3,127 research outputs found

    Fluid boundary of a viscoplastic Bingham flow for finite solid deformations

    Get PDF
    The modelling of viscoplastic Bingham fluids often relies on a rheological constitutive law based on a "plastic rule function" often identical to the yield criterion of the solid state. It is also often assumed that this plastic rule function vanishes at the boundary between the solid and fluid states, based on the fact that it is true in the limit of small deformations of the solid state or for simple yield criteria. We show that this is not the case for finite deformations by considering the example of a two state flow on a tilted plane where the solid state is described by a Neo-Hookean model with a Von Mises yield criterion. This opens new approaches for the modelling and the computation of the fluid state boundaries

    Waves and instabilities in rotating free surface flows

    Get PDF
    The stability properties of the rotating free surface flow in a cylindrical container is studied using a global stability approach, considering succesively three models. For the case of solid body rotation (Newton’s bucket), all eigenmodes are found to be stable, and are classified into three families : gravity waves, singular inertial modes, and Rossby waves. For the case of a potential flow, an instability is found. The mechanism is explained as a resonance between gravity waves and centrifugal waves, and is thought to be at the origin of the ”rotating polygon instability” observed in experiments where the flow is driven by rotation of the bottom plate (see [9]). Finally, we give some preliminary results concerning a third model : the Rankine vortex

    Some features of anisothermal solid-state transformations in alloy 718

    Get PDF
    This paper presents an attempt to use differential thermal analysis to study anisothermal precipitation of both the stable delta and the metastable gamma-second phases during cooling of alloy Inconel 718. Observation of the samples by scanning and transmission electron microscopy was carried out to identify the thermal arrests observed upon cooling. When the upper temperature of the cycle is above the solvus of the delta phase, a clear peak is observed that could be related to precipitation of gamma-second for all the cooling rates used in the present work. When this temperature is below the delta solvus, no thermal arrest can be observed, while when it is close to it two faint peaks were noted and associated with stable and metastable precipitation. The most striking result was that dissolution of the metastable gamma-second phase during the heating stage was found to proceed heterogeneously in the material, and this affected reprecipitation of the phases upon subsequent cooling
    corecore