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Abstract

Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite
their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we
used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the
first major placental clade to be fully sequenced at the species level for mitogenomes. The resulting data set allowed the
reconstruction of a robust phylogenetic framework and timescale that are consistent with previous studies conducted at
the genus level using nuclear genes. Incorporating the full species diversity of extant xenarthrans points to a number of
inconsistencies in xenarthran systematics and species definition. We propose to split armadillos into two distinct families
Dasypodidae (dasypodines) and Chlamyphoridae (euphractines, chlamyphorines, and tolypeutines) to better reflect their
ancient divergence, estimated around 42 Ma. Species delimitation within long-nosed armadillos (genus Dasypus) ap-
peared more complex than anticipated, with the discovery of a divergent lineage in French Guiana. Diversification
analyses showed Xenarthra to be an ancient clade with a constant diversification rate through time with a species
turnover driven by high but constant extinction. We also detected a significant negative correlation between speciation
rate and past temperature fluctuations with an increase in speciation rate corresponding to the general cooling observed
during the last 15 My. Biogeographic reconstructions identified the tropical rainforest biome of Amazonia and the
Guiana Shield as the cradle of xenarthran evolutionary history with subsequent dispersions into more open and dry
habitats.

Key words: mammals, Xenarthra, shotgun Illlumina sequencing, molecular phylogenetics, mitochondrial genomes, mo-
lecular dating.

Introduction

Xenarthra (armadillos, anteaters, and sloths), with only 31
living species currently recognized (Wetzel 1985; Gardner
2008), is the least diversified of the 4 major groups of placental
mammals (Meredith et al. 2011). As old, South American
endemics, their evolutionary history has been shaped by
their geographical isolation for the greater part of the
Cenozoic until the Great American Biotic Interchange
(GABI) triggered by the formation of the Isthmus of
Panama (Marshall et al. 1982, Bacon et al. 2015).
Xenarthrans have been major components during this inter-
change, with many taxa successfully dispersing into Central
and North America (Patterson and Pascual 1968; McDonald
2005). The reduced number of extant species is likely the
result of extinctions, especially during the terminal

Pleistocene extinctions that occurred around 11,000 years
ago. This major extinction event seems to have preferentially
affected the largest terrestrial forms, such as giant ground
sloths and glyptodonts (Lyons et al. 2004). Surviving xenar-
thran species can be regarded as unique witnesses of the
oldest South American endemic radiation of placental mam-
mals (Delsuc et al. 2004). They thus represent an ideal model
for understanding the biogeographical patterns and diversifi-
cation processes at work during South America’s “splendid
isolation” (Simpson 1980; Moraes-Barros and Arteaga 2015).

The last decade has seen much progress in elucidating
xenarthran phylogeny, thanks to new molecular data. Most
of these studies have focused on their position within placen-
tal mammals because morphological studies placed them as a
sister group of other placentals, referred to as the Epitheria
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hypothesis (Novacek 1992). The seminal molecular phyloge-
netic studies of placentals have shown convincingly that ar-
madillos, anteaters, and sloths (Xenarthra) constitute one of
the four major placental clades, establishing them as an es-
sential component of the early placental radiation alongside
Afrotheria, Laurasiatheria, and Euarchontoglires (Madsen
et al. 2001; Murphy, Eizirik, Johnson, et al. 2001; Murphy,
Eizirik, O'Brien, et al. 2001). Yet, despite studies using multi-
gene data (Delsuc et al. 2002, Amrine-Madsen et al. 2003;
Meredith et al. 2011), retroposon insertions (Churakov et al.
2009; Nishihara et al. 2009) and genome-wide data
(McCormack et al. 2012; Song et al. 2012; Romiguier et al.
2013), their exact position within placentals remains
contentious.

Within Xenarthra, molecular studies have converged upon
a robust phylogeny of the 14 recognized genera (Delsuc et al.
2002, 2003, 2012; Moller-Krull et al. 2007). This phylogenetic
framework has served for specifying the timing of their diver-
sification in South America during the Cenozoic (Delsuc et al.
2004). These studies have also helped refine xenarthran tax-
onomy with, for instance, the recognition of two distinct
families within anteaters (Delsuc et al. 2001; Barros et al.
2008) to reflect the deep divergence (about 40 Ma) estimated
between the pygmy anteater (Cyclopes didactylus;
Cyclopedidae) and the giant anteater and tamanduas
(Myrmecophagidae). Molecular data have also recently re-
vealed an ancient divergence of fairy armadillos, supporting
the classification of the two living species in two distinct
genera (Chlamyphorus and Calyptophractus) and grouped
into the distinct subfamily Chlamyphorinae (Delsuc et al.
2012).

Despite these significant advances, a fully resolved species-
level phylogeny is still lacking for Xenarthra. The reason for
this includes the rarity of many of its constitutive species and
a dated taxonomy with persistent uncertainty on species de-
limitations and distributions due to a lack of basic field data
(Superina et al. 2014). Establishing a good reference frame-
work would be critical for the conservation of this peculiar
placental group, which includes a number of endangered
species. According to the last IUCN Red list Assessment
(IUCN Red List of Threatened Species 2015), 6 of the 31
living species (19%) were considered threatened, while the
conservation status of 5 species could not be assessed due
to lack of data. One particularly striking example is the iconic
Brazilian three-banded armadillo for which no molecular
data currently exist and for which only scarce biological infor-
mation can be found in the literature (Superina et al. 2014;
Feijo et al. 2015). More generally, 9 species among the 31
currently recognized xenarthrans still have not been investi-
gated via molecular means are thus not represented in
GenBank.

The scarcity of molecular data for this group is perhaps
best reflected by the fact that only four xenarthran complete
mitochondrial genomes are available, only two of which have
been published (Arnason et al. 1997, 2002). With current
advances in DNA sequencing, mitogenomes have become a
standard for estimating well-sampled species-level phyloge-
nies in numerous mammalian groups (Hassanin et al. 2012;
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Finstermeier et al. 2013; Guschanski et al. 2013; Mitchell et al.
2014). In facilitating access to museum specimens and re-
cently extinct species, next-generation sequencing techniques
promise the development of museomics (Mason et al. 20171;
Rowe et al. 2011; Fabre et al. 2014) and a rebirth of ancient
DNA studies based on complete mitogenomes (Enk et al.
2011; Paijmans et al. 2013). Here we have used an lllumina
shotgun sequencing approach to obtain and assemble 33
mitogenomes representing all living xenarthran species
using both modern tissues and historic museum samples,
including a type specimen. This allowed us to establish a
robust phylogenetic framework and timescale that we have
used as a reference to evaluate the systematics and species
delineation within xenarthrans, and to study their diversifica-
tion history and biogeography with respect to the paleoenvir-
onmental changes that took place in South America
throughout the Cenozoic.

Results and Discussion

Shotgun Mitogenomics and Phylogenetics

Using shotgun lllumina sequencing of genomic DNA and a
combination of de novo assembly and mapping methods, we
were able to successfully assemble 33 new complete mito-
chondrial genomes from individuals representing all 31 living
xenarthran species (table 1). Using ancient DNA laboratory
conditions to avoid potential contaminations, and cross-con-
tamination, we extracted DNA from a variety of modern (ear
biopsies, internal organs, and blood) and historical (dried skins
and bones) tissue samples, whose collection dates ranged
from 1896 to 2011 and have been stored in different collec-
tions since that time (table 1). Not surprisingly, the quality
and quantity of DNA varied dramatically among samples.
Nevertheless, shotgun lllumina sequencing from each total
genomic DNA extract allowed the successful assembly of
the mitogenome, with mean depth of coverage varying
from 2,319X for the pygmy sloth (Bradypus pygmaeus) to
7X for the six-banded armadillo (Euphractus sexcinctus). The
total number of reads required to obtain reasonable coverage
was highly variable, as was also the proportion of mitochon-
drial reads recovered from each sample. At the two extremes
of the range stand the pink fairy armadillo (Chlamyphorus
truncatus) with 11.76% of mitochondrial reads from which we
obtained a 244X coverage depth with only 570,194 total reads,
and one of the two hairy long-nosed armadillo (Dasypus
pilosus) samples that contained only 0.02% of mitochondrial
reads and required the use of 44,847,476 total reads to reach
23X depth of coverage (table 1). These results confirmed that
there is no a priori predictor of the final mitogenome cover-
age that may be obtained for a given sample, because it ap-
pears to be mainly dependent on the mitochondrial/nuclear
cell ratio in the sampled tissue (Tilak et al. 2015). Also, pre-
dicting the amount of final mitogenome coverage from shot-
gun data is further complicated for museum specimens by
the fraction of endogenous versus exogenous DNA in the
sample. Our results nevertheless illustrate the utility of a shot-
gun approach for mammalian mitogenomics (Enk et al. 2017;
Botero-Castro et al. 2013) enabling the efficient use of
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Table 1. Continued

Accession Number

Mito MtDNA Mean

Collection Sample Type Total

Origin

Collection Number

Common Name

Species

(%) Coverage

Reads

Reads

Date

Depth

KT818527

51X
18X
39X

0.04
0.53
0.04
0.92
0.41

14,828

35,461,781

Skull bone

1896
2000
1966
1995
2000

Costa Rica

AMNH MO-10752
ISEM T-2350
ZVC M365

Northern naked-tailed armadillo

Cabassous centralis

KT818528

4,848
14,614
19,302

910,714
40,034,772

Tail biopsy
Dried skin

Argentina

Chacoan naked-tailed armadillo

Cabassous chacoensis

KT818529

Uruguay

Greater naked-tailed armadillo

Cabassous tatouay

KT818531

2,099,343
1,021,049

Internal organ

French Guiana

MNHN 1999-1068
ISEM T-2291

Southern naked-tailed armadillo

Cabassous unicinctus

KT818530

16X

4,205

Internal organ

French Guiana

Southern naked-tailed armadillo

Cab. unicinctus

NC_000934

NC_003314

Dugong

Dugong dugon

NC_002078

African elephant

Aardvark

Loxodonta Africana

Orycteropus afer

NoTe—NA: not available; USNM: National Museum of Natural History, Washington, USA; ISEM: Institut des Sciences de I'Evolution, Montpellier, France; MVZ: Museum of Vertebrate Zoology, Berkeley, USA; MNHN: Museum National d’Histoire
Naturelle, Paris, France; ZVC: Coleccion de Vertebrados de la Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay; MSB: Museum of Southwestern Biology, Albuquerque, USA; LSUMZ: Louisiana State University Museum of Natural

Science, Baton Rouge, USA; MLP: Museo de La Plata, La Plata, Argentina; AMNH: American Museum of Natural History, New York, USA; ZSM: Zoologische Staatssammlung Miinchen, Munich, Germany.

museum specimens for full mitogenome assembly (Rowe
et al. 2011).

