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Abstract
The leaf area index (LAI) is an important vegetation parameter, which is used widely in many applications.  Remote sensing 
techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies.  During the last two 
decades, hyperspectral remote sensing has been employed increasingly for crop LAI estimation, which requires unique 
technical procedures compared with conventional multispectral data, such as denoising and dimension reduction.  Thus, 
we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing tech-
niques.  First, we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI 
estimation.  Second, we categorize the approaches used for crop LAI estimation based on hyperspectral data into three 
types: approaches based on statistical models, physical models (i.e., canopy reflectance models), and hybrid inversions.  
We summarize and evaluate the theoretical basis and different methods employed by these approaches (e.g., the char-
acteristic parameters of LAI, regression methods for constructing statistical predictive models, commonly applied physical 
models, and inversion strategies for physical models).  Thus, numerous models and inversion strategies are organized in 
a clear conceptual framework.  Moreover, we highlight the technical difficulties that may hinder crop LAI estimation, such 
as the “curse of dimensionality” and the ill-posed problem.  Finally, we discuss the prospects for future research based on 
the previous studies described in this review.
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1. Introduction

The leaf area index (LAI) is usually defined as the one- 
sided area of leaves per unit ground area (Chen and Black 
1992).  The LAI reflects the biochemical and physiological 
processes of vegetation, thereby indicating the productivity 
of vegetation, and it serves as an input variable in land sur-
face process models.  Therefore, understanding the LAI of 
a crop and its dynamics is very important for a wide range 
of agricultural studies, such as crop growth monitoring and 
crop yield estimation (Fang et al. 2011).  
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Remote sensing techniques are known to have unique 
advantages for obtaining multitemporal, spatially continu-
ous crop LAI data over a large area.  In most cases of LAI 
estimation using remote sensing, the leaves are assumed 
to be homogeneously distributed.  The LAI values estimated 
under this assumption are referred to as the effective LAI 
(LAIeff) (Chen and Black 1992).  LAIeff has the same main 
functions as the true LAI.  The LAIeff and true LAI can be 
interconverted via a clumping index (Chen et al. 2005).  
Conventional multispectral (also referred to as broadband) 
remote sensing, which divides a discontinuous spectral cov-
erage into several broad bands, has been used frequently 
for obtaining LAI over time and space (Chen and Cihlar 
1996; Cohen et al. 2003; Fang and Liang 2005; Durbha et al. 
2007).  More recently, hyperspectral remote sensing has 
attracted increasing attention for LAI estimation because it 
provides continuous spectral coverage and achieves a spec-
tral resolution of 10–2 λ (where λ is the wavelength), i.e., the 
spectral resolution is <10 nm in the range of 400–2 500 nm 
(Jensen 2009).  Three types of hyperspectral remotely 
sensed data can be identified according to the platform 
used: nonimaging or imaging in situ easurements, airborne 
images and spaceborne images.  However, because of the 
nonlinearity of the methods employed for LAI estimation and 
spatial heterogeneity, the LAI values obtained vary according 
to the spatial resolution, i.e., scaling effects, which should be 
considered when comparing or integrating LAIs estimated 
using data acquired at various resolutions or with different 
types of sensors (Garrigues et al. 2006).  

In general, the approaches employed for crop LAI es-
timation using hyperspectral data can be categorized into 
three types according to the methods utilized: approaches 
based on statistical models, approaches based on physical 
models (i.e., canopy reflectance models), and hybrid inver-
sions.  Approaches based on statistical models first compute 
characteristic parameters (also referred to as “estimators”) 
that are significantly correlated with the LAI.  Next, a sta-
tistical predictive model of the LAI is constructed based on 
the relationships between the characteristic parameters 
and the known LAI values in sample plots using statistical 
approaches.  Canopy reflectance models simulate the reflec-
tance of the canopy using vegetation parameters as inputs.  
The LAI can be estimated by computing a physical model 
in reverse using spectral reflectance as the input and veg-
etation variables, including LAI, as the output; i.e., physical 
model inversion.  Hybrid inversion approaches involve the 
integrated application of statistical and physical models to 
exploit their respective advantages.  Crop LAI retrieval using 
hyperspectral data has potential problems, such as the low 
signal-to-noise ratios (SNRs) of some hyperspectral data, 
the “curse of dimensionality” (see section 2.2), problems of 
saturation (see section 3.1) and the ill-posed problem when 

inverting physical models (see section 4.3).  In addition, 
more sophisticated methods for LAI retrieval that maximize 
the potential utilization of hyperspectral data merit further 
study (see sections 2.1 and 6.2).  

