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Abstract—The goal of this paper is to review the 

implementation of an Internet of Things (IoT)-based system in 

the precision agriculture sector. Each year, farmers suffer 

enormous losses as a result of insect infestations and a lack of 

equipment to manage the farm effectively. The selected article 

summarises the recommended systematic equipment and 

approach for implementing an IoT in smart farming. This 

review's purpose is to identify and discuss the significant 

devices, cloud platforms, communication protocols, and data 

processing methodologies. This review highlights an updated 

technology for agricultural smart management by revising 

every area, such as crop field data and application utilization. 

By customizing their technology spending decisions, agriculture 

stakeholders can better protect the environment and increase 

food production in a way that meets future global demand. Last 

but not least, the contribution of this research is that the use of 

IoT in the agricultural sector helps to improve sensing and 

monitoring of production, including farm resource usage, 

animal behavior, crop growth, and food processing. Also, it 

provides a better understanding of the individual agricultural 

circumstances, such as environmental and weather conditions, 

the growth of weeds, pests, and diseases. 

Keywords—component; Internet of Things; Precision 

agriculture; Data management; Crop monitoring; Smart farming 

I. INTRODUCTION 

The agriculture sector contributes to a large share of 

emerging countries' Gross Domestic Product (GDP) [1]. The 

ability of this industry to keep up with the ever-increasing 

population and the demands of emerging technologies is in 

jeopardy due to the ever-increasing population. By 2030, the 

population of the planet will have topped 8 billion, and nearly 

10 billion by 2050. In terms of population size, China and 

India are the most populous countries in the world, with more 

than 1 billion inhabitants each, accounting for 19 percent and 

18 percent of the world's total population, respectively. By 

2022, China is expected to overtake India in population by 

2022. Agricultural production is critical to the economies of 

both countries in order to ensure a steady supply of 

livelihoods for their growing populations. 

The Internet of Things (IoT) is a modern developing 

mechanism that has taken over networked cloud applications, 

ranging from electrical to digital systems, mechanical, as well 

as individuals with unique IDs. By far the most important 

consideration of the IoT is the potential to transmit data 

without the need for a human transmission interface. 

Attributed to the reason that the field is stretched across a 

large region of farmland for agricultural or animal gazing, the 

application of Wireless Sensor Nodes (WSN) is the best way 

to solve the problem. The actuator modules are 

interconnected to the Personal Area Network (PAN) as they 

consume a huge amount of power which is not as numerous 

as the sensor nodes. This comprehensive framework can be 

integrated into an IoT-based system by utilizing existing 

Local Area Network (LAN) and Internet infrastructure. 

Agricultural digitization is advancing in the majority of 

emerging countries. In Japan, computerised crop breeding, 

insect utilisation, agricultural management, and the 

preparation of meteorological reports are all common. 

Farmers in the United States (US) have access to large data 

cloud systems, as well as government databases for 

agriculture, research institutes, and libraries. Farmers can use 

the database to acquire up-to-date market prices, crop 

improvement, and growing skills and technology in the 

agriculture sector. Computers can assist farmers in 

determining the best crops to plant, the best seasons to grow 

them, and the best farming mode to use, resulting in farms 

with the maximum yields and benefits. Well-known financial 

management information system (FMIS) providers, such as 

Wisu 10 and Agrineuvos, offer plug-in or comparable 

solutions for a variety of agricultural management specialties. 

 Acknowledging appropriate and available information is 

essential for agricultural production education. An 

agriculture management information system (AMIS) is built 

on the foundation of agricultural information. The 

management of agricultural data is greatly influenced by the 

quality of agricultural data collection and processing. 

Because the farming ecosystem is a relatively complicated 

ecological framework with numerous elements ranging from 

the environment to the human, from ecology to economics, 

and from geography to culture, data collection often incurs 

significant expenditures and technologies. 

 In conclusion, this study has made a significant 

contribution in that the application of IoT in the agricultural 

sector may enhance sensing and monitoring of production, 

including farm resource utilisation, animal behaviour, crop 

development, and food processing [93, 95]. In addition, it 

helps farmers better understand specific agricultural 

situations, such as how the environment and weather affect 

the growth of weeds, pests, and diseases, as well as other 

things [95, 96]. 
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II. DATA MANAGEMENT IN AGRICULTURE 

Smart agriculture, also known as automated farming, is 

the most recent paradigm based on agricultural data to 

emerge. It was made possible by advancements in 

telecommunications and data processing, which were 

combined with the previously existing concept of precision 

agriculture to improve operational accuracy. In this sense, 

smart agriculture is founded on the same principles, with 

farmers implementing this technology that collects data from 

agricultural fields, which would then be analyzed in order to 

draw suitable managerial and operational conclusions. 