The complete mitogenomes allowed us to construct a
highly informative phylogenetic data set containing
15,006 sites for 40 taxa (37 xenarthrans and 3 outgroups).
The best way to analyze mitogenomic data continues to
be debated (Leavitt et al. 2013; Powell et al. 2013). Despite
representing a single linked locus, selection pressures and
evolutionary rates are highly heterogeneous across the mi-
tochondrial DNA molecule (Galtier et al. 2006; Nabholz
et al. 2012) and particular substitution patterns and base
composition biases exist among sites and strands (Reyes
et al. 1998). One way to accommodate this rate heteroge-
neity is to use partitioned models implemented in both
maximum likelihood (ML) and Bayesian approaches,
which have been shown to improve phylogenetic infer-
ence (Chiari et al. 2012; Kainer and Lanfear 2015).
However, determining the best partition scheme currently
requires the a priori definition of biologically relevant par-
titions (Lanfear et al. 2012). In our case, the optimal par-
tition scheme selected by PartitionFinder (Lanfear et al.
2012) attributed a GTR+G+1 model to four partitions, ba-
sically capturing the substitution rate heterogeneity
among codon positions of protein-coding genes, RNAs,
and ND6 that is the only gene to be encoded on the
heavy strand (supplementary table S1, Supplementary
Material online). A valuable alternative to partitioned
models is provided by the Bayesian site-heterogeneous
CAT-GTR (general time reversible) mixture model
(Lartillot and Philippe 2004), in which the optimal
number of site-specific substitution pattern categories is
directly estimated from the data. The application of this
model for analyzing mammalian mitogenomic data is only
starting, but it has already been rather promising
(Hassanin et al. 2012; Botero-Castro et al. 2013; Fabre
et al. 2013). In the case of our xenarthran data set, ML
and Bayesian implementations of the optimal partitioned
model and Bayesian inference under the CAT-GTR mix-
ture model gave exactly the same, fully resolved topology
apart from one unsupported node within the genus
Dasypus (fig. 1).

The xenarthran mitogenomic tree shows a fair amount of
branch length heterogeneity among groups, with fast evolving
clades including anteaters and Dasypodinae, and slow evolv-
ing clades such as sloths and hairy armadillos (fig. 1). Lineage-
specific variation in evolutionary rates in mammalian mito-
chondrial genomes has been previously characterized (Gissi
et al. 2000). Such variation has been linked to differences in
mutation rates that correlate well with longevity in mammals
(Nabholz et al. 2008). As a result, the mammalian mitochon-
drial clock is particularly erratic (Nabholz et al. 2009) and
substitution rate variations among lineages should be ac-
counted for in dating analyses by using relaxed clock
models (Thorne et al. 1998). The selection of the clock
model is, nevertheless, often arbitrary and appears mostly
dependent upon the software choice, with an overwhelming
majority of studies relying on BEAST (Drummond et al. 2012),
thus generally using an uncorrelated gamma (UGAM also
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Megalonychidae Choloepus hoffmanni g
. AE Eholoepus didactylus NC @
Folivora . Choloepus didactylus

Two-toed Sloths

Bradypus torquatus
) . * Bradypus pygmaeus Type _ .=
Pilosa . Bradypodidae Bradypus tridactylus Three-toed Sloths
Bradypus variegatus
Cyclopedidae *Bradypus variegatus NC '
Vermilingua Cyclopes didactylus
%* Myrmecophaga tridactyla
- w « | Tamandua mexicana
MymiECEERERERE Ai;l'amandua tetradactyla NC Anteaters
Tamandua tetradactyla
— e Dasypus kappleri
Dasypodidae 0 Dasypus septemcinctus
Dasypus hybridus
Dasypus novemcinctus FG Long-nosed
Dasypus yepesi Armadillos
Dasypus sabanicola ! (Dasypodinae)
. * k= Dasypus novemcinctus NC
CmQU|ata ] 0.73/0.53/- Pasypus pilosus 1
Dasypoda Dasypus pilosus 2
Euphractus sexcinctus
Chaetophractus villosus Hairy, Six-banded
0.97/1/80 "= Zaedyus pichiy & Pichi Armadillos
Chlamyphoridae 0.99/1/93 *Chaetophractus vellerosus (Euphractinae)
Chaetophractus nationi
0.99/1/100 Chlamyphorus truncatus ~ Fairy Armadillos
Calyptophractus retusus o e (Chlamyphorinae)
Priodontes maximus '
Tolypeutes tricinctus -\
¥ _E Tolypeutes matacus @ Giant,
1/1/88 Cabassous tatouay Three-banded
- Cabassous chacoensis & Naked-tailed Armadillos
PP car/PPpart/BPpart * Cabassous centralis (Tolypeutinae)

0.4 substitution per site

gabassous unicinctus 1
Cabassous unicinctus 2

Fic. 1. Phylogenetic relationships of all extant xenarthran species. Bayesian consensus phylogram obtained using PhyloBayes under the CAT-GTR-G
mixture model. Values at nodes indicate Bayesian posterior probabilities (PP) obtained under the CAT-GTR-G4 mixture model and maximum-
likelihood bootstrap percentages (BP) obtained under the optimal partitioned model, respectively. Asterisks (*) mark branches that received maximal
support from both methods. The afrotherian outgroup is not shown (full tree provided as supplementary fig. S1, Supplementary Material online). NC:
GenBank reference mitogenomes (in bold); FG: French Guiana. Type: Museum type specimen.

known as UCLN) relaxed clock model (Drummond et al.
2006). However, it has been shown that autocorrelated rate
models, such as the autocorrelated log-normal model (LN;
Thorne et al. 1998), generally offer a better fit, especially
with large data sets above the species level (Lepage et al.
2007; Rehm et al. 2011). We thus compared the fit of the
UGAM and LN models with a strict molecular clock (CL)
model using cross-validation tests. The latter showed that
the relaxed clock models both largely outperform the strict
clock model (UGAM vs. CL: 1442+912; LN vs. CL
18.47 1 4.86), and among relaxed clock models, LN fits our
data better than UGAM (LN vs. UGAM: 405+ 7.87).
Accordingly, we present and discuss the divergence times
obtained with the autocorrelated LN relaxed clock model
(fig. 2 and table 2).

Phylogenetic Framework and Timescale for Living
Xenarthrans

Our analyses provide the first comprehensive phylogeny in-
cluding all living species of Xenarthra. We obtained a fully
resolved tree with high ML bootstrap and Bayesian support
values, except for one node within the genus Dasypus (fig. 1).
This mitogenomic topology is entirely congruent with previ-
ous studies conducted at the genus level using nuclear exons
(Delsuc et al. 2002), combinations of mitochondrial and nu-
clear genes (Delsuc et al. 2001, 2003, 2012), and retroposons
and their flanking noncoding sequences (Moller-Krull et al.
2007). Furthermore, the newly estimated timescale (fig. 2 and
table 2) is compatible with previous time estimates provided
by the analyses of nuclear exons alone (Delsuc et al. 2004) or
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_[ Choloepus didactylus NC
Choloepus didactylus

Bradypus torquatus

m Bradypus pygmaeus Type
#2

mme Bradypus tridactylus

{Bradypus variegatus
Bradypus variegatus NC

#8 Cyclopes didactylus

Myrmecophaga tridactyla
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i

R e et T T T

#10g= Tamandua mexicana

1 Tamandua tetradactyla NC

Dasypus kappleri

1

1

1 1

1 1

! : Tamandua tetradactyla
1 1

1

1

1

#12] Dasypus septemcinctus
-l Dasypus hybridus

mm Dasypus novemcinctus FG
Dasypus yepesi

| Dasypus sabanicola

Dasypus novemcinctus NC

Dasypus pilosus 2
Euphractus sexcinctus

, #18
L : me Chaetophractus villosus
#19 Zaedyus pichiy

Chaetophractus vellerosus

1
1
1
1
1
1
|
1
1 #16 [Dasypus pilosus 1
:
1
1
i

Chaetophractus nationi

Chlamyphorus truncatus

Calyptophractus retusus

Priodontes maximus

Tolypeutes tricinctus

Tolypeutes matacus

Cabassous tatouay
e Cabassous chacoensis
Cabassous centralis
Cabassous unicinctus 1

Cabassous unicinctus 2

Er ML E M

L E L E M

Paleocene Eocene Oligocene Miocene Pli. | P.
66 62 59 56 48 38 34 28 23 16 12 5 3 0 Million years ago

Fic. 2. Molecular timescale for all extant xenarthran species. The Bayesian chronogram was obtained using a rate-autocorrelated LN relaxed molecular
clock model using PhyloBayes under the CAT-GTR-G mixture model with a birth—death prior on the diversification process, and six soft calibration
constraints. Node bars indicate the uncertainty around mean age estimates based on 95% credibility intervals. Divergence dates less than 0.5 Ma are not
represented. Plain black node bars indicate nodes used as a priori calibration constraints. Numbers at nodes refer to table 2. The afrotherian outgroup is
not shown (full tree provided as supplementary fig. S2, Supplementary Material online). Vertical lines delimitate the main geological periods of the
Cenozoic following the 2012 Geological Time Scale of the Geological Society of America (Gradstein et al. 2012). E=early; M = middle; L = late;
Pli. = Pliocene; P. = Pleistocene.
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Table 2. Divergence Time Estimates for All Xenarthran Nodes Inferred Using the Site-Heterogeneous CAT-GTR+G4 Substitution Model and an

Autocorrelated LN Relaxed Molecular Clock Model.

Nodes

This study

Delsuc et al. (2012)

Delsuc et al. (2004)

O 00 N O VA WN =

NN NN NN NN = e o e e e e e e -
N & i & W N =2 O WV 0N & VN &N WN = O

. Xenarthra®

. Pilosa® (anteaters + sloths)

. Folivora® (sloths)

. Megalonychidae (two-toed sloths)

. Bradypodidae (three-toed sloths)

. Bradypus pygmaeus/others

. Bradypus tridactylus/Bradypus variegatus

. Vermilingua® (anteaters)

. Myrmecophaga/Tamandua

. Tamandua mexicana/Tamandua tetradactyla
. Cingulata (armadillos)

. Dasypodinae (long-nosed armadillos)

. Dasypus septemcinctus + Dasypus hybridus/others
. Dasypus novemcinctus FG/others

. Dasypus sabanicola + Dasypus yepesi/others

. Dasypus novemcinctus NC/Dasypus pilosus

. Chlamyphoridae

. Euphractinae (hairy armadillos)

. Chaetophractus villosus/others

. Zaedyus pichiy/others

. Chlamyphorinae/Tolypeutinae

. Chlamyphorinae (fairy armadillos)

. Tolypeutinae®

. Tolypeutes/Cabassous

. Tolypeutes

. Cabassous

. Cabassous chacoensis/others

28.

