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ABSTRACT 

A wide range of models used in agriculture, ecology, carbon cycling, climate and 
other related studies require information on the amount of leaf material present in a 
given environment to correctly represent radiation, heat, momentum, water, and 
various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area 
index (LAI) thus often features as a critical land surface variable in parameterisations 
of global and regional climate models, e.g., radiation uptake, precipitation 
interception, energy conversion, gas exchange and momentum, as all areas are 
substantially determined by the vegetation surface. Optical wavelengths of remote 
sensing are the common electromagnetic regions used for LAI estimations and 
generally for vegetation studies. 

The main purpose of this dissertation was to enhance the determination of LAI 
using close-range remote sensing (hemispherical photography), airborne remote 
sensing (high resolution colour and colour infrared imagery), and satellite remote 
sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly 
used light extinction models are applied at all levels of optical observations. For the 
sake of comparative analysis, LAI was further determined using statistical 
relationships between spectral vegetation index (SVI) and ground based LAI. The 
study areas of this dissertation focus on two regions, one located in Taita Hills, South-
East Kenya characterised by tropical cloud forest and exotic plantations, and the other 
in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest.  

The sampling procedure of sky map of gap fraction and size from hemispherical 
photographs was proven to be one of the most crucial steps in the accurate 
determination of LAI. LAI and clumping index estimates were significantly affected 
by the variation of the size of sky segments for given zenith angle ranges. On sloping 
ground, gap fraction and size distributions present strong upslope/downslope 
asymmetry of foliage elements, and thus the correction and the sensitivity analysis for 
both LAI and clumping index computations were demonstrated. Several SVIs can be 
used for LAI mapping using empirical regression analysis provided that the 
sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI 
inversion algorithms were demonstrated and were proven to be a considerably 
efficient alternative approach for LAI mapping. LAI can be estimated 
nonparametrically from the information contained solely in the remotely sensed 
dataset given that the upper-end (saturated SVI) value is accurately determined. 
However,  further  study  is  still  required  to  devise  a  methodology  as  well  as  
instrumentation to retrieve on-ground ‘green leaf area index’. Subsequently, the large 
scale LAI inversion algorithms presented in this work can be precisely validated. 
Finally, based on literature review and this dissertation, potential future research 
prospects and directions were recommended.  

 

Keywords: airborne CIR image, airborne colour image, clumping index, forest, 
hemispherical photography, high resolution optical satellite image, large scale leaf 
area index inversion, leaf area index, slope correction 
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1. INTRODUCTION 

1.1 Optical remote sensing of vegetation 

Remote sensing of the Earth, using instruments other than the naked eye, began in 
1859 with Gaspard Tournachon’s photograph from a balloon of a village near Paris, 
France (Goetz et al. 1985).  Remote  sensing  is  a  science  and  an  art  of  the  small  or  
large-scale acquisition of information of an object or phenomenon, by the use of 
either recording or real-time sensing devices that are not in physical or intimate 
contact with the object, such as by way of close-range, aircraft, spacecraft, satellite, 
buoy, or ship (Barrett & Curtis 1976; Lintz & Simonett 1976). The term remote 
sensing as usually defined, and as defined in this dissertation, applies for Earth 
observation such that information is acquired about Earth’s land and water surfaces 
(Campbell 2002). The atmosphere is usually considered to be a hindrance rather than 
an object of investigation (Goetz et al. 1985). Remote sensing deals with the detection 
and measurement of phenomena or an object with devices sensitive to electromagnetic 
energy such as cameras and scanners for light, thermal scanners for heat, and radar for 
radio waves. The basic components to record or measure the remotely sensed data 
include the energy source, the transmission path, the target and the sensor. Based on 
the energy source, remote sensing can be passive or active sensing of information 
(White 1977). Passive sensors detect natural radiation that is emitted or reflected by 
the object or surrounding area being observed using reflected sunlight as a common 
source of radiation. Passive sensors include film photography, infrared, charge-
coupled devices (CCD), and radiometers. Active sensors, on the other hand, emit 
energy in order to scan objects and areas whereupon a sensor then detects and 
measures the radiation that is reflected or backscattered from the target. Radio 
detection  and  ranging  (RADAR)  is  an  example  of  active  remote  sensing  where  the  
time delay between emission and return is measured, establishing the location, height, 
speed  and  direction  of  an  object.  Light  detection  and  ranging  (LIDAR)  is  another  
active source remote sensing technique, which is similar to radar but uses a laser 
instead of radio waves to produce detailed topographic maps and images. 

Electromagnetic energy reaching the Earth's surface from the sun is either 
reflected (scattered), transmitted or absorbed. A basic assumption made in remote 
sensing is that specific targets such as soils of different types, water with varying 
degrees of impurities, rocks of differing lithologies, or vegetation of various species 
have an individual and characteristic manner of interacting with incident radiation that 
is described by the spectral response of that target (Figure 1). The spectral response of 
a target also depends upon such external factors as the zenith and azimuth angles of 
the sun, direction in which the sensor is pointing relative to nadir (the look angle), the 
topographic  position  of  the  target  in  terms  of  slope  orientation,  and  the  state  of  the  
atmosphere. The spectral reflectance curve is affected by factors such as soil nutrient 
status, the state of health and phenology of vegetation, and the colour of the soil 
(which may be affected by recent weather conditions). In some instances, the nature 
of the interaction between incident radiation and target materials will vary from time 
to time during the year, such as might be expected in the case of vegetation as it 
develops from the leafing stage, through growth to maturity and, finally to 
senescence. 
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Figure 1. Characteristic spectrum of common Earth surface materials in the visible and near to middle infrared range. The positions of the spectral domain 
for vegetation study, reflective and emissive optical wavelength of the electromagnetic spectrum and the fundamental control of energy-matter interactions 
with vegetation in this part of the spectrum are also indicated. 
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Remote  sensing  sensors  collect  reflected  and  emitted  radiation  data  from  
different parts of the electromagnetic spectrum including rarely used ultraviolet for 
chemical study, the most commonly used visible and infrared spectral regions 
followed by micro and radio waves. The visible and infrared regions, ranging from 
0.30–15 m and called “optical wavelengths”, are the most commonly used spectral 
regions for Earth observation for both land and water surface studies (Figure 1). 
Optical remote sensing (optical wavelengths) uses a collection of mirrors, lenses, 
prisms, and other devices (placed in some specified configuration) which reflect, 
refract, disperse, absorb, polarize, or otherwise act on light for data collection. The 
optical region is generally considered to extend from 0.3/0.4–1000 m, but it is 
reported in a great number of studies as a window ranging from 0.3/0.4–15 m due to 
restriction by atmospheric absorption (Goetz et al. 1985). 

Remote sensing makes it possible to collect data of inaccessible and extensive 
areas with information available in spectral, spatial, angular and temporal resolutions 
and polarization domains. Remote sensing in Earth resource analysis can be applied 
for physical, natural, and social sciences, e.g., geography, soil, biogeography, 
geology, hydrology, urban planning, agriculture, forestry, and marine sciences (Jensen 
2000). Remote sensing applications in Earth resource management include monitoring 
deforestation in areas as big as the Amazon Basin (Rignot et al. 1997; Saatchi et al. 
1997), the effects of climate change (Latifovic & Pouliot 2007; Ustin et al. 2009), 
ecosystem productivity (Crabtree et al. 2009), hydrology (Engman 1995), and many 
related environmental topics. Remote sensing also replaces costly and slow data 
collection on the ground, ensuring in the process that there is no interference with 
areas or objects. Among several application areas, remote sensing of vegetation may 
be the most important field of study as vegetation is a basic foundation for all living 
beings and small alterations can have many consequences on other living organisms 
and the biosphere. 

Plants mediate up to 90% of the gas exchange between the terrestrial biosphere 
and the atmosphere (Ozanne et al. 2003). Minor alterations within the terrestrial 
carbon balance and vegetated environment can have significant impact on 
atmospheric carbon dioxide concentrations (Hilker et al. 2008) as approximately 60 
gigatonnes (Gt) of carbon are annually absorbed through plant photosynthesis (Janzen 
2004). Remote sensing is perhaps the only alternative way to study the status, 
condition, extent of vegetation and its temporal variability at multiple scales because 
observations can be obtained over large areas of extent with high revisitation 
frequency. Remote sensing of vegetation provides valuable information about the 
vegetation type, biophysical properties (e.g., leaf area index and biomass) and 
biochemical properties (e.g., chlorophyll and leaf nutrient concentration) which are 
used to understand ecosystem functions, vegetation growth, and nutrient cycling 
(Jensen & Jungho 2008). Therefore, vegetation plays a major role in global physical 
and biogeochemical processes and strongly regulates regional and global climate. 
This role is based on a simple structural unit: the leaf. The number and photosynthetic 
capacity of leaves in a forest control primary productivity, climate, water and carbon 
gas exchange, and radiation extinction and are, therefore, a key component of 
physiological, climatological and biogeochemical processes in ecosystems (Asner et 
al. 2003). To this regard, leaves, quantitatively determined as a leaf area index (LAI), 
have been extensively studied using ground based and remotely sensed optical Earth 
observations. LAI addresses the confounding role of vegetation as biophysical, 
biochemical, and radiation regime determinant parameter in our biosphere.   
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Optical wavelengths of remote sensing are the common electromagnetic regions 
used for LAI and generally for vegetation studies. This is due to the pigmentation, in 
vivo structure and moisture content of leaves which are more characteristic based on 
matter-specific and quantum mechanical interaction, as well as molecular structure 
and scattering property in optical wavelengths (Figure 1). A typical spectral curve for 
a healthy plant is shown in Figure 1. The leaf reflectance is controlled in the visible 
(0.4–0.7 m) by the pigments in the leaves particularly chlorophyll which has high 
absorptance, low reflectance and transmittance in the blue and far red portion of the 
visible spectrum. The absorption involves electronic transitions in the chlorophyll 
molecule centred on the magnesium component of the photoactive site (Goetz et al. 
1985). The blue absorption is also the effect of electronic transitions in carotenoid 
pigments. In the near infrared (NIR) region (0.7–1.3 m), the dominant feature for 
high reflectance of leaves is associated with leaf cell structure and cellular 
arrangement within leaves and hydration state (Gates 1970; Slaton et al. 2001). The 
reflectance feature in the middle infrared regions (1.3–2.5 m) is mainly dominated by 
the presence of water in the leaves. Generally speaking, leaf reflectance in  the  NIR  
region is affected primarily by leaf structure, whereas reflectance in the visible region 
(0.4–0.7 m) is determined mostly by photosynthetic pigments, and reflectance in the 
middle infrared region (1.3–2.5 m) by water content (Gates et al. 1965). At the 
transition from red to NIR wavelengths (Figure 1), leaf reflectance greatly increases, 
producing a distinct spectral feature referred to as the red edge. Plants consist of 
aggregations of leaves that form a canopy with its own scattering property which is 
usually addressed by LAI to describe closed canopy reflectance solutions (Suits 1973; 
Tucker & Garratt 1977; Verhoef 1984). On the other hand, using high contrast of 
reflectances in different optical wavelengths among varying amount of photosynthetic 
biomass and vegetated and non-vegetated surfaces, LAI, and leaf and canopy 
reflectances can be mathematically associated by the derivative spectral variable 
called spectral vegetation index (SVI) (Rouse et al. 1974; Tucker 1979). 

A  phenomenon  or  an  object  inferred  from  airborne  or  satellite  remote  sensing  
data should be calibrated and validated using the in situ observation (Jensen 2000). To 
this regard, in the past decades, several optical field instruments appeared in the 
literature based on the measurement of light transmission through canopies for in situ 
LAI measurements. Optical instruments such as line quantum sensors or radiometers 
(Pierce & Running 1988), laser point quadrats (Wilson 1963), and capacitance sensors 
(Vickery et al. 1980), canopy image analysis techniques (Digital Plant Canopy Imager 
CI 100, MVI), Demon (CSIRO, Canberra, Australia), the Sunfleck Ceptometer 
(Decagon Devices Inc., Pullman, WA, US), the most commonly used LAI-2000 Plant 
Canopy Analyser (LI-COR, Lincoln, Nebraska, USA), the Tracing Radiation and 
Architecture of Canopies (TRAC, 3rd Wave Engineering, Ontario, Canada), and 
hemispherical photography have been extensively used for in situ LAI measurements  
(Rich 1990; Welles 1990; LI-COR 1992; Jonckheere et al. 2004). 

Hemispherical (fish-eye) photography, a technique that is markedly cheaper 
than alternatives, has already proven to be a powerful in situ method for measuring 
LAI due to numerous advances related to evolving computer, photographic, and 
digital technologies and scientific modelling methods (Jonckheere et al. 2004). 
Hemispherical photography is a technique to estimate solar radiation and characterize 
plant canopy geometry using photographs taken looking upward through an extreme 
wide-angle lens (Rich 1990). Spatially explicit imaging methods like hemispherical 
photography enable more precise corrective methods and if it is acquired with 
standard procedures, it can be reprocessed when improved models become available. 
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Nowadays, analysis of hemispherical photographs alone has been successfully used in 
a diverse range of studies to characterise in situ plant canopy structure and light 
penetration (Canham et al. 1990, Rich et al. 1993; Easter & Spies 1994). The LAI 
retrieved from airborne and satellite remote sensing following either empirical 
relationships between SVI and in situ measurements or using canopy reflectance 
modelling have successfully been validated using hemispherical photograph analysis 
(Houbork et al. 2009; Kuusk et al. 2009). As a close-range optical remote sensing 
method, hemispherical photography is a rapid, easy-to-use and low-cost method for 
canopy analysis with wide applications in forest studies, especially in forest 
ecological monitoring and assessment. However, LAI retrieval from close-range, 
airborne, and satellite observations still remains one of the most challenging research 
areas of the optical remote sensing of vegetation. 

1.2 Leaf area index as a key biophysical parameter 

A wide range of models used in agriculture, ecology, carbon cycling, climate and 
other studies require information on the amount of leaf material present in a given 
environment to correctly represent radiation, heat, momentum, water, and various gas 
exchanges with the overlying atmosphere or the underlying soil (Monteith & 
Unsworth 1990). LAI thus often features as a critical state variable in these models to 
represent the interaction between vegetation surface and the atmosphere, e.g. radiation 
uptake, precipitation interception, energy conversion, momentum and gas exchange, 
as all areas are substantially determined by the vegetation surface. During the growing 
season of deciduous trees, the total vegetation surface itself is mainly composed of 
leaf area, and by a lesser part of twigs, branches and stem surface. Fournier et al. 
(1996) suggested that branches and boles contributed to total LAI by less than 5% in 
three relatively dense stands of conifers. 