Motivated by the increasingly widespread application of 
hyperspectral data in LAI estimation and the development 
of relevant approaches, this review aims to provide an over-
view of crop LAI estimation using hyperspectral data.  First, 
we compare hyperspectral data with multispectral data in  
section 2.  Second, crop LAI estimation based on statistical 
models and physical models are reviewed separately in 
sections 3 and 4, and compared in section 6.1.  Finally, a 
conceptual framework for LAI estimation is presented in sec-
tion 6.2, and the prospects for future research are discussed.

2. Advantages and limitations of hyper-
spectral data for crop LAI estimation 

2.1. Advantages of hyperspectral data for retrieving LAI 

Theoretically, the superior spectral resolution of hyperspec-
tral data should yield spectral details that are obscured in 
multispectral data (Schlerf et al. 2005).  However, the ad-
vantages of hyperspectral data compared with multispectral 
data for LAI estimation remain controversial.  First, hyper-
spectral data facilitate waveform analysis techniques such 
as LAI retrieval using red-edge parameters (Herrmann et al. 
2011).  Hyperspectral data also improve the performance of 
conventional LAI estimators; e.g., spectral reflectance (Lee 
et al. 2004), the second principle component (Pu and Gong 
2004), and the first or second spectral derivative (Fan et al. 
2010a).  Many studies have shown that hyperspectral data 
can improve the accuracy of LAI estimation (Lee et al. 2004; 
Pu et al. 2008; Fan et al. 2010b; Verrelst et al. 2012; Duan 
et al. 2014).  However, opposing views also exist (Spanner 
et al. 1994; Jacquemoud et al. 1995; Li et al. 1997; Broge 
and Leblanc 2000).  For instance, Li et al. (1997) proposed 
that structural parameters are independent of the spectrum; 
therefore, increasing the number of bands cannot provide 
more information about these parameters.  However, this 
conclusion is based only on a sensitivity analysis of the 
parameters used in canopy reflectance models, without con-
sidering the effects of the factors in the actual LAI retrieval 
procedures, such as nuances in the  sensitivity of LAI among 
hyperspectral bands, and the bias between simulated and 
remotely sensed canopy reflectance.  Moreover, some 
comparative studies themselves are imperfect (Lee et al. 
2004), such as those performed using early-generation, 
low SNR airborne visible/infrared imaging spectrometer 
(AVIRIS) data (Spanner et al. 1994) and those that relied 
excessively on physical model simulations rather than  
in situ measurements (Jacquemoud et al. 1995; Broge and 
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Leblanc 2000).  In addition, most of these comparative 
studies (Spanner et al. 1994; Broge and Leblanc 2000; 
Lee et al. 2004; Schlerf et al. 2005) relied on vegetation 
indices (VIs) rather than more innovative estimators of LAI 
(such as red-edge parameters) or innovative approaches 
for retrieving LAI (such as by inverting physical models), 
which may utilize hyperspectral data more efficiently.  In 
conclusion, more sophisticated and comprehensive studies 
are needed in the future to clarify whether, and possibility 
why, hyperspectral data improve LAI estimations.

The accuracy of LAI estimation is affected by a complex 
array of external factors (atmospheric scattering, soil back-
ground reflectance, and the effects of mixed pixels) and 
other parameters in physical models (such as the chlorophyll 
content and average leaf angle), i.e., the “ill-posed problem” 
(see section 4.3).  Hyperspectral data have been reported 
helpful for end-member extraction of mixed pixels (Franke 
et al. 2009), atmospheric correction (Gao et al. 2009; Per-
kins et al. 2012), and improving the estimation accuracy of 
some insensitive variables, e.g., chlorophyll content and 
average leaf angle (Atzberger and Richter 2012).  Therefore, 
even if hyperspectral data provide no direct and significant 
improvements when retrieving LAI, as stated by Li et al. 
(1997), these data have greater potential for reducing the 
uncertainties that affect LAI retrieval, thereby improving the 
accuracy and stability of the resulting LAI indirectly as a con-
sequence.  To achieve this objective, the current techniques 
used for LAI retrieval need to be improved dramatically to fit 
hyperspectral data; i.e., estimators of LAI and procedures 
of band selection should be designed for hyperspectral 
data; the LAI estimation should eventually benefit from the 
enhancement in estimating other variables.  See section 
6.2 for further discussion.

2.2. Limitations of hyperspectral data for crop LAI 
estimation

In previous studies, the most important problems related to 
hyperspectral data included low SNRs and high correlations 
between bands.

