1,199 research outputs found

    Whole mitochondrial genome sequencing provides new insights into the phylogeography of loggerhead turtles (Caretta caretta) in the Mediterranean Sea

    Get PDF
    Population structure and phylogeography of the loggerhead sea turtle (Caretta caretta) have so far been assessed mainly by mitochondrial DNA (mtDNA) single-gene sequencing studies. However, phylogenetic relationships amongst matrilines, genetic characterisation of rookeries and mixed-stock analyses have suffered from the limited resolution obtained by comparison of relatively short sequences such as from the mtDNA control region. Whole mitogenome sequencing can significantly improve population genetics, particularly in marine organisms showing female natal philopatry. Despite mitogenomics becoming increasingly common in biodiversity monitoring and conservation, only a few complete mitogenomes are available for C. caretta. In this study, we sequenced the complete mtDNA of 61 loggerhead turtles sampled between 2008 and 2021 along the Italian coastline and central Mediterranean Sea. We assigned complete mtDNA haplotypes to dead embryos and bycatch samples, and introduced a first nomenclature for loggerhead mitogenomes. Analysis of mtDNA diversity, Maximum Parsimony and Bayesian phylogenetic reconstruction allowed improved resolution of lineages with respect to studies reporting on partial mtDNA control region sequence comparisons, and we were able to further inform previous analyses on loggerhead ancestry based on control region haplogroups. Overall, whole mitogenome analysis has potential for considerable improvement of evolutionary history and phylogeographic investigations as well as mixed-stock surveys of loggerhead turtles

    The non-dereliction in evolution: Trophic specialisation drives convergence in the radiation of red devil spiders (Araneae: Dysderidae) in the Canary Islands.

    Full text link
    Natural selection plays a key role in deterministic evolution, as clearly illustrated by the multiple cases of repeated evolution of ecomorphological characters observed in adaptive radiations. Unlike most spiders, Dysdera species display a high variability of cheliceral morphologies, which has been suggested to reflect different levels of specialization to feed on isopods. In this study, we integrate geometric morphometrics and experimental trials with a fully resolved phylogeny of the highly diverse endemic species from the Canary Islands to 1) quantitatively delimit the different cheliceral morphotypes present in the archipelago, 2) test their association with trophic specialization, as reported for continental species, 3) reconstruct the evolution of these ecomorphs throughout the diversification of the group, 4) test the hypothesis of convergent evolution of the different morphotypes, and 5) examine whether specialization constitutes a case of evolutionary irreversibility in this group. We show the existence of 9 cheliceral morphotypes and uncovered their significance for trophic ecology. Further, we demonstrate that similar ecomorphs evolved multiple times in the archipelago, providing a novel study system to explain how convergent evolution and irreversibility due to specialization may be combined to shape phenotypic diversification in adaptive radiations. [Adaptive radiation; convergent evolution; ecological specialization; geometric morphometrics; irreversibility; mitogenomics; phylogenetic comparative methods.

    Investigating the Innate Immune Systems of Bats and Their Roles as Zoonotic Viral Reservoirs

    Get PDF
    The zoonotic spillover of viral pathogens from wild animal reservoirs into human populations remains the leading cause of emerging and re-emerging infectious diseases globally. Bats represent important viral reservoirs, notorious for the diversity and richness of the viruses they host, several of which are highly pathogenic when transmitted to humans. Remarkably, bats appear to host an abundance of these viruses without exhibiting any clinical signs of disease. A dominant hypothesis for this ability suggests that bats can control viral replication early in the innate immune response, which acts as the first line of defence against infection. However, bat immunology remains fundamentally understudied, largely due to their high species diversity and the lack of accessible reagents required for bat research. Therefore, in this work we explored and characterised key components of bat innate immunity to gain a better understanding of bats as viral reservoirs and contribute to the currently limited literature. Here, we demonstrated the in vitro transcriptomic response of the bat model species, Pteropus alecto (P.alecto) upon stimulation with the bat henipavirus Cedar virus and also with a type III bat interferon (paIFNλ). These investigations highlighted key transcripts, some of which were immune-related, in the response of bats to the separate stimuli and presents a foundation for further research into significant genes concerned in bat viral infection. Building from genome-wide transcriptomics, three distinctive bat innate immune genes representative of different stages of interferon signalling were selected for comparative genomics and functional characterisation. Our work demonstrated the conservation of genes between bats and humans, including IRF7, IFIT5 and IFI35. Specific findings for IRF7 included its successful translocation to the cell nucleus upon stimulation. IFIT5 and IFI35 were specifically selected for exploration due to previous research demonstrating the respective antiviral and conflicting anti- or pro-viral roles of these genes in humans. Significantly, our research demonstrated the direct antiviral action of P.alecto IFIT5 against negative-sense RNA viruses. Collectively, our findings offer valuable contributions to the field of bat antiviral immunity and provide the framework for future investigative studies into the role and function of the bat innate immune system and bat viral tolerance mechanisms

    Chromosome-Level Genome Assembly of the Blue Mussel Mytilus chilensis Reveals Molecular Signatures Facing the Marine Environment

