74 research outputs found

    Mathematical Optimization Models in the Sugarcane Harvesting Process

    Get PDF
    Over the past few decades, due to environmental and economic factors, the sugarcane has been considered a versatile and important plant to the several countries. The energy-sugar-ethanol agro-industries are seeking to take advantage of all its material, with the main products produced being renewable energy, sugar and ethanol. In this chapter, we propose to present a review of the important works that use mathematical and computational tools, aiming to optimize the sugarcane harvesting, in the past 30 years

    Economic Modeling of Agricultural Production in North Dakota Using Transportation Analysis and Forecasting

    Get PDF
    Agricultural industry is crucial for the economy; agricultural transportation is an integrated part of that industry. Optimization of the transportation and logistics costs is an important part of the transportation economics. This study focuses on the minimization of the total cost of transportation logistics. Sugar-beet is one of the important crops in the state of North Dakota and there has been sporadic research in the sugar-beet transportation economic modeling. Therefore, this research focuses on the transportation economic modeling of the sugar-beet including yield forecasting to reduce the uncertainty in this process. This study begins with developing a yield forecasting model which is presented as a way to sustain the agricultural transportation under stochastic environments. The stochastic environment includes variation in weather conditions, precipitation, soil type, and randomness of natural disasters. The yield forecasting model developed uses Normalized Difference Vegetation Index (NDVI), Geographical Information System (GIS), and statistical analysis. The second part of this study focuses on economic model to calculate the total cost associated with the sugar-beet transportation. This model utilizes the GIS analysis to calculate the distances travelled from member coop farms during harvest and transport to processing facilities in various locations. This model sheds light on the critical cost factors associated with the total economic analysis of sugar-beet harvest, transportation, and production. Since the sugar-beet yield varies significantly based on different factors, it provides for a variable optimal harvesting time based on the plant maturity and sugar content. Sub-optimized pilers location result in the high transportation and utilization costs. The third part of this research focuses on minimizing the sum of transportation costs to and from pilers and the piler utilization cost. A two-step algorithm, based on the GIS with global optimization method, is used to solve this problem. In conclusion, this research will provide a primary stepping stone for farmers, planners, and engineers to develop a data driven analytical tool which will help to minimize the total logistics cost of the sugar-beet crop while at the same time keeping the sugar content intact and predict the sugar yield and truck volume

    Internet of Things Applications in Precision Agriculture: A Review

    Get PDF
    The goal of this paper is to review the implementation of an Internet of Things (IoT)-based system in the precision agriculture sector. Each year, farmers suffer enormous losses as a result of insect infestations and a lack of equipment to manage the farm effectively. The selected article summarises the recommended systematic equipment and approach for implementing an IoT in smart farming. This review's purpose is to identify and discuss the significant devices, cloud platforms, communication protocols, and data processing methodologies. This review highlights an updated technology for agricultural smart management by revising every area, such as crop field data and application utilization. By customizing their technology spending decisions, agriculture stakeholders can better protect the environment and increase food production in a way that meets future global demand. Last but not least, the contribution of this research is that the use of IoT in the agricultural sector helps to improve sensing and monitoring of production, including farm resource usage, animal behavior, crop growth, and food processing. Also, it provides a better understanding of the individual agricultural circumstances, such as environmental and weather conditions, the growth of weeds, pests, and diseases

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Modelación matemática en estudio de agro-cadenas: una revisión de literatura