LAI represents the amount of leaf material in ecosystems and controls the links 
between biosphere and atmosphere through various processes such as photosynthesis, 
respiration, transpiration and rain and radiation interceptions. Therefore, LAI is 
fundamentally important as a parameter in land-surface processes and 
parameterizations in global and regional climate models and biosphere/atmosphere 
exchange of carbon dioxide, water vapour and energy (Scurlock et al. 2001).  

LAI is largely used in agro-meteorology, nevertheless many atmospheric 
circulation or biogeochemical models rely on it to parameterize the vegetation cover, 
or its interactions with the atmosphere. For instance, evapotranspiration and carbon 
fluxes between the biosphere and the atmosphere are routinely expressed in terms of 
the LAI of the canopy (Gobron & Verstraete 2008). Consequently, LAI appears as a 
key variable in many models describing biosphere-atmosphere interactions, 
particularly with respect to the carbon and water cycles (GCOS 2004). Currently, LAI 
is set as an “essential climate variable” by Global Terrestrial Observing System 
(GTOS), Food and Agriculture Organization of the United Nations (FAO), and Global 
Climate Observing System (CCOS) (GCOS  2004 & 2008; Gobron & Verstraete 
2008). LAI is, for example a standard parameter observed at all FLUXNET sites. 

Various national and international projects, like the GLOBCARBON project 
funded by European Space Agency (ESA), Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) 
products funded by National Aeronautics and Space Administration (NASA), the 
CYCLOPES (Cycle and Change in Land Observational Products from an Ensemble 
of Satellites) product operating within the framework of the POSTEL (Pôle 
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d'Observation des Surfaces continentales par TELédétection) Thematic Centre, and 
Land Surface Analysis Satellite Applications Facility (LSA SAF) products derived 
from the Meteosat families of satellites (MSG and EPS) of EUMETSAT, to name but 
a few, provide regional and global level estimates of LAI and other land surface 
parameters. The validation exercises are performed in the framework of ground based 
networks, including both national research groups and international entities, such as 
the Land Product Validation (LPV) Subgroup of the CEOS Working Group on 
Calibration and Validation (CEOS-WGCV). 

LAI is applied as a single determinant parameter for various studies. For 
example  in  earlier  days,  LAI  was  used  as  a  sole  indicator  for  radiation  interception  
and availability with crop growth rate (Stern & Donald 1961). Values of LAI are used 
for scaling between leaf-level measurements of water vapour and CO2 conductance 
and flux, and estimates of these conductance and fluxes for the total vegetation–
atmosphere interface (McWilliam et al. 1993). Waring (1983) used LAI of forests as 
an index of growth and canopy light competition. The successful implementation of 
the role of vegetation in climate modelling requires plausible specification of the 
numerical parameters needed by the underlying theory. To this regard, Buermann et 
al. (2001) used satellite-based LAI data in improving the simulation of near-surface 
climate in the NCAR CCM3 (National Center for Atmospheric Research Community 
Climate Model) global climate model. Land surface evapotranspiration constitutes 
evaporation from wet leaf surfaces, transpiration from leaves, and evaporation from 
the soil. The wetness of leaves, which is the interception storage capacity is a direct 
function of leaf area index. To this regard, LAI have been used for estimating 
catchment evaporation and runoff (Zhang et al. 2008), and on seasonality assessment 
of the annual land surface evaporation in a global circulation model (Hurk et al. 
2003). Therefore, monitoring the distribution and changes of LAI is a vital means for 
assessing growth and vigour of vegetation on the planet and accurately representing 
the ecosystem functioning. 

1.3 Definition of leaf area index 

LAI as a major deriving factor in soil-vegetation-atmosphere, biogeochemical cycles, 
and agro-meteorology models often require long time series measurements, and 
therefore consistent definition at various temporal and spatial scales. During past 
decades, various definitions of LAI have been provided by scientists from many 
disciplines for a range of purposes. A definition of LAI needs to be precisely 
addressed to make research results comparable. Regrettably, many individual reports 
of LAI in the literature fail to provide details of the LAI definition assumed. Here, I 
categorised  the  definition  of  LAI  into  three  broad  groups  based  on:  (a)  the  
assumptions of leaf shapes, (b) the purpose of measurements, and (c) the different 
correction levels applied to get final true and green LAI.  

LAI was first defined by Watson (1947) as the total one-sided area of 
photosynthetic tissue per unit ground surface area. The term ‘one-sided’ is not straight 
forward as the shape of leaves or other photosynthetic plant organs can vary from 
needles, succulent photosynthetic tissues, and broadleaves to Bryophytes. In the 
original  definition  by  Watson  (1947),  leaves  were  assumed  to  be  flat  with  zero  
thickness. The simplest description of LAI is: 

ALLAI /  (1) 
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L is the leaf area of a canopy per unit ground surface area A. Traditionally, L is 
measured as a projected area after placing leaves on a horizontal surface in order to 
avoid shape dependency of LAI (Chen & Black 1992) and to use the common value 
of 0.5 as an average projection coefficient (G), which is common for optical 
derivation of LAI when the leaf angle distribution is spherical (random). Parameter G 
is the mean ratio of projected to one-sided leaf area, where ‘projected leaf area’ refers 
to the sum of the shadow areas cast by leaves on a plane perpendicular to the beam 
direction (Stenberg 2006). The above definitions and assumptions cannot be applied 
as such to non-flat leaves. Table 1 summarises the violation of the assumption that the 
projected surface is half of the total leaf surface area. This can be described in the 
following  example.  A  disk  and  a  sphere  with  the  same  diameter  have  the  same  
maximum projected area, but the sphere intercepts twice as much light as the disk 
with random angular distribution when averaged for all radiation incidence angles. 
This means that half the surface area of a sphere is twice the area of half the surface 
area of a disk. Since the leaves can be oriented in all directions, the projected area in 
one direction does not carry all the necessary information. To this end, Chen & Black 
(1992) suggested that the LAI of non-flat leaves be defined as half the total 
intercepting area per unit ground surface area and that the definition of L based on the 
projected leaf area be abandoned. The relationships between projected area and total 
or half surface area of leaves are shape specific (Table 1).  
 
 
Table 1. Leaf shape and area (L is projected leaf surface area,  is approximately equal to). 
Sources: Chen & Black 1992; Chen & Cihlar 1996; Barclay 1998; Asner et al. 2003. 

 
Leaf shape  Total surface area Half the total surface area Example 
Flat 2L  L assuming infinitively thin leaves Broadleaves 
Needle >2L  1.28L for circular cylinders representing conifer 

needles, and 
 2L for spheres or square bars representing 

highly clumped shoots and some spruce needles 

Conifers 

Photosynthetic stem >2L  1.57L representing cylindrical green branches Cactus 
Succulent leaves 2L to >2L  L to  2L Aloe 
Bryophytes Varies Non-vascular 

plants, mosses, 
liverworts 

Litter/dead foliage Varies (refer above) All leaf types 
 

 
Barclay (1998) and Barclay & Goodman (1998) discussed that at least five 

common measures of LAI exist based on the different purposes for which LAI is 
determined (e.g. vegetation growth, physiological activity, light attenuation). The 
most accepted ones are summarised in Table 2, including the most common definition 
in recent studies. The ‘total LAI’ definition used to be the common measure in earlier 
studies for coniferous needle areas (P. Stenberg, personal communication, 2009) and 
currently rarely employed. Most published values of LAI utilize ‘one-sided’ and 
‘horizontally projected’ LAI definitions (Table 2). ‘One-sided’ LAI definition lacks 
the meaning of 'one-sided' for non-flat, highly clumped, or rolled leaves. Chen & 
Black (1992) suggested abandoning ‘horizontally projected’ LAI definition because it 
has neither physical nor biological significance. Barclay (1998) concluded that most 
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Table 2. Common measures of LAI. 

Term Definition Description and purpose Method References 

Total LAI The total surface area of the leaves, 
taking leaf shape into account per unit 
ground surface area below the canopy 

Currently, rarely employed. Used for ecophysiological studies such 
as gas exchange, radiation interception and stomatal conductance 
particularly in conifer forests. Diffuse light makes up a larger 
proportion of total irradiance at low sun angles and under cloudy 
conditions. Confer forests are prevalent in high latitude, where sun 
angles are low and in temperate rain forest, where conditions are 
usually cloudy. Therefore, total LAI is mainly used in conifer forests 
because conifer needles absorb more diffuse light per unit 
projected leaf area than flat leaves 
 

Direct harvesting, allometry Kozlowski & 
Schumacher 1943; 
Cable 1958; 
Madgwick 1964 
 

One-sided LAI One-sided leaf area per unit ground 
surface area assuming that leaves are 
flat with zero thickness, even if the 
leaves are not planar 
 

The meaning of ‘one- sided’ is unclear for coniferous needles, 
highly clumped foliage or rolled leaves 
 

By specific leaf area 
relationship, destructive 
harvesting, using square grid 
paper, allometry 

Watson 1947 

Horizontally 
projected LAI 
 

The area of ‘shadow’ that would be cast 
by each leaf in the canopy with a light 
source at infinite distance and 
perpendicular to it, summed up for all 
leaves in the canopy 

Common in remote sensing applications because it represents the 
maximum leaf area that could be seen by sensors from overhead 

Plumb lines, inclined point 
quadrats, using square grid 
paper, optical field 
instruments, Ceptometers, 
allometry 

Grace 1987; 
Ross 1981 

Hemi-surface LAI One half the total leaf surface area per 
unit ground surface area projected on the 
local horizontal datum 

The main difference with ‘one-sided LAI’ definition is that the one-
side in ‘hemi-surface LAI’ is explicitly expressed as half the total 
surface area of the leaves and the LAI is referred to horizontal local 
datum which makes the estimate independent of local slope. Used 
for modelling photosynthesis, transpiration, light interception, 
albedo, precipitation interception, canopy microclimate, radiation 
extinction, and water, carbon, and energy exchange with the 
atmosphere 

Optical ground and remote 
sensing measurements, 
allometry 

Lang et al. 1991; 
Chen & Black 
1992; Loveland et 
al. 1998; Walter & 
Torquebiau 2000 
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of the definitions of LAI in the literature have no predictable relationship with each 
other. However, contradictory to the conclusion of Barclay (1998), Johnson (1984) in 
earlier study demonstrated good convergence between the projected and total surface 
area of Pinus needles. This study is overlooked by the scientific community. Recently, 
the most widely accepted LAI definition is the ‘hemi-surface LAI’, i.e., one half the 
total leaf surface area per unit ground surface area projected on the local horizontal 
datum. This indicates that the measure of LAI is independent of local slope (Loveland 
et al. 1998; Walter & Torquebiau 2000; Fernandes et al. 2004). This manuscript 
assumes the ‘hemi-surface LAI’ definition (Table 2). 

Many optical field instruments measure canopy gap fraction based on radiation 
transmission through the canopy. The LAI measures from these instruments based on 
the gap fraction are problematic due to the complexity of canopy architecture in 
natural forest stands. Therefore much effort and correction steps are needed to 
improve these techniques. The direct output of many optical field instruments is 
‘effective LAI’ or ‘effective plant area index’ by assuming that foliage elements 
(including branches, stems, leaves, flowers and cones) are spatially randomly 
distributed. The final true and green LAI may only be measured using a planimeter 
using all possible allometric relationships in order to reduce the sampling (Frazer et 
al. 1997). Since LAI using optical field instruments is usually measured near the 
ground surface based on radiation transmission, all aboveground materials, including 
green and dead leaves, branches, and tree trunks and their attachments (lichen, moss), 
intercepts light and are included in LAI. In addition to this, in the forest growing in 
sloping ground, LAI measurements are affected by ground slope (Walter & 
Torquebiau 2000). Therefore, for the ground based optical LAI measurements, there 
are several indispensable steps for the correction of obtained LAI. Table 3 presents 
the different correction stages and definition of LAI at each stage. 

 
 

Table 3. Common measures of LAI based on different correction stages. 

Term  Definition References 
Effective leaf area 
index or effective 
plant area index 

One half the total leaf surface area per unit ground surface area based on 
the assumption that foliage elements (including branches, stems, leaves, 
flowers and cones) are randomly distributed in space. Effective LAI 
describes the radiation interception and radiation regime within and under 
canopy 

Black et al. 
1991; Chen 
et al. 1991  

True leaf area 
index or true plant 
area index 

One half the total leaf surface area per unit ground surface area after 
correcting for canopy non-randomness. True LAI is corrected for the spatial 
distribution pattern of foliage elements (including branches, stems, leaves, 
flowers and cones) 

Nilson 1971 

Green leaf area 
index 

One half the total green leaf surface area per unit ground surface area. By 
removing the contributions of non-leafy materials by assuming they have a 
spatial distribution pattern similar to that of leaves 

Chen et al. 
1997 

Green leaf area 
index corrected 
for topographic 
slope 

One half the total green leaf surface area per unit ground surface area 
projected on the local horizontal datum. LAI is corrected for slope and 
referred to the horizontal surface 

Fernandes et 
al. 2004 

 
 

Most of the definitions of LAI presented in Table 1–3 are mainly linked to 
ground based optical measurements of LAI. Airborne or satellite based estimation of 
LAI is an indirect approach, relying on the relationship between LAI and the 
characteristics of the solar radiation reflected from the canopy, as measured by optical 
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sensors.  The  definition  of  LAI  used  in  satellite  or  airborne  remote  sensing  is  rather  
linked to the state variable corresponding to the canopy optical depth measured along 
the vertical. The ground based optical measurements give the “plant area index” 
which includes non-photosynthetic parts of plants as shown above. On the other hand, 
the  LAI  retrieved  from  satellite  or  airborne  remote  sensing  refers  to  the  “greenness  
index” including the understorey by looking at the canopy from above, which is 
highly relevant from an application and vegetation function point of view for 
photosynthesis, evapotranspiration and carbon balance studies. This definition 
variation between ground based and remotely obtained LAI measurements is usually 
ignored in the literature. 