Traditionally, farmers had to personally visit the ground farm 

to inspect the state of the plots and to review decisions that 

were made without their prior knowledge. A multitude of 

factors have rendered this method ineffective, including the 

fact that many sectors are too broad to be adequately 

addressed within the framework of legal standards. In the 

context of smart agriculture, cutting-edge management tools 

are providing practical applications. Aside from that, 

although some farmers have long-term expertise gathered via 

a variety of experiences, technology can provide an 

automated way to find unpredictable defects that are difficult 

to notice through eyesight assessment on a periodic basis. 

Younger farmers are more likely to use new agricultural 

technologies than older farmers, as they will employ smart 

devices or instruments to enhance their limited knowledge. 

Even so, the average age of farmers has risen rapidly in recent 

decades: 63 in Japan, 60 in Africa, and 58 in the US and 

Europe [2]. Fortunately, various policies are being revised 

and expanded in Europe to help generational transformation 

by increasing access to initial capital, loans, market counsel, 

and coaching. Generational regeneration goes beyond merely 

decreasing rural farmer's retirement age. In addition, it 

involves encouraging the most educated and active young 

farmers to use technology to promote viable agri-business 

practices. In order to attain sustainable food security and food 

chain competitiveness, young farmers must convert their 

current land into more sustainable and efficient farms. 

A. Data Acquisition Using an IoT 

The correlation of IoT with agriculture has always been 

defined as the use of sensing devices and other instruments to 

convert any part of farming activities into data. Over 10% of 

US farmers are anticipated to use IoT devices on their 

plantations, which cover more than 2400 million acres. The 

Internet of Things is at the heart of so-called "agricultural 

4.0". Indeed, IoT technology has become a catalyst in 

agriculture businesses because it enables the generation of 

such a vast volume of relevant knowledge, and improvements 

in these technological advancements are expected to have a 

significant impact on the farming sector. By 2050, it is 

predicted that the IoT will be able to boost agricultural output 

by over 70% using existing techniques. This is a positive 

development, as Myklevy et al. claimed that the planet's food 

supply must expand by 60% by 2050 to accommodate the 

world's growing population of nearly 900 million people. The 

main benefits of the Iot systems are better harvests and lower 

prices. A typical farming business that uses IoT can improve 

yield by up to 2% and minimize energy use by up to 8%. 

 

B. Analytics of Big Data 

In order to generate organisational big data, a new form 

of automation technique is required due to the enormous 

amounts of data streams accessible for farm management. 

Even so, the volumes of information retrieved from either the 

majority of industrial or agricultural subject areas are unlikely 

to meet the criteria for classification as big data. It can be 

classified into three perspectives when it comes to big data: 

the volume, velocity, and variety of organisms. Veracity and 

valorization, resulting in the following: 

a) Volume: Volume linked with databases that are too 

large to be captured, archived, handled, and analyzed using 

conventional methods. It provides an estimate of the size of a 

database required to be considered huge, which varies by 

respected field, based on commonly available computing 

resources and standard dataset sizes, which often begin in the 

terabyte range. 

b) Velocity: The term "velocity" describes the 

capability of learning, comprehending, and experiencing 

events as they occur. When it comes to agriculture, these 

systems operate in real-time, such as information extraction 

in the area to implement different amounts of chemicals in 

equipment fitted with variable-rate delivery mechanisms, 

among other applications. 

c) Variety: The phrase "variety" alludes to the various 

information formats (text, videos, and audio) and levels of 

sophistication. Soil or temperature sensors and images are 

just two examples of the kinds of data that are employed in 

agriculture when dealing with ever-changing circumstances. 

d) Veracity: The word "veracity" relates to the 

consistency, reliability, and authenticity of the information. 

e) Valorization: It is called valorization when one 

wants to share awareness, respect, and creativity with other 

people. 

In terms of agricultural management, big data is significant 

in agriculture only in particular circumstances, relying on the 

plantation and the pace of technological acceptance. There 

were 34 surveys that talked about how information systems 

could be utilised in farming [3], and research on how big data 

could be used in modern agriculture was conducted by 

Wolfert et al. [4]. To keep up, the Organization of Global 

Agricultural Research Centers launched the Agriculture Big 

Data Platform, which promises to address agricultural growth 

concerns more rapidly, more affordably, and more effectively 

than the existing approaches. 

