49 research outputs found

    A Mixed Data-Based Deep Neural Network to Estimate Leaf Area Index in Wheat Breeding Trials

    Get PDF
    Remote and non-destructive estimation of leaf area index (LAI) has been a challenge in the last few decades as the direct and indirect methods available are laborious and time-consuming. The recent emergence of high-throughput plant phenotyping platforms has increased the need to develop new phenotyping tools for better decision-making by breeders. In this paper, a novel model based on artificial intelligence algorithms and nadir-view red green blue (RGB) images taken from a terrestrial high throughput phenotyping platform is presented. The model mixes numerical data collected in a wheat breeding field and visual features extracted from the images to make rapid and accurate LAI estimations. Model-based LAI estimations were validated against LAI measurements determined non-destructively using an allometric relationship obtained in this study. The model performance was also compared with LAI estimates obtained by other classical indirect methods based on bottom-up hemispherical images and gaps fraction theory. Model-based LAI estimations were highly correlated with ground-truth LAI. The model performance was slightly better than that of the hemispherical image-based method, which tended to underestimate LAI. These results show the great potential of the developed model for near real-time LAI estimation, which can be further improved in the future by increasing the dataset used to train the model

    Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    Get PDF
    Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    Estimating the crop leaf area index using hyperspectral remote sensing

    Get PDF
    AbstractThe leaf area index (LAI) is an important vegetation parameter, which is used widely in many applications. Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies. During the last two decades, hyperspectral remote sensing has been employed increasingly for crop LAI estimation, which requires unique technical procedures compared with conventional multispectral data, such as denoising and dimension reduction. Thus, we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques. First, we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation. Second, we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types: approaches based on statistical models, physical models (i.e., canopy reflectance models), and hybrid inversions. We summarize and evaluate the theoretical basis and different methods employed by these approaches (e.g., the characteristic parameters of LAI, regression methods for constructing statistical predictive models, commonly applied physical models, and inversion strategies for physical models). Thus, numerous models and inversion strategies are organized in a clear conceptual framework. Moreover, we highlight the technical difficulties that may hinder crop LAI estimation, such as the “curse of dimensionality” and the ill-posed problem. Finally, we discuss the prospects for future research based on the previous studies described in this review

    Remote sensing of leaf area index : enhanced retrieval from close-range and remotely sensed optical observations

    Get PDF
    A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.Ei saatavill

    Scaling Estimates of Vegetation Structure in Amazonian Tropical Forests Using Multi-Angle MODIS Observations

    Get PDF
    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(exp 2)= 0.54, RMSE= 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy(0.52 less than or equal to r(exp 2) less than or equal to 0.61; p less than 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(sup 0)) from SeaWinds/QuikSCAT presented an r(exp 2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon

    Coupled canopy-atmosphere modelling for radiance-based estimation of vegetation properties

    Get PDF
    Vegetation is an important component of the Earth’s biosphere and therefore plays a crucial role in the carbon exchange of terrestrial ecosystems. Vegetation variables, such as leaf area index (LAI) and leaf chlorophyll content (Cab), can be monitored at global scale using remote sensing (RS). There are two main categories of approaches for estimating the vegetation variables from RS data: empirical and physically-based approaches. Physically-based approaches are more widely applicable because they rely on radiative transfer (RT) models, which can be adapted to the observation conditions and to the observed vegetation. For estimating the vegetation variables, however, the RT model has to be inverted, and this inversion is usually an ill-posed and under-determined problem. Several regularization methods have been proposed to allow finding stable and unique solutions: model coupling, using multi-angular data, using a priori information, as well as applying spatial or temporal constraints. Traditionally, radiance data measured at top-of the atmosphere (TOA) are pre-processed to top-of-canopy (TOC) reflectances. Corrections for atmospheric effects, and, if needed, for adjacency, directional, or topographic effects are usually applied sequentially and independently. Physically, however, these effects are inter-related, and each correction introduces errors. These errors propagate to the TOC reflectance data, which are used to invert the canopy RT model. The performance of the TOC approach is therefore limited by the errors introduced in the data during the pre-processing steps. This thesis proposes to minimize these errors by directly using measured TOA radiance data. In such a TOA approach, the atmospheric RT model, which is normally inverted to perform the atmospheric correction, is coupled to the canopy RT model. The coupled canopy-atmosphere model is inverted directly using the measured radiance data. Adjacency, directional and topographic effects can then be included in the coupled RT model. The same regularization methods as used for TOC approaches can be applied to obtain stable and unique estimates. The TOA approach was tested using four case studies based on mono-temporal data. A) The performance of the TOA approach was compared to a TOC approach for three Norway spruce stands in the Czech Republic, using near-nadir Compact High Resolution Imaging Spectrometer (CHRIS) data. The coupled model included canopy directional effects and simulated the CHRIS radiance data with similar accuracy as the canopy model simulated the atmospherically-corrected CHRIS data. Local sensitivity analyses showed that the atmospheric parameters had much less influence on the simulations than the vegetation parameters, and that the sensitivity profiles of the latter were very similar for both TOC and TOA approaches. The dimensionality of the estimation problem was evaluated to be 3 for both approaches. Canopy cover (Cv), fraction of bark material (fB), Cab, and leaf dry matter content (Cdm) were estimated using look-up tables (LUT) with similar accuracy with both approaches. B) Regularization using multi-angular data was tested for the TOA approach, using four angular CHRIS datasets, for the same three stands as used in A). The coupled model provided good simulations for all angles. The dimensionality increased from 3 to 6 when using all four angles. Two LUTs were built for each stand: a 4-variable LUT with fB, Cv, Cdm, and Cab, and a 7-variable LUT where leaf brown pigment concentration (Cs), dissociation factor (D), and tree shape factor (Zeta) were added. The results did not fully match the expectation that the more angles used, the more accurate the estimates become. Although their exploitation remains challenging, multi-angular data have higher potential than mono-angular data at TOA level. C) A Bayesian object-based approach was developed and tested on at-sensor Airborne Prism Experiment (APEX) radiance data for an agricultural area in Switzerland. This approach consists of two steps. First, up to six variables were estimated for each crop field object using a Bayesian optimization algorithm, using a priori information. Second, a LUT was built for each object with only LAI and Cab as free variables, thus spatially constraining the values of all other variables to the values obtained in the first step. The Bayesian object-based approach estimated LAI more accurately than a LUT with a Bayesian cost function approach. This case study relied on extensive field data allowing defining the objects and a priori data. D) The Bayesian object-based approach proposed in C) was applied to a simulated TOA Sentinel-2 scene, covering the area around Zurich, Switzerland. The simulated scene was mosaicked using seven APEX flight lines, which allowed including all spatial and spectral characteristics of Sentinel-2. Automatic multi-resolution segmentation and classification of the vegetated objects in four levels of brightness in the visible domain enabled defining the objects and a priori data without field data, allowing successful implementation of the Bayesian object-based approach. The research conducted in this thesis contributes to the improvement of the use of regularization methods in ill-posed RT model inversions. Three major areas were identified for further research: 1) inclusion of adjacency and topography effects in the coupled model, 2) addition of temporal constraints in the inversion, and 3) better inclusion of observation and model uncertainties in the cost function. The TOA approach proposed here will facilitate the exploitation of multi-angular, multi-temporal and multi-sensor data, leading to more accurate RS vegetation products. These higher quality products will support many vegetation-related applications.</p

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)
    corecore