The quality of hyperspectral data varies depending on 
the sensors, the bands and the directions of observations.  
Some of the bands obtained using HyMap (Schlerf et al. 
2005), UAV-HYPER (Duan et al. 2014), and DAIS-7915 
(Ben-Dor et al. 2002) sensors have low SNRs.  Therefore, 
bands with low radiometric quality should be eliminated 
from further analysis.  Some images have a mask layer that 
indicates the image quality; e.g., compact high-resolution im-
aging spectrometer/project for on-board autonomy (CHRIS/
PROBA) (Li et al. 2011).  Alternatively, we must compute 
the SNR manually; e.g., Gao (1993) proposed a possible 
algorithm based on the local means and local standard 

deviations in small imaging blocks.  In addition, random 
noise can also be eliminated using filtering approaches, as 
demonstrated by Othman and Qian (2006) and Fan et al. 
(2010b).

Hyperspectral data comprise of numerous highly cor-
related bands, but the multicollinearity between there bands 
and random errors in spectral measurements lead to the 
so-called “curse of dimensionality”, which has the following 
implications.  First, statistical predictive models constructed 
using highly correlated samples have a high coefficient of 
determination but poor predictive capabilities (Lee et al. 
2004).  Second, bands that are insensitive to LAI require 
additional computational time, but they distort the accuracy 
of LAI retrieval.  Therefore, it is necessary to reduce the 
dimensionality of hyperspectral data (Jensen 2009), which 
can be achieved either by computing the characteristic pa-
rameters of LAI (see section 3.1) or by selecting relatively 
uncorrelated bands that contain the main information in 
the original data.  The former approach is used mainly in 
statistical predictive model of LAI, the latter method is used 
mainly for LAI estimation by inverting physical models.  The 
band selection process comprises two steps: selecting 
relatively uncorrelated bands and selecting bands that are 
sensitive to the parameters of interest; i.e.,  LAI.  Stepwise 
regression (Lee et al. 2004; Huang et al. 2011a) was shown 
to be feasible for identifying multicollinearity.  Sensitivity 
and uncertainty analysis approaches can be used to select 
sensitive hyperspectral bands of LAI.  Among them, uncer-
tainty and sensitivity matrix (USM) (Li et al. 1997, 2001) and 
extended fourier amplitude sensitivity test (EFAST) (Saltelli 
et al. 1999), correlation analysis and principal components 
analysis (Huang et al. 2011a) are particularly recommended.  
The optimum hyperspectral bands for LAI estimation are 
still debated, no commonly accepted principle can be 
proposed.  Some studies suggest estimating a variable 
using the band which is the most sensitive to it.  Thus, the 
selected bands for LAI retrieval are mainly within red-NIR 
(near infrared) range (Li et al. 1997; Zhu et al. 2011).  Some 
other studies selected bands covering red-NIR-SWIR (short 
wave infrared) spectra (Lee et al. 2004; Huang et al. 2011a, 
b).  Eklundh et al. (2001), Cohen et al. (2003), and Lee et al. 
(2004) proposed the importance of SWIR for LAI estimation.  
Generally speaking, uncorrelated and the most sensitive 
bands in Red-NIR-SWIR range were selected for retrieving 
LAI.  There are also studies that ignore band selection and 
use all hyperspectral bands (Duan et al. 2014).

It should be noted that in some applications, the capacity 
for rapid and dynamic crop monitoring on a large scale is 
usually the most preferred advantage of remote sensing 
techniques (Yang et al. 2007a; Wu et al. 2008, 2010).  In 
this case, multispectral data are thought sufficient only if the 
accuracy obtained satisfies a specific tolerance.  By con-
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trast, an excessive focus on accuracy usually complicates 
the algorithm and sacrifices the computational efficiency.  
Moreover, the revisit period and image coverage of hyper-
spectral data sources (e.g., hyperion and CHRIS/PROBA) 
are not better than those of multispectral sources (e.g., 
moderate resolution imaging spectroradiometer (MODIS) 
and operational land imager (OLI) onboard the Landsat 
8 satellite).  Therefore, in applications, it is necessary to 
perform a comprehensive examination of the scope of the 
study, the desired accuracy and temporal resolution to 
determine a suitable spectral resolution.

In conclusion, hyperspectral data are considered to 
be promising for LAI retrieval, although they may have 
potential low SNR and they are affected by the curse of 
dimensionality.  Future studies may explore methods for 
LAI estimation using hyperspectral data.  In applications, 
the requirements of the study should be considered to 
determine the most appropriate data sources.