C. Using Artificial Intelligence (AI) and Robotics to Aid 

Humanity in Agriculture 5.0 

Through transformative technology, large engineering 

problems frequently lead to significant solutions, and 

Agriculture 5.0 is most certainly one for the early half of the 

twenty-first millennium. Agriculture 5.0 is a concept that 

describes farmlands that employ Precision Agriculture 

standards and technology, such as autonomous operational 

processes and automated decision support tools. As a matter 

of fact, Agriculture 5.0 incorporates various forms of AI and 

robotics. Historically, farms have relied heavily on seasonal 

labour to work the fields and increase profitability. However, 
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the culture has changed from an agrarian community with 

many people residing in fields to one that has more people 

living in towns, which has led to a shortage of workers on 

farms. According to a Forbes report, agricultural robots help 

humans by harvesting crops faster and more efficiently. 

Whilst robots are still extremely slow than individuals in so 

many elements, agriculture is currently improving 

technology tools to assist farmers with repetitive tasks, 

driving agricultural systems into the modern paradigm of 

Agriculture 5.0. Based on Reddy et al. [5], agricultural 

robotics has increased efficiency and decreased farm 

operating expenses in a number of nations. Robotic 

technologies for agriculture are developing at a quick speed 

[6], offering exciting potential for smart farming in the face 

of staff shortages and long-term diminishing profit growth; 

but, just like other breakthroughs, major restrictions must be 

addressed in the current early phases. Since small individual 

farms are less profitable due to scale economics, these 

technologies remain outrageously expensive for the majority 

of farmers, including those with small farms. Furthermore, as 

technology becomes more affordable, agricultural robotics 

will undoubtedly be used in the future as a means of 

increasing production. Farming and crop production around 

the world slowed down in 2015. Agricultural robots were 

designed to address these concerns and fulfill an increasing 

necessity for better returns. According to a Verified Market 

Intelligence analysis, agricultural robotics would be able to 

accomplish field chores more efficiently than farmers, 

improving the worldwide agriculture and crop production 

market. 

Over $800 million has been raised by agricultural 

technology startups within the last five years. In 2014, start-

ups that use automatons and the use of machine learning to 

tackle agricultural challenges have expanded. This coincided 

with a big rise in the popularity of AI. For the last five years, 

there has been a significant increase in venture funding for AI 

[7]. The United Nations Food and Agriculture Organization 

(FAO) says there will be more than 9 billion people 

worldwide on Earth by 2050. This new form of agriculture 

gives the pretence of accomplishing something for less. In 

agriculture, the use of high-tech sensing technologies will 

help solve the problem. These technologies will provide 

accurate information regarding soil and crops as well as the 

environment, which will enable the practical implementation 

of phytosanitary goods that will drastically reduce herbicides 

and pesticides, enhance water utilization reliability, and raise 

agricultural production. 

III. REVIEW ON IMPLEMENTING IOT BASED 

AGRICULTURE IN THE CURRENT MARKET 

Pesticide or fertilizer management, plant health, disease 

prevention, irrigated agricultural monitoring, soil 

conservation, distribution network traceability, automotive 

and machine and equipment control, are some of the most 

often used applications for IoT solutions in modern 

agriculture. Table 1 lists the articles that were reviewed, 

which are organized by climate of farmlands and the 

utilisation of the IoT approach. In particular, it is vital to keep 

in mind that some of the IoT systems strategies presented in 

the examined papers could be applied in a range of settings. 

Agricultural crop monitoring, as illustrated in Table 1, is the 

most widely utilised IoT system for smart farming. 

Furthermore, these solutions have been created for usage in a 

number of agricultural contexts, including arable fields, 

orchards, and greenhouses, among others. Crop surveillance 

is critical for farmers, which explains why this sort of 

technology is so popular in agriculture. IoT solutions for crop 

monitoring were made with the goal of getting environmental 

data from plantations, like temperature, humidity, luminosity, 

and so on, from the field. Farmers can utilise this data to gain 

a more comprehensive view of their plantations. Similar data, 

for example, has been used to evaluate the vigour of price [8, 

9], alfalfa [10], and maize [11] crops, as well as to regulate 

greenhouse environmental conditions [12, 13, 14]. 