Cabassous centralis/Cabassous unicinctus

67.7+3.0 [60.4-71.6]
58.4 + 4.1 [48.6-64.7]
299+ 6.5 [16.5-39.6]
92435 [35-16.7)
19.0 + 4.7 [9.6-27.0]
7.7+ 2.4 [3.6-12.6]
57+1.8 [2.6-9.5]
37.8+ 4.9 [26.9-46.2]
12.74+ 33 [7.0-19.8]
1.0+ 04 [0.4-2.0]
449+ 3.5 [38.3-52.1]
124+ 3.4 [7.2-204]
51+1.7 [2.7-9.2]
37+1.2 [2.0-6.8]
2.9+ 1.0 [1.5-5.4]
2.8+0.9 [1.5-5.1]
37.2+3.4 [31.5-44.7]
11.0+ 2.8 [6.8-17.8]
9.1+24 [55-15.1]
82423 [49-13.7)
32.6+3.1 [27.9-40.0]
19.4+2.7 [15.2-259]
25.7+2.7 [22.4-32.7]
22.5+2.6 [19.0-29.0]
14.1£2.0 [11.0-19.1]
109+ 1.9 [8.0-15.5]
8.6+ 1.6 [6.0-12.4]
13403 [0.8-2.1]

67.8+3.4 [61.3-74.7]
60.1+3.6 [53.1-67.2]
28.3+3.4 [22.0-35.2]

N.A.

N.A.

N.A.

N.A.
45.5+3.7 [38.4-52.8]
13.64+2.1 [9.9-18.2]

N.A.
42.3+3.8 [35.1-50.0]
1124+ 2.0 [7.8-15.6]

N.A.

N.A.

N.A.

N.A.
345+ 3.6 [27.8-41.9]

8.3+ 1.6 [55-11.8]
7.1+14 [47-103]

N.A.
32.9+3.6 [263-40.2]
173+ 2.7 [12.4-23.0]
26.1+3.2 [20.2-32.9]
24.2+3.1 [18.5-30.7]

N.A.

N.A.

N.A.

N.A.

64.7 + 4.9 [55.3-74.6]
552449 [45.8-65.2]
20.8 4+ 3.3 [15.0-27.8]
N.A.
N.A.
N.A.
N.A.
40.0 + 4.4 [31.8-49.0]
10.1+ 1.8 [6.9-14.1]
N.A.

39.74 4.5 [31.3-49.1]
7.3+ 1.6 [4.6-10.9]
N.A.

N.A.

N.A.

N.A.

3294 4.1 [25.2-41.5]
624 1.4 [3.8-9.3]

N.A.
N.A.
N.A.
N.A.

21.84 3.3 [15.8-28.9]
20.54 3.2 [14.7-27.3]
N.A.

N.A.

N.A.

N.A.

Note—Mean posterior estimates, associated standard errors, and 95% credibility intervals are expressed in Ma (mean date £ SD [95% Credl]).
SD: standard deviation; 95% Credl: 95% credibility interval; FG: French Guiana; NC: GenBank reference mitogenome (specimen from the USA); N.A: not applicable

*Used as a priori calibration constraints.

in combination with mitochondrial genes (Delsuc et al. 2012).
The few discrepancies concern nodes for which the species
sampling has been substantially increased such as Folivora,
Dasypodinae, Euphractinae, and Tolypeutinae (table 2). For
these nodes, the newly inferred dates appear older than pre-
vious estimates performed at the genus level as expected with
a denser species sampling. Such global congruence with pre-
vious nuclear-based phylogenetic and dating analyses, allows
being confident that ancient introgression and/or hybridiza-
tion events have not significantly affected the mitogenomic
tree of xenarthrans. A number of new surprising and impor-
tant inferences are to be drawn from our mitogenomic frame-
work with respect to phylogenetic relationships and species
delimitation within the different xenarthran groups.

Sloths (Pilosa; Folivora)

The six living species of sloths belong to two genera, with two-
toed sloths (genus Choloepus) and three-toed sloths (genus
Bradypus) having been placed in two distinct families
(Megalonychidae and Bradypodidae, respectively) to reflect
their numerous morphological differences and a probably
diphyletic origin from two different fossil groups (Webb
1985). Their independent adaptation to the arboreal lifestyle

also led to a number of anatomical convergences related to
their peculiar suspensory locomotion (Nyakatura 2012). Our
results confirm this deep dichotomy with a divergence date
between the two genera around 30 Ma (fig. 2 and table 2),
which appears more ancient than previously estimated with
nuclear data (Delsuc et al. 2004). This difference might stem
from our increased taxon sampling, because only a single
representative species of each genus was previously consid-
ered. Their considerable molecular divergence nevertheless
supports the classification of the two modern sloth genera
into distinct families.

Within two-toed sloths, the new mitochondrial genome
sequence obtained for the Southern two-toed sloth
(Choloepus didactylus) appears almost identical to the refer-
ence mitogenome (NC_006924) deposited in GenBank
(99.8% pairwise identity). As expected, the Hoffmann’s two-
toed sloth (Choloepus hoffmanni) is more divergent (pairwise
distance of 7.2% with Cho. didactylus). The divergence time
between the two toed-sloth species is estimated at about 9
Ma (fig. 2 and table 2). Choloepus hoffmanni presents two
disjunct northern and southern populations. A recent study
estimated the divergence between northern and southern
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Cho. hoffmanni mitochondrial lineages at about 7 Ma
(Moraes-Barros and Arteaga 2015), but it did not include
Cho. didactylus. Obtained from a captive individual most
likely coming from Panama, our Cho. hoffmanni mitogenome
belongs to the northern population. Therefore, we could not
discard the possibility that a southern Cho. hoffmanni se-
quence will not belong to the Cho. didactylus lineage. The
occurrence of hybrids in captivity raises the question of
whether hybridization also occurs in natural populations, es-
pecially between the southern populations of Cho. hoffmanni
and individuals of Cho. didactylus inhabiting north-central
Peru and south-western areas of Brazil (Steiner et al. 2010).
This evidence coupled with the significant variation in chro-
mosome number observed in South American Choloepus
(2n =53-67; Hayssen 2010) indicates the need for a taxo-
nomic review of both Cho. hoffmanni and Cho. didactylus.
This will require the analysis of additional mitochondrial
and nuclear data for an extensive sampling, especially along
the southern distribution of Cho. hoffmanni, where it is sym-
patric with Cho. didactylus.

Concerning three-toed sloths, the endangered maned
sloth (Bradypus torquatus) is the sister group of the three
other described species (fig. 1). This phylogenetic position is
in agreement with previous studies based on a few mitochon-
drial genes (Barros et al. 2003; Moraes-Barros et al. 2011). Our
dating estimates confirm the maned sloth as an ancient
Atlantic forest endemic, which may have diverged from
other sloths as early as 19 Ma (fig. 2 and table 2). Such an
old divergence date associated with its distinctive morpho-
logical characters would argue for a classification of B. torqua-
tus in its own genus (Scaeopus), as advocated by Barros et al.
(2008). As the maned sloth is one of the most threatened
xenarthran species (Superina, Plese, et al. 2010), its phyloge-
netic distinctiveness should be considered in future conser-
vation assessments.

The critically endangered pygmy sloth (B. pygmaeus) is
restricted to Isla Escudo de Veraguas, in the islands of Bocas
del Toro (Panama). Anderson and Handley (2001) described
this insular population as a distinct species on the basis of
morphometric analyses showing a reduced body size com-
pared with the mainland and other island populations of the
brown-throated three-toed sloth (Bradypus variegatus). Our
analyses, based on the sequencing of the type specimen
(USNM 579179), show that B. pygmaeus constitutes a distinct
lineage within three-toed sloths that is clearly separated from
Bradypus tridactylus and B. variegatus (fig. 1) from which it
diverged some 8 Ma (fig. 2 and table 2). By sequencing a pale-
throated three-toed sloth (B. tridactylus) specimen from
French Guiana, where only this species occurs, we were able
to confirm that the GenBank reference mitogenome
(NC_006923) was originally misidentified as B. tridactylus
and in fact belongs to the brown-throated three-toed sloth
(B. variegatus), as previously shown by Moraes-Barros et al.
(2011). Indeed, our newly sequenced B. variegatus specimen
from Peru (MVZ 155186) is 97.3% identical to NC_006923,
whereas the pairwise distance with B. tridactylus reaches 9.5%.
The divergence date between B. variegatus and B. tridactylus is
estimated here around 6 Ma (fig. 2 and table 2). However,
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similar to the Hoffmann’s two-toed sloth, the brown-throated
three-toed sloth includes divergent mitochondrial lineages
(Moraes-Barros et al. 2011; Moraes-Barros and Arteaga
2015) and occurs as far north as Honduras. Therefore, we
cannot exclude the possibility that individuals from mainland
Central America (Panama, Costa Rica, Nicaragua, and
Honduras) not included in this study might belong to the
distinct pygmy sloth (B. pygmaeus) lineage rather than to
B. variegatus.

Anteaters (Pilosa; Vermilingua)

Anteaters are the least diverse xenarthran group with only
four described species classified in three genera. The mitoge-
nomic tree (fig. 1) confirms the phylogenetic distinctiveness
of the monotypic pygmy anteater (Cyc. didactylus) from the
two closely related genera Tamandua and Myrmecophaga.
The early divergence of the pygmy anteater is estimated
around 38 Ma, whereas Tamandua and Myrmecophaga di-
verged much more recently around 13 Ma (fig. 2 and table 2).
This profound dichotomy appears fully compatible with pre-
vious estimates (Delsuc et al. 2004, 2012) and confirms the
rationality of dividing anteaters into two distinct families
Cyclopedidae (Cyclopes) and Myrmecophagidae (Tamandua
and Myrmecophaga), as proposed by Barros et al. (2008). This
taxonomic distinction also reflects the numerous morpholog-
ical differences observed between the two main anteater lin-
eages (Gaudin and Branham 1998). Regarding lesser anteaters,
our new sequence of the southern tamandua (Tamandua
tetradactyla) from French Guiana confirmed the identifica-
tion of the GenBank reference mitogenome (NC_004032),
the two sequences being 99.4% identical (fig. 1). However,
our mitogenomic data revealed a very limited genetic differ-
entiation between northern (Tamandua mexicana) and
southern (Ta. tetradactyla) tamanduas, with a pairwise dis-
tance of only 2.8% (2.1% on Cytochrome c oxidase subunit T;
COX1). The two tamanduas are considered two distinct spe-
cies with parapatric distributions separating on each side of
the Northern Andes in Venezuela, Colombia, Ecuador, and
Peru (Superina, Miranda, et al. 2010). However, the species
diagnoses are based on differences in coat coloration, body
size, skull characters, and number of caudal vertebrae that can
be quite variable within populations (Wetzel 1985). Our
whole mitochondrial genome data question the species
status of these anteaters and encourage future nuclear studies
aiming at delimitating species within the genus Tamandua.