3. Crop LAI estimation based on statistical 
models

In LAI estimation based on statistical models, the character-
istic parameters (also referred to as “estimators”) that have 
significant correlations with the LAI are computed firstly from 
the canopy spectrum.  Next, the statistical relationships are 
constructed between the characteristic parameters and the 
known LAI values in sample plots.  This statistical predictive 
model is then used to compute the LAI values throughout 
the whole image.

3.1. Characteristic parameters for estimating crop LAI 

The flowing types of characteristic parameters are commonly 
applied for LAI estimation.  First, VIs are designed to depict 
distinctive spectral characteristics of vegetation, e.g., high 
reflectance in near inferred bands and absorption in red 
bands, with a one-dimensional index.  Hyperspectral vege-
tation indices were developed for hyperspectral data.  Some 
of them are conventional VIs computed with narrow band 
reflectance (Schlerf et al. 2005), whereas others are newly 
constructed using waveform analysis techniques (Broge 
and Leblanc 2000).  Different VIs have specific sensitivities 
and resistances to different factors or disturbances, but they 
are all affected by the problem of saturation; i.e., VIs are 
generally insensitive to the LAI when the LAI is greater than 
3–6 because VI-LAI correlations are not linear or stable, es-
pecially under various influences (Haboudane 2004).  More-
over, VIs resist disturbances from the soil and atmosphere, 
but only in a rather limited level (Broge and Leblanc 2000).  
Second, variables that describe the characteristic spectra of 
vegetation are also used for LAI estimation, for instance: red-

well position, red-edge inflection position (Pu et al. 2003), 
area of red-edge peak, NIR-platform position, red-edge 
amplitude (Filella and Penuelas 1994) and NIR-platform 
amplitude (Zhao et al. 2002).  They have been reported to 
be better estimators compared with VIs (Herrmann 2011).  
Third, many studies have used spectral reflectance and 
spectral derivatives.  Hyperspectral reflectance was also 
reported to be a better estimator of LAI compared with 
VIs in terms of sensitivity and stability (Xia et al. 2013).  
However, hyperspectral reflectance is affected by the curse 
of dimensionality (see section 2.2), and it is more vulnerable 
to atmospheric scattering and background reflectance.  
Thus, the first or second derivative of the spectrum has been 
used to remove background and atmospheric disturbance, 
thereby enhancing subtle variations in the spectral reflec-
tance (Johnson and Billow 1996; Fan et al. 2010b).  How-
ever, spectral derivatives enhance high-frequency random 
noise, which means that certain types of noise reduction 
processing are necessary (Fan et al. 2010b).  Finally, some 
features derived from principal components analysis (PCA) 
and wavelet transform (WT) are also used widely.  PCA and 
WT are mathematical procedures for data compression, 
which can convert highly related spectral reflectance data 
into several uncorrelated “features” to avoid the curse of 
dimensionality.  Pu and Gong (2004) proposed that energy 
features derived from WT are the most effective for LAI 
estimation, followed by principal components and spectral 
reflectance.  Besides, PCA and WT effectively reduce the 
dimension of hyperspectral reflectance and therefore avoid 
the curse of dimensionality.  However, PCA and WT do not 
enhance the spectral characteristics of the data (Johnson 
and Billow 1996; Fan et al. 2010b).

3.2. Construction of statistical models

Once the characteristic parameters of the LAI are computed, 
their relationships with known LAI values are determined 
using statistical approaches to construct statistical predictive 
models of the LAI.

Exponential or linear regression, artificial neural 
networks (abbr. neural networks, NNs), support vector 
regression (SVR), and partial least squares (PLS) have 
been used to construct statistical predictive model of LAI 
(Table 1).  In particular, conventional exponential and lin-
ear regression are usually applied to the low-dimensional 
characteristic parameters of LAI, such as VIs and red-edge 
variables, whereas NN, SVR, and PLS are applied to 
high-dimensional characteristic parameters, i.e., spectral 
reflectance and spectral derivatives.  NNs are considered 
to be an incomparable approach with excellent accuracy 
and efficiency when fitting complex, high-dimensional, 
nonlinear relationships, e.g., the relationships between 
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LAI and hyperspectral reflectance, (Baret et al. 1995; 
Huang et al. 2011b).  PLS analysis is another alternative 
for handling both high- and low-dimensional estimators.  
Indeed, PLS can handle multicollinearity and random noise, 
which makes it particularly suitable for the hyperspectral 
spectrum (Herrmann et al. 2011).  Moreover, the support 
vector machine (SVM) is a supervised nonparametric sta-
tistical learning approach, which is known to be reliable for 
regression, especially with high-dimensional inputs (Durbha 
et al. 2007).  Based on SVM, SVR provides excellent gen-
eralization capabilities with good computational efficiency, 
and it requires fewer samples than NNs (Durbha et al. 
2007).  Although SVR is not used widely for LAI estimation, 
it is promising in theory for both high- and low-dimensional 
estimators, and thus it should be tested in future study 
(Yang et al. 2011).  Conventional regression methods are 
inadequate when using multiple estimators, such as mul-
titemporal data or multiple VIs together.  Thus, canonical 
correlation analysis is applied to integrate multiple estima-
tors into a single index (Cohen et al. 2003; Lee et al. 2004).