TABLE I. THE APPLICATION AND THE ENVIRONMENT OF 

SMART AGRICULTURE 

Application Orchard Arable 

Land 

Greenhouse Generic 

Monitoring 

of Crop 

Chemical 

control 

[14-17] 

[27] 

[18-21] 

[28, 29] 

[22-24] 

[30] 

[25, 26] 

[31] 

Disease  [32, 33] [34] [35] 

Control of 

Irrigation 

Supply chain 

traceability 

[36, 37] 

 

[38] 

 

[39, 40] 

[43] 

[41, 42] 

[44] 

Soil 
management 

[45] [46]  [47] 

Other [48] [49]  [50] 

 

Similarly, as demonstrated in Table 1, IoT automated 

irrigation systems have been created for a variety of 

agricultural situations. To enhance agricultural water use, 

numerous IoT systems are intended to use sensors to detect 

soil moisture and monitor irrigation sources. Alternatively, in 

a more simplified manner, by integrating weather and 

humidity data to ascertain the amount of accessible water 

when watering the crops [36]. IoT disease control approaches 

are designed to detect and avoid diseases on plantations. 

These IoT solutions obtained a range of environmental and 

plantation data for this purpose, including plant photos [33], 

sounds, temperature, humidity, and so on. This data is 

analyzed using various methods. For example, image 

processing and AI. For instance, the Internet of Things 

driving innovation in [51], analyses shots of a sugarcane 

plant and discovers infections of pesticides on the plant's 

green leaves. In comparison, [52] established an Internet-of-

Things-enabled device for recording the sounds emitted by 

larvae within trees. Table 1 summarizes IoT technologies for 

chemical control that aid in optimizing fertilizer and pesticide 

application on plantations. As a result, these technological 

solutions gather information from crops (such as nitrogen, 

salinity, or PH). These IoT technologies can distinguish crop 

zones that may require fertilizer or pesticide application 

results derived. The nitrogen content in a large plantation, for 

example, can be evaluated using aerial pictures of crops [53]. 

These pictures may be used to locate the precise field that 

needs fertilizer. Furthermore, [30] created an autonomous 

robot that optimizes pesticide distribution in greenhouse 
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growing areas. The industrial IoT soil science platforms seek 

to describe a variety of soil characteristics that may be 

implemented for planting. As an example, such systems are 

used to determine soil water content [54], analyze water 

consumption patterns [55], identify soil nutrients [56], and as 

weather station with air quality measurement [57]. 

 The IoT technologies for automobile and machinery 

management are primarily focused on collecting and 

analysing data from agricultural plants and facilities such as 

trucks, harvesters, and tractors. As a result, IoT solutions have 

to handle unique features of agricultural gear, such as 

mobility. Sensors receive inputs from the equipment itself, 

such as the state of the implement, engine performance, or 

rpm, in order to optimise their maintenance period. Further, as 

agricultural equipment has become more mobile, 

opportunistic computing has been used to collect data from 

remote crop fields via tractors equipped with sensors [62, 63]. 

Each agricultural condition in Table 1 poses unique challenges 

for production, along with the environment's influence on 

sensor information exchange, which can be caused by sensor 

node distance [59], a breakdown in communication in 

farmlands [63], or even the effect of vegetation on signal 

transmission. Additionally, meteorological variables such as 

snow, fog, or solar irradiance have an impact on both the 

sensor network and the planting. Approximately 96% of the 

papers surveyed used electronic sensors to cover these 

situations. This descriptive approach is validated by the fact 

that such sensor nodes are certified, affordable, and available, 

as well as meeting the essential monitoring criterion for IoT 

technology for smart agriculture. As indicated by Table 2, 

such sensors are utilised to gather real-time data on various 

agricultural parameters, including meteorological variables, 

substrate characteristics, luminance, CO2 concentration, and 

pictures. Additionally, certain publications (4%) focused on 

the development of customised sensors for the purpose of 

keeping track of specific agricultural parameters, using 

approaches like soil mineral elements (e.g., nitrate 56]) and 

plant leaf evaporation to calculate hydric pressure in tobacco 

crops [65]. 

 As shown in Table 2, a wide range of sensors were 

implemented in IoT approaches for modern farming to glean 

knowledge about farming from a variety of sources, including 

the environment, agricultural productivity, and substrates. As 

shown in Table 2, electronic detectors are being applied in IoT 

solutions to acquire parameters. For example, humidity, 

temperature, and luminosity [14, 23, 58]. Besides that, 

electronic sensor nodes were implemented to acquire 

information from the soil surface (e.g., water and soil) for 

substrate supervision, including moisture, temperature, and 

nitrogen. Similarly, pH sensors are often applied in 

hydroponics cultivation practices to test the alkalinity or 

acidity of the water. Multispectral sensor systems and cameras 

were used to take pictures of crops so that they could be 

tracked. UAVs may be employed in multiple ways to take 

aerial photos of huge plantations [8, 9, 11] or robots are being 

implemented to get a very detailed picture of a plant leaf [73]. 