Armadillos (Cingulata; Dasypoda)

Armadillos are the most speciose xenarthran group with
21 extant species and 9 genera. Our phylogenetic results
unambiguously support the monophyly of each of the four ar-
madillo subfamilies Dasypodinae, Euphractinae,
Chlamyphorinae, and Tolypeutinae (fig. 1), as previously rec-
ognized with a concatenation of nuclear and mitochondrial
genes (Delsuc et al. 2012). The first dichotomy separates long-
nosed armadillos (Dasypodinae) from the other three subfa-
milies, which form a monophyletic group (PPcat=0.99/
PPpart = 1.0/BPpart = 100). This deep divergence occurred
early in the Cenozoic at an estimated time of about 45 Ma
(fig. 2 and table 2). Given this remarkably ancient divergence
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date relative to other placental families (Meredith et al. 2011),
we propose splitting armadillos into two distinct families:
Dasypodidae and Chlamyphoridae. The proposed use of
Chlamyphoridae is based on the taxonomic rank elevation
of the oldest constitutive subfamily that is Chlamyphorinae
Bonaparte 1850. Within Chlamyphoridae, the mitogenomic
tree (fig. 1) supports the grouping of Chlamyphorinae (fairy
armadillos) with Tolypeutinae (giant, three-banded, and
naked-tailed armadillos) to the exclusion of Euphractinae
(hairy armadillos), in line with previous studies including nu-
clear noncoding (Moller-Krull et al. 2007) and protein-coding
(Delsuc et al. 2012) sequences. The early branching of
Euphractinae is estimated around 37 Ma, relatively quickly
followed by the separation between Chlamyphorinae and
Tolypeutinae, circa 33 Ma (fig. 2 and table 2).

Dasypodinae.  This subfamily includes seven species of long-
nosed armadillos belonging to the single genus Dasypus.
Species in this genus are characterized by an elongated
nose that can be functionally related to the use of the
tongue to gather ants, termites, and a diversity of soil inver-
tebrates (Loughry and McDonough 2013). An unusual par-
ticularity, thought to be shared by all species belonging to this
genus, is their reproduction by obligate polyembryony in
which the female systematically gives birth to genetically iden-
tical litters (Galbreath 1985). The most common and best
studied is the nine-banded armadillo (Dasypus novemcinctus),
which has the largest distribution from Argentina to North
America as a consequence of its ongoing invasion of the
southern United States (Taulman and Robbins 2014; Feng
and Papes 2015). The greater long-nosed armadillo
(Dasypus kappleri) is the largest of the group, and it has
been proposed on morphological grounds to classify this spe-
cies in its own subgenus Hyperoambon (Wetzel and Mondolfi
1979). The hairy long-nosed armadillo (Da. pilosus), which is
an endemic of Peru, is also morphologically distinctive in
being the only armadillo possessing a carapace entirely cov-
ered with dense fur. This peculiarity has led some authors to
propose its taxonomic distinction in the subgenus
Cryptophractus (Wetzel and Mondolfi 1979). A recent mor-
phological study, which was mainly based on the analysis of
the structure of its osteoderms, even proposed to raise it to
the genus level (Castro et al. 2015). The remaining species
constitute a complex of morphologically similar taxa with
historical taxonomic uncertainty. The southern long-nosed
armadillo (Dasypus hybridus) and the seven-banded arma-
dillo (Dasypus septemcinctus) are particularly hard to distin-
guish, with globally parapatric distributions that might
overlap in southern Brazil, northern Argentina, and
Paraguay (Abba and Superina 2010). The species status of
the northern long-nosed armadillo (Dasypus sabanicola) has
also been historically hard to establish (Wetzel 1985), and the
Yunga’s lesser long-nosed armadillo (Dasypus yepesi) has only
been recently recognized as a distinct species (Vizcaino 1995).

The phylogenetic tree obtained from the mitogenomes
(fig. 1) clearly identifies Da. kappleri as the sister group to
all other long-nosed armadillo species. Molecular dating,
estimates its early divergence at more than 12 Ma (fig. 2

and table 2). This fairly ancient date, coupled with well-
characterized morphological differences such as the presence
of unique scutes on the knee, would argue for its placement in
the distinct genus Hyperoambon, originally proposed as a
subgenus by Wetzel and Mondolfi (1979). Second to diverge
within Dasypodinae is a clade composed of Da. hybridus and
Da. septemcinctus whose mitogenome sequences appear
almost identical (99.3% identity). This observation is consis-
tent with noted morphological similarity and historical syn-
onymy between these two taxa (Abba and Superina 2010).
However, given the fact that our Da. septemcinctus species is
from northern Argentina and our Da. hybridus is from
Uruguay, both in potential areas of sympatry between the
two taxa, we cannot exclude the possibility of misidentifica-
tion, hybridization, and/or introgression being responsible for
the observed mitogenomic similarity. Further clarification of
the taxonomic status of these two species would require
collecting additional mitochondrial and nuclear data for spe-
cimens coming from the two extremes of their ranges in
central Argentina for Da. hybridus and northern Brazil for
Da. septemcinctus.

The next diverging lineage is represented by an individual
identified as Da. novemcinctus from French Guiana, which
unambiguously represents a distinct branch in the mitoge-
nomic tree (fig. 1). In an early phylogeographic study of nine-
banded armadillos based on the mitochondrial D-loop, we
observed that individuals from French Guiana were indeed
very distant from the ones of the invasive US populations to
which the reference mitochondrial genome for Da. novem-
cinctus belongs (Huchon et al. 1999). The two mitogenomes
are indeed fairly divergent with a pairwise distance of 5.6%
(5.7% on COXT). The divergence date between the French
Guianan lineage and other long-nosed armadillos is estimated
around 3.7 Ma (fig. 2 and table 2), which strongly suggests
that the French Guianan lineage might represent a previously
unrecognized species. This potentially new species is the sister
group of a clade regrouping Da. yepesi and Da. sabanicola on
one side, and Da. pilosus and Da. novemcinctus on the other
side. Only the position of the hairy long-nosed armadillo (Da.
pilosus) appears unstable with low statistical support (fig. 1).
Although Da. sabanicola and Da. yepesi are restricted to very
distinct localities of South America respectively in Venezuela/
Colombia and north-eastern Argentina, they possess very
similar mitogenomes (98.7% identity). Our results confirm
that the taxonomic status of both species is questionable
and needs further review (Abba and Superina 2010).
Further morphological and molecular species delimitation
studies will be needed to fully understand the species bound-
aries within long-nosed armadillos.

Finally, the hairy long-nosed armadillo (Da. pilosus) ap-
pears to constitute a distinct lineage of long-nosed arma-
dillos (fig. 1), but its molecular divergence does not seem
to match its morphological distinctiveness. Indeed, its
pairwise distance with both Da. novemcinctus and with
the Da. sabanicola/Da. yepesi clade is about 5%. The di-
vergence date between Da. pilosus and Da. novemcinctus
is estimated around 2.8 Ma (fig. 2 and table 2). Our phy-
logenetic reconstruction also strongly contradicts the
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results of Castro et al. (2015) who found Da. pilosus to be
the sister group to all other long-nosed armadillos based
on cladistic analysis of morphological characters. Based on
these results and the peculiar structure of its osteoderms,
they proposed resurrecting Cryptophractus as the genus
name for the hairy long-nosed armadillo. Our results do
not support such a taxonomic reassessment and argue in
favor of conserving the hairy long-nosed armadillo in the
genus Dasypus. More generally, our mitogenomic topol-
ogy for long-nosed armadillos reveals many conflicts with
the cladistic analysis of Castro et al. (2015). This suggests
that osteodermal characters are of limited taxonomic
value in being highly homoplastic, and should therefore
be used with caution in phylogenetic analyses.

Euphractinae.  Euphractine armadillos constitute an ecolog-
ically homogeneous and morphologically similar group with
five traditionally recognized species classified in the three
genera Chaetophractus, Euphractus, and Zaedyus (Abba and
Superina 2010). The genera Euphractus and Zaedyus are
monospecific and include the six-banded armadillo (E. sex-
cinctus) and the pichi (Zaedyus pichiy), respectively. The
genus Chaetophractus classically encloses three species, the
large hairy armadillo (Chaetophractus villosus), the screaming
hairy armadillo (Chaetophractus vellerosus), and the Andean
hairy armadillo (Chaetophractus nationi). The interrelation-
ships between the three genera have been difficult to deci-
pher with both morphological (Engelmann 1985; Gaudin and
Wible 2006) and molecular data (Delsuc et al. 2002, 2003;
Moller-Krull et al. 2007) likely due to their rapid diversification
(Delsuc et al. 2004). A recent study investigated the phyloge-
netic relationships among all five species using an integrative
approach based on skull geometric morphometrics and mo-
lecular phylogenetics (Abba et al. 2015). It was proposed that
Cha. nationi should be considered a synonym of Cha. veller-
osus based on shared mitochondrial haplotypes and a close
proximity at the nuclear level coupled with a very similar
morphology because the two species only differ in size.
Moreover, phylogenetic analyses of a combination of six
noncoding nuclear markers and two nuclear exons suggested
the paraphyly of the genus Chaetophractus, with Cha. veller-
osus being more closely related to Z pichiy than to Cha.
villosus. The relative positions of the large hairy armadillo
(Cha. villosus) and the six-banded armadillo (E. sexcinctus)
nevertheless remained uncertain, as conflicting positions
were obtained with the noncoding and protein-coding par-
titions (Abba et al. 2015).