1.4 Aim and structure of the dissertation 

The main purpose of this dissertation is to enhance the determination of LAI using 
close-range remote sensing (hemispherical photography), airborne remote sensing 
(high resolution colour and colour infrared imagery), and satellite remote sensing 
(high resolution SPOT 5 HRG imagery) (Figure 2). The commonly used light 
extinction models are applied at all levels of optical observations. For the sake of 
comparison analysis, LAI is further determined using statistical relationships between 
spectral vegetation index (SVI) and ground based LAI. To achieve these, the 
following specific objectives were targeted:  
 

 Section 1 and 2 comprises detailed literature review about optical remote 
sensing of LAI and its definitions, 

 The second part of the dissertation focuses on the enhanced determination of 
LAI using hemispherical photography particularly sampling of gap fraction 
dataset (I), slope corrections applied for LAI (II), and clumping index 
computations (III), 

 The third part of the dissertation focuses on the spectral sensitivity of SVIs to 
LAI (IV), and 

 The last part is dedicated to the feasibility of applying the same light 
extinction models used for hemispherical photography in the first three papers 
in  airborne  (V;  VI)  and  satellite  datasets  (VII)  for  large  scale  LAI  
determinations. 
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Figure 2. Summary of the remote sensing data and the conceptual locations of the leaf area 
index retrieval approaches examined in Papers I–VII. 
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2. OPTICAL REMOTE SENSING OF LEAF AREA INDEX  

Several direct and indirect methods for estimating LAI have appeared in the literature 
(Ross 1981; Campbell & Norman 1989; Norman & Campbell 1989; Welles 1990; 
Bréda 2003; Jonckheere et al. 2004). All direct techniques for estimating LAI are very 
labour intensive, including harvest (Dufrêne & Bréda 1995), point quadrat (Warren-
Wilson 1959), allometric and litter-collection methods (Waring et al. 1982). Direct 
methods, although accurate, are not feasible in many locations and extensive areas, 
and they are very time-consuming compared to optical estimates. Allometric 
equations from different geographic locations should be used with caution due to the 
influences of tree size, species, and edaphic conditions. Chen (1996) has indicated 
that optical methods can provide even more reliable LAI estimates than destructive 
sampling techniques. Indirect methods, that relate leaf area to the radiation 
environment, are generally less time-consuming and consequently received a great 
deal of thought in both theory and instrumentation. Several remote sensing methods 
and ground based optical instruments (see section 1.1.; Welles 1990; Bréda 2003; 
Jonckheere et al. 2004) estimate LAI indirectly by measuring light transmission, gap 
fraction, and canopy reflectances using theoretical light extinction models (Nilson 
1971; Lang & Xiang 1986; Perry et al. 1988; Campbell & Norman 1989; Norman & 
Campbell 1989). The following sections describe the most widely used light 
extinction models and approaches for LAI determination using both close-range and 
remotely sensed optical observations. 

2.1 Ground based optical determination of leaf area index 

Ground based optical determination of LAI is usually based on the measurements of 
the transmission of radiation through the canopy, making use of the radiative transfer 
theory (Anderson 1971; Ross 1981). These methods are non-destructive and are based 
on a statistical and probabilistic approach to foliage elements (or its complement, gap 
fraction) distribution and arrangement in the canopy (Jones 1992). There are generally 
three types of ground based optical measurements of LAI (Wulder & Franklin 2003): 
(a) measuring diffuse light transmission or record canopy gaps within a hemispherical 
view (e.g., LAI-2000 and hemispherical photography), (b) measuring the direct solar 
irradiance (sunflecks) at a known solar angles along a transect (e.g., DEMON, 
quantum sensors, and TRAC), and (c) measuring the vertical distribution of canopy 
elements (optical point-quadrant method). All the aforementioned radiation 
measurement and gap fraction based methods commonly use related light extinction 
models to describe the canopy structural variables. In recent years, among several 
ground based optical instruments, hemispherical photography is becoming the most 
commonly used method because of the advances in digital photography, image 
analysis, and data processing. 

Interception of radiation by plant canopies is described in many physiological 
models using Beer's law (Monteith & Unsworth 1990; Jones 1992). A common 
feature of the gap proportion formulae used for LAI determination indicates that the 
logarithm of the gap proportion is a linear function of the downward cumulative LAI 
expressed generally as: 

)exp(, kLAIP    (2) 
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where P is a gap fraction (a probability of non-interception) for a direction defined by 
zenith  and azimuth  angles and k is an extinction coefficient. k is a function of 
leaf optical properties and the geometry of the leaf relative to the beam of light 
penetrating the canopy (Campbell 1986). Values of k can be calculated by 
approximating the distribution of leaves within a canopy to that of the surface area of 
spheres, cylinders or cones (Monteith & Unsworth 1990). The existing theoretical 
models explain the various ways of addressing the values of k. Nilson (1971) gives a 
theoretical description of the most commonly used light extinction models. Based on 
the assumption of foliage distributions, Nilson (1971) categorised the light extinction 
models into three classes: (a) Poisson model, (b) Markov model, and (c) binomial 
model (positive and negative) (Table 4).  
 
 
Table 4. Theoretical light extinction models with their assumptions and equation for LAI 
determination. Significant improvement is introduced after Nilson (1971) by adopting the 
models for non-flat terrain (II). Where P is the probability of non-interception or gap fraction 
for a direction defined by zenith  and azimuth  angles, LAI is the leaf area index,  is 
the Markov parameter (clumping index), N is equal and statistically independent layers, g is 
the independent layer thickness or the binomial clumping index which can be retrieved for 
each stand if LAI and N are known, cos is a correction factor for path length (II), cos  is 
a correction factor of gap fraction for ground slope , and ,G is the mean projection of a 
unit leaf area in the direction of the beam and onto a plane normal to the beam. When  = 
0, cos   is  1  and cos  =  cos , therefore all the equations are the same with the light 
extinction models described in Nilson (1971). 

 

Model Expression of LAI regarding to the non-
interception or gap fraction 

Assumptions of foliage elements 
distribution within a canopy 

Poisson 
model 

cos
cosln

,

,

G
P

LAI   (3) 
Random foliage dispersion. The stand 
consists of a very large infinite number of 
statistically independent horizontal layers, N. 
The probability of observing more than one 
contact per layer is infinitely small compared 
with the probability of observing one contact 
(leaves do not overlap within a layer). The 
probability of observing a contact within a 
layer is equal to the mean number of contacts 
per layer. 

Markov 
model 

cos
cosln

,,

,

G
P

LAI   (4) 
Regular and clumped foliage dispersion. The 
probability of a contact in a horizontal layer 
depends on whether there has been a contact 
in the previous layer (Markov property). 

Positive 
binomial 
model 

cos/
)cos/(1ln

ln

,

,

Gg
gP

LAI  (5) 
The stand consists of a finite number of equal 
and statistically independent layers, N. 
Regular dispersion of foliage. 

Negative 
binomial 
model 

cos/
)cos/(1ln

ln

,

,

Gg
gP

LAI (6) 
The stand consists of a finite number of equal 
and statistically independent layers, N. 
Clumped dispersion of foliage.  

 
 
Both positive and negative binomial models may be used when the canopy can 

be divided into a finite number of equal and statistically independent layers and 

http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6V8W-4894MD8-3-1&_cdi=5881&_user=949111&_check=y&_orig=search&_coverDate=04%2F30%2F1986&view=c&wchp=dGLzVzz-zSkzV&md5=ce3cab182fc83238882b0554035c1638&ie=/sdarticle.pdf
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require an additional parameter L, representing the thickness of each layer. Binomial 
models tend toward the Poisson as the number of layers N increases (N  ) and the 
thickness L decreases  0. Positive binomial model may also describe a random 
dispersion with independent layers (T. Nilson, personal communication, 2009). 
However, based on the standard statistical indicators for dispersion measurements 
such as relative variance of contact numbers, positive binomial model describes more 
regular than Poisson distribution. Therefore, for the dependent layers, alternative 
approaches such as Markov chain models are being used. Nilson (1999), and later 
improved by Nilson & Kuusk (2004), proposed a new algorithm for LAI estimation. 
However, due to the requirements for additional stand variables (stand density, tree 
height, crown depth, canopy closure, crown closure, shoot-level clumping index, and 
branch/leaf area ratio) other than gap fraction, this algorithm is generally overlooked. 
The existing theoretical models explain the various ways of addressing the values of k 
particularly for the most widely used Poisson model. The major ones can be grouped 
according to approaches by Miller (1967), Lang (1986, 1987) and Campbell (1990). 

Miller approach 

From  gap  fraction  analysis,  Miller’s  integral  can  be  estimated  over  0  to  2/  as 
follows (Miller 1967): 

dPLAI sincosln2
2/

0

   (7) 

As most gap fraction data are retrieved over a limited zenith view angle ranges often 
< 2/ , the following equation can be used for the approximation of Miller integral: 

n

i
ii

ii

n

i

d

dP
LAI

ii

1

1

sin

sincosln
2  (8) 

where  n  is the number of zenith angles being used. The formula uses a id
i

sin  
weighting, normalized to the sum of 1 for each angle-dependent estimation of LAI, 
between the limits of the integral. This property, among other considerations, allows 
the calculation over a more restricted zenith angle range. For example, calculation 
may  be  applied  over  55°–60°  of  zenith  angle.  This  range  of  angles  is  useful  as  the  
sun’s beam incidence angle b = 57.3 (  1 radian), where the mean projection of leaf 
area G  and the extinction coefficient k  are virtually independent of the leaf angle 
distribution.  

Lang approach 

From equation (3), the following expression can be derived: 

KLAIGPlncos   (9) 
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where K  is the mean contact number. The mean contact number is determined by the 
overlapping of projected areas of leaves on a plane perpendicular to the direction of 
the ray of light, which penetrates the canopy along a given path length. Lang (1986) 
argued that LAI and average leaf inclination angle (ALIA) may be recovered from the 
inversion of equation (9), using the relationship: 

baK    (10) 

where  a  is the intercept and  b  is  the  slope  of  the  regression  of  Plncos  ( K ) 
against  in radians. Using the original Miller’s integral for flat leaves with symmetry 
about azimuth yields: 

2/

0

sin2 dKLAI    (11) 

By substituting (10) into (11): 

)(2 baLAI  (12) 

Equation (12) is the exact solution to Miller’s integral. This simple equation 
yields the effective LAI (Section 1.3). An estimate of ALIA can be calculated from b, 
the  slope  of  the  regression  of  K  against  using a sixth order polynomial (Lang 
1986). A great advantage of this approach is the possibility to estimate the statistical 
reliability of LAI and ALIA, derived from the goodness-of-fit of the regression.  

Campbell approach 

Campbell method relies on the ellipsoidal distribution function of leaf angles 
(Campbell 1990). The ellipsoidal distribution function assumes that the leaf angles in 
the canopy are “distributed like the angles of normals to small area elements on the 
surface of an ellipsoid”. Using this approach, equation (2) can be rewritten as: 

LAIkPln   (13) 

where k  is the extinction coefficient for zenith angle  averaged overall leaf angles 
and defined as: 

733.0

22

)182.1(774.1
tan

xx
xk   (14) 

The ‘shape parameter’  x  may be defined as the ratio of vertical to horizontal foliage 
area projections, which describes the shape of the distribution. For example, if  x = 1, 
leaves have a spherical distribution. The canopy tends to be ‘horizontal’ or planophile, 
when  x  > 1 and ‘vertical’ or erectophile, when  x  < 1. The shape parameter 
determines an ellipsoidal extinction coefficient k  and a normalized ellipse area. A 
non-linear constrained least-squares technique finds values of  x  and LAI. ALIA can 
be derived as a function of  x  (Norman & Campbell 1989): 
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))5.0exp(9.01.0(90 xALIA   (15) 

So far, the common methods used to estimate canopy structural information 
from gap fraction measurements has been limited to a discussion of canopies with 
randomly distributed foliage elements that can be modelled using a Poisson 
distribution (van Gardingen et al. 1999).  To  allow  the  use  of  the  Poisson  law,  the  
concept of effective LAI is introduced (Section 1.3; Chen & Black 1991), which 
corresponds to the product of a clumping index with the true LAI estimate. In natural 
canopies, foliage clumping occurs mostly at the shoot level for conifer trees, but may 
also  occur  at  the  branch  and  crown  levels  for  most  forest  types.  Conventional  LAI  
estimation techniques normally lead to significant underestimates of the LAI (Chen et 
al. 1991; Smith et al. 1993) when the analysis assumes a Poisson distribution, though 
Whitford et al. (1995) reports large overestimates. Despite the challenges, there have 
been  significant efforts to calculate clumping index from multi-look angle gap 
fraction datasets such as hemispherical photography based on varying gap fraction 
averaging methods and gap size distribution theories (summary: Walter et al. 2003; 
Leblanc et al. 2005; III).  

Ground based optical leaf area index determination in non-random canopies 

Foliage elements can be distributed in a space in random, clumped or regular 
dispersions. If the foliage dispersion is non-random, Poisson model for LAI 
estimation either underestimates in the case of clumped, or overestimates in the case 
of regular foliage distribution.  The regular (geometric) distribution can be expressed 
with positive binomial distribution, whereas clumped distribution can be expressed 
with negative binomial distribution (Nilson 1971). As aforementioned, binomial 
distribution function is not feasible for gap fractions measured using optical field 
instruments. The other approach particularly applied for gap fraction measurements 
from LAI-2000 was to calibrate gap fraction estimates with independent LAI 
estimates (e.g., Chason et al. 1991; Stenberg et al. 1994; Stenberg 1996a; Cherry et 
al. 1998; Barclay & Trofymow 2000; Nackaerts et al. 2000). Geometric relationships 
describing foliage distribution on branches can also be used to derive correction 
factors (Chen & Black 1992; Stenberg et al. 1994; Stenberg 1996b; Fournier et al. 
1997). However, these approaches are empirical and not universally applicable as the 
gap fraction and independent LAI estimates relationship varies between species and 
between stands of the same species. All of these techniques can be considered to work 
by correcting the extinction coefficient which is reduced in clumped canopies and 
increases in regular canopies.  

Generally speaking, clumping increases the canopy gap fraction for a given LAI. 
In theory, Lang & Xiang (1986) suggested a procedure to estimate LAI for 
discontinuous canopies using a spatial logarithmic averaging of sunbeam fractional 
measurement: 

,

,

ln
ln

P
P

LX   (16) 

where values of the probability of non-interception (gap fraction, P) are averaged as 

,ln P  where ,P are localised P values linearly averaged over a fixed distance 
defined relative to the characteristic width of a leaf, assuming Poisson distribution at 
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this scale. The choice of length-scale for logarithmic averaging is influenced by two 
considerations: (a) the Poisson distribution is strictly only valid for an infinite number 
of foliage elements, and (b) the probability of obtaining a gap fraction of zero 
increases as the length-scale decreases. As the logarithm of zero is undefined, this 
approach will perform poorly as the length scale approaches the limit defined by the 
average width of individual foliage elements (van Gardingen 1999). Another 
modification of this was to calculate an average LAI from local azimuthal values 
(Walter et al. 2003). Both logarithmic averaging and azimtuhal averaging of local 
estimates constitute ‘quasi-random’ methods (Planchais & Pontailler 1999).  