The choice of equipment is an important part of the 

development of an IoT application because it affects the 

expenses as well as the technological advances for use. 

Among the publications, 60% reviewed the components 

applied to facilitate the IoT application. 

Moreover, SBCs were described in 40% of the studies 

surveyed. The usage of SBCs is justified by their low cost and 

scalability [21], which enables the production of customised 

IoT systems. Certain SBCs, such as Arduino, includes a built-

in development environment (IDE). It allows for the 

advancement of customised applications that may be 

employed in order to run as software on the microcontroller. 

Moreover, the Raspberry Pi runs on a multitude of platforms, 

such as Ubuntu Core, Raspbian, and Mozilla Web Things. It 

is possible to modify the source code of several of these 

operating systems. Additionally, these operating capabilities 

enable the execution of programmes developed in 

programming languages like Python [74]. Moreover, the 

functions of SBCs can be enhanced by incorporating other 

elements such as sensing devices or transceivers. Due to this 

feature, SBCs can operate as gateways or core networks in 

IoT approaches. The application of ESP boards (including 

ESP12, ESP32, and ESP8266), Arduino, and Raspberry Pi 

was mentioned in 82% of the publications that covered SBCs. 

The following table depicts how integrated machine 

platforms and UAVs are used in modern agriculture. 

TABLE II. NUMEROUS VARIETY OF DETECTORS AND THEIR 

FUNCTIONS IN FARMING 

Purpose of 

Implementation 

Examples of 

detectors 

Application of 

sensing 

devices 

References 

Management of 
Crop 

DSC-QX100 
Cyber-shot, 

Parrot Sequoia 

Growth [11] 

 FLIR Blackfly 
23S6C 

Pest detection [35] 

Substrate 

monitoring 

DS18B20, 

VH400 

Moisture and 

temperature of 

soil 

[57] 

 SEN0244 Chemical 

elements such 

as nitrate, 
nitrogen 

[58] 

Environment 

monitoring 

DHT11, 

DHT22 

Humidity and 

temperature of 
air 

[23] 

 SQ-110 

MG-811, 
MQ135 

Solar radiation 

CO2 
concentration 

[59] 

[14] 

YF-S402, YL-

83, Helsinki, 
SE-WS700D 

Rain [60] 

WS-3000, 

SEN08942 

Wind speed 

and direction 

[57, 59] 

MPL3115A2 Atmospheric 

pressure 

[21] 

BH1750, 
TSL2561 

 

Luminosity 
 

[61] 
 

 

Table 3 shows how IoT-enabled computers are employed 

in a variety of IoT systems for modern agriculture. SBCs can 

be used as sensors and channels. Table 3 discloses that 

Arduino has been a widely used platform for integrated 

systems among the articles checked. As an open-access 

platform that can be implemented to build a variety of 

devices, Arduino is a popular choice for hobbyists and 

professionals alike. Table 3 further shows that crop 

monitoring IoT applications are placing greater emphasis on 
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intelligent sensor platforms. As sensor nodes, sensors like 

rain sensors, solar radiation detectors, and soil humidity 

sensors are connected via a USB cable to an Arduino Uno in 

order to collect environmental data. The microcontroller 

board is then used to evaluate a vineyard's health. Similar to 

[75], to measure the temperature of a greenhouse, a 

Raspberry Pi is utilised. Long-distance communication 

protocols can be used to establish a brief connection of WSNs 

to the internet via IoT devices acting as gateways. A WSN 

using three independent protocols (Wi-Fi, ZigBee, and 

Bluetooth) was linked to a distant server using 3G via a 

gateway. The LoRaWAN gateway implemented in [49] 

obtains data from the sensors via LoRa and retransmits it via 

4G to a cloud-hosted platform. Cellular network technologies 

such as 3G and 4G allow users to connect over long distances 

and transfer lots of data quickly. 

TABLE III. PLATFORMS FOR INTEGRATED SYSTEMS AND UAVS 
IN AGRICULTURE 

Application Raspberry UAV ESP Arduino 

Disease      

prevention 

[66] [51] [51, 66] [33] 

Waste 

management 

[67]    

Chemical 
control 

 [28]   

Monitoring of 

Crop 

[23] [18] [68, 69] [70] 

Management 

of Soil 

[46]   [45] 

Machinery 
and Vehicles 

control 

[63]    

Control of 
Irrigation 

[38, 41]  [71, 72] [41, 36] 

 

 The utilisation of UAVs in IoT systems for crop 

management, disease prevention, and biological control is 

shown in Table 3. Attributed to their ability to monitor big 

crops quickly and cheaply, UAVs are increasingly being 

implemented for crop surveillance. For this specific purpose, 

UAV systems equipped with multispectral sensing devices 

and cameras are implemented to take airborne photos of 

enormous fields of crops. In order to measure agricultural 

factors like the leaf area index, the IoT solution employs these 

photographs (LAI). The LAI is a metric that is deployed to 

ascertain how much vegetation is present in a given region. To 

measure and discover the level of nitrogen in rice production 

[9], compute the vigour of rice as well as maize crops [8, 11], 

and determine the presence of pests in sugarcane crops [51], 

LAI can be implemented in conjunction with other indicators. 