The complete mitochondrial genome sequences confirm
that the threatened and geographically restricted Andean
hairy armadillo (Cha. nationi) could not be genetically distin-
guished from the widespread screaming hairy armadillo (Cha.
vellerosus), with 99.8% mitogenomic identity between the
two taxa. This result reinforces the proposition of taxonom-
ically synonymizing these two species by retaining only Cha.
vellerosus (Abba et al. 2015). Moreover, the mitogenomic tree
(fig. 1) offers some additional support for the paraphyly of the
genus Chaetophractus caused by the strongly supported sister
group relationship of Z pichiy with Cha. vellerosus/Cha.
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nationi (PPcat = 0.99/PPpart = 1/BPpart = 93). As with nu-
clear data, the early branching of E. sexcinctus is slightly less
supported by ML but nevertheless appears quite robust
(PPcaT = 0.97/PPpagt = 1/BPpart = 80). Molecular dating re-
sults (fig. 2 and table 2) also confirm a rapid diversification
of Euphractinae, with speciation events occurring within a
few million years between 8 and 11 Ma, a period marked
by the appearance of more arid areas in the Southern Cone
of South America where most of these species are distributed.
Definitive resolution of the relationships among hairy arma-
dillos might require large-scale genomic data to account for
possible discordances between gene trees and the species tree
resulting from incomplete lineage sorting.

Chlamyphorinae. This  recently recognized subfamily
(Delsuc et al. 2012) consists of only two species of fairy arma-
dillos or pichiciegos that count among the most elusive mam-
mals due to their nocturnal and subterranean habits. The
pink fairy armadillo (Chl. truncatus) is restricted to sandy
plains of central Argentina, while the greater fairy armadillo
(Calyptophractus retusus) is found in the Gran Chaco of
northern Argentina, Paraguay, and eastern Bolivia (Abba
et al. 2010). The mitogenomic tree (fig. 1) corroborates earlier
results by strongly supporting the monophyly of fairy arma-
dillos (Delsuc et al. 2012) and their sister group relationship
with tolypeutines (Moller-Krull et al. 2007; Delsuc et al. 2012).
Molecular dating (fig. 2 and table 2) also confirms the con-
siderably old divergence of the two species (ca. 19 Ma) and
their ancient split from tolypeutine armadillos (ca. 33 Ma).
These results underline again the phylogenetic distinctiveness
of the two fairy armadillo species and argue in favor of their
classification in two distinct genera within their own subfam-
ily. The phylogenetic uniqueness of fairy armadillos, combined
with their scarcity in the wild, make pleads for increased
conservation attention of these atypical mammals.

Tolypeutinae.  This subfamily includes seven species classi-
fied in three genera. Two tribes are classically recognized
(Wetzel 1985; McKenna and Bell 1997): Priodontini grouping
the giant armadillo (Priodontes maximus) with naked-tailed
armadillos of the genus Cabassous, and Tolypeutini consisting
solely of two species of three-banded armadillos (genus
Tolypeutes). Giant and naked-tailed armadillos are typically
fossorial and are equipped with large anterior claws used for
digging. Three-banded armadillos are ground dwelling and
morphologically distinctive in being the only armadillos ca-
pable of entirely rolling into a ball by locking their carapace as
a defensive strategy. In contrast to morphological data that
always favored the monophyly of the Priodontes and
Cabassous genera on the basis of numerous anatomical sim-
ilarities (Engelman 1985; Gaudin and Wible 2006) and char-
acteristically spoon-shaped spermatozoa (Cetica et al. 1998),
the phylogenetic relationships within the family Tolypeutinae
have been notoriously difficult to resolve with molecular data
(Delsuc and Douzery 2008). The concatenation of nuclear
exons and two mitochondrial genes has basically left the
issue unresolved (Delsuc et al. 2002, 2003, 2012), whereas
analyses of noncoding retroposon flanking sequences offered
some support for a sister group relationship between
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Cabassous and Tolypeutes (Moller-Krull et al. 2007). The mito-
genomic picture (fig. 1) is congruent with noncoding nuclear
data in supporting the paraphyly of the tribe Priodontini by
grouping Tolypeutes with Cabassous to the exclusion of
Priodontes (PPcat = 1/PPpagrt = 1/BPpart = 88). This suggests
that the morphological characters related to fossoriality used
to define this tribe might either have been acquired conver-
gently by giant and naked-tailed armadillos or, more probably,
represent symplesiomorphies inherited from a fossorial
ancestor.

Concerning Tolypeutini, we collected the first molecular
data for the flagship Brazilian three-banded armadillo
(Tolypeutes tricinctus). This endangered endemic of the
North-Eastern Brazilian Caatinga biome was chosen as a
mascot to increase awareness about biodiversity and ecosys-
tem conservation. Our mitochondrial genome data revealed
an unexpectedly high sequence divergence with its sister spe-
cies, the southern three-banded armadillo (Tolypeutes mata-
cus). The pairwise distance between the two mitogenomes of
these morphologically and ecologically similar species reaches
12% (11.9% on COX1). Accordingly, molecular dating esti-
mated a deep divergence of circa 14 Ma between the two
allopatrically distributed species (fig. 2 and table 2). The con-
siderable phylogenetic distinctiveness revealed for the
Brazilian three-banded armadillo reinforces the conservation
concerns expressed for a species considered to be one of the
most threatened Brazilian mammals (Feijo et al. 2015).

Our mitogenomic study is the first to include all four rec-
ognized species of the conspicuous and fossorial naked-tailed
armadillos. The greater naked-tailed armadillo (Cabassous
tatouay) is the first to diverge, followed by the Chacoan
naked-tailed armadillo (Cabassous chacoensis) and the two
closely related northern (Cabassous centralis) and southern
(Cabassous unicinctus) naked-tailed armadillos (fig. 1). The
emergence of Cab. tatouay appears quite ancient (ca. 11
Ma), as is the separation of Cab. chacoensis from Cab. centralis
and Cab. unicinctus (ca. 9 Ma), which are estimated to have
diverged much more recently, less than 2 Ma (fig. 2 and
table 2). The mitogenomes of the northern and southern
naked-tailed armadillos appear very similar in sequence
(98.0% identity), with a pairwise distance of only 1.9%
based on COX1. This situation is reminiscent of the case
revealed between the northern and southern tamanduas,
with closely related species presenting parapatric distribu-
tions in Central and South America only interrupted by the
Northern Andes. Additional nuclear studies would be war-
ranted for further defining the taxonomic status of Cab. cen-
tralis and Cab. unicinctus that appear only weakly
differentiated based on their mitogenomes.

Diversification and Historical Biogeography of
Xenarthra

The strongly resolved tree obtained for all living xenarthran
species allowed us to derive a reference timescale that can be
used to study the patterns and processes underlying their
diversification. Seeking the causes of species diversification
and extinction by teasing apart the role of abiotic (e.g,

physical environmental changes) and/or biotic (e.g, species
interactions) factors (Benton 2009), is now made possible by
the use of different birth—-death models (Morlon 2014).
We applied a suite of diversification models to sequentially
consider the effects of past environmental changes
(Condamine et al. 2013), rate variation through time
(Stadler 2011; Rabosky 2014), and diversity-dependent pro-
cesses (Etienne et al. 2012) on the macroevolutionary history
of Xenarthra.

It was previously proposed that xenarthran diversification
has been influenced by paleoenvironmental changes triggered
by Andean uplift and sea level fluctuations in South America
during the Cenozoic (Delsuc et al. 2004). At that time, no
models of diversification integrating the effect of environmen-
tal variables were available to formally test the synchronicity
of some cladogeneses with periods of cooling and Andean
uplift. Such explicit models are now available (Condamine
et al. 2013), and when applied to our data, the best temper-
ature-dependent model showed that the speciation rate over
the entire xenarthran timetree correlates negatively with tem-
perature (fig. 3, table 3, and supplementary table S2,
Supplementary Material online). This pattern is the opposite
of the one found, for instance, in Cetacea (Condamine et al.
2013), and may be explained by the fact that a number of
rapid speciation events in the xenarthran tree and especially
within armadillos occurred in the last 10-15 Ma, during a
period of intense cooling (Zachos et al. 2001). This continuous
drop in temperature since the middle Miocene, followed by
the setup of the circum Antarctic current and the last Andean
uplift phase (Garzione et al. 2008), caused the aridification of
South America and the formation of dry biomes such as
Caatinga and Cerrado in the North, and Chaco and pampas
in the Southern Cone (Simon et al. 2009; Hoorn et al. 2010).

The Bayesian analysis of macroevolutionary mixtures
(BAMM, Rabosky 2014) show that a single macroevolutionary
rate explains the diversification of the group over time (table
3 and supplementary fig. S3, Supplementary Material online),
and that the net diversification rate tends to increase through
time driven by a higher speciation rate in the last 15 Ma
(fig. 4). This corroborates the results obtained with the
paleoenvironmental model. Furthermore, time-dependent
diversification analyses (table 3 and supplementary table S2,
Supplementary Material online) also portray Xenarthra as an
old and species-poor, but nevertheless successful clade with a
low diversification rate throughout the Cenozoic character-
ized by a high species turnover driven by an intermediate, but
constant extinction rate. The BAMM and TreePar models are
thus congruent on inferring no detectable diversification rate
shift and constant extinction through time, but they disagree
on the speciation rate inference for which only BAMM esti-
mates an increase over time. This discrepancy in estimates
might be explained by the relatively small size of the xenar-
thran timetree, which includes only 32 tips, but may increase
with the addition of extinct xenarthran genomes. The infer-
ence of extinction on the xenarthran phylogeny is neverthe-
less in agreement with the fossil record, which documents a
relatively high rate of extinction in this clade (Patterson and
Pascual 1968; Simpson 1980). Notably here, extinction is
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Fic. 3. Diversification pattern of Xenarthra. (a) Lineages-through-time plot constructed from 100 Bayesian posterior trees showing a steady accumu-
lation of species through time. (b) Past fluctuations of temperatures over the Cenozoic (data plotted from Zachos et al. 2001, 2008). (c) Speciation (bold
curve) and extinction rates through time for xenarthrans obtained from the relationship between diversification and paleotemperatures estimated
using the approach of Condamine et al. (2013). The best model indicates a negative correlation between speciation and past temperatures and no

dependence on extinction. K = Cretaceous; Paleo. = Paleocene; Oligo. = Oligocene; Pl. = Pliocene; P. = Pleistocene.
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Table 3. Summary of Diversification Analyses Results.

