334 research outputs found

    Practices of Government in Methadone Maintenance

    Get PDF
    Addiction is a central issue in a liberal society of autonomous citizens, as the nodal point of addiction is self-control - or rather the lack of it. By looking at different ways of problematizing and working upon addiction, one might also get some idea of different ways of conceptualizing and practicing freedom. The point of departure for my paper is practices of methadone maintenance in different regimes of drug treatment. The article illustrates how treatment practices produce different forms of subjectification of drug addicts, depending on the discourses and technologies these practices articulate, and by implication, how they constitute different ways of problematizing freedom as something to be worked upon. My argument is based on interviews with managers of the drug treatment system in Copenhagen, documents concerning drug policy and drug treatment on a local and national level as well as addiction research. My analyses in this paper are tentative and a first report from a study currently under way

    Mapping leaf nitrogen and leaf area index in European landscapes using high spatial resolution satellite data and the REGularized canopy reFLECtance (REGFLEC) model

    Get PDF
    Leaf biochemistry and biophysical parameters are important for simulating soil‐vegetation‐atmosphere exchanges of energy, water, CO2 and ammonia. The accumulation of leaf nitrogen (N) in vegetation canopies is a major component of the ecosystem N balance, and leaf N concentration and leaf area index (LAI) are important determinants of the maximum CO2 uptake by plants and trees. In NEU, high spatial resolution remote sensing data from the SPOT satellite were acquired to prepare maps of leaf N and LAI for 5 European landscapes. Mapping was conducted using the REGFLEC model which is an automatic and image‐based methodology developed for regional chlorophyll (Cab) and LAI estimation (ie. Houborg and Andersen, JARS 3, 2009). REGFLEC combines models for atmospheric correction (6S), canopy reflectance (ACRM) and leaf optics (PROSPECT). Model performance previously proved promising in Denmark and in Maryland, USA. In this study, REGFLEC performance is evaluated and discussed using field measurements of leaf N, SPADmeter data and LAI in Denmark, Poland, Scotland, the Netherlands and Italy. The inverse model estimations of soil reflectance parameters and canopy parameters are discussed in relation to the prevailing soil types and vegetation characteristics of land cover classes across the 5 European landscapes

    Cannabis in Danish newspapers

    Get PDF
    Using quantitative methods Danish cannabis debate in national newspapers is investigated. The investigation shows that the most prevalent topics relate to law enforcement. Legalization has become an increasingly important topic in the Danish cannabis debate and the investigation shows a reframing of this debate to become increasingly related to concerns about organized crime. In this way the Danish cannabis legalization debate show the same development as the debates that have led to legalization certain states in the United States of America

    Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    Get PDF
    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbonenabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical submodel of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of landsurface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl– βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes

    CubeSat constellations provide enhanced crop phenology and digital agricultural insights using daily leaf area index retrievals

    Get PDF
    Satellite remote sensing has great potential to deliver on the promise of a data-driven agricultural revolution, with emerging space-based platforms providing spatiotemporal insights into precisionlevel attributes such as crop water use, vegetation health and condition and crop response to management practices. Using a harmonized collection of high-resolution Planet CubeSat, Sentinel-2, Landsat-8 and additional coarser resolution imagery from MODIS and VIIRS, we exploit a multisatellite data fusion and machine learning approach to deliver a radiometrically calibrated and gap-filled time-series of daily leaf area index (LAI) at an unprecedented spatial resolution of 3 m. The insights available from such high-resolution CubeSat-based LAI data are demonstrated through tracking the growth cycle of a maize crop and identifying observable within-field spatial and temporal variations across key phenological stages. Daily LAI retrievals peaked at the tasseling stage, demonstrating their value for fertilizer and irrigation scheduling. An evaluation of satellite-based retrievals against field-measured LAI data collected from both rain-fed and irrigated fields shows high correlation and captures the spatiotemporal development of intra- and inter-field variations. Novel agricultural insights related to individual vegetative and reproductive growth stages were obtained, showcasing the capacity for new high-resolution CubeSat platforms to deliver actionable intelligence for precision agricultural and related applications

    Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC)

    Get PDF
    Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials.However, simultaneous retrieval of LAI and Chll fromspace observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data. A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in centralNebraska for the period 2001–2005, demonstrate Chll retrievalwith a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD = 8.42 μg cm−2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 = 0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy reflectance model (SAIL). Additional advances in the retrieval of canopy biophysical and leaf biochemical constituents will require innovative use of existing remote sensing data within physically realistic canopy reflectancemodels along with the ability to exploit the enhanced spectral and spatial capabilities of upcoming satellite systems