In addition, [67] uses UAV systems to optimise pesticide and 

fertiliser applications in agricultural production. Acquired 

data is often transferred beyond a wired or wireless network 

to an endpoint such as an IoT-based, database, or webserver.  

The set of rules for networks utilized in the IoT strategy 

were addressed in 60% of the articles reviewed. Among the 

communication protocols mentioned, Ethernet and CAN 

were the most frequently employed for wired networks. 

Similarly, for long-distance wireless connections, 

LoRaWAN and wireless network configurations are by far 

the most widely used. For example, 3G, GPRS, and etc. 

Similarly, Bluetooth, ZigBee, and Wi-Fi are the most often 

used mechanisms for short-to medium-range wireless 

channels. The network protocols implemented in the 

examined articles for IoT solutions are presented in Table 4. 

Numerous network protocols, as indicated in Table 4, are 

employed to enable connectivity between smart devices such 

as routers and motes in selected agricultural contexts (e.g., 

greenhouse, orchard, arable land). This collection of data 

structures allows the construction of both short-range and 

long-range networks. 

TABLE IV. MODERN FARMING EMPLOYS NETWORK 
PROTOCOLS IN A VARIETY OF AGRICULTURAL APPLICATIONS 

Network   Protocols Farm 

land 

Generic Green

house 

Orchard 

Wired Ethernet  [67] [76] [27] 
 CAN  [32, 77] [78]  

Short-

range 

Bluetooth [79] [72] [75] [62] 

 LoRa [54] [80] [8] [28] 
 RFID  [44]   

 ZigBee [81] [82] [84] [45] 

Middle 

range 

(RF-ISM) [62] [82, 84] [13] [16] 

 Wi-Fi [46, 61, 

69] 

[25, 71, 

78] 

[24, 59, 

68] 

 

Long-
range 

LoRaWAN  [52, 64] [23, 
34] 

 

 Cellular [21, 61, 

85] 

[52, 80] [58, 

75] 

[37] 

 Sigfox    [36] 

 

 As shown in Table 4, different devices were utilised for 

middle-range and short-range networking in the IoT 

implementations that were assessed, including Wi-Fi, ZigBee, 

and Bluetooth. Table 4 further shows that Wi-Fi has been a 

frequently selected mechanism for connectivity in the papers 

that were reviewed. This widespread need for Wi-Fi may be 

highlighted regardless of the fact that Wi-Fi is a pervasive 

facility that is relatively simple to build. In spite of this, 

energy-efficient technological advances, for instance, 

Bluetooth and ZigBee continue to be frequently employed as 

a result of the high energy demand of Wi-Fi. The ZigBee 

protocol, for example, was used to transfer information from 

a farm to an unreachable server, and established a Bluetooth-

enabled node to monitor data straight from a field to a smart 

device. As indicated in Table 4, long-distance networks such 

as cellular networks, Sigfox, and LoRaWAN were used in the 

studied articles on IoT implementations. Smart farming 

solutions that rely on cellular networks are becoming widely 

attractive. Cellular networks, which enable IoT devices to be 

connected over vast distances and at faster speeds, might be 

used to support this argument. Communication data using 

cellular network obtained from humidity sensing devices to an 

IoT platform, and operate a watering system. LoRaWAN and 

Sigfox, on the other hand, enable the transmission of data over 

extremely long distances while consuming minimal energy. 

LoRaWAN and Sigfox, which are based on these 

characteristics, have been applied for long-distance 

connections, giving another option to wireless networks or in 

places where cell service coverage is poor or absent. A 

plantation irrigation management solution based on Sigfox is 

described in [36] as a network protocol for the IoT. 