Type of Birth-Death Method Used Reference Data Used Settings Result
Paleoenvironmental depen-  RPANDA (fit_env) Condamine 100 posterior 7 ML models testing Speciation is “nega-
dence (rates vary “continu- et al. (2013) chronograms whether rates vary or tively” linked to past

ously” as a function of
time)

Among clade and time vari-
ation of rates

Time dependence (rates

BAMM

TreePar (bd.shifts.optim)

Stadler (2011)

Rabosky (2014) Bayesian

chronogram

100 posterior

not (exponential and
linear variation)
Bayesian model testing
rate shift(s) among
clade and through time
(Poison prior =1.0)

4 ML models testing

temperatures, and “con-
stant extinction”

No significant rate shift
detected: Speciation in-
creased through time,
“constant extinction”

No global rate shift de-

vary “discretely” as a func- chronograms from no rate shift to 3  tected, a constant birth-
tion of time) rate shifts death is supported
Diversity dependence (rates DDD (dd_ML) Etienne et al.  Bayesian 5 ML models testing The clade has reached
vary as a function of the (2012) chronogram whether speciation de- its carrying capacity,
number of species) clines with diversity with extinction increas-
and/or extinction in- ing as diversity increases
creases with diversity
(a) (b) - -==mm Cyclopes didactylus
0.20+ —_E = |\lyrmecophaga tridactyla
_[ Tamandua tetradactyla
Tamandua mexicana
o 0.154 )
® e Choloepus hoffmanni
s == Choloepus didactylus
% 0.10+ ey _— e Bradlypus torquatus
g,_ / «m Bradypus pygmaeus
9 .05 === Bradypus variegatus
«==mm Bradypus tridactylus
e Dasypus kappleri
8:28: Dasypus septemcinctus
Dasypus hybridus
Dasypus novemcinctus FG
o 0157 Dasypus yepesi
@ .
‘E Dasypus sabanicola
2 0.10- Dasypus pilosus
:é Dasypus novemcinctus
ux.J 0.054 ] <mmmm Euphractus sexcinctus
' === Chaetophractus villosus
<mmmm Zaedyus pichiy
3;23: Chaetophractus vellerosus
Chaetophractus nationi
% 0154 <= Chlamyphorus truncatus
c = Calyptophractus retusus
'% ==mmm Priodontes maximus
£ 0.10- e TOlypeutes tricinctus
g - TOlypeutes matacus
'123 0.054 Cabassous tatouay
% <= Cabassous chacoensis
— Cabassous unicinctus
0.00+ /‘. '_E Cabassous centralis
l Paleo. Eocene | Oligo. Miocene Pllp,} . Paleo. Eocene Oliga. Miocene ﬂlﬂ
66 56 33.9 23 53 0 66 56 33.9 23 53 0 Ma

Fic. 4. Bayesian analysis of macrevolutionary mixtures in Xenarthra. (a) Bayesian reconstruction of rate variations in speciation, extinction, and net
diversification through time. (b) Maximum a posteriori probability shift configuration represented as a phylorate plot showing variations in speciation
rates (cool colors = slow, warm = fast) along each branch of the xenarthran phylogeny. Each unique color section of a branch represents the mean of the
marginal posterior density of speciation rates on a localized segment of a phylogenetic tree. The rate variation pattern for lineages involves a uniform,
although slight, temporal acceleration in speciation rates. “Dasypus novemcinctus FG” denotes the French Guiana lineage. Paleo. = Paleocene;
Oligo. = Oligocene; Pl = Pliocene; P = Pleistocene.

estimated to be high but nevertheless constant, confirming
that these models are able to detect extinction signal even in
species-poor clades (Morlon et al. 2011; Jansa et al. 2014;

Beaulieu and O’Meara 2015).

Interestingly, xenarthrans do not seem to have been parti-
cularly affected by the GABI, with, for instance, giant sloths
and glyptodonts successfully colonizing Central and North

America. Xenarthra was finally depauperated by the
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extinction of the largest forms at the terminus of the
Pleistocene (Lyons et al. 2004), a very recent event that is
hardly detectable with current methods of macroevolution-
ary analyses. This effect is especially resonant for Pilosa in
which the successful northern emigrants such as giant
ground sloths were drawn to extinction (McDonald 2005).
Ultimately, fossil data would have to be integrated into diver-
sification analyses to adequately model the macroevolution-
ary history of this species-poor clade (Fritz et al. 2013; Silvestro
et al. 2014).

The role of biotic interactions was finally assessed using the
diversity-dependent diversification (DDD) model of Etienne
et al. (2012). The DDD model depicts Xenarthra as a clade
that has reached its carrying capacity, with extinction increas-
ing as diversity increases (table 3 and supplementary table S2,
Supplementary Material online). Thus, niche partitioning in
the Neotropics may be a dominant factor in shaping the
pattern of species richness in Xenarthra. Evidence from cur-
rent geographical distributions shows that in clades such as
Tolypeutinae and Dasypodinae, only little overlap in distribu-
tion ranges is observed (Abba and Superina 2010; Superina,
Miranda, et al. 2010; Superina, Plese, et al. 2010). In line with
these observations, a detailed study has recently identified the
tropical rainforest in the Amazon Basin as an area of high
ecological diversity for xenarthrans, indicating a high disparity
between pairs of coexisting species (Fergnani and Ruggiero
2015).

Biogeographic analyses could provide further insight into
this question, and help understand the role of niche parti-
tioning in time and the consequences on the resulting current
biodiversity. We thus used the Dispersal-Extinction-
Cladogenesis (DEC, Ree and Smith 2008) model on the xenar-
thran timetree to estimate ancestral biogeographic ranges by
taking into account the connectivity among areas through
time, as well as the dispersal abilities between areas according
to the regional biome evolution (fig. 5). The biogeographic
analysis identifies Pan-Amazonia (tropical lowland rainforest
of Amazonia and Guiana Shield) and Atlantic forest as the
cradle of Xenarthra evolution for most of the Paleogene (left
map on fig. 5). This fits well with the high phylogenetic and
ecological diversities observed for xenarthrans in the
Amazonian region (Fergnani and Ruggiero 2015).
Nonetheless, the common ancestor of Chlamyphoridae
(Euphractinae, Chlamyphorinae, and Tolypeutinae) subse-
quently dispersed toward the Southern Cone in the late
Eocene (central map on fig. 5). We also estimated that differ-
ent species of armadillos colonized Central America after the
closing of the Isthmus of Panama (Pliocene), but not in the
middle or late Miocene when land connections were first
made (Montes et al. 2015). Interestingly, only 9 of the 31
phylogenetic events are explained by allopatric speciation, 4
of which involved the Andes and 5 other biome divergences,
such as tropical forest and savannah. Moreover, most of the
allopatric speciation events are recent (last 8 My), indicating
an important role of vicariance due to the building of the
northern Andes, especially in northern Colombia for species
with parapatric distributions in South and Central America,
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such as Cab. unicinctus/Cab. centralis or Ta. tetradactyla/Ta.
mexicana (Moraes-Barros and Arteaga 2015).

The pattern inferred within Pilosa and Cingulata shows
notable differences in the biogeographic processes.
Regarding allopatric speciation (vicariance)/range expansion
(dispersal)/range contraction (local extinction), we found 3/
8/3 events for Pilosa versus 5/17/5 for Cingulata. These results
are suggestive of a relatively stable biogeographic history in
the clade Pilosa, and a more dynamic history in Cingulata.
Indeed anteaters and sloths appeared more stable in time and
centered on the Pan-Amazonian region (Amazonia and
Guiana Shield) and the Atlantic forest. The formation of
the Cerrado and Caatinga isolated Amazonia from the
Atlantic Forest about 9 Ma (Simon et al. 2009) and might
be associated with the diversification of B. torquatus restricted
to the Atlantic forest and its sister group constituted of the
other three-toed sloths (B. pygmaeus, B. tridactylus, and B.
variegatus) within Pan-Amazonia further expanding into
Central America. The final rise of the Northern Andes prob-
ably explains the vicariance between the two Tamandua spe-
cies. These findings corroborate patterns of Xenarthra's
diversification discussed by Moraes-Barros and Arteaga
(2015) who proposed a Western South America origin for
Bradypus. These authors also pointed to a West to East dis-
persal through Amazonia for B. variegatus with a later colo-
nization of the Atlantic forest during the Pleistocene.

On the contrary, armadillos display a more dynamic pat-
tern with many inferred events of range expansions within all
groups, also compensated by several local extinctions. For
instance, we evidenced six independent colonizations of the
Chaco region that likely occurred during the middle to late
Miocene cooling and the aridification from the southern
Amazon region (right map on fig. 5). The Chaco is indeed
an area where current taxonomic richness is high in Xenarthra
(Fergnani and Ruggiero 2015). The creation of new open hab-
itats (biomes) in response to this general cooling (Simon et al.
2009) probably also promoted the diversification of
Chlamyphoridae, especially within Euphractinae, with many
species being now restricted to the different biomes: Z. pichiy
in the Southern Cone (semiarid steppe grasslands); Chl. trun-
catus in the Central Desert; Cab. chacoensis, Cal. retusus, and
To. matacus in the Chaco; To. tricinctus in the Caatinga; and
Cab. tatouay in the Cerrado (Anacleto et al. 2006; Abba et al.
2012). Few species have a large repartition covering different
biomes, such as P. maximus, Cab. unicinctus, and E. sexcinctus.
The concurrent colonizations of arid areas and positive cor-
relation of xenarthran diversification with cooler tempera-
tures (cooler climate favors drier conditions) indicate that
our diversification and biogeographical results are concordant
and corroborate the invasion of the Southern cone within the
last 10-15 My from a tropical origin. This is consistent with
the reported increase in ecological diversity observed for
xenarthrans in this region (Fergnani and Ruggiero 2015).
Overall, the historical biogeography of Xenarthra is best ex-
plained by a progressive biome specialization of species due to
the Cenozoic differentiation of biomes toward the present
that probably led to more opportunities to disperse and di-
versify. The diversity-dependence pattern is likely attributed
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Fic. 5. Historical biogeography of living xenarthrans. The biogeographical range estimation was inferred under the Dispersal-Extinction-Cladogenesis
model taking into account the change of connectivity and dispersal ability between areas defined as the main biomes of the American continent.
Paleogeographic maps depict the tectonic evolution of South America adapted from Blakey (2008). “Dasypus novemcinctus FG” denotes the French
Guiana lineage. K = Cretaceous; Pli. = Pliocene; P. = Pleistocene.
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to allopatry within clades and secondary sympatry established
between clades.

Conclusions

Our exhaustive data set establishes Xenarthra as the first
major clade of placental mammals to be completely se-
quenced at the species level for mitogenomes from both
modern and archival tissues. These data provide a reference
phylogenetic framework and timescale, setting the scene for
studying the diversification and biogeography of xenarthrans.
The phylogenetic scaffold defined here will also be particularly
useful for phylogenetic analyses based on ancient DNA of the
numerous recently extinct taxa contained in this group.
Finally, the wealth of molecular data generated here will be
important for forthcoming studies on the phylogeography,
species delimitation, barcoding, and conservation efforts of
this understudied group of placentals.