In summary, there is generally no perfect characteristic 
parameter, even for a specific type of vegetation or data 
source.  Thus, researchers must make their selections 
based on the following considerations: the sensitivity of an 
estimator to the LAI within the expected range (Gonsamo 
and Pellikka 2012), the feasibility of computing a specific 
estimator, disturbances due to the atmosphere and soil 
background and random noise in the remote sensing data.  

Conventional regression methods are suitable for low-di-
mensional estimators, whereas NNs, PLS, and SVR can 
handle high-dimensional nonlinear relationships (Table 1).  
Nevertheless, according to previous studies, no optimal 
regression technique has been proposed, even for a specific 
estimator.  In some studies, several regression techniques 
are tested to find the best fit (Eklundh et al. 2003; Yang 
et al. 2007b).

4. Crop LAI estimation based on physical 
models

Physical models (i.e., canopy reflectance models) simulate 
the bidirectional reflectance and transmittance of canopies 
using canopy variables (e.g., LAI and leaf angle distribution), 
variables that describe the observation geometry (e.g., 
zenith and azimuth angle of sunlight and the observation 
direction), and the spectra of individual leaves and the soil 
background as model inputs.  In particular, the LAI is the 
most sensitive variable in the NIR and red wavelength (Li 
et al. 1997; Xiao et al. 2013), so the LAI is retrieved mainly 
based on reflectance in NIR and red.  In practice, the spectral 
signatures of leaves and soil can be simulated further using 
leaf or soil reflectance models with leaf biochemical parame-
ters (e.g., leaf chlorophyll/water content) or soil variables as 
the inputs.  Such coupling makes it feasible to estimate the 
parameters of leaves and soil directly from remotely sensed 
data.  For example, the PROSPECT model coupled with the 

Table 1  Technical specifications of representative leaf area index (LAI) estimation studies based on statistical models

Recommended characteristic parameter1) Statistic approach2) Data source Reference
Reflectance CCA AVIRIS, ETM+ Lee et al. (2004)
Reflectance NN MERIS Bacour et al. (2006)
Reflectance NN Measurement Xia et al. (2013)
MTVI2, MCARI2 Linear CASI Haboudane (2004)
PVI Linear HyMap Schlerf et al. (2005)
Red-edge amplitude, Area of the red-edge peak Exponential Measurement Filella and Penuelas (1994)
DVI Exponential, linear TM Yang et al. (2007b)
REP, RWP Exponential Hyperion Pu et al. (2003)
REP, NDVI Linear exponential VENμS, Sentinel-2

Herrmann et al. (2011)
Reflectance PLS Measurement
SAVI2 Exponential Synthetic Broge and Leblanc (2000)
Reflectance Polynomial SPOT Houborg and Boegh (2008)
SR Linear TM Eklundh et al. (2003)
WT Linear Dongmei et al. (2010)
Multiple VIs CCA ETM+ Cohen et al. (2003)
NDVI Linear In situ measurement RapidEye Tillack et al. (2014)
Reflectance SVR In situ measurement Yang et al. (2011)
Reflectance, VIs NN, exponential Synthetic Baret et al. (1995)
PCA, VIs Linear, exponential FY3 Feng et al. (2013)
1) MTVI2, a modified triangular vegetation index; MCARI2, a modified chlorophyll absorption ratio index; PVI, perpendicular vegetation 

index; DVI, difference vegetation index; REP, red-edge position; RWP, red-well position; NDVI, normalized difference vegetation index; 
SAVI2, the second soil-adjusted vegetation index; SR, simple ratio; WT, wavelet transformation; VIs, vegetation indices; PCA, principal 
components analysis. 