Neumann et al. (1989) presented a unique method based on the spatial 
autocorrelation of gap fractions to retrieve clumping index. The clumping index was 
calculated  from conditional  probability  of  a  light  ray  passing  through the  canopy in  
the same opening separated by a d . However, this method was not thoroughly 
evaluated as the choice of d influences the computed conditional probability. More 
advanced clumping index calculation is based on the Chen & Cihlar (1995) gap size 
distribution theory developed for TRAC instrument. As clumped canopies are 
characterised by large gaps intermingled with small gaps, Leblanc (2002) later 
modified by Leblanc et al. (2005) formulated the derivation of clumping index as: 
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where Fm(0, ) is the measured accumulated gap fraction larger than zero, i.e., the 
canopy gap fraction, and Fmr(0, ) is the gap fraction for the canopy when large gaps 
that are theoretically not possible in a random canopy have been iteratively removed 
for a given LAI and foliage element width. This method takes the advantages of both 
the  gap  fraction  and  the  gap  size  information,  which  can  be  applied  to  all  types  of  
plant canopies without the need for spatial pattern assumptions about canopy elements 
unlike logarithmic gap fraction averaging methods. The relatively recent advancement 
in gap size based theory is the segregation coefficient developed by Pielou (1962) and 
adapted to gap size data obtained from hemispherical photography by Walter et al. 
(2003). This method is based on the probability of encountering sequences of gap and 
foliage pixels on hemispherical photograph. The only difference between Chen & 
Cihlar (1995) and Walter et al. (2003) clumping index methods is that the first is 
based on a gap size accumulation (Equation 17), whereas the second relies on a gap 
size distribution. The inherent problem associated with gap size based approaches is 
the heterogeneity of the gap size within the segments, whereas with gap averaging 
method the result is influenced by the segment size. To this regard, Leblanc et al. 
(2005) proposed, the combination of gap size and logarithmic averaging methods and 
proven later to be robust approach (III). 

Despite all these studies, foliage clumping remains as one of the challenging 
issues of remote sensing of LAI. It is perhaps surprising to discover that clumping 
index methodologies are not the centre of research attention. For example, logarithmic 
gap averaging methods suffer from lack of knowledge for how the gap fraction 
sampling size is practically defined (I). In addition to this, the majority of world 
forests occur in heterogeneous ecosystems and topography with rather complex 
canopy architecture. Therefore, the LAI estimation from gap fraction is not only 
affected by the foliage aggregation on space but also by the local topography such as 
ground slope (II; III). This indicates that there are still a great deal of improvements 
for the ground based optical determination of LAI from 1D or 2D gap fractional 
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measurements (I–III). The accuracy with which the ground based LAI measurements 
are acquired and determined is an indispensable step for both calibration and 
validation of LAI retrievals from airborne or satellite optical remote measurements. 

2.2 Empirical modelling of leaf area index 

A number of mathematical formulas using mainly visible and near infrared 
reflectances, here called spectral vegetation indices (SVI), have been proposed for 
relating  ground,  airborne  or  satellite  radiometric  measurements  to  the  amount  of  
vegetation presence (Table 5). This argument was strongly supported even in 
relatively earlier studies as leaf reflectance measurements of visible and near infrared 
energy identified a strong correlation between a red and near infrared transmittance 
ratio and measured LAI (Jordan 1969). Even though new SVIs are still being 
developed, Perry & Lautenschlager (1984) discussed 20 SVIs many years ago, and the 
formal relationships among them. It should be noted also that, normalized difference 
vegetation  index  (NDVI)  still  remains  the  most  widely  used  SVI  to  this  date.  SVIs  
were designed to maximize sensitivity to the vegetation’s characteristics or optical 
thickness while minimizing confounding factors such as soil background reflectance, 
directional, topographic, and atmospheric effects. Coppin & Bauer (1994) concluded 
that vegetation indices can be grouped into three major categories: namely, 
‘brightness’, ‘greenness’ and ‘wetness’. Relatively recently, Brown et al. (2000) 
recommended that inclusion of shortwave infrared (SWIR) reflectance in SVIs may 
be useful to suppress the background soil or land cover variation influences for 
empirical LAI modelling. 

The basic assumptions for the formulation of SVIs are: algebraic combination of 
remotely sensed spectral bands can be related with the amount of photosynthetic 
biomass and all bare soil form a line in spectral space. These are strongly supported 
by experimental results. Most of SVIs are constructed using NIR and red spectral 
space so that forming NIR-red line for bare soils (zero vegetation). Based on the 
diverging lines relative to the soil line, all SVIs listed in Table 5 can be categorised 
into two classes: (a) ratio indices which measure the slope of the line between the 
point of convergence and the NIR-red point of the pixel (e.g., NDVI, SAVI, SR), and 
(b) perpendicular/orthogonal indices which measure the perpendicular distance for the 
soil line to NIR-red point of the pixel (e.g., PVI, WDVI, DVI). In ratio based indices, 
all equal vegetation (isovegetation) lines converge at a single point, whereas in 
perpendicular indices the lines remain parallel to the soil line.  

There have been several statistical approaches to empirically retrieve LAI based 
on the relationship with SVI. Most studies use least square regression (LSR) analysis 
spanning from linear to exponential to polynomial (e.g., Chen & Cihlar 1996; Chen et 
al. 2002). Based on LSR analysis, studies have produced large scale regional LAI 
map (e.g., Canada wide LAI product: Chen & Cihlar 1996; Brown et al. 2000; Chen 
et al. 2002). Not often used but satisfactory results were also obtained using 
nonparametric regression analysis such as the neural network (Liang et al. 2003; 
Liang & Fang 2004), the projection pursuit regression (Liang & Fang 2004), and 
Thiel-Sen regression (Fernandes et al. 2003). The obvious limitation of LSR is that it 
implicitly assumes an underlying normal structural data model to arrive at unbiased 
estimates. Besides, LSR regression assumes that the errors are (spatially) independent 
and that there are no measurement errors in the independent (SVI) variable. 
Therefore, in the presence of measurement errors when the regression problem is 
based on a functional rather than structural data model, LSR can be a biased predictor. 
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Table 5. List, functional purpose and example application of the most widely used spectral vegetation indices (SVI) for leaf area index (LAI) retrieval. 

SVI Formula Purpose Source References in LAI estimation 
Simple ratio (SR) 

RNIR /       (18) Basic index Jordan 1969 North 2002; Soudani et al. 2006 

Normalized difference 
vegetation index (NDVI) 

)/()( RNIRRNIR     (19) Basic index Rouse et al. 
1974 

North 2002; Stenberg et al. 2004; Soudani 
et al. 2006 ; Stenberg et al. 2008 

Difference vegetation index 
(DVI) RNIR     (20) Basic index Tucker 1979 

 
Sasaki et al. 2008 

Soil adjusted vegetation 
index (SAVI) 

)/())(1( LL RNIRRNIR     (21) Index that minimise soil noise Huete 1988 Elvidge & Zhikang 1995; North 2002; 
Soudani et al. 2006 ; Sasaki et al. 2008  

Transformed soil adjusted 
vegetation index (TSAVI) 

ababaa RNIRRNIR /)(        (22) Index that minimise soil noise Baret et al. 1989 Rondeaux et al. 1996 

Modified soil adjusted 
Vegetation index (MSAVI) 2/)(8)12(12 2

RNIRNIRNIR (23) Index that minimise soil noise Qi et al. 1994 Rondeaux et al. 1996 ; North 2002; 
Haboudane et al. 2004  

Perpendicular vegetation 
index (PVI) 1/ 2aba RNIR        (24) Index that minimise soil noise Richardson & 

Wiegand 1977 
Elvidge & Zhikang 1995 

Weighted difference 
vegetation index (WDVI) RNIR a     (25) Index that minimize soil noise Clevers 1989 North 2002 

Atmospherically 
resistant vegetation index 
(ARVI) 

)(, BRRRB
RBNIR

RBNIR where   (26) 
Index that minimise atmospheric 
noise 

Kaufman & 
Tanre 1992 

Rondeaux et al. 1996 ; Soudani et al. 2006 

Infrared simple ratio (ISR) 
SWIRNIR /      (27) Index that minimise atmospheric 

noise 
Fernandes et al. 
2003 

Fernandes et al. 2004; Stenberg et al. 
2008 

Modified simple ratio (MSR) 1/1/ RNIRRNIR     (28) Index that can be linearly related 
to LAI 

Chen 1996 Fernandes et al. 2004 

Enhanced vegetation 
Index (EVI) 

)56.76(1
)(5.2

BRNIR

RNIR      (29) 
Index that minimise background 
reflectance and atmospheric noise 
and increase the sensitivity to LAI 

Huete et al. 
1994 

Soudani et al. 2006 

Reduced simple ratio (RSR) 
minmax

max

SWIRSWIR

SWIRSWIR

R

NIR      (30) 
Index that minimise background 
reflectance effect and increase the 
sensitivity to LAI 

Brown et al. 
2000 

Chen et al. 2002; Stenberg et al. 2004; 
Stenberg et al. 2008 

is reflectance/radiance in near infrared (NIR), red (R), shortwave infrared (SWIR) and blue (B) spectral bands; L is a correction factor for soil; a and b are soil line parameters; is a 
parameter to represent aerosol; SWIR max and min are the maximum and minimum values of SWIR reflectance/radiance for that land cover, respectively.  
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To this regard, Fernandes & Leblanc (2005) have demonstrated the modified least 
squares and Theil-Sen regression analysis to provide analytical approximations of 
their prediction confidence intervals in the presence of measurement errors. Besides, 
Berterretche et al. (2005) has shown that reduced major axis orthogonal regression 
model can be implemented to account errors both in dependent (LAI) and independent 
(SVI) variables. Berterretche et al. (2005) has also shown Geostatistical techniques 
(kriging with an external drift and sequential Gaussian conditional simulation) for 
mapping LAI although such an approach requires a distribution and density of 
primary, reference LAI measurements that are impractical to obtain. 

Empirical modelling of LAI from remotely sensed radiometric measurement is 
not only restricted to SVI. Cohen et al. (2003) provided a tool to circumvent a 
limitation of LSR by constructing an integrated index to represent multiple predictor 
variables in a simple linear context. This index, called canonical correlation analysis 
(CCA) was later proven to be powerful tool for empirical retrieval of LAI (Lee et al. 
2004; Heiskanen 2006). Hall et al. (1995) and Peddle et al. (1995) were among the 
first to empirically exploit the relationship between object structure and shadow 
characteristics for the estimation of leaf area index. Seed and King (2003) later 
demonstrated the relationship between shadow intensity and geometry, and spectral 
mixture analysis with leaf area index. To this date, empirical LAI retrieval method in 
one or combined form of the aforementioned statistical techniques remains to be the 
most common approach for LAI retrieval from remote sensing data. 

Empirical models developed for application to remotely sensed optical data rely 
on physically based relationships between LAI and canopy spectral reflectance 
(Section 1.1). For example, in the near infrared region the spectral reflectance and 
transmittance of the leaves is high and absorptance is low. In this situation leaves 
from lower canopy layers contribute considerably to total measured reflectance 
(Clevers 1989). A common procedure to estimate LAI is to establish an empirical 
relationship between SVI and LAI by statistically fitting measured LAI values to the 
corresponding SVI. The statistical fitting is mainly carried out using LSR, whereby 
their generic form is expressed as: 

)(SVIfLAI  (31) 

Theoretically, equation (31) should have been formulated in reverse order (IV). 
SVI is the function of LAI but not vice versa as usually reported in a vast amount of 
literature. The major advantage of the SVI based empirical approach over physically 
based reflectance or canopy models is its simplicity and ease of computation. In 
practice, SVI based empirical LAI prediction from remotely sensed data faces two 
major difficulties: (a) SVI approaches a saturation level asymptotically when LAI 
exceeds a certain value, depending on the type of SVI, and (b) there is no unique 
relationship between LAI and a SVI of a choice, but rather a family of relationships, 
each a function of chlorophyll content and/or other canopy characteristics, soil 
background effects and external conditions (Colombo et al. 2003; Houborg et al. 
2007). Since there is no universal SVI-LAI equation applicable to diverse vegetation 
type, it is difficult to use the empirical LAI modelling with large scale remote sensing 
images. Considering these limitations and the theoretical formulation of SVI-LAI 
relationships, SVI predicting power and stability can be assessed based on (IV): 

)(LAIfSVI   (32) 
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Equation (32) can be used to localise the SVI-LAI solutions. To this regard, 
studies have put forward sensitivity analysis of SVI to LAI as a function of LAI, e.g., 
Baret & Guyot (1991) developed the relative equivalent noise (REN), Huete et al. 
(1994) employed the vegetation equivalent noise (VEN) to represent noise in SVI, 
Becker & Choudhury  (1988) developed the relative sensitivity (R) based on the 
regression function of two rescaled SVIs, Gitelson (2004) proposed a wide dynamic 
range vegetation index, and more recently Ji & Peters (2007) demonstrated a new 
sensitivity function. The sensitivity function as a function of LAI are required at each 
observation because the goodness-of-fit measures such as the coefficient of 
determination (R2) and root mean squared error (RMSE) are only useful for indicating 
the general sensitivity of the SVI. The sensitivity of a SVI to a LAI is not a constant 
value, but is a function of the LAI. However, to this date, there is no attempt at 
mapping LAI based on the sensitivity functions. This entails the need for LAI 
mapping based on the experimental and theoretical sensitivity of SVIs to various 
ranges of LAI (IV).   

2.3 Large scale inversion of leaf area index 

Over the past few years, several operational systems have been introduced for the 
large scale retrieval of LAI on a regional or global scale using medium resolution 
optical  sensors  with  pixel  sizes  ranging  from  250  m  to  7  km  (e.g.,  from  
NOAA/AVHRR (National Oceanic and Atmospheric Administration/Advanced Very 
High Resolution Radiometer): Los et al. 2000; CYCLOPES from 
SPOT/VEGETATION: Baret et al. 2007; from TERRA-AQUA/MODIS: Yang et al. 
2006; from ENVISAT/MERIS (Environmental Satellite/MEdium Resolution Imaging 
Spectrometer): Bacour et al. 2006). Such novel approaches are based on the inversion 
of radiative transfer models which describe the physical interaction between incident 
solar radiation and vegetation canopy elements. The retrieval algorithms used in these 
global approaches are usually optimized for the characteristics of the sensor at issue 
and for the biome types found at a global level and the accuracies are always arguable 
(e.g., MODIS progressive overestimation: Fang & Liang 2005; Abuelgasim et al. 
2006; Heinsch et al. 2006; Yang  et al. 2006; Pisek & Chen 2007). 