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery

    Get PDF
    Rice is unique, in that yields are maximized when it is grown under ponded (or flooded) conditions. This however has implications for water use (an important consideration in water-scarce environments) and green-house gas emissions. This work aimed to provide precise predictions of the date when irrigated rice fields were ponded, on a per-field basis. Models were developed using Sentinel-2 data (with the advantage of inclusion of water-sensitive shortwave infrared bands) and Planet Fusion data (which provides daily, temporally consistent, cross-calibrated, gap-free data). Models were trained with data from both commercial farms and research sites in New South Wales, Australia, and over four growing seasons (harvest in 2018–2021). Predictions were tested on the 2022 harvest season, which included a variety of sowing and water management strategies. A time-series method was developed to provide models with features including satellite observations from before and after the date being classified (as ponded or non-ponded). Logistic regression models using time-series features produced mean absolute errors for ponding date prediction of 4.9 days using Sentinel-2 data, and 4.3 days using Planet Fusion data. The temporal frequency of the Planet Fusion data compensated for the lack of spectral bands relative to Sentinel-2

    Utility of Daily 3 m Planet Fusion Surface Reflectance Data for Tillage Practice Mapping with Deep Learning

    Get PDF
    Tillage practices alter soil surface structure that can be potentially captured by satellite images with both high spatial and temporal resolution. This study explored tillage practice mapping using the daily Planet Fusion surface reflectance (PF-SR) gap-free 3 m data generated by fusing PlanetScope with Landsat-8, Sentinel-2 and MODIS surface reflectance data. The study area is a 220 × 220 km2 agricultural area in South Dakota, USA, and the study used 3285 PF-SR images from September 1, 2020 to August 31, 2021. The PF-SR images for the surveyed 433 fields were sliced into 10,747 training (70%) and evaluation (30%) non-overlapping time series patches. The training and evaluation patches were from different fields for evaluation data independence. The performance of four deep learning models (i.e., 2D convolutional neural networks (CNN), 3D CNN, CNN-Long short-term memory (LSTM), and attention CNN-LSTM) in tillage practice mapping, as well as their sensitivity to different spatial (i.e., 3 m, 24 m, and 96 m) and temporal resolutions (16-day, 8-day, 4-day, 2-day and 1-day) were examined. Classification accuracy continuously increased with increases in both temporal and spatial resolutions. The optimal models (3D CNN and attention CNN-LSTM) achieved ~77% accuracy using 2-day or daily 3 m resolution data as opposed to ~72% accuracy using 16-day 3 m resolution data or daily 24 m resolution data. This study also analyzed the feature importance of different acquisition dates for the two optimal models. The 3D CNN model feature importances were found to agree well with the tillage practice time. High feature importance was associated with observations during the fall and spring tillage period (i.e., fresh tillage signals) whereas the crop peak growing period (i.e., tillage signals weathered and confounded by dense canopy) was characterized by a relatively low feature importance. The work provides valuable insights into the utility of deep learning for tillage mapping and change event time identification based on high resolution imagery

    Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    Get PDF
    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing data from satellites can be used to estimate leaf area index (LAI), leaf chlorophyll (CHLl) and leaf nitrogen density (Nl). However, methods are often developed using plot scale data and not verified over extended regions that represent a variety of soil spectral properties and canopy structures. In this paper, field measurements and high spatial resolution (10–20 m) remote sensing images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were used to assess the predictability of LAI, CHLl and Nl. Five spectral vegetation indices (SVIs) were used (the Normalized Difference Vegetation index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green Chlorophyll Index) together with the image-based inverse canopy radiative transfer modelling system, REGFLEC (REGularized canopy reFLECtance). While the SVIs require field data for empirical model building, REGFLEC can be applied without calibration. Field data measured in 93 fields within crop- and grasslands of five European landscapes showed strong vertical CHLl gradient profiles in 20% of fields. This affected the predictability of SVIs and REGFLEC. However, selecting only homogeneous canopies with uniform CHLl distributions as reference data for statistical evaluation, significant (p < 0.05) predictions were achieved for all landscapes, by all methods. The best performance was achieved by REGFLEC for LAI (r2=0.7; rmse = 0.73), canopy chlorophyll content (r2=0.51; rmse = 439 mg m−2) and canopy nitrogen content (r2 = 0.53; rmse = 2.21 g m−2). Predictabilities of SVIs and REGFLEC simulations generally improved when constrained to single land use categories (wheat, maize, barley, grass) across the European landscapes, reflecting sensitivity to canopy structures. Predictability further improved when constrained to local (10 × 10 km2) landscapes, thereby reflecting sensitivity to local environmental conditions. All methods showed different predictabilities for land use categories and landscapes. Combining the best methods, LAI, canopy chlorophyll content (CHLc) and canopy nitrogen content (CHLc) for the five landscapes could be predicted with improved accuracy (LAI rmse = 0.59; CHLc rmse = 346 g m−2; Ncrmse = 1.49 g m−2). Remote sensing-based results showed that the vegetation nitrogen pools of the five agricultural landscapes varied from 0.6 to 4.0 t km−2. Differences in nitrogen pools were attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. Information on Nl and total Nc pools within the landscapes is important for the spatial evaluation of nitrogen and carbon cycling processes. The upcoming Sentinel-2 satellite mission will provide new multiple narrow-band data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing predictabilities of LAI, CHLl and Nl.JRC.H.7-Climate Risk Managemen
    corecore