototypical
references. The second set of tasks assessed whether a user
could distinguish a random outlier reference from a ran-
dom reference from within a cluster given its description,
and then predict the outlier's true correct cluster member-
ship. The task designs are based on the evaluation of Lau
et al for topic models85 but are adapted for clustering rather
than latent mixture models.

For the first set of tasks, the provided instructions stated,
“Each task consists of identifying which reference, out of
a set of four, does not fit the theme of the cluster. The
theme of the cluster should be apparent from the cluster
description and the other three references.” The reviewers
were also instructed to skip tasks without a clear outlier
rather than guess. The tasks were generated for both col-
lections with 20 clusters and five tasks per cluster. For each
cluster, the 25 most prototypical references were kept, and
the outliers were assigned by randomly permuting five of
these references to other clusters. A cluster's prototypical
references were chosen as those nearest to the cluster's
centroid. Essentially, this task assessed whether a proto-
typical reference from one cluster could be distinguished
from a group of prototypical references of another cluster
given its keywords. The chance rate for random guessing
on this task is 20%.

The descriptive clustering algorithm described in
Section 3.2 was used to form the clusters and select the
keywords. For this task, the number of keywords was
selected such that the keyword list was not more than
150 characters long (including commas and spaces). For
comparison, cluster assignments were obtained from the
LDA topic model described in Section 3.2 by choosing the
20 most prevalent topics, then assigning each reference
to a cluster corresponding to the topic with the highest
relevance, and using this same relevance to rank the
references within the cluster.

Three reviewers performed the tasks for “Behaviour
change” and three other reviewers performed the tasks for
“Tuberculosis.” The reviewers were blinded to the name
of the method (descriptive clustering or topic modelling).

The outlier detection accuracy for each reviewer is pre-
sented in Table A1. The accuracy was significantly higher
(significance level of 0.05) for spectral clustering ver-
sus topic modelling across the n = 6 users (one-sided
sign-rank test with Pvalue of 0.015625). Per user, outlier
detection accuracy is always higher for spectral clustering
versus topic modelling.

The difference in accuracy demonstrates that spectral
clustering provided a more coherent organisation of a col-
lection versus topic modelling, since reviewers were able
to distinguish outlier references more easily.

Based on the previous results, a second set of tasks
involving only spectral clustering was performed in order
to check whether the cluster descriptions were sufficiently
accurate to enable a user to predict the cluster membership
of specific references as the number of clusters was var-
ied across 5, 10, 20, and 40 clusters. Tasks were performed
in two stages: stage A, which was outlier detection (as
before but without restriction to prototypical references),
and stage B, which was cluster reassignment (selecting the
outlier's original cluster). There were 100 tasks for the case
of 5, 10, and 20 clusters with 120 tasks for the 40 cluster
case; tasks were divided evenly between the clusters.

For stage A, the outlier detection tasks consisted of
determining which of two references did not match the
provided keyword list. With only two choices, this task
assessed only the descriptiveness of the keywords and not
the cluster coherence. The within-cluster reference was
drawn uniformly without replacement, as was the outlier.
The expected random performance for this task is 50%
accuracy. Six reviewers performed the tasks for both col-
lections. The results for each reviewer across the number
of clusters are shown in Figure B1. The accuracy increases
in most cases and does not decrease markedly with more
clusters, which indicates that the descriptive clustering
can be used effectively across this range.

In stage B, the reviewers performed cluster reassignment
for the outlier reference: They revisited each outlier task
and had to decide which of the other clusters best matches
the excluded reference. To facilitate this match, the full
list of cluster descriptions was provided as a separate
document outside the RobotAnalyst interface. Review-
ers entered their decision using RobotAnalyst's manual
note field. Three reviewers completed this task for each



488 PRZYBYŁA ET AL.

FIGURE B1 Descriptive clustering outlier detection accuracy for
different numbers of clusters in two reference collections. Tasks
consisted of determining which of two references matches the
cluster description [Colour figure can be viewed at
wileyonlinelibrary.com]

collection. Decisions that matched the outlier's original
cluster are counted as correct. Cases where a reviewer
entered multiple clusters for one reference were counted as
incorrect. Performance is assessed in terms of the reassign-
ment accuracy for tasks completed correctly in stage A.
The expected random performance for this task is 1∕(k −
1), where k is the number of clusters. The results are shown
in Figure B2.

Although the reassignment accuracy decreases when
there are more than 5 clusters, it is above the 99%
confidence bound for random guessing in all cases.

FIGURE B2 Descriptive clustering outlier reassignment accuracy
across an increasing number of clusters in two reference collections.
The accuracy is the proportion of recognised outliers which were
assigned to their original cluster correctly based on the cluster
descriptions [Colour figure can be viewed at wileyonlinelibrary.com]

The reference-cluster assignment accuracy is above 35%
for 40 clusters (chance rate of 2.56%) for all of the users
and collections. This indicates that, in over one third of
the cases, users are able to use the descriptions to pre-
dict precisely to which cluster a reference belongs, but
there remains a majority of possibly ambiguous references
that are difficult to localise to a particular cluster.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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