Materials and Methods

Biological Samples

The complete taxon sampling we used in this study is detailed
in table 1. The samples notably include several tissues linked to
specimen vouchers deposited in International Natural History
Museums including a type specimen (B. pygmaeus; USNM
579179). Most other tissue samples are conserved in the
Mammalian Tissue Collection of the Institut des Sciences de
I'Evolution de Montpellier (Catzeflis 1991). The maned sloth (B.
torquatus) sample was collected under Brazilian permit Ibama/
MMA 19267-3/14597869, and the Brazilian three-banded ar-
madillo (To. tricinctus) with permit Ibama/MMA 42354-1.

DNA Extraction, lllumina Library Preparation, and
Sequencing

All DNA extractions and library preparations took place in a
separate, dedicated clean room (Biobubble) of McMaster
Ancient DNA Centre, used strictly for low template samples.

DNA Extractions

For bone samples, up to 50 mg of bone materials were split
into small pieces (1-5mm) that were demineralized with
0.75ml of 0.5 M EDTA pH 8 at room temperature overnight
with agitation, and the supernatants removed following cen-
trifugation. For soft tissue samples, up to 50 mg were cut into
small pieces (1-5mm). The one tissue preserved in
Dimethylsulfoxid (DMSO) was washed multiple times with
0.1 X Tris-EDTA buffer (TE) pH 8 and blotted dry to remove
this reducing agent before further processing. Pelleted bone
and tissue samples were then digested with 0.5 ml of a Tris
HCl-based proteinase K solution with 20 mM Tris—Cl pH 8,
0.5% sodium lauryl sarcosine (Fisher Scientific), 5 mM calcium
chloride, 1% polyvinylpyrrolidone (Fisher Scientific), 50 mM
dithiothreitol, 2.5 mM N-phenacyl thiazolium bromide (Prime
Organics), and 250 pg/ml proteinase K. Proteinase digestion
was performed at 55 °C for a couple of hours, with agitation.
Following centrifugation the digestion supernatants were re-
moved and extracted of organics using phenol:chloro-
formisoamyl alcohol  (25:24:1), and the resulting
postcentrifugation aqueous solution was extracted with
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chloroform. We then concentrated the final aqueous phase
with 30 kDA Amicon Ultra 0.5 ml centrifugal filters (Millipore)
at 14,000 x g with three washes using 0.1 x TE buffer pH 8
plus 0.05% Tween-20 to provide a desalted concentrate of
50 pl.

Genomic DNA Fragmentation

For 26 extracts, DNA fragmentation was done by digestion of
1ug of DNA extract with NEBNext dsDNA Fragmentase
(New England Biolabs). The reactions were purified using
the MinElute Polymerase Chain Reaction (PCR) Purification
kit (Qiagen) and eluted in 20 pl buffer EB. The remaining
seven extracts were sonicated using a Covaris $220 according
to manufacturer’s protocol for a median fragment length of
200 bp with a reduced input volume of 50 pl and a maximum
of 10 g of DNA (5 or 10 pul of extract).

Library Preparation and Indexing

We used between 0.1 and 1pg of sheared DNA in Illumina
library preparations as described in Meyer and Kircher (2010)
with the modification of a blunt-end repair reaction volume of
40l or 70l and replacing all SPRI bead clean-ups with
MinElute purifications to 20 pl buffer EB. We did not heat
deactivate the Bst polymerase following the fill-in step and
instead purified the reaction with MinElute to 20 pl buffer
EB. A first set of libraries was index amplified using the
common P5 and a set of unique P7 indexing primers (Meyer
and Kircher 2010) in 50 ul reactions consisting of 1x PCR
buffer 1, 25 mM MgCl,, 250 tM Deoxynucleotide (dNTP)
mix, 200 nM each forward (P5) and reverse (P7) primer, 2.5
U Taq Gold, and 2l (100 ng) of template library. Thermal
cycling conditions were as follows: initial denaturation at
95°C for 4min, 12 cycles of 95°C for 30s, 60°C for 30s,
72°C for 30s, and a final extension at 72°C for 10 min.
Amplifications were performed using a MJ thermocycler
(BioRad). A second set of libraries was dual-index-amplified
using unique P5 and P7 indexing primers (Kircher et al. 2012)
in 50 ul reactions consisting of 1 x AccuPrime Pfx Reaction
mix, 0.5 x EvaGreen, 500 nM each forward (P5) and reverse
(P7) primer, 125 U AccuPrime Pfx DNA Polymerase, and 5
(250-2,500 ng) of template library. Thermal cycling conditions
were as follows: initial denaturation at 95 °C for 2 min, 13 cycles
of 95°C for 155, 60°C for 30s, 68°C for 30s, and a final
extension at 68 °C for 10 min. Amplifications were performed
in real time with a CFX96 Real-time PCR platform (BioRad). All
indexed libraries were finally purified with MinElute to 50 pl EB.

lllumina Sequencing

The 33 libraries were sequenced on 3 different lanes. The first
run including 19 libraries was processed on an lllumina
Genome Analyzer lIx using 72bp single-end reads. The
second run of four libraries was also processed on an
lllumina Genome Analyzer lix but using 72bp paired-end
reads. These first two runs were subcontracted to Ambry
Genetics (Aliso Viejo, CA, USA). The third run of 10 libraries
was run on an lllumina HiSeq 2500 instrument with 100 bp
paired-end reads at the Donnelly Sequencing Centre of the
University of Toronto (Canada). Initial data processing and
base calling, including extraction of cluster intensities, was
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done using RTA1.8 (SCS version 2.8). Sequence quality filter-
ing script was executed in the lllumina CASAVA software (ver
1.7.0, llumina, Hayward, CA).

Mitochondrial Genomes Assembly

Raw sequence reads were first trimmed to remove any adap-
ter and index tag sequences using CutAdapt (Martin 2011).
De novo assembly of the trimmed reads was performed using
the ABySS assembler (Simpson et al. 2009) with default pa-
rameters. We used a range of kmers to optimize contig
lengths and identical contigs resulting from the use of differ-
ent kmers were identified and collapsed using CD-HIT (Fu
et al. 2012). Mitochondrial contigs were then extracted using
BLASTN similarity searches against the closest reference mito-
genome. If not already full length, contigs were assembled
into complete mitochondrial genomes with Geneious R7
(Kearse et al. 2012). Using Geneious, mitogenomes were
checked by mapping the trimmed reads to the mitogenome
assemblies with the low sensitivity option, and scanned by eye
to confirm appropriate mapping, particularly in regions with
repeats. Any gaps in the contig assemblies were progressively
filled by extending the contigs using iterations of the mapping
procedure on the consensus sequence as implemented in
Geneious. Final mitochondrial genomes were annotated by
alignment with published xenarthran mitogenomes, and pro-
tein-coding regions were checked to confirm no indels or
stop codons were present. The 33 new xenarthran mitogen-
omes have been deposited in GenBank under accession num-
bers KT818523-KT818555.

Phylogenetic Reconstructions

The 33 new mitochondrial genomes were added to the 4
available xenarthran mitogenomes and to 3 afrotherian spe-
cies that were used as outgroups: the dugong (Dugong dugon;
NC_003314), the African savannah elephant (Loxodonta afri-
cana; NC_000934), and the aardvark (Orycteropus dfer;
NC_002078). Individual mitochondrial genes were aligned
with the MAFFT v7.017 plugin (Katoh and Standley 2013)
in Geneious, using the amino acid translation for protein-
coding genes. Unambiguously aligned sites were then selected
by Gblocks (Castresana 2000) with default relaxed settings
and codon options for protein-coding genes. The final data
set contained 14,917 sites for 40 taxa and is available as sup-
plementary material. PartitionFinder v1.1 (Lanfear et al. 2012)
was used to find the optimal partition schemes and models of
sequence evolution for RAXML, using the greedy algorithm
starting from 42 a priori defined partitions corresponding to
the 3 codon positions of each of the 13 protein-coding genes,
12S ribosomal RNA (rRNA), 165 rRNA, and the combined
tranfer RNAs (tRNAs). Branch lengths have been unlinked
among partitions and the Bayesian information criterion
was used for selecting the best-fitting partition scheme.

ML inference was implemented with RAXML v7.8
(Stamatakis et al. 2008) using separate general time-reversible
models with gamma distribution for each of the four best-fit
partitions selected by PartitionFinder. Statistical reliability of
the ML tree was evaluated with nonparametric bootstrapping

(100 replications) through the Thorough Bootstrap option of
RAXML under the optimal partitioned model to obtained ML
bootstrap percentages (BPparT)-

Bayesian phylogenetic inference under a mixed model was
conducted using the MPI version of MrBayes 3.2.3 (Ronquist
et al. 2012) using separate GTR+G8+| models for each of the
four selected partitions, as determined by PartitionFinder, with
parameters being unlinked across partitions. Two independent
runs of four incrementally heated MCMCMC starting from a
random tree were performed. MCMCMC was run for
10,000,000 generations, with trees and associated model pa-
rameters being sampled every 1,000 generations. The initial
2,500 trees in each run were discarded as burn-in samples
after convergence checking. The 50% majority-rule Bayesian
consensus tree and the associated posterior probabilities
(PPpart) Were then computed from the 15000 combined
trees sampled in the 2 independent runs. Bayesian phyloge-
netic reconstruction under the CAT-GTR-G4 mixture model
(Lartillot and Philippe 2004) was conducted using PhyloBayes-
MPI 15a (Lartillot et al. 2013). Two independent Markov
Chain Monte Carlo (MCMC) starting from a random tree
was run for 35,000 cycles (2,400,000 tree generations), with
trees and associated model parameters being sampled every
10 cycles. The initial 350 trees (10%) sampled in each MCMC
run were discarded as burn-in after checking for convergence
in both likelihood and model parameters (tracecomp subpro-
gram), and clade posterior probability (bpcomp subprogram).
The 50% majority-rule Bayesian consensus tree and the asso-
ciated posterior probabilities (PPcat) were then computed
from the remaining combined 6,300 (2 x 3,150) trees using
bpcomp.