    Get PDF
    The agricultural sector is the fundamental axis that moves the world economy, it allows the generation of agricultural and livestock products to supply small and large cities. In underdeveloped countries, the participation of industry and academia is necessary to strengthen production systems, this based on the injection of technology, as well as the transfer and appropriation of knowledge in the sector. An approach used to strengthen the sector is the study of agricultural supply chains (agro-chains) based on mathematical modeling, that allows data processing and facilitates strategic, tactical or operational decision-making. We conducted a review of the literature on the application of mathematical models in the study of agricultural chains during the last 20 years. The study concludes that there is a fairly great interest by the academic-scientific community to strengthen the agricultural sector in different countries such as the United States, Brazil, India and the Netherlands, among others. Stochastic simulation models are used in 36% of the consulted works, allowing complex problems involving uncertainty in data behavior to be addressed. Also, in 70% of the works consulted, heuristic models are used to solve design and distribution problems in agro-chains, and the remaining 30% require the use of metaheuristics because they require solving problems with multiple responses given the complexity of the data. Mathematical modeling has become a very useful tool for solving latent problems in agro-chains, it facilitates data processing and complex decision-making, mainly during chain design, product supply and control of costs, delivery times and environmental impacts, among other important variables.El sector agrícola es el eje fundamental que mueve la economía del mundo, permite la generación de productos agrícolas y pecuarios para el abastecimiento de pequeñas y grandes ciudades. En los países subdesarrollados es necesaria la participación de la industria y la academia para el fortalecimiento de los sistemas productivos, esto a partir de la inyección de tecnología, así como la transferencia y apropiación de conocimiento en el sector. Un enfoque usado para el fortalecimiento del sector, es el estudio de las cadenas de suministro agrícolas (agro-cadenas) a partir de la modelación matemática, la cual permite el tratamiento de datos y facilita la toma de decisiones de orden estratégico, táctico y/o operativo. En el presente trabajo se realizó una revisión de literatura sobre la aplicación de la modelación matemática en el estudio de las Agro-cadenas durante los últimos 20 años. Se concluye del estudio que, existe un interés bastante grande por la comunidad académico-científica por fortalecer el sector agrícola en diferentes países como Estados Unidos, Brasil, india y Holanda entre otros. En el 36% de los trabajos consultados se emplean modelos de simulación estocástica, permitiendo abordar problemas complejos que involucran incertidumbre en con comportamiento de los datos. Además, en el 70% de los trabajos consultados, se utilizan modelos heurísticos para resolver problemas de diseño y distribución en agrocadenas, y el 30% restante requiere el uso de meta-heurísticas porque requieren resolver problemas con múltiples respuestas dada la complejidad de los datos. La modelación matemática se ha convertido en una herramienta de gran utilidad para la solución de problemas latentes en la agro-cadenas, facilita el tratamiento de datos y la toma de decisiones complejas, principalmente durante el diseño de cadena, el abastecimiento de producto y control de costos, tiempos de entrega e impactos ambientales, entre otras variables importantes.El sector agrícola es el eje fundamental que mueve la economía del mundo, permite la generación de productos agrícolas y pecuarios para el abastecimiento de pequeñas y grandes ciudades. En los países subdesarrollados es necesaria la participación de la industria y la academia para el fortalecimiento de los sistemas productivos, esto a partir de la inyección de tecnología, así como la transferencia y apropiación de conocimiento en el sector. Un enfoque usado para el fortalecimiento del sector, es el estudio de las cadenas de suministro agrícolas (agro-cadenas) a partir de la modelación matemática, la cual permite el tratamiento de datos y facilita la toma de decisiones de orden estratégico, táctico y/o operativo. En el presente trabajo se realizó una revisión de literatura sobre la aplicación de la modelación matemática en el estudio de las Agro-cadenas durante los últimos 20 años. Se concluye del estudio que, existe un interés bastante grande por la comunidad académico-científica por fortalecer el sector agrícola en diferentes países como Estados Unidos, Brasil, india y Holanda entre otros. En el 36% de los trabajos consultados se emplean modelos de simulación estocástica, permitiendo abordar problemas complejos que involucran incertidumbre en con comportamiento de los datos. Además, en el 70% de los trabajos consultados, se utilizan modelos heurísticos para resolver problemas de diseño y distribución en agrocadenas, y el 30% restante requiere el uso de meta-heurísticas porque requieren resolver problemas con múltiples respuestas dada la complejidad de los datos. La modelación matemática se ha convertido en una herramienta de gran utilidad para la solución de problemas latentes en la agro-cadenas, facilita el tratamiento de datos y la toma de decisiones complejas, principalmente durante el diseño de cadena, el abastecimiento de producto y control de costos, tiempos de entrega e impactos ambientales, entre otras variables importantes.The agricultural sector is the fundamental axis that moves the world economy, it allows the generation of agricultural and livestock products to supply small and large cities. In underdeveloped countries, the participation of industry and academia is necessary to strengthen production systems, this based on the injection of technology, as well as the transfer and appropriation of knowledge in the sector. An approach used to strengthen the sector is the study of agricultural supply chains (agro-chains) based on mathematical modeling, that allows data processing and facilitates strategic, tactical or operational decision-making. We conducted a review of the literature on the application of mathematical models in the study of agricultural chains during the last 20 years. The study concludes that there is a fairly great interest by the academic-scientific community to strengthen the agricultural sector in different countries such as the United States, Brazil, India and the Netherlands, among others. Stochastic simulation models are used in 36% of the consulted works, allowing complex problems involving uncertainty in data behavior to be addressed. Also, in 70% of the works consulted, heuristic models are used to solve design and distribution problems in agro-chains, and the remaining 30% require the use of metaheuristics because they require solving problems with multiple responses given the complexity of the data. Mathematical modeling has become a very useful tool for solving latent problems in agro-chains, it facilitates data processing and complex decision-making, mainly during chain design, product supply and control of costs, delivery times and environmental impacts, among other important variables