The mathematical and physical sophistication of the techniques used to retrieve 
LAI have increased considerably evolving from simple empirical (Section 2.2) to 
physically based approaches based on our understanding of the radiative regime of 
vegetation canopies. Physically based approaches for any medium can be explained in 
the following simple radiation budget expression: 

1RATU  (33) 

were a photon striking diffusing layer either passes the layer unintercepted ( U ), or it 
is scattered forward/transmitted ( T ), or it is absorbed inside the layer ( A ), or it is 
scattered backward/reflected ( R ). For example, equation (2) describes this principle 
in simplest Beer’s law where the extinction coefficient k is related to the energy lost 
by absorption ( A ) and scattering ( T + R ) whilst the gap fraction equals U . There 
have been more efforts to describe radiation transfer in vegetation using physically 
based modelling those link canopy properties with sensor-measured radiance. These 
models all work to solve the equation (33) and to retrieve critical canopy properties. 
In a broad category, they can be grouped as: (a) radiative transfer models, (b) 
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geometric optical models, (c) computer simulation models, and (d) hybrid models. 
One may argue, but the empirical modelling of LAI could be categorised as the 
simplest form of radiative transfer modelling where the parameters determined 
empirically/statistically not physically whilst explaining the physical relationships 
between variables. The radiation interactions in canopies are mainly influenced by 
canopy optical and structural properties, and illumination and viewing geometries. 
Radiative  transfer  and  geometrical  optical  models  define  a  canopy  as  a  set  of  
statistical ensemblages over a volume averaged properties, whereas computer 
simulation describe the photon trajectory and complex radiative regime of the canopy 
for  a  given  radiometric   attribute  of  a  plant  primitives.  Therefore,  the  term  
deterministic (non-stochastic) can be applied for the former two model types. Often, 
the  hybrid  models  are  the  combination  of  radiative  transfer  and  geometrical  optical  
models. 

One of the most notable canopy reflectance models is that of Suits (1972) in 
which canopy is assumed to consist of only vertical and horizontal leaves and the 
model is characterized by canopy structure and viewing and illumination geometry. 
Verhoef (1984) developed the SAIL (Scattering by Arbitrary Inclined Leaves) by 
extending the Suits (1972) model to allow variation of leaf angles to simulate the 
bidirectional reflectance factor of turbid medium plant canopies, by solving the 
scattering and absorption of four upward/downward radiative fluxes. Among all the 
radiative transfer models, the SAIL canopy bidirectional reflectance model and its 
derivatives (see the list Jacquemoud et al. 2009) are the most popular once. The 
radiative transfer models have variable degrees of defining canopy structural 
configuration (e.g., LAI and leaf angle distribution (LAD)). In radiative transfer 
models, canopy is assumed to be a turbid medium, canopy elements are randomly 
distributed. In 1D case, canopy is horizontally homogeneous and infinite but 
vertically variable and finite (e.g., SAIL model). In case of horizontal heterogeneity 
and discontinuous canopies, the turbid medium analogy does not hold true. Gastellu-
Etchegorry et al. (1996) put forward DART (Discrete Anisotropic Radiative Transfer) 
model to suit a heterogeneous canopy by dividing the canopy into a rectangular cell 
matrix based on the canopy model developed first by Kimes & Kirchner (1982). 
Myneni et al. (1990) explored and demonstrated 3D canopy radiative transfer models 
and their association with SVI and biophysical parameters although solving these 
models is complicated. To this regard, Nilson and Peterson (1991) developed an 
approximate solution for heterogeneous canopies by extending single scattering 
component.  Kuusk (1995) later developed Markov canopy reflectance model based 
on related philosophy. There are two methods of solving radiative transfer equation, 
i.e., numerical and approximation (details: Liang 2004). 

 Most radiative transfer modelling in vegetation usually focuses in canopy level, 
by either using actual measurement or leaf optical models to represent scattering 
elements (leaves). A ‘Plate’ model known as PROSPECT is perhaps the most widely 
used leaf reflectance model particularly for broadleaf (Jacquemoud & Baret 1990). 
The use of PROSPECT for conifer needles inhibited due to the problems of needle 
shape, thickness and internal cell structure. Dawson et al. (1998) developed the 
LIBERTY (Leaf Incorporating Biochemistry Exhibiting Reflectance and 
Transmittance Yields) model that allows the characterization of conifer needles, at the 
cellular scale. Leaf reflectance and transmittance models such as ray tracing model 
(e.g., RAYTRAN: Govaerts and Verstraete 1998), stochastic model based on Markov 
chain theory (e.g., LFMOD1 model: Tucker & Garratt 1977; SLOP (Stochastic model 
for  Leaf  Optical  Properties)  model:  Maier  et al. 1999), and turbid medium model 
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based on Kubelka-Munk theory (e.g., LEAFMOD (Leaf Experimental Absorptivity 
Feasibility MODel) model: Ganapol et al. 1998) have been also demonstrated 
although rarely used. These effort shows that it is indispensable to model the optical 
property of the scattering elements in canopy radiative transfer models. 

Geometric optical models use geometric optics to compute the reflectance from 
a  plant  canopy  as  a  function  of  various  structural  (e.g.,  tree  shape,  tree  height)  and  
spatial parameters (e.g. stand density) represented by a series of regular geometric 
shapes (e.g., cylinders, spheres, cones, ellipsoids). Various scenes are modelled as 
varying proportions of shadowed and illuminated tree crowns, and shadowed and 
illuminated background. Most of geometric optical models in remote sensing 
application have been reviewed by Chen et al. (2000). Such models are appropriate 
for and have been successfully used in microwave (Sun & Ransom 1995) and LIDAR 
(Sun & Ransom 2000) which are out of the scope of this dissertation. Canopy 
geometric optical models often incorporated with radiative transfer theory forming 
hybrid model for LAI inversion (e.g., GORT (Geometric-Optical Radiative Transfer): 
Li et al. 1995; five-scale model: Leblanc et al. 1999; directional reflectance model: 
Kuusk & Nilson 2000; GeoSAIL: Huemmrich 2001). 

Computer simulation models are another set of physically based approaches 
most often work based on light transport and rendering concepts. The Monte Carlo 
Ray Tracing (MCRT) based on sampling of photon trajectories within canopies (Arai 
2000) and the radiosity (adopted for canopy by Borel et al. (1991) and Goel et al. 
(1991)) methods are the classical examples of computer simulation models. Very few 
studies have applied computer simulation model for direct biophysical parameter 
retrieval (e.g., radiosity: Garcia-Haro et al. 1999).  Although requiring intensive 
computing resources, these models allow a more realistic representation of the 
vegetation canopy and a primary tool to understand radiation regime and validating 
other radiative transfer models. 

In recent years, a theory based on the spectral invariant property of leaves and 
canopies expressing simple algebraic combinations of leaf and canopy spectral 
transmittance and reflectance becoming wavelength independent and determining a 
small set of canopy structure specific variables has been applied to retrieve LAI 
(details: Huang et al. 2007). The set includes the canopy interceptance, the recollision 
and the escape probabilities. These variables are proven to specify an accurate 
relationship between the spectral response of a vegetation canopy to the incident solar 
radiation at the leaf and canopy scales. The concept (p-theory) which was first 
introduced by Knyazikhin et al. (1998), describes that the amount of radiation 
scattered ( T + R ) by a canopy depends only on wavelength and spectral invariant 
canopy parameter called recollision probability. This parameter can be derived from 
gap fraction data as an average canopy value. Stenberg (2007) has shown that the 
recollision probability derived from gap fraction data using simple analytical formula 
was strongly correlated with that of simulated with Monte Carlo model. Rautiainen & 
Stenberg (2005) have demonstrated a new semi-physical forest reflectance model 
called PARAS to account the effect of within shoot scattering in coniferous canopy 
reflectance which has been overlooked. The PARAS model uses a relationship 
between photon recollision probability and LAI for simulating forest reflectance. The 
recollision probability is wavelength independent variable defined as the probability 
with which a photon scattered in the canopy interacts with a phytoelement again. 
This, relatively new modelling approach, has experimentally been proven to be a 
powerful tool for LAI retrieval (Rautiainen et al. 2009). 
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Radiative transfer modelling (including coding) in vegetation canopies has been 
a time consuming and labour intensive process that has been exacerbated to be 
challenging by lack of absolute reference standards and benchmarking. Currently, the 
radiative transfer scientific communities are actively participating, exchanging and 
evaluating their models thanks to RAdiation transfer Model Intercomparison (RAMI) 
exercise which developed RAMI On-line Model Checker (ROMC) tool (Widlowski et 
al. 2008). The recent RAMI is extended to evaluating bidirectional canopy reflectance 
models,  light  transmission  and  absorption  models,  as  well  as  models  capable  of  
simulating waveform LIDAR signals and thresholded hemispherical photographs in 
two test environment (abstract and real canopies).  

From the beginning of optical remote sensing, physically based models have 
helped in the understanding of light interception by plant canopies and the 
interpretation of vegetation reflectance in terms of biophysical characteristics. Since 
they attempt to describe absorption and scattering, the two main physical processes 
involved in such a medium, they are useful in designing vegetation indices, 
performing sensitivity analyses, and developing inversion procedures to accurately 
retrieve vegetation properties from remotely sensed data (Jacquemoud et al. 2009). 
Optimisation, inversion methods, generic algorithms and parametric and 
nonparametric approaches to retrieve LAI from physically based approaches are 
described in detail by Liang (2004). A physically based modelling approach based on 
a set of radiative transfer equations or models involves inverting a model: 

,...)(LAIfr  (34) 

where LAI is an input parameter to the model and r is the model output usually 
reflectances, or radiance. The inversion procedure is a process in which the model is 
run in a reverse mode, that is, the inputs to the inversion procedure are the 
reflectances (r) and the output is a set of the parameters. The inversion procedure is an 
ill-posed process by nature due to measurement and model uncertainties and because 
different combinations of model parameters may correspond to almost identical 
spectra (Combal et al. 2002). Thus, additional input information is needed to 
accurately estimate the vegetation parameters. The model input parameters may 
include soil reflectances, canopy architectures and optical properties, geometric 
configuration of the sensing systems, illumination conditions  as well as single 
scattering albedos of individual leaves, leaf inclination distribution, and anisotropic 
properties of both canopy and soil substrates. The selection of the input parameters for 
the inversion of physically based models is complicated, and the parameterisation 
techniques typically rely on the existence of experimental data collected at the site of 
interest which is not usually readily available. One of the earliest attempts to retrieve 
vegetation parameters by inversion of canopy reflectance models can be noted from 
Kuusk (1998). This study has shown the difficulties of inverting radiative transfer 
model for large scale vegetation parameter retrievals. 

A major advantage of the reflectance modelling approach is that it is a 
physically based approach and is independent of vegetation type. A simplified form of 
physically based modelling is the utilisation of Beer's law which describes the 
interception of radiation by plant canopies. Theoretical considerations (Clevers 1989; 
Baret & Guyot 1991) confirmed by some experimental observations (Wiegand et al. 
1990, 1992; Richardson et al. 1992; Gutman & Ignatov 1998; Jiang et al. 2006) 
showed that most SVIs can be approximated as a simple exponential function of LAI: 
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)exp()( kLAISVISVISVISVI back  (35) 

where SVIback and  SVI  are the SVI values for the soil (LAI = 0) and for infinite LAI 
(asymptotic value) , respectively. The combination of equations (2) and (35) leads to 
the following generic relationship between the vertical gap fraction and a SVI: 

SVISVI
SVISVIPo

back

 (36) 

Therefore, LAI can be inferred as: 

k
SVISVI

SVISVILAI
back

/ln  (37) 

Equation (37) is essentially physically based LAI modelling as the constants 
SVI , SVIback, and k are physically determined parameters. All the required parameters 
can be obtained from remotely sensed images because of the high contrast that exists 
between soil and vegetation optical properties and because the gap fraction is a 
synthetic variable resulting from the combination of LAI and leaf orientation that 
governs directly the radiative transfer process (V–VII). This approach takes the 
advantages of the SVI virtues as used in empirical modelling and simplistic approach 
to the classical inversion of physically based radiative transfer models, where the 
classical dilemma between the number of independent measurements performed and 
the number of variables to be estimated is no longer critical. This technique can be 
enhanced provided that high spatial resolution remote sensing imagery is available to 
distinguish gaps from canopy (V; VI).  Model simulations have shown that the nadir 
remote sensing signal may be more related to the effective LAI than to the true LAI 
(Chen & Cihlar 1996), indicating the importance of clumping index (VI; VII). 

The LAI inverted based on equation (37) comprises optical properties of the 
entire vertical profile of the canopy including understorey, which is more relevant 
compared to ground based optical determination or purely theoretical radiative 
transfer formulations. However, the green LAI (due to SVI relation with optical 
thickness of the vegetation) from this large scale inversion algorithm might have to be 
converted to a geometrical parameter such as LAI determined for example from 
hemispherical photography. Methods for specification of SVI  and SVIback are not 
satisfactory to the author’s knowledge to this date (VII). Besides, varying orthogonal 
and  ratio  based  SVIs  have  different  sensitivity  to  the  atmospheric  effect  and  the  
spatial  resolution  of  the  remotely  sensed  pixels  (VII).  These  limitations  of  such  a  
simplistic and functionally relevant approach for LAI inversion require further study 
for the improvement (V–VII).  

Large scale clumping index retrieval 

Foliage element clumping is an important canopy structural parameter affecting both 
the gap fraction for the same LAI, radiation interception and distribution within the 
canopy, which in turn affects photosynthesis. Large scale clumping index retrieval has 
been a challenging task owing to difficulties of representing geometric property of 
canopy from remotely sensed optical data. MODIS LAI algorithm for example 
accounts for clumping at the canopy and leaf (shoot) scales through 3D radiative 
transfer formulations and assumptions on canopy architecture specific per biome class 
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(Knyazikhin et al. 1999). The clumping at the landscape scale can partially be 
addressed via mechanisms based on the radiative transfer theory of canopy spectral 
invariants (Knyazikhin et al. 1998). 

Lacaze et al. (2002) was perhaps the first to attempt retrieving large scale 
clumping index from multiangular POLDER (POLarization and Directionality of the 
Earth's Reflectances) dataset. They have demonstrated clumping index calculations 
using only a portion of the BRDF, in particular, the two directional signatures, which 
are  the  maximum  ( HS : hotspot) and the minimum ( DS : darkspot) of reflectance 
observed in the backscattering and forward scattering regions, respectively. A 
directional hot–dark spot index (HDS) is formulated using these two signatures as: 

DSDSHSHDS /)(   (38) 

It has been shown that the HDS is related with the foliage clumping index for 
three different vegetation types (Conifer, broadleaf and grassland).  Later, HDS was 
found out to be empirically related with clumping index non-linearly. Therefore, Chen 
et al. (2003) suggested new anisotropy index by modifying HDS called normalised 
difference between hotspot and darkspot (NDHD) which was demonstrated in earlier 
work by Leblanc et al. (2001).  The  difference  in  the  reflectance  at  hotspot  and  
darkspot is normalized against that at the darkspot to reduce the influence of leaf 
optical properties on the index so that only canopy geometry will have influence in 
NHDS in contrast to HDS. The modified anisotropy index is: 

)/()( DSHSDSHSNHDS     (39) 

Both HDS and NHDS are being used to retrieve large scale clumping index 
using empirical coefficients fitted with ground based clumping index measurements. 
The rationale behind the relationship between clumping index and darkspot is because 
of clumped canopies cast dark shadows and decrease the darkspot reflectance 
(Leblanc et al., 2005). However, in areas of significant slope, the BRDF will no 
longer be symmetrical about the principal plane. Therefore, NHDS is highly biased by 
topographic influence due to shadowing, adjacent hill illumination, sky occlusion, and 
slope orientation with respect to the BRDF if complex terrain is not accounted for 
BRDF reconstruction. Contrary to the rich information content of multiangular 
imagery and the obvious future development of new instrumentation, atmospheric 
correction of multiangular data is troublesome. Besides, it is difficult to obtain 
multiangular  cloud  free  measurements  as  often  as  single  angle  measurements.   The  
commonly used radiative transfer codes for atmospheric correction are based on a 
plane-parallel atmosphere approximation causing problems for large view and 
illumination zenith angles. It is perhaps analytically challenging to decouple surface 
and atmospheric radiative transfer effects to retrieve surface directional reflectance 
property from large swath multiangular satellite instruments. To this regard, Papers 
VI & VII demonstrate the new look at computing clumping index from remotely 
retrieved gap fraction data using single view angle measurements. It is however 
important to acknowledge the potential of multiangular measurements to derive 
structural indices and a great deal of improvement on the HDS based approaches. 
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3. METHODOLOGY 

3.1 Study areas 

The study areas of this dissertation concentrate on two regions, one located in Taita 
Hills, South-East Kenya (I–III; Figure 3) and another in Gatineau Park, Southern 
Quebec, Canada (IV–VII; Figure 3). The study areas are chosen based on the on-
going monitoring research activities (Pellikka et al. 2000b, 2009; Olthof et al. 2001, 
2003, 2004; King et al. 2005; Pasher & King 2006; Pisaric et al. 2008), complex 
topography, and dense vegetation which create ideal test sites for enhancement and 
robustness assessment of LAI retrieval from remotely sensed data. 