Molecular Datings

Molecular dating analyses were performed under a Bayesian
relaxed molecular framework using PhyloBayes 3.3f (Lartillot
et al. 2009). In all dating calculations, the tree topology was
fixed to the majority-rule consensus tree previously inferred in
Bayesian analyses. Dating analyses were conducted using the
site-heterogeneous CAT-GTR+G4 mixture model and a re-
laxed clock model, as recommended by Lartillot et al. (2009)
with a birth—death prior on divergence times (Gernhard
2008) combined with soft fossil calibrations (Yang and
Rannala 2006). We used the following five, well-justified
afrotherian and xenarthran calibration intervals defined by
Meredith et al. (2011): 1) Paenungulata (maximum age 71.2
Ma, minimum age 55.6 Ma); 2) Xenarthra (maximum age 71.2
Ma, minimum age 58.5 Ma); 3) Pilosa (maximum age 65.5 Ma,
minimum age 31.5 Ma); 4) Folivora (maximum age 40.6 Ma,
minimum age 15.97 Ma); and 5) Vermilingua (maximum age
61.1 Ma, minimum age 15.97 Ma). We also added a recently
proposed calibration point within armadillos based on the
oldest armadillo fossil skull identified as a stem Tolypeutinae
and found in the late Oligocene of Deseadean in Bolivia at 26
Ma (Billet et al. 2011). This finding allows us to set the min-
imum age for Tolypeutinae at a conservative 23.0 Ma, corre-
sponding to the upper boundary of late Oligocene. The
maximum age for the origin of Tolypeutinae was set at 37.8
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Ma using the lower boundary of the late Eocene, because the
oldest fossils of the closest outgroup (Euphractinae) trace
back to the Casamayoran, at least 36 Ma (Kay et al. 1999).
The prior on the root of the tree (Placentalia) was set at 100
Ma according to Meredith et al. (2011).

Although Lepage et al. (2007) and Rehm et al. (2011)
showed that the autocorrelated LN relaxed clock model gen-
erally offers the best fit, we compared it with the UGAM
model (Drummond et al. 2006) and a strict molecular clock
(CL) model. These three clock models were compared against
each other using the same prior settings (see above) in a
cross-validation procedure as implemented in PhyloBayes.
The cross-validation tests were performed by dividing the
original alignment in 2 subsets of 13,426 sites (learning set)
and 1,491 sites (test set). The overall procedure was repeated
over 10 random splits for which a MCMC chain was run on
the learning set for a total 1,100 cycles sampling posterior
rates and dates every cycle. The first 100 samples of each
MCMC were excluded as the burn-in period for calculating
the cross-validation scores averaged across the 10 replicates.
The final dating calculations were conducted under the best
fitting model by running two independent MCMC chains for
a total 50,000 cycles, sampling posterior rates and dates every
10 cycles. The first 500 samples (10%) of each MCMC were
excluded as the burn-in after checking for convergence in
both likelihood and model parameters. Posterior estimates
of divergence dates were then computed from the remaining
4,500 samples of each MCMC using the readdiv subprogram.
The values reported in table 2 are averages over the 2 inde-
pendent chains.

Diversification Analyses

We used either the Bayesian chronogram or 100 randomly
sampled chronograms obtained from the post burn-in pos-
terior distribution of the PhyloBayes dating analyses to esti-
mate diversification rates with different methods. These trees
have been restricted to 32 taxa to better reflect the current
xenarthran species diversity by excluding redundant taxa. To
visualize the tempo and mode of diversification of the group,
we first reconstructed lineages-through-time plots and then
used a suite of ML models and a Bayesian model of diversi-
fication (Morlon 2014). For each type of ML diversification
model, we computed the corrected Akaike information cri-
terion (AICc). We then checked the support for the selected
model against all models nested within it using likelihood
ratio test (LRT). The scenario supported by LRT with the
lowest AICc was considered the best fit. Bayes factors were
used to assess model fit in the Bayesian framework.

Paleoenvironment-Dependent Diversification Model

To test the effect that past environmental change might have
had on the diversification of Xenarthra, we used a model
derived from the one of Morlon et al. (2011) that allows
speciation and extinction rates to vary according to an envi-
ronmental variable, which itself varies through time
(Condamine et al. 2013), such as past variations in tempera-
ture (Zachos et al. 2001, 2008). Following the approach of
Morlon et al. (2011), we designed four models to be tested:
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1) BCSTDCST, a time constant birth—death model (null
model); 2) BVARDCST, speciation rate is exponentially vary-
ing with temperature and extinction rate is constant; 3)
BCSTDVAR, speciation rate is constant and extinction rate
is exponentially varying with temperature; and 4)
BVARDVAR, speciation and extinction rates are both expo-
nentially varying with temperature. We also repeated these
three rate-variable models with a linear dependence with
temperature (because we have no prior expectation about
how speciation or extinction might vary with temperature).

These models rely on a past environmental variable de-
scribing how the environment varied through time. For tem-
perature, we relied on the well-known Cenozoic temperature
curves published by Zachos et al. (2001, 2008). We used the R
package pspline to reconstruct smooth lines of the paleo-data
for the environmental variable. In other words, a smooth line
is introduced in the birth—-death model to represent the
paleoenvironment through time, and at each point in time
the model refers to this smooth line to obtain the value of the
temperature. Given the dated phylogeny, the model then
estimates speciation and extinction rates as a function of
this value (Condamine et al. 2013).

Time-Dependent Diversification Models

We assessed whether diversification rates remained constant
during the evolutionary history of Xenarthra. We first used
BAMM to estimate speciation and extinction rates through
time along the xenarthran phylogeny (Rabosky 2014). BAMM
allows studying complex evolutionary processes on phyloge-
netic trees, potentially shaped by a heterogeneous mixture of
distinct evolutionary dynamics of speciation and extinction
across clades. The method is designed to automatically detect
rate shifts and sample distinct evolutionary dynamics that
best explain the whole diversification dynamics of the clade.
In BAMM, the speciation rate is allowed to vary exponentially
through time while extinction is maintained constant
(Rabosky, Donnellan, et al. 2014). Subclades in the tree
might diversify faster (or slower) than others, and BAMM
allows detecting these diversification rate shifts and compar-
ing how many and where these shifts might occur. BAMM is
implemented in a C++ command line program and the
BAMMtools R package (Rabosky, Grundler, et al. 2014). We
set 4 MCMC running for 10 million generations and sampled
every 10,000 generations. Other parameters were set to de-
fault values except the Poisson process prior that we set to 1.0
following the authors’ recommendation (Rabosky, Grundler,
et al. 2014). We performed four independent runs (with a
burn-in of 15%) using different seeds, and we used effective
sample size to assess the convergence of the runs, considering
values above 200 as indicating convergence. The posterior
distribution was used to compute the best global rates of
diversification through time, to estimate the configuration
of the diversification rate shifts by evaluating alternative di-
versification models as compared by Bayes factors.

The TreePar package (Stadler 2011) was used to assess
speciation and extinction rates through time, and to specifi-
cally detect potential rapid and global changes in diversifica-
tion rates that might be due to environmental factors, such as
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climatic shifts following major geological events. We em-
ployed the “bd.shifts.optim” function that allows estimating
discrete changes in speciation, extinction rates, and mass ex-
tinction events in undersampled phylogenies (Stadler 2011).
At each time t, the rates are allowed to change and the species
may undergo a shift in diversification. TreePar analyses were
run with the following settings: start =0, end = crown age
estimated by dating analyses, grid=0.1 Myr, and
posdiv = FALSE to allow the diversification rate to be negative
(i.e, allows for periods of declining diversity).

Diversity-Dependent Diversification Model

We investigated whether lineages diversified rapidly in their
early stages and have reached equilibrium (or are being
bounded), suggesting that diversity is saturated toward the
present, as niches became occupied and diversification rates
slowed down. We used the method of Etienne et al. (2012) to
explore the effect of diversity on speciation and extinction
rates. The function “dd_ML" was used to fit five models: 1)
speciation declines linearly with diversity and no extinction
(DDL), 2) speciation declines linearly with diversity and ex-
tinction (DDL + E), 3) speciation declines exponentially with
diversity and extinction (DDX+E), 4) extinction increases
linearly with diversity (DD + EL), and 5) extinction increases
exponentially with diversity (DD + EX). The initial carrying
capacity was set to the current species diversity, and the
final carrying capacity was estimated according to the
models and parameters.

Biogeographic Reconstructions

The ancestral range estimation was performed using
BioGeoBEARS (Matzke 2014). The analyses were carried out
using the same time-calibrated phylogeny as used for the
diversification analyses. We used the DEC model (Ree and
Smith 2008) to conduct local optimizations and estimate the
ancestral character state of each node according to the cur-
rent distribution and biogeographical model the user intro-
duces in the analyses. The root was left unconstrained but
optimized by the method. We did not assess whether the
inclusion of the founder-event speciation (parameter ) sig-
nificantly improved the likelihood because DEC-] is appropri-
ate for island-dwelling clades (Matzke 2014).

A geographic model was incorporated to include opera-
tional areas that are defined as geographic ranges shared by
two or more species and delimited by geological or oceanic
features, which may have acted as barriers to dispersal. The
distribution of anteaters, armadillos, and sloths ranges from
southern North America to southern South America (Abba
and Superina 2010; Superina, Plese, et al. 2010; Superina,
Miranda, et al. 2010). We further divided these two regions
into smaller biogeographic identities to obtain higher resolu-
tion in the inference of the ancestral area of origin. Using
tectonic reconstructions, notably the evolution of past
Amazonian landscapes (e.g, Hoorn et al. 2010), the model
comprised nine component areas: 1) Amazonia (Amazon
Forest plus Amazon Basin); 2) Mata Atlantica (Atlantic
Forest along the Brazilian coast); 3) Cerrado (tropical savan-
nah) and Caatinga (desert and xeric shrublands); 4) Chaco

region and Pantanal (semiarid lowland and adjacent wet-
lands); 5) southern South America (grasslands); 6) Southern
and Central Andes (Chile, western Bolivia, and Peru); 7)
Northern Andes (Ecuador, Colombia, and western
Venezuela); 8); Guiana Shield (eastern Venezuela, Guyana,
Suriname, French Guiana), and 9) Central and North
America (from Panama to southern USA). The adjacency
matrix was designed while taking into account the geological
history and the biological plausibility of combined ranges
(Hoorn et al. 2010). We discarded ranges larger than six
areas in size that were not subsets of observed species
ranges (Da. novemcinctus had the largest range with six
areas). Distributional data were compiled from monographs
and IUCN data (Abba and Superina 2010; Superina, Plese,
et al. 2010; Superina, Miranda, et al. 2010).

We did not split our sample into smaller geographic areas
for several reasons. The complexity of the geological history of
this region makes it difficult to accurately reconstruct past
distributions of land and sea at any given point in time. For
instance, many uncertainties remain about the appearance
and disappearance of the Pebas System, or the exact timing of
the rising of the Andes (Hoorn et al. 2010). Moreover, our goal
was to investigate the dominant biogeographical processes
that shaped the xenarthran distribution pattern. For the
latter, we were particularly interested in assessing the relative
contributions of vicariance and dispersal.

Supplementary Material

Supplementary figures S1-S3 and tables S1 and S2 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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