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Geosensors to Support Crop Production: Current Applications and User Requirements

    Get PDF
    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load

    A simulation study of cane transport system improvements in the Sezela Mill area.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.The South African sugar industry is of significant local and international importance and covers an area in excess of 450 000 hectares. This area yields approximately 21 million tons of sugarcane per annum which is transported almost exclusively by road, from farms to the sugar mills. The industry is under increasing economic pressures to improve its productivity and competitiveness and sugarcane transport in the sugarcane supply chain has been identified as one area where large improvements and associated cost reductions can be made. This is mainly due to the excess in number of vehicles in the inbound transport system, the high relative cost of transport compared to other production costs in producing sugarcane, and the high fixed costs associated with truck fleet operations. A simulation case study of the transport system was completed in 2005 in the Sezela Mill area in which approximately 2.2 million tons of sugarcane is transported per annum over an average distance of 29 km by approximately 120 independently managed vehicles owned by a wide range of hauliers and individual growers. This amounts to an estimated cost of R58 million per annum. This study investigated the potential savings that could occur as a result of a central fleet control system with integrated vehicle scheduling. A scheduling software package named ASICAM, which resulted in significant savings in the timber industry (Weintraub et al, 1996), was applied within the Sezela region. Results suggested that the number of trucks in the fleet could theoretically be reduced by at least 50%, providing that a central office controls vehicle movements and that all hauliers serve all growers in an equitable fashion. In addition, investigations towards decreasing loading times, decreasing offloading times, changing vehicle speeds and increasing payloads by reducing trailer tare mass showed further reductions in the number of trucks required

    Proposal of architecture for IoT solution for monitoring and management of plantations

    Get PDF
    The world population growth is increasing the demand for food production. Furthermore, the reduction of the workforce in rural areas and the increase in production costs are challenges for food production nowadays. Smart farming is a farm management concept that may use Internet of Things (IoT) to overcome the current challenges of food production This work presents a systematic review of the existing literature on smart farming with IoT. The systematic review reveals an evolution in the way data are processed by IoT solutions in recent years. Traditional approaches mostly used data in a reactive manner. In contrast, recent approaches allowed the use of data to prevent crop problems and to improve the accuracy of crop diagnosis. Based on the finds of the systematic review, this work proposes an architecture of an IoT solution that enables monitoring and management of crops in real time. The proposed architecture allows the usage of big data and machine learning to process the collected data. A prototype is implemented to validate the operation of the proposed architecture and a security risk assessment of the implemented prototype is carried out. The implemented prototype successfully validates the proposed architecture. The architecture presented in this work allows the implementation of IoT solutions in different scenarios of farming, such as indoor and outdoor

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing
    • …
    corecore