The forest fragments of Taita Hills, South-East Kenya (03°15 –3°30 S and 
38°15 –38°30 E) are located on the dry Serengeti plains approximately 165 km inland 
from the Indian Ocean. The studied forest fragments include Ngangao, Chawia, 
Fururu, Yale, Mwachora, and Macha (Figure 3(c)). The forest fragments are 
characterized by tropical cloud forest with typical indigenous tree species such as 
Tabernaemontana stapfiana, Albizia gummifera, Phoenix reclinata, Xymalos 
monospora, Macaranga conglomerata, Syzygium guineense, Cola greenwayi, Maesa 
lanceolata, Lepidotrichilia volkensii (Chege & Bytebier 2005; Rogers et al. 2008). In 
addition, Cupressus lusitanica, Eucalyptus saligna, Pinus elliottii, Pinus caribea, 
Pinus patula, and Grevillea robusta are common exotic species found in most of the 
fragments (Pellikka et al. 2009). The altitudinal range of the forested area is from 
1500 to 2200 m. In order to determine a broad range of forest types, data were 
collected from natural tropical cloud forests with dense overstorey, dense understorey 
and sparse overstorey; and Pinus, Cupressus, and Eucalyptus spp.  plantations.  The  
sampling design was setup to include contrasting forest types, varying canopy 
structure and topography. Photosites were located randomly away from the forest 
edge stratified by forest types of each fragment. The minimum distance measured 
between two adjacent photosites was 9.5 m. All the fragments have varying aspects 
and slopes. The number of photosites was proportional to the size of the fragments. 

Gatineau Park (Figure 3) is managed by the National Capital Commission 
(NCC) of Canada and centred at  45o30’N, 75o52’W. The park is about 10 km by 50 
km and is mostly temperate hardwood forest with a dominant overstorey of sugar 
maple (Acer saccharum Marsh.) and small patches dominated by American beech 
(Fagus grandifolia Ehrh.), trembling aspen (Populus tremuloides Michx.), and red 
oak  (Quercus rubra L.). Small numbers of red maple (Acer rubrum L.), American 
basswood (Tilia americana L.), ironwood (Ostrya virginiana (Mill.) K. Koch), white 
ash (Fraxinus americana L.), black ash (Fraxinus nigra Marsh.), white birch (Betula 
papyrifera Marsh.), and black cherry (Prunus serotina Ehrh.)  are  also  present.  The  
study plots were located in the southern portion of the park (Figure 3 (c)). In 1998, 61 
plots,  each  20  m by  20  m,  were  placed  on  two north-south  oriented  transects  in  the  
Gatineau Park for the ice storm damage studies (Pellikka et al. 2000b). Fifty-four of 
these  plots  that  could  be  easily  found  in  2007  were  selected.  Plot  corners  were  
surveyed using differential global position system (GPS) to provide positional 
accuracy on the order of <1 m.  The forests of the Gatineau Park were damaged badly 
by an ice storm occurring in 1998, but the park authority NCC did not clear the 
damaged trees and wood from the forest. The forest damage, structure, health and 
succession are the topics of on-going monitoring research activities in Gatineau Park 
(Pellikka et al. 2000a; King et al. 2005). 
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(a)

 
 
 (b) 

           
 (c) 

                               
 
 
Figure 3. (a) Relative locations of Canada and Kenya in dark gray, (b) relative locations of 
study sites within Canada and Kenya, and (c) locations and extents of the study areas of 
Papers I–VII. 
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3.2 Data 

Table 6 summarises the datasets used in the dissertation and the corresponding Paper. 
The following sections describe the details of datasets and preprocessing procedures. 
 
 
Table 6. Field, simulated and remote sensing datasets used in the original Papers. 

Data Paper 
Close-range remote sensing data: hemispherical photography, Taita Hills I–III 
Close-range remote sensing data: hemispherical photography, Gatineau Park IV–VII 
Simulated hemispherical photography data I; III 
Airborne remote sensing: colour digital imagery VI; VI 
Airborne remote sensing: colour infrared (CIR) digital imagery V; VI 
Satellite remote sensing data: SPOT 5 HRG imagery IV; VII 
Satellite remote sensing data: MODIS LAI product VII 
Simulated spectral data: PROSPECT and SAIL IV; VII 

 

3.2.1 Close-range remote sensing data 

A total amount of 184 (92 pairs) hemispherical photographs were taken in a series of 
forest fragments in Taita Hills between 4th and 10th February 2007 (I–III; Figure 3(c)). 
The photographs were acquired using a high resolution (8 mega pixels) Nikon coolpix 
8800 VR digital camera equipped with a fish-eye Nikon FC-E9 lens adapter under 
overcast conditions to minimize the anisotropy of the sky radiance and to reduce the 
scattering fluxes in the digital image. The camera was mounted on a tripod to 
facilitate different camera settings: to orient the photograph acquisition and to take the 
aspect  of  slope  direction.  Two  types  of  photograph  were  taken  from  each  sampling  
point in the forest fragments of Taita Hills: (a) ‘levelled’ to horizontal using a spirit-
level and (b) ‘tilted’ normal to slope (the lens oriented parallel to the slope direction). 
For each sampling point, the slope magnitude and direction were measured. In order 
to take tilted photographs, the fish-eye lens was tilted towards the downslope 
direction using a spirit-level, compass, measuring string, lens cover and protractor. 
The camera was set at height of 1.3 m above ground. Both types of photographs 
(levelled and tilted) were acquired within the shortest possible time with the same 
manual aperture and shutter speed for the same sampling point to avoid the altering 
light regime. These photographs were used for sampling of gap fraction for LAI and 
clumping index calculations (I), for slope corrections (II), and clumping index 
computations (III). Different vegetation types and slope classes were represented by 
sufficient sampling measurements. 

In Gatineau Park, the ground LAI measurements were collected using digital 
hemispherical photography between August 10th and 20th, 2007 using the same digital 
camera and lens mentioned above. In total, five photographs were acquired in each 
study plot, one at each corner and one at the centre. The camera was mounted and 
levelled on a tripod at a height of 1.3 m above ground. These photographs were used 
in the Papers IV–VII as a validation dataset. 
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3.2.2 Simulated hemispherical photography data 

A set of hemispherical photographs were simulated to investigate the effect of 
resolution of sampling grid on LAI computation based on different fractional 
clumping and LAI (I), and the computation of foliage clumping index following 
various gap fraction and size theories (III). The photographs were simulated within a 
3D forest stand for a range of simulated, true LAI values 2, 4 and 6, and clustering 
percentage (fractional clumping, Fc) ranging from 0 to 1 by increments of 0.1 
providing a total of 33 combinations. For details and procedures on simulating 3D 
spatial distribution of foliage, i.e., foliage clumping refer to the work of Walter et al. 
(2003). Simulation of foliage clumping was done in three steps (Fournier et al. 1996): 
(a) calculating foliage distribution within a 3D matrix by specifying the total LAI, Fc, 
and the number of cluster seeds or centres, (b) simulating a horizontally extended 
canopy,  and  (c)  applying  a  ray  tracing  algorithm.  Calculations  were  applied  to  a  
rectangular volume with 5 m per horizontal side and 10 m of height and composed of 
small opaque cells with dimensions of 10 cm per horizontal side and 1 cm of height. 
Cells simulated a horizontal flat leaf with a thickness of 1 cm. The number of opaque 
cells was calculated from the total LAI selected while taking into account an LAI 
contribution of each 0.01 m2 cell. Fc is a percentage applied to the Euclidean distance 
separating a leaf from its closest clump centre. Fc = 0 corresponds to a random foliage 
element distribution. The forest stand was simulated by placing side to side, with no 
space, a copy of the same 3D volume until sufficient horizontal extent was reached. 
The bases of the volumes were placed at a height of 10 m to simulate a vertical 
distribution of foliage between 10 and 20 m. A 600 m × 600 m forest stand was 
simulated to reduce the border effects at large view angles. These photographs were 
used in Paper I and III. The photographs were simulated at the centre of the stand at 
1.5  m above  the  ground to  recreate  a  possible  scenario.  The  ray  tracing  simulations  
resulted in an image formed only by black (0, obstructed ray) and white (1) pixels. 

3.2.3 Airborne remote sensing data and preprocessing 

A data set of colour and colour infrared (CIR) digital camera images was captured on 
a cloud free day of the 21st of August 2007, between 12:32 and 13:24 local time, from 
an aircraft flying at approximately 309 m above ground level in Gatineau Park (Figure 
3(c)). During the acquisition, the solar zenith angle was between 34.3o and 33.6o and 
the azimuth angle was between 164o and 188.1o. The CIR camera was a Duncantech 
MS4100 with 1920 x 1080 pixel format and a 24 mm lens. It is a 3-CCD (charge-
coupled device) camera with dispersion optics that split incident irradiance into three 
bands: green (500–600 nm), red (600–700 nm) and NIR (750–850 nm).  The  colour  
camera was a Nikon D200, a single CCD with 3872 x 2592 pixel format and a 28 mm 
focal length lens. Exposures were set before each flight line to optimize the dynamic 
range and to result in image motion during each exposure of less than ½ a pixel. 
Exposure  intervals  for  both  cameras  were  set  to  provide  60%  forward  overlap.  The  
nominal ground pixel size was 60 cm for the CIR data and 35 cm for the colour data. 
The images were georectified using 25 cm pixel orthophotos provided by the NCC. 
An average of 10 ground control points (GCPs) was selected for each image. A 1st-
order polynomial and nearest neighbour interpolation were used as the warping and 
grey level resampling methods, respectively. The output projection for the registered 
images was Universal Transverse Mercator (UTM) zone 18 with a North American 
Datum 1983 (NAD83) datum. Mosaics were assembled using pixels in the overlap 
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area  of  each  image  pair  that  were  closest  to  nadir.  This  minimized  the  effect  of  the  
bidirectional reflectance distribution function (BRDF), vignetting and light-fall off 
(Pellikka 1998; Lévesque & King 1999; Pellikka et al. 2000b). The mosaics were also 
clipped from each side to restrict the across track view angle to 8o. The ground plots 
were distributed along the centre of the mosaic (flight line) so the between plot optical 
variation was minimized. Both colour and CIR airborne imagery were used in Papers 
V &VI for large scale LAI inversion algorithms. 

3.2.4 Satellite remote sensing data and preprocessing 

Two sets of satellite datasets were used in Papers VI & VII. The first one was SPOT 5 
HRG (Satellite Pour l'Observation de la Terre 5 High Resolution Geometric) imagery 
in radiances in digital counts in the green (500–590 nm), red (610–680 nm), NIR 
(780–890 nm) and SWIR (1580–1750 nm) wavelength regions in 10 m resolution 
acquired on cloud free day of July 23, 2007, 10:49 local time for 60 km × 60 km 
image swath. The sun zenith and azimuth angles were 30 and 140 in degrees, 
respectively. The view zenith angle was 20 degree. The SWIR band is originally 
acquired at 20 m pixel size and resampled into 10 m in order to match other bands. 
The SPOT image was obtained from the OASIS program financed by the European 
Commission,  DG  Research.  The  image  was  orthorectified  using  a  3  arc  seconds  
digital elevation model (DEM) obtained from Canadian Digital Elevation Data 
(CDED)  based  on  SPOT  XS  sensor  colinearity  geometric  model.  The  SPOT  image  
was registered using 139 GCPs from orthorectified digital aerial photography and 
national road network of Canada into UTM zone 18 with a NAD83 datum. The 
radiance was calibrated and corrected using five atmospheric correction techniques: 
namely, four dark object subtraction (DOS) techniques (Song et al. 2001) and 
radiative transfer code developed by Vermote et al. (1997) called second simulation 
of the satellite signal in the solar spectrum (6S). 

The second satellite dataset was MODIS Collection 5 LAI product acquired in a 
form  of  Hierarchical  Data  Format  (HDF)  subsets  from  the  Warehouse  Inventory  
Search Tool (WIST) client. The subset LAI product was in 1 km resolution with 
8 days composite using maximum fraction of photosynthetically active radiation 
(FPAR).  The  HDF subset  was  re-projected  and  they  matched  the  study  area  layout.  
The available LAI was downloaded from date 23/07/2007 (20 – 27/07/2007) to cover 
the same period of ground and SPOT data acquisitions in Gatineau Park. Only pixels 
retrieved with the main algorithm without cloud contamination were used in Paper 
VII (Myneni et al. 2002). 

3.2.5 Simulated spectral data 

The combined PROSPECT leaf optical properties model (Jacquemoud & Baret 1990) 
and SAIL turbid medium canopy bidirectional reflectance model (Verhoef 1984), also 
referred to as PROSAIL, were used in order to evaluate the spectral sensitivity of 
SVIs to LAI (VI) and to test the robustness of the methodologies developed in Paper 
VII. The canopy reflectance was simulated for three wavelength bands centred around 
645, 834 and 1645 nm, corresponding to red, NIR and SWIR bands of SPOT 5 HRG, 
for a range of plausible input parameters. PROSPECT uses the following input 
parameters: chlorophyll a and b content (34.2 g.cm-2), dry biomass content  (0.0045 
g.cm-2), equivalent leaf water content (0.0137 g.cm-2), and mesophyll structure 
parameter (1.55 N);  and  SAIL  uses:  LAI,  leaf  angle  distribution  (spherical),  soil  
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reflectance and external parameters like Sun zenith (0o), view zenith (30o) angles, and 
Sun and view azimuth angles (0o). For this analysis, the ranges of the LAI inputs 
were; 0.25 – 9 by increment of 0.25, and 12 to represent the largest LAI value. Three 
different soil backgrounds ranging from dark to bright were specified from Bowker et 
al. (1985). The other input parameters were kept constant as specified above in 
parenthesis. The input parameters which have been used in the analysis are within the 
realistic range and adopted from other simulation studies (Jacquemoud & Baret 1990; 
Jacquemoud et al. 2000). 