Additionally, in [34], data from many sensors placed 

throughout the greenhouse is transmitted via LoRaWAN to a 

cloud-based service. Apart from the range between sensor 
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devices, gateways, as well as other network equipment, 

vegetation itself may operate as an obstruction to sensor 

contact, as demonstrated by [62], who evaluated the impact of 

2.4 GHz and 433 MHz signal transmission in large estates as 

well as an orchard. Another drawback with greenhouses is the 

amount of detectors, which might result in wireless signal 

interruption due to their close proximity [59]. To address this 

issue, Ethernet [78] and CAN [76] are two examples of wired 

connections that can be utilized. As illustrated in Table 4, 

these systems are being employed more extensively in plants, 

since this pattern of farming setting lends itself well to 

demonstrating access points. 

 The topology of a network is another important 

consideration when implementing an IoT strategy. According 

to [90], sensor networks can be either star, mesh-based, or 

tree-based (also known as a cluster). The topology of the 

network has an effect on both the amount of nodes in the WSN 

and the length between sensor devices and the destination 

[91]. For instance, networks of stars are made up of a central 

unit and a large number of end nodes. In this design, data is 

sent from peripheral nodes to the center node [59]. In this case, 

the physical layer communication standard limits how far the 

peripheral nodes can be from the main node. In comparison, 

mesh networks include routing capabilities built into each 

node, allowing for multi-hop communication to extend 

network coverage. Depending on the specifications of the IoT 

strategy and the task overview, 61 percent of the reviewed 

publications employed the same topology. Using the LoRa 

protocol, [36] interconnect sensors to a central point using star 

topology. Irrigation systems can be monitored via Sigfox 

through this central point, which serves as a channel for cloud-

based software. The star topology is also utilised to integrate 

various sensors inside a conservatory via wireless 

communication. To stay updated on a greenhouse, [59] used 

this topology. Cluster networks, which are also called tree 

networks, are made up of a lot of star networks that connect to 

each other. Cluster networks were used by both [90] and [50] 

to manage crops. Sensor nodes in [90] gather and transmit data 

from a harvesting station to a router point. 

 This router acts as a network interface, retransmitting 

messages to the network's central router node. Multiple router 

nodes are installed around the crop to maximize the energy 

consumption of sensor nodes. Table 5 tabulated the cloud-

based IoT platform for processing data and each technique 

such as computer vision and big data. In the other/not 

identified column, stated the categories that have either used a 

cloud platform to do data processing or have not clearly stated 

the method of data processing. According to Table 5, the most 

often encountered cloud computing in the checked articles are 

Mobius, ThingSpeak, Google, Azure IoT, Thinger.io, and 

AWS IoT. ThingSpeak has become the most widely used 

cloud-based framework in all surveyed articles, referring to its 

open-source nature and low technology requirements [36]. 

Furthermore, Table 5 tabulated the use of AWS IoT for a 

greater variety of information processing methods. Only some 

of the cloud-based platform providers have an identical range 

of features and capabilities, but they all facilitate information 

management in general [10, 13, 33, 79], modelling [68], 

processing and farm-level action management. Moreover, 

despite the fact that various cloud-based frameworks exist, 

several of the examined articles establish personal cloud-

based systems for the IoT solution, as demonstrated in Table 

5. By using cloud computing for both data processing and 

storage, cloud-based platforms offer connectivity for IoT 

projects. Some of the IoT platforms, like Thinger.io [25], are 

completely based on infrastructural suppliers such as Amazon 

AWS and Microsoft Azure. Such services often feature data 

processing elements with visuals and panels that acquired data 

or the design of personalised components from the 

aggregation of different data sets as time progresses. 

TABLE V. THE DATA PROCESSING TECHNOLOGIES AND IOT 
PLATFORMS THAT APPLIED IN SMART FARMING 

Platform Big 

Data 

Artificial 

Intellige

nce 

Computer 

Vision 

Machine 

Learning 

AgroCloud [86]    

AWS [87] [46]  [46,87] 

Azure IoT Hub [88]    

Google    [73] 

Mobius  [89]   

Rural IoT [10]   [10] 
Self-

developed 

[26]   [38] 

Thinger.io [25]    
ThingSpeak   [33]  

 

 Because of the scalability offered with these channels, the 

vast volumes of information produced by the detectors are 

processed in database systems to create big data, where an 

unorganised source of data is utilised to obtain crop details. 