    Get PDF
    The blue mussel Mytilus chilensis is an endemic and key socioeconomic species inhabiting the southern coast of Chile. This bivalve species supports a booming aquaculture industry, which entirely relies on artificially collected seeds from natural beds that are translocated to diverse physical–chemical ocean farming conditions. Furthermore, mussel production is threatened by a broad range of microorganisms, pollution, and environmental stressors that eventually impact its survival and growth. Herein, understanding the genomic basis of the local adaption is pivotal to developing sustainable shellfish aquaculture. We present a high-quality reference genome of M. chilensis, which is the first chromosome-level genome for a Mytilidae member in South America. The assembled genome size was 1.93 Gb, with a contig N50 of 134 Mb. Through Hi-C proximity ligation, 11,868 contigs were clustered, ordered, and assembled into 14 chromosomes in congruence with the karyological evidence. The M. chilensis genome comprises 34,530 genes and 4795 non-coding RNAs. A total of 57% of the genome contains repetitive sequences with predominancy of LTR-retrotransposons and unknown elements. Comparative genome analysis of M. chilensis and M. coruscus was conducted, revealing genic rearrangements distributed into the whole genome. Notably, transposable Steamer-like elements associated with horizontal transmissible cancer were explored in reference genomes, suggesting putative relationships at the chromosome level in Bivalvia. Genome expression analysis was also conducted, showing putative genomic differences between two ecologically different mussel populations. The evidence suggests that local genome adaptation and physiological plasticity can be analyzed to develop sustainable mussel production. The genome of M. chilensis provides pivotal molecular knowledge for the Mytilus complex

    Xenarthrans of the collection of Santiago Roth from the Pampean of Argentina (Pleistocene), in Zurich, Switzerland

    Full text link
    The present work concerns xenarthrans from the collection of Santiago (Kaspar Jakob) Roth (1850–1924) housed at the Palaeontological Institute and Museum of the University of Zurich, one of the most important collections of Pleistocene mammals from Argentina in Europe. Roth was a paleontologist originally from Switzerland who prospected and collected a large amount of Pleistocene megafauna of the Pampean Region of Argentina. The xenarthrans are the main representatives of this collection in Zurich, with 150 specimens. Since 1920, this material has not been revised and is under studied. The present investigation corresponds to a taxonomic revision resulting in 114 reassignments, leading to document xenarthran diversity and discuss their paleoecologies. The high diversity reflects the paleoecology of the Pampean Region during the Pleistocene, with the various abiotic events that impacted the paleoenvironment of this region. Within the Cingulata, the Pampean Region fauna was probably dominated by glyptodonts with a high representation of Glyptodontinae and Neosclerocalyptinae while within the sloths the highest diversity and abundance is found in the Mylodontinae and Scelidotheriinae. These four clades represent both species with high ecological tolerance (e.g., Glyptodon munizi; Catonyx tarijensis) and ecologically highly specialized species (e.g., Neosclerocalyptus paskoensis; Scelidotherium leptocephalum). The presence of such ecological diversity underlines the status of the Pampean Region as a major interest for paleoecological and paleoenvironmental reconstruction

    The circumpolar impacts of climate change and anthropogenic stressors on Arctic cod (Boreogadus saida) and its ecosystem

    Get PDF
    Arctic cod biomass are predicted. In most Arctic seas, the relative abundance of Arctic cod within the fish community will likely fluctuate in accordance with cold and warm periods. A reduced abundance of Arctic cod will negatively affect the abundance, distribution, and physiological condition of certain predators, whereas some predators will successfully adapt to a more boreal diet. Regional management measures that recognize thecritical roleof Arcticcod arerequiredtoensure that increased anthropogenic activities do not exacerbate the impacts of climate change on Arctic marine ecosystems. Ultimately, the mitigation of habitat loss for Arctic cod will only be achieved through a global reduction in carbon emissions

    Investigating tricky nodes in the Tree of Life

    Get PDF

    Genome skimming elucidates the evolutionary history of Octopoda

    Get PDF
    11 pages, 5 figures, 3 tables, supplementary data https://doi.org/10.1016/j.ympev.2023.107729Phylogenies for Octopoda have, until now, been based on morphological characters or a few genes. Here we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes of twenty Octopoda specimens, comprising 18 species of Cirrata and Incirrata, representing 13 genera and all five putative families of Cirrata (Cirroctopodidae, Cirroteuthidae, Grimpoteuthidae, Opisthoteuthidae and Stauroteuthidae) and six families of Incirrata (Amphitretidae, Argonautidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, and Megaleledonidae) which were assembled using genome skimming. Phylogenetic trees were built using Maximum Likelihood and Bayesian Inference with several alignment matrices. All mitochondrial genomes had the ‘typical’ genome composition and gene order previously reported for octopodiforms, except Bathypolypus ergasticus, which appears to lack ND5, two tRNA genes that flank ND5 and two other tRNA genes. Argonautoidea was revealed as sister to Octopodidae by the mitochondrial protein-coding gene dataset, however, it was recovered as sister to all other incirrate octopods with strong support in an analysis using nuclear rRNA genes. Within Cirrata, our study supports two existing classifications suggesting neither is likely in conflict with the true evolutionary history of the suborder. Genome skimming is useful in the analysis of phylogenetic relationships within Octopoda; inclusion of both mitochondrial and nuclear data may be keyThis work was funded by a Tony Ryan Fellowship and an Irish Research Council postgraduate scholarship (GOIPG/2017/1740) to MT. FÁF-Á was supported by an Irish Research Council–Government of Ireland Postdoctoral Fellowship Award (ref. GOIPD/2019/460) and a JdC-I Postdoctoral Fellowship Grant (ref. IJC2020-043170-I) awarded by MCIN/AEI /10.13039/501100011033 and the European Union NextGenerationEU/PRTR. This research was supported by the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S). We are grateful to two anonymous referees for their thoughtful contributionsPeer reviewe
    • …
    corecore