3.3 Leaf area index determination from ground measurements 

Remote sensing of LAI is challenging field of study due to the temporal and structural 
dynamics and varying structural and biochemical measurement dimensions associated 
with LAI. Besides, ground based optical LAI is often mistakenly perceived as a 
“ground truth” dataset. Ground based LAI measurements are just another metrics of 
LAI and their value varies significantly depending on the instrument and algorithms 
used (see Figure 7 in Garrigues et al. 2008; Gonsamo Gosa et al. 2007). Methodology 
inter-comparisons particularly for clumping index computation, correction for 
complex topography and sampling of gap fraction and size datasets are often 
overlooked in the literature. Paper I–III deals with the aforementioned research 
questions using hemispherical photographs from Taita Hills. 

One of the crucial steps in the measurement of canopy gap fraction and/or size 
using hemispherical photography is determining the resolution of the sampling grid, 
meaning the projected image plane is divided into elements of a sampling grid, 
according  to  the  geometric  distortion  of  the  fisheye  lens.  In  Paper  I,  the  effects  of  
varying resolutions of sampling grids by modifying the angle widths of zenithal 
annuli and azimuthal sectors were evaluated and discussed for LAI and clumping 
index computations. Exhaustive sensitivity analysis was performed to test these 
effects; using artificial photographs simulating ideal canopies (Section 3.2.2). The 
LAI was computed using Lang’s graphical and iterative method (Lang 1986). The 
clumping index was based on the Lang and Xiang logarithm gap averaging method 
(Lang & Xiang 1986). All the simulated and real photographs were analysed using 
CIMES-FISHEYE software (Walter 2008) in order to extract oriented gap fractions, 
and derive LAI and clumping index. For both simulated and real photographs, the 
image  analysis  was  restricted  to  the  zenith  view  angle  below  60o to avoid mixed 
pixels near to the horizon, which result mainly from the light scattering and coarse 
image resolution. 

The slope effect and correction methods for estimation of canopy gap fraction, 
LAI, mean leaf angle and clumping index using hemispherical photography, were 
investigated in Paper II. The evaluation was carried out in tropical cloud forest and 
plantations in Taita Hills in order to consider a range of canopy architecture and 
slopes up to 65% (Figure 3 (c)). The two acquisition techniques and various slope 
correction procedures were compared. All estimates assume uniform slope, canopy 
parallel to ground and homogeneous canopy structure at the photosite level. The slope 
correction method implies the use of variable path lengths and adjusting LAI to 
horizontal datum. For photographs oriented to local zenith (levelled acquisition), 
calculations were made using: (a) fixed path lengths over azimuths using zenith 
reference axis, calculation and removal of sky parts of the hemisphere obstructed by 
topography, azimuthal inversion of gap fraction without prior averaging and deriving 
local LAI estimates (quasi-random model), and LAI referred to horizontal and 
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corrected for topographic shading, and (b) variable path lengths over azimuths using 
normal to slope reference axis, LAI adjusted to horizontal by dividing by the slope 
cosine. For photographs oriented parallel to slope (tilted acquisition), calculations 
were made using: fixed path lengths over azimuths, normal to slope reference axis, 
LAI adjusted to horizontal by dividing by the slope cosine, and azimuthal inversion of 
gap fraction without prior averaging deriving local LAI estimates (quasi-random 
model). CIMES-FISHEYE software was used for the calculations. 

In Paper III, varying methodologies of clumping index determination on real 
hemispherical photographs, and on the simulated photographs representing different 
aggregation levels of foliage elements were evaluated. The comparative analysis was 
carried out for the effects of forest types, forest density, slope and gap fraction 
acquisition accuracy on estimation of clumping index using the five gap fraction 
averaging methods and gap size distribution theories (Walter et al. 2003; Jonckheere 
et al. 2004; Leblanc et al. 2005). CIMES-FISHEYE software was used for the 
calculations. 

Hemispherical photograph as a ground comparison datasets for Papers IV–VII 
from Gatineau Park were analysed using CAN_EYE software (e.g. Demarez et al. 
2008). LAI was computed for the range of 0o–60o view zenith angle using Campbell’s 
ellipsoidal distribution function of leaf angles (Campbell 1986; Campbell & Norman 
1989). Fractional vegetation cover (fc) was extracted from the average gap fraction 
computed within 0o–20o view zenith  angle.  For  simplicity,  the  effective  LAI,  which  
assumes random foliage distribution, was used in Papers IV, V & VII, and logarithm 
gap averaging method clumping index (Lang & Xiang 1986) in addition to LAI in 
Paper VI. 

3.4 Leaf area index determination using empirical modelling 

A spectral vegetation index is a quantitative measure usually formed from 
combinations of several spectral bands, whose values are added, divided, or 
multiplied in order to yield a single value that indicates the amount or vigour of 
vegetation. By and large, empirical modelling of LAI based on the SVI-LAI statistical 
relationships remains common method of retrieving spatially explicit LAI. In Paper 
IV, the performances of seven ratio based SVIs were investigated for their sensitivity 
to  a  varying  range  of  LAI.  The  SVIs  were  selected  based  on  the  extensive  use,  
performance and sensitivity to LAI on high vegetation cover. The SVIs include: SR 
(simple ratio, Jordan 1969), ISR (infrared simple ratio, Fernandes et al. 2003), NDVI 
(normalized difference vegetation Index, Rouse et al. 1973), NDII (normalized 
difference infrared index, Hardisky et al. 1983), RSR (reduced simple ratio, Brown et 
al. 2000), RNDVI (reduced normalized difference vegetation Index, Nemani et al. 
1993), and RISR (reduced infrared simple ratio, IV). Most of the three band SVIs are 
included and ISR was extended by correcting by scaled difference of red reflectance 
and named reduced infrared simple ratio (RISR). The new vegetation index, RISR, 
significantly reduced the effect of soil background reflectance while maintaining high 
sensitivity to wide range of LAI. The sensitivity assessments were carried out for both 
SPOT data from Gatineau Park and simulated spectra. The main sensitivity function 
was the first derivative of the regression function divided by the standard errors of the 
SVI (Ji & Peters 2007). In addition, band and individual SVI sensitivity with LAI was 
carried out using the ordinary least squares regressions. The aim was to evaluate the 
applicability of multiple SVIs for LAI mapping based on the sensitivity analysis (IV). 

http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6V8W-49PYP4G-3-G&_cdi=5881&_user=949111&_check=y&_orig=search&_coverDate=01%2F20%2F2004&view=c&wchp=dGLzVzz-zSkzS&md5=490b127a4cfb7f0d1a3cf9916561646c&ie=/sdarticle.pdf
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3.5 Large scale leaf area index inversion algorithms 

Theoretically most SVIs can be approximated as a simple exponential function of LAI 
which is confirmed by some experimental observations (Section 2.3). In Paper V & 
VI, large scale LAI inversion algorithms (Equation 37) were applied on the gap 
fraction data obtained from the colour and CIR airborne imagery from Gatineau Park 
(Equation 35 & 36). In Paper V, NDVI, maximum likelihood and object-oriented 
classifications, and principal component analysis (PCA) methods were applied to 
calculate the mono-directional gap fraction. The LAI inverted using the two 
classification methods, PCA, and NDVI were inter-compared and independently 
evaluated using the ground based LAI measurements. Four measures were used to 
evaluate algorithm effectiveness: namely, Pearson correlation coefficient, RMSE, 
overall average accuracy (OAA), and visual examination based the LAI maps in 
comparison with the CIR image to assess the overall spatial distribution of predicted 
LAI. The method which performed best was used for producing LAI maps for the 
entire mosaic covers in both sampling transects. Paper VI further explores the 
robustness of large scale LAI inversion algorithms from colour and CIR imagery by 
extending the airborne gap fraction extraction methods and developing new airborne 
clumping index estimation technique. Colour based thresholding procedures were 
used besides NDVI for gap fraction extraction. The NDVI based gap fraction was 
further used for computation of clumping index following logarithmic averaging 
method which was initially developed for ground measurements (Lang & Xiang 
1986). 

Paper VII further explores the applicability of large scale LAI inversion used in 
Paper V & VI, using red and near infrared reflectances obtained from high resolution 
satellite imagery (SPOT 5 HRG) over Gatineau Park. NDVI, scaled difference 
vegetation index (SDVI, Jiang et al. 2006) and modified soil-adjusted vegetation 
index (MSAVI, Qi et al. 1994) were applied to calculate mono-directional gap 
fractions. The robustness of the algorithms was evaluated using the ground based LAI 
measurements and by applying the methods for the independently simulated 
reflectance data using PROSAIL radiative transfer models. Furthermore, the high 
resolution LAI was compared with MODIS LAI product. The effects of atmospheric 
corrections and scales were assessed for each of the method. Thorough analysis was 
dedicated to accurate determination of SVIback and SVI  which are the SVI values for 
the soil (LAI = 0) and for infinite LAI (asymptotic value), respectively (Equation 35–
37).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



47 
 

4. GENERAL RESULTS AND DISCUSSION 

4.1 Leaf area index determination from close-range optical observation: 
hemispherical photography 

An astonishing aspect of hemispherical photography is that such a wide range of 
estimates of leaf area and clumping indices are produced by different methods. In 
earlier days, interpretation of hemispherical photography required tedious manual 
analysis of gap fraction sampling through overlay of clear sampling grids upon prints 
or the projection of photographs on an opaque sampling grid (Anderson 1964). The 
projected image plane is divided into elements of a sampling grid, according to the 
geometric distortion of the fisheye lens. Herbert (1987) provides a discussion of 
hemispherical projections and lens distortion corrections. Manual analysis is tedious 
and time consuming. Nowadays, digital image analysis techniques are being used 
allowing efficient analysis of large numbers of photographs. The geometric 
distribution of openings (gap fraction) can be measured precisely and can be used to 
estimate potential solar radiation penetration through openings and to determine 
aspects of canopy architecture such as fractional vegetation cover, LAI, clumping 
index, and leaf angle distribution. In hemispherical photography, gap fraction 
represents the relative proportion of open sky contained in any sampling grid or 
concentric sky ring on the projected image plane. The resolution of the sampling grid, 
or seldom referred to as ‘sky map’ is determined by the number of zenithal annuli and 
azimuthal sectors. Therefore, the sky map consists of their respective intersections, 
defining sky segments. The resolution of sampling grid affects: the probability of 
encountering segments which are completely blocked by canopy elements (I–III), the 
azimuthal averaging of gap fraction (I–III), the slope correction (II), the clumping 
index computations (I–III) and therefore LAI estimation (I–III). 

The results (I) indicate that the LAI and clumping index estimates vary 
considerably for different resolutions of sampling grids from both simulated and real 
photographs for clumped foliage distributions. In this work, the effects of varying 
resolutions of sampling grids by modifying the angle widths of zenithal annuli and 
azimuthal sectors were evaluated for LAI and clumping index computations. A new 
approach to solve the problem of ‘empty segments’, obscured completely by foliage, 
is  proposed.  For  comparative  analysis,  a  segment  with  null-gap  is  given  a  value  of  
maximum effective  LAI  of  8  (LAIsat), to compute new gap fraction following local 
Poisson  model,  a  common  procedure  (Weiss  et al. 2004; Leblanc et al. 2005). The 
number of sky segments does not affect the LAI and clumping index estimates as long 
as the foliage elements are randomly distributed. The arbitrary value of “LAIsat” 8 
assigned  for  empty  segments  has  caused  the  overestimation  of  estimated  LAI  
compared to merging them for the simulated LAI of 2 in all numbers of sky segments 
where  empty  segment  were  encountered.  For  simulated  LAI  value  of  6,  “LAIsat”-
based method underestimated compared to merging them for the two maximum sky 
resolutions of 5184 (2.5o segment  width)  and  3600 (3o segment width) due the fact 
that at these resolutions the proportion of empty segments is more than 50%. Merging 
empty segments to the following non-empty segments was proven to be a robust 
approach for both LAI and clumping index estimates. A segment with very small gap 
fraction is likely to occur near to an empty segment, which affects both LAI and 
clumping index retrievals, as the logarithm of a near zero gap fraction value gives an 
infinitely  high  LAI,  an  often  overlooked  problem.  Therefore,  merging  the  empty  
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segments with the closest non-empty segments avoids unfavourable outputs from both 
the zero, or near to zero gap fractions.  

From simulated photographs, the higher the foliage clumping, the lower the 
estimated effective LAI nearly in systematic manner in all considered equiangular sky 
resolutions. This confirms that, increasing the number of sky segments does not per se 
improve the estimated LAI in order to avoid the necessity for correction parameters 
such as clumping indices. For random simulation of LAI 6, 18% and 21% variations 
between minimum and maximum effective and true LAI estimates, respectively, were 
obtained from “LAIsat”-based recalculated gap fractions for empty segments along 
the various numbers of sky segments. Whereas, only 4.5% and 6% variations between 
minimum and maximum effective and true LAI estimates, respectively, were obtained 
for merged empty segments. This suggest that merging empty segments rather than 
assigning an arbitrary “LAIsat”  value may reduce bias and sensitivity of estimates 
for various numbers of sky segments for LAI estimations. 

Leblanc et al. (2005) and Demarez et al. (2008) suggested the use of “LAIsat” 
value varying from 2 – 12 to recalculate a new gap fraction for empty segment using 
the Poisson model as used in this study. However, there is no obvious a priori reason 
for choosing this method and the upper saturated value of LAI. van Gardingen et al. 
(1999) suggested altering empty segments artificially by adding a gap of one pixel. 
However, there is no reason why this should work, because the one pixel gap is 
dependent  on  the  pixel  resolution  of  the  photograph.  If  the  proportion  of  empty  
segments is high, altering empty segments by adding a pixel of gap tends to decrease 
LAI and  estimates. The combined effect of this may result higher true LAI for low 
density and lower true LAI for higher density forest canopies depending on the 
proportion of empty segments and the effect on . Therefore, HP analysis tools for 
canopy structure computation should employ a technique of merging each ‘empty’ 
segment with the following non-empty segment to produce a bigger segment with 
average value. 