Technology is needed to minimise reaction time owing to the 

large amount of data. A parallel computer system known as 

Hadoop provides big data applications; it has been shown to 

be more successful at analysing the rainfall benchmark data 

from numerous weather stations. IoT solutions analyse data in 

a number of ways and use a range of technologies [92]. Table 

6 shows the most widely used technology for each application 

as described in the reviewed articles. It also shows that the 

most common applications to process data are big data, deep 

learning, and artificial intelligence. These technologies are 

capable of handling high volumes of data in a very short 

period of time. Furthermore, IoT technology is the most 

common technology in crop monitoring using data processing 

technology. In addition, crop control is the mode of 

application that requires the widest range of data processing 

tools. This is understandable given that most IoT solutions for 

crop monitoring gather a large amount of information through 

deep learning and big data analytics to process it. Table 6 

shows that big data was applied to many IoT solutions like 

fertiliser control and soil management systems. For example, 

the data on soil moisture was collected by using sensors were 

connected to cloud datasets [55, 87] such as the Prediction of 

Worldwide Energy Resources (POWER) of NASA, which 

includes datasets such as the market trading price of crops, 

feedback from users to optimise the irrigation performance, 

and assists farmers at the stage of acquisition of material such 

as seed and fertiliser. Big data is also applied in [27] to 

monitor irrigation systems and provide irrigation advice to 

farmers based on the intelligent basis developed and data 

collected from sensing devices such as temperature and 

moisture detectors in soil. 
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TABLE VI. APPLICATION AND TECHNOLOGIES IN AGRICULTURE 
SECTOR 

Application Artificial 

Intelligence 

Big Data Computer 

Vision 

Machine 

Learning 

Disease 

prevention 

[34]  [33, 51] [80, 34] 

Supply-
chain 

traceability 

 [44]   

Chemical 
control 

[27]  [31] [27, 31] 

Crop 

monitoring 

[17, 20] [10, 25, 

88] 

[9, 81] [18, 24, 

73] 
Soil 

management 

[46, 47, 55] [47, 55]  [46, 47] 

Irrigation 
control 

 [87]  [38] 

 

Furthermore, the modification of numerous parameters 

is required for IoT-based automated management. Initially, 

basic monitoring of soil moisture, as described by [72], can 

be utilised to drive irrigation or cooling systems. However, 

greenhouse upkeep might be more demanding. As 

demonstrated in [14], greenhouse characteristics, including 

humidity and temperature, are strongly connected, and 

modifying one would have a domino impact on the others. 

Table 6 summarises how computer vision is applied in IoT 

solutions to achieve image processing like pest and disease 

detection. Based on the reviewed paper, computer vision is 

also possible to clarify and manage the objects in the image 

acquired from the camera, such as applying computer vision 

to clarify types of fruit in an orchard and [31, 51, 80] applying 

computer vision to achieve pest and disease detection. 

Similarly, computer vision was applied in [98] as a 

monitoring equipment to achieve diseases detection on olive 

groves and [31] applied same technology to analyse the 

diseases that may cause morphological deformation on crops. 

Additionally, computer vision is also applied in crop 

management systems, such as attaching a camera and other 

physical sensors on the robot to make it capable to acquire 

visuals of vegetation and, through image processing, detect 

and eliminate weeds in farmland, while [73] applying 

computer vision to a robot in order to clarify the crops and 

interact with the farm when necessary. 

IV. CONCLUSION 

Precision agriculture is a kind of farming that makes use 

of data sensors, linked devices, remote control tools, and 

other modern technology to provide farmers with more 

control over their fields and teams [97]. Precision agriculture 

is becoming increasingly popular [98]. This article conducts 

an in-depth survey of current Internet of Things (IoT) 

applications in farming. This research demonstrated that 

while the majority of agriculture work was focused on simple 

data processing and decision making a few years ago, the 

trend toward systematic management systems, for instance, 

cloud technology and big data is used to analyze enormous 

amounts of information has lately gained traction. 

Additionally, artificial intelligence and computer vision have 

become new trends in agriculture, with the goal of improving 

farm management. According to the numerous initiatives 

covered in this paper, the major portion of IoT smart farming 

technologies were utilized to monitor crop data. Numerous 

applications discussed in this article utilized multiple types of 

network protocols concurrently to improve the performance 

of their IoT solutions. Furthermore, this article compared 

several forms of communication networks, with wired 

network systems being applied to indoor farming, such as 

greenhouses, and wireless network systems being applied to 

outdoor farming, such as arable lands and plantations. The 

assessment in this paper demonstrated that IoT applications 

in smart farming are growing in insignificance. A farmer will 

get a comprehensive evaluation of all aspects of his or her 

operation, including crop and livestock management, weather 

conditions, soil quality, and the performance of his or her 

employees [93, 99, 100]. The site's history and evolution will 

be shown in a unified manner by storing all of this data 

together and making it readily accessible [94]. This article 

would serve as a reference for future work on project cost 

estimation and equipment selection for IoT systems. Building 

better distribution plans and outlining prospective income 

streams are both made possible by precisely forecasting the 

yield levels that will be gathered in each field [95, 96]. 
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