2) CCA, canonical correlation analysis; NN, artificial neural network; Linear, linear regression; Exponential, exponential regression; PLS, 
partial least squares; Polynomial, polynomial regression; SVR, support vector regression.
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SAIL (scattering by arbitrarily inclined leaves) model, i.e., 
the PROSAIL model, has been applied widely for retrieving 
the chlorophyll content, water depth, fAPAR, etc. (Jacque-
moud et al. 2009).  Theoretically, the canopy/leaf variables  
(including LAI) can be determined by inverting physical 
models using remotely sensed canopy spectra as inputs.
However, because of the complexity of physical models, 
approaches that obtain numerical solutions (referred to as 
inversion strategies) to the models are necessary for LAI 
estimation (see section 4.2).  In this review, we collected 
representative studies that applied physical models for LAI 
estimation by searching Google Scholar[TM] using the key 
words “leaf area index” and the names of relevant models.  
The relevant studies in the first 10 pages, which have been 
sorted by relevance, are categorized and plotted in Fig. 1.

4.1. Major reflectance models

In general, four categories of reflectance models can be dis-
tinguished (Schlerf and Atzberger 2006): radiative transfer 
(RT) models, geometric optical (GO) models, RT/GO hybrid 
models, and computer simulation models.

RT models, which are also known as analytical or turbid 
models, simulate the interaction between incident radiation 
and a homogeneous medium.  Thus, in canopy RT models, 
the canopy is assumed to be continuous with horizontally 
homogeneous layers of evenly distributed leaves with a 
given geometry and density (Fig. 2-A).  

The intensively studied SAIL model (Verhoef 1984) (in-
cluding the SAIL including hot spot effect (SALH)) model, 
Fig. 3-A) and a series of models developed from the Nil-
son-Kuusk (N-K) model (except the FRT model, Fig. 3-B) 
are representative examples of canopy RT models.  SAIL 
approximates the radiation inside a canopy based on four 
fluxes: diffuse irradiance in the direction of observation E0, 
upward and downward diffuse flux E+, E– and the direct solar 
flux Es.  Four differential equations have been proposed, 
which are controlled by nine extinction and backscattering 
coefficients.  The extinction and backscattering coefficients 
can be further expressed using canopy variables and ob-

servation geometry.  The N-K model (Nilson and Kuusk 
1989) improved the bidirectional gap probability algorithm 
proposed originally by Ross (1981) to express bidirectional 
reflectance and hotspot effect.  The N-K model computes 
scattered radiance as the sum of three components: 
ρ=ρc

1+ρs
1+ρMULT 

Where, ρc
1 and ρs

1 are the first-order reflectance from 
the canopy and soil respectively, and ρMULT is the multiple 

FRT

ACRM/MCRM

SAIL

4-scale/
5-scale GO model

L-S

OPT

LUT

NN

Hybrid

Others

0 10 20
Number

30 40

0 20

Crop
Grass and shrub

Forest and orchard

Synthetic and vegetation in general

40 60

A

B

Fig. 1  Number of publications describing leaf area index (LAI) 
estimation by inverting physical models.  A, sorted by the 
physical models applied.  B, sorted by the inversion approaches 
of physical models.  FRT, Kuusk-Nilson forest reflectance 
model; ACRM, a two-layer canopy reflectance model; MCRM, 
Markov chain reflectance model; SAIL, scattering by arbitrarily 
inclined leaves; GO, geometric optical; L-S, Li-Strahler model; 
OPT, iterative optimization; LUT, lookup table; NN, neural 
network.  The same as below.

Turbid models GO models RT/GO hybrid models

A B C

Fig. 2  The scenarios assumed by canopy reflectance models (Widlowski et al. 2007).  GO, geometric optical; RT, radiative transfer.  
The same as below.
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scattering on the foliage and soil elements.  
A series of canopy RT models have been developed from 

the N-K model (Fig. 3-B).   For example, to obtain more 
realistic simulation of radiative transformation in canopies 
with a strong vertical structure, such as corn, Kuusk (1995b) 
improved the expression of leaf angle distribution function 
(G function) using Markov chain theory:

G(θ)Y (θ)
1−exp (−Y(θ))1−(1−λz)Geff (θ)=                                                                

Where, λz is the Markov coefficient; Y(θ)=arctan(θ); and 
G(θ) is the original G function.  

At present, the SAIL and ACRM (a two-layer canopy 
reflectance model) are relevantly mature and accurate RT 
models for continuous canopies and thus they are used 
most widely (Fig. 1-A).