Form  real  photographs,  there  was  systematic  difference  of  estimated  LAI  and  
clumping index using different numbers of sky segments. LAI and clumping index 
estimates demonstrated strong and significant correlations, using various numbers of 
sky segments. The increase in effective LAI with increasing number of sky segments 
can be attributed to local heterogeneity of gap distribution, thus non-random 
distribution of foliage elements is partially taken into account when Lang’s approach 
for LAI calculation is applied without gap fraction azimuthal averaging. Generally 
speaking, the determination of the number of sky segments that suits all canopy types 
was found out to be a difficult practical problem. However, Paper I presents more 
objective procedures for determining the sky map resolution and the workable 
hemisphere regions for gap fraction measurements along with theoretical 
considerations. 

In Paper II, the slope effect and correction methods for estimation of canopy gap 
fraction, LAI, leaf inclination angle and clumping index using real hemispherical 
photography from Taita Hills, were investigated. The results are presented from two 
acquisition techniques: (a) photographs oriented to local zenith (levelled acquisition), 
and (b) photographs oriented parallel to slope (tilted acquisition). Gap fractions 
presented a stronger upslope/downslope asymmetry when retrieved from levelled 
acquisition. As a result, gap dispersion index (the relative variance of gap fractions: 
variance/mean × 100) and foliage clumping proved to be significantly higher for 
levelled acquisition (P < 0.001). LAI estimates adjusted to horizontal are not 
significantly different, whether retrieved from levelled or tilted acquisitions, up to 
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30% slopes. From levelled acquisition, fixed and variable path length do not yield 
significantly  different  LAI  estimates  along  the  whole  slope  gradient.  From  tilted  
acquisition, LAI values were systematically higher than from levelled acquisitions, 
the stronger the slope, the higher the difference. Average leaf inclination angles do 
not differ significantly (P > 0.05) for fixed vs. variable path lengths along the slope 
gradient up to 30%. For more severe slopes, variable path lengths yield lower average 
leaf inclination angle values. The interpretation of results from tilted acquisition 
remains uncertain. As a preliminary study, no preference is suggested for the levelled 
or tilted acquisition technique. Generally speaking, regarding the amount and 
distribution of gap fractions, a negative bias of gap fraction was found for upslope 
sectors and a positive bias for downslope sectors from levelled acquisition and was in 
agreement with Walter & Torquebiau (2000). 

Paper  III  presents  the  results  of  comparative  analysis  of  clumping  index  using  
five different methods. The methodological setup for the comparative analysis in 
Paper  III  was  refined  by  the  findings  of  Paper  I  &  II.  The  result  indicated  that  
clumping index estimates based on gap size distribution approaches performed best 
and were less affected by topography and forest density compared to approaches 
based on solely logarithmic gap averaging method. Clumping index based on the gap 
size  distribution  theories  are  less  affected  by  slope  due  to  the  fact  that  they  are  
sensitive mainly for smaller gap sizes. As demonstrated in both simulated and real 
photographs analysis in this study, the combination of logarithmic gap averaging and 
gap size distribution approach is preferred in all scenarios such as varying forest 
density, slope and foliage aggregation. Overall, acceptable but lower correlations 
were obtained among varying computation methodologies and photograph acquisition 
techniques (Pearson correlation coefficient < 0.5). There was no clear difference of 
clumping index estimates along the severity of slope. This is due to the fact that photo 
point based comparison used in Paper III is biased due to the view direction changes 
when the lens is tilted to the parallel of sloping ground. Paper III disproved the 
general suggestion (Macfarlane et al. 2007) of the use of the logarithmic gap 
averaging method for correcting foliage clumping in preference to gap size theory 
method, unless the gap size distribution is known to be very accurate. 

4.2 Leaf area index determination from remotely sensed optical 
observation: high resolution airborne and satellite remote sensing 

Prior to large scale LAI inversion algorithm developments, traditional empirical 
modelling was tested for both airborne and satellite imagery. Figure 4 presents the 
result example of this approach for the CIR imagery over the Gatineau Park. It is 
evident that the correlation is too weak between NDVI and ground based LAI for 
mapping application of spatially explicit LAI. Therefore, no further attempt was 
considered for CIR imagery using empirical modelling. The main reason for the poor 
correlation was the denseness of the forest plots (average ground based effective LAI 
was 4). SVIs are known to saturate at fairly low LAI values of about 2–3 (Chen et al. 
2002). 
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Figure 4. Normalised Difference Vegetation Index (NDVI) vs. leaf area index (LAI). LAI 
effective was obtained from hemispherical photography and NDVI is calculated from colour 
infrared airborne imagery over the two transects of Gatineau Park (Figure 3(c)). 

 
Paper IV instead presents the thorough analysis of the potential of empirical 

modelling with spectral sensitivity analysis aimed at mapping LAI over large area. In 
Paper IV, two datasets were used in order to evaluate the use of the sensitivity 
functions for SVI-LAI sensitivity analysis and subsequently applying for LAI 
mapping. Analysis with PROSAIL simulation datasets illustrated the varying 
sensitivity of seven ratio based SVIs used in this study at various LAI ranges. There 
are compelling reasons to use several SVIs for LAI mapping for various ranges of 
photosynthetic biomass density and fractional vegetation cover. For example, Carlson 
& Ripley (1997) and Verstraete & Pinty (1991) described that the variation of NDVI 
with respect to the LAI in partially vegetated areas would be mostly controlled by the 
variation in the fraction of vegetated surface area illuminated by the sun and visible to 
the radiometer than by changes in the optical thickness of canopies. Whereas, an 
increasing NIR canopy reflectance at larger LAI and canopy cover is attributed to 
more sunlit and shaded canopy contributing to the canopy reflectance. Likewise, as 
the LAI and canopy closure increase, the red reflectance decreases as less of the 
reflective sunlit background is observed.  

Analysis with PROSAIL simulation datasets illustrated the varying sensitivity of 
seven  SVIs  used  in  this  study  at  various  LAI  ranges.  The  simulated  datasets  further  
indicated that several SVIs can be used for LAI mapping provided that the S function 
(sensitivity function, Ji & Peters 2007) results are large enough. It was also further 
demonstrated that, although S is statistically significant to show SVI sensitivity to 
LAI, it does not necessarily indicate that the relationship obtained from the S function 
can  be  used  for  LAI  mapping.  This  was  the  case  with  the  real  dataset  in  this  study  
where the relationships which resulted in statistically significant S resulted in 
statistically insignificant relationships when applied for LAI mapping. One of the 
most intriguing results in Paper IV was the ability of the newly developed index 
called RISR to reduce varying soil background reflectance effect for potential LAI 
retrieval. Moreover, Paper IV has also shown the relationships of each spectral bands, 
soil effect, and sensitivity assessment using classical regression functions. 

Based  on  the  results  shown  in  Figure  4  and  Paper  IV,  further  studies  were  
considered to retrieve LAI from high resolution airborne (V; VI) and satellite imagery 
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(VII). To this regard, large scale LAI inversion algorithms were developed for 
determining LAI of a forest located in Gatineau Park. In Paper V and VI, NDVI, 
maximum likelihood and object-oriented classifications, and PCA, and colour based 
thresholding methods were applied to calculate the mono-directional gap fraction.  

Paper V and VI present the results of LAI retrievals from colour and CIR 
airborne imagery. There was high inter-correlation (Pearson correlation coefficient 
>0.5, P<0.01) among LAI values inverted using the classifications and PCA gap 
fraction extraction methods, but neither were highly correlated with LAI inverted 
from the NDVI method (V). LAI inverted from the NDVI based gap fraction was 
significantly correlated with ground based LAI (Pearson correlation coefficient 
=0.63, RMSE=0.52),  while  LAI  inverted  from  the  classification,  thresholding  and  
PCA derived gap fraction showed poor correlation with ground based LAI (V; VI).  
The LAI inverted from CIR imagery outperformed that of colour imagery in all cases.  

A clumping index calculation algorithm is demonstrated using the logarithmic 
gap averaging method based on the gap fraction data obtained from scaled NDVI 
(VI). The inverted LAI true (corrected with the clumping index) was best correlated 
with measured LAI effective (Pearson correlation coefficient = 0.67, VI). This 
indicates that the clumping index estimated from NDVI is a meaningful physical 
parameter for correction of LAI even though this kind of clumping index estimation 
does not exist in literature. The assumption of logarithmic gap averaging method for 
clumping index computation is valid as long as gap sizes are concerned, which is 
obtained from NDVI (Lang & Xiang 1986). The gap size from gap fraction derived 
from NDVI can be interpreted as the possible dynamic range of the NDVI with regard 
to the individual pixel size. These results show that further testing of this procedure as 
an alternative approach for LAI retrieval from remote sensing datasets is justified. 

The large scale algorithms shown in Paper V and VI were further extended to 10 
m resolution SPOT 5 HRG imagery. Paper VII presents the results obtained from gap 
fraction based on scaled difference NDVI, SDVI and MSAVI indices for high 
resolution satellite imagery. NDVI was found to be an unsuitable index for large scale 
LAI  inversion  due  to  the  sensitivity  to  scale  and  atmospheric  effects.  SDVI  was  
virtually scale and atmospheric correction invariant. MSAVI was also found to be 
scale invariant. Considering all sensitivity analysis, MSAVI performed best followed 
by SDVI for robust LAI inversion from high resolution imagery. The clumping index 
algorithm shown in Paper VI once again was found to be a useful parameter 
particularly in correction of the scale (spatial resolution) effect on LAI (VII). MODIS 
LAI was overestimated compared to large scale LAI inversion from SPOT by 43% for 
NDVI, 232% for SDVI, and 134% for MSAVI methods. The overestimation was very 
severe  for  higher  LAI  values.  During  the  late  summer,  MODIS  LAI  products  show  
great and progressive overestimation (Pisek & Chen 2007). MODIS LAI products are 
known to overestimate LAI, for example, upto 75% (Yang  et al. 2006), 200% over 
Canada (Abuelgasim et al. 2006), by 2 – 3 LAI over BOREAS study area in Canada 
for broadleaved forest (Fang & Liang 2005) and upto 323.6% across north American 
forest sites (Heinsch et al. 2006).    

Generally speaking, the overall effectiveness assessment shows that LAI can be 
estimated in a robust way using the information contained on the image scene alone. 
However, the varying definitions and assumptions used for LAI obtained from ground 
based measurements, airborne images, SPOT image and MODIS product, and the 
validity of using simple 1D radiative transfer model (PROSAIL) for robustness 
assessment make impossible any complete validation of the approaches (V–VII). The 
ground based measurements give the “plant area index” which includes non-
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photosynthetic parts of plants such as braches and stems. On the other hand, the LAI 
retrieved  from SPOT and airborne  CIR imagery  refer  to  the  “green  leaf  area  index”  
which is highly relevant from application and vegetation function point of view for 
photosynthesis, evapotranspiration and carbon balance studies. The green LAI can be 
accurately estimated from the image as shown in this study. The most important 
parameter for LAI determination was the saturated SVI value as the background SVI 
has  a  very  small  effect  on  the  final  LAI.  The  saturated  SVI  value  can  be  retrieved  
from the image particularly from large swath imagery, during the growing season. 

5. CONCLUSIONS AND FUTURE PROSPECTS 

Remote sensing is perhaps the only way to study the status, condition, extent, and 
dynamics of vegetation at multiple scales because observations can be obtained over 
large areas of extent with high rate of recurrence. Leaf area index (LAI) is a key 
vegetation parameter for global and regional models of biosphere-atmosphere 
exchange of carbon dioxide, nutrients, water vapour, and energy. Retrieval of LAI by 
means of optical observations constitutes a major challenge to the modern remote 
sensing techniques.  
 The main purpose of this dissertation was to enhance the determination of LAI 
using close-range remote sensing (hemispherical photography), airborne remote 
sensing (high resolution colour and colour infrared imagery), and satellite remote 
sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly 
used light extinction models were applied at all levels of optical observations. The 
study  areas  were  Taita  Hills,  South-East  Kenya  (I–III)  and  Gatineau  Park,  Southern  
Quebec, Canada (IV–VII). The main findings of this study are as follows: 

 Sampling of gap fraction for estimating leaf area and clumping indices from 
hemispherical photograph is one of the most crucial steps for enhancement of LAI 
determination. LAI and clumping index estimates are significantly affected by the 
variation of the size of sky segments for given zenith angle ranges in clumped 
foliage (I). A new approach to solve the problem of ‘empty segments’, obscured 
completely by foliage by merging with the following non-empty segments, is 
proposed. Theoretically sound and preferred hemisphere region for gap fraction 
sampling for reliable estimates of LAI and other canopy structure paramaters were 
demonstrated. 

 On sloping ground, LAI and clumping index should be estimated from levelled 
acquisition (II; III). The tilted acquisition is challenging to setup in the field, makes 
interpretation of leaf angles complicated, and makes the computation of 
photosynthetically active radiation (PAR) interception from hemispherical 
photography difficult. Further studies should look the response of leaf angles to 
varying slope. 

 On a hemispherical photograph taken normal to a horizontal surface (optical axis 
oriented to local zenith) on sloping ground, gap fractions and size distributions 
present strong upslope/downslope asymmetry of foliage elements and consequently 
clumping index estimates (II; III). Both simulated and real photographs analysis 
demonstrated that the combination of logarithmic gap averaging and gap size 
distribution approach is performed best (III). This approach was less affected by 
slope and forest density compared to approaches based on solely logarithmic gap 
averaging techniques. 
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 The simulated datasets indicated that several SVIs can be used for LAI mapping 
provided that the S function results are large enough (IV). Further research is 
required to apply the sensitivity analysis aiming at mapping LAI in vegetation 
growing on varying soil conditions with a wide range of LAI and fc. A statistically 
robust and physically meaningful sensitivity function is still required for use of 
empirical modelling. 

 LAI can be estimated nonparametrically from the information contained solely on 
the remotely sensed dataset given that the saturated SVI value is accurately 
determined (V–VII). The logarithmic averaging of gap fraction obtained from 
remotely sensed data can be used to address quantitatively the scaling issues 
between different resolutions of spectral data. However, further study is still 
required to devise a methodology as well as instrumentation to retrieve on-ground 
‘green leaf area index’. Subsequently, the large scale LAI inversion algorithms 
presented in this work can be precisely validated. 

 Based on the literature review and the current study, LAI retrieval from 
remotely sensed data remains a challenging task. The definition of LAI needs further 
work and specification. Current validation activities based on the optical field 
instruments may yield incomparable estimates to those obtained from remotely 
sensed spectral data (IV-VII). Despite the fact that hemispherical photography was 
proven to be a powerful technique for determination of LAI as a ‘structural’ variable, 
its use is limited by 2D space  information  which  is  used  to  deal  with  complex  3D  
canopy architecture. Is LAI, which is potentially obtainable from top-of-canopy 
remotely sensed spectral data, a geometrical (structural) and/or biochemical 
property? Are single view angle remote sensing datasets capable of determining both 
geometrical and/or biochemical properties of LAI? These issues need further 
research. 
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