Based on a much more realistic scenario, the convention-
al RT models were developed into three-dimensional (3-D) 
RT models.  For example, the discrete anisotropic radiative 
transfer (DART) model (Gastellu-Etchegorry et al. 2004) 
simplifies the actual landscape into rectangular cells that 
comprise a specific turbid medium (e.g., canopy, water, or 
atmosphere) and plane opaque surface (e.g., soil and the 
roofs of building).  Thus, it can represent various aspects 

of urban and natural landscape, as well as the effects of 
topography and atmosphere.  3-D RT models provide more 
realistic scenes, which are free from the errors caused by 
simplifying the process of radiative transformation.  Thus, 
they can provide more accurate representations of the actual 
(complex) canopy.  They have been applied increasingly in 
recent years because of developments in the capacity of 
computers and inversion strategies, e.g., the DART model 
(Darvishzadeh et al. 2008; Hernández-Clemente et al. 2014) 
and forest light interaction model (FLIGHT) (Guillen-Climent 
et al. 2012).  Although they are not used widely for crop 
LAI estimation, they may be promising for future studies, 
especially in complex conditions, e.g., row crops or hetero-
geneous canopies in the early stages of crop growth.

The hypothesis of a homogeneous and continuous can-
opy in RT models is unrealistic, and it may lead to errors, 
especially with discrete vegetation, e.g., forest and wheat 
before elongation.  Thus, GO models, hybrid models, and 
3-D computer simulation models were developed.  Typical 
GO models such as the Li-Strahler model (Li and Strahler 
1986) assume that individual canopies are opaque geomet-
ric shapes (e.g., corn or ellipsoid), which cast shadows on 
the soil background (Fig. 2-B), where the reflected radiance 
is the area-weighted sum of the radiance from the illumi-
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Fig. 3  The evolution of RT models.  A, representative versions of scattering by arbitrarily inclined leaves (SAIL) model.  B, series 
of canopy reflectance models developed from the N-K model.   N-K, Nilson-Kuusk model; MSRM, multispectral canopy reflectance 
model; ACRM, a two-layer canopy reflectance model.
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nated/shadowed canopy and the ground (Li and Strahler 
1986).  In later studies, the opaque crowns in GO models 
were treated as a translucent turbid medium.  Thus, GO and 
RT models were combined to obtain hybrid models, such as 
the GeoSAIL and 4SAIL2 models shown in Fig. 3.  GO and 
hybrid models are developed primarily for forests (Huang 
et al. 2011a), but this concept can be applied to the modeling 
of row crop canopies (Yan et al. 2003; Zhao et al. 2010).

 Using computer graphic techniques, computer simulation 
models firstly construct a very realistic scene of actual 
canopy, in which the radiative transfer take place.  Then, 
computer simulation models compute the paths of photons 
inside the canopy using a Monte Carlo ray-tracking ap-
proach; i.e., photons from a specific direction are intercepted 
by canopy elements with a certain probability, where they are 
either absorbed or scattered into a new direction.  Therefore, 
the reflectance and transmittance at a certain position with a 
specific view angle can be computed.  Computer simulation 
models are considered to be computationally complex and 
difficult to invert (Schlerf and Atzberger 2006), but properly 
constructed computer simulation models are very accurate.  
Therefore they are usually used to validate RT models.  For 
instance, Zhao et al. (2010) proposed a spectral directional 
reflectance model of row crops, and tested its performance 
by comparing with a 3-D computer simulation model by Qin 
and Gerstl (2000).

In practice, a model should be applied first to the pre-
defined vegetation types that satisfy its hypotheses.  In one 
study, several models might be used to fit different canopy 
layers (Eriksson et al. 2006), different vegetation types 
(Fang and Liang 2005), or even different crop growth stages 
(Yao et al. 2008), according to their respective geometric 
shapes.  Second, researchers must trade off the acceptable 
accuracy level against computationally efficient models.  
For example, in current applications, the SAILH model is 
preferred for crops rather than the more accurate but more 
complex ACRM, as shown in Fig. 1.

4.2. Strategies for physical model inversion

Numerical solution techniques are necessary because of 

the complexity of physical models, where the commonly 
applied approaches include iterative optimization (OPT), 
lookup tables (LUTs), NNs, and SVR.

The OPT method (Fig. 4) first introduces a cost function 
between the observed (i.e., remotely sensed) and simulated 
canopy spectral reflectance.  Next, the model input variables 
are adjusted repeatedly, including the LAI.  The variables 
that minimize the cost function, i.e., those that yield the best 
match between the observed and simulated canopy reflec-
tance, are selected as the inverted results (Jacquemoud 
et al. 1995).  The LUT technique (Fig. 5) first constructs a 
LUT by running a forward canopy reflectance model.  The 
LUT contains different combinations of input variables 
and the resulting canopy spectra.  The values of the input 
variables in the LUT are generated randomly with uniform 
distributions, or vary by a specific step within a certain range 
(Atzberger and Richter 2012).  Next, the observed canopy 
spectra are compared with the simulated spectra in the LUT 
one by one, and their fitness is measured by a cost function.  
The mean values of several sets of variable combinations 
that generate the best matches are taken as the inverted 
results.  Statistical techniques can also be used to invert 
physical models.  A synthetic training database similar to a 
LUT is first generated using physical models, and statisti-
cal techniques are then applied to determine the empirical 
relationships between the input variables and the simulated 
canopy spectrum in the database.  Using these empirical 
relationships, the canopy variables can be computed from 
the observed canopy spectra.  NNs (Trombetti et al. 2008; 
Duveiller et al. 2011), Bayesian expert systems (conditional 
probability networks) (Qu et al. 2008), and SVR (Durbha 
et al. 2007) have been tested for inverting physical models 
in previous studies, although the latter two approaches have 
not been applied widely.

OPT is the original approach for RT model inversion 
(Jacquemoud et al. 1995).  Comparatively speaking, it 
yields fairly accurate results at the expense of computational 
efficiency because of the time-consuming process of opti-
mization (Bacour et al. 2006).  OPT is sensitive to the initial 
estimate of the solution, and it easily converges to a local 
minimum (Vohland et al. 2010).  Previously, it was applied 
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Fig. 4  Conceptual framework for iterative optimization (OPT) inversion.  CR, canopy reflectance.



483LIU Ke et al.  Journal of Integrative Agriculture  2016, 15(2): 475–491

widely (Fig. 1), but it was not recommended in recent years.  
LUT and NN are considered to be accurate, fast, and simple 
inversion methods (Kimes et al. 2000; Weiss et al. 2002).  
In both the LUT and NN inversion strategies, the inversion 
accuracy depends on the size and accuracy of the LUT/
training database.  Thus, it is necessary to consider the 
number of free parameters, their ranges, and probability 
distributions, as well as the desired inversion accuracy to 
determine the size of the LUT/training database.  Weiss et al. 
(2000) proposed a LUT size of 100 000 as a compromise 
between inversion accuracy and computational efficiency 
when using the PROSAIL model with seven free variables.  
Based on the HyMap-retrieved spectrum of summer barley 
and the PROSAIL model, Vohland et al. (2010) argued that 
OPT is the most accurate inversion approach, followed by 
LUT and NN.  However, there is little evidence to support 
the generality of this conclusion.  Based on their inversion 
accuracy, computational efficiency, and comprehensive 
comparative complexity, both LUTs and NNs were recom-
mended in previous studies (Weiss et al. 2000; Richter et al. 
2009; Duan et al. 2014).  At present, the LUT approach is 
dominant in terms of the number of applications (Fig. 1).

However, the inversion strategies employed at present 
are still hindered by the ill-posed problem (see section 4.3) 
and deviations between the simulated and remotely sensed 
spectrum.  There are unavoidable errors in physical mod-
els, the in situ measurements, and the parameterization of 
some input variables; therefore, there is a bias between the 
simulated and remotely sensed spectra.  These mismatches 
introduce errors into the retrived  LAI values.  Unfortunately, 
few relevant discussions have addressed these problems.  
In addition, appropriate approaches are required to find 
the best solutions of a LUT.  At present, this problem 
is addressed by selecting the minimum value of a cost 
function or by multivariate regression (e.g., NN, Bayesian 

expert system, and SVR).  However, the cost functions are 
far from perfect; meanwhile, few comparisons have been 
performed to determine the optimum regression method for 
LUT inversions in previous studies.  In the future, better cost 
functions and more intelligent algorithms should be tested 
in inversions using LUTs, such as SVR and techniques of 
data mining.

4.3. The ill-posed problem

The inversion of canopy reflectance models is by nature an 
ill-posed problem; i.e., an underdetermined problem (Duan 
et al. 2014).  There are always more unknown variables 
than independent spectral observations in physical models, 
and different sets of input variables may yield very similar 
synthetic reflectance results.  This situation is further com-
plicated by errors in both canopy reflectance models and in 
situ measurements (Durbha et al. 2007).  The solutions to 
this ill-posed problem are summarized as follows.

First, the input variables used in physical models can be 
constrained based on prior knowledge.  Prior knowledge 
refers to information that is known before a certain step in 
a process (Li et al. 1997).  It is the basic prior knowledge 
to know the land use types and crop species in the target 
pixels, what enables us to assign well-adapted input vari-
ables separately to each crop (Dorigo et al. 2009; Verrelst 
et al. 2012).  The expectations and/or ranges and probability 
distribution of crop variables can be applied to constrain the 
uncertainties in model parameterization by fixing insensitive 
parameters to their best guesses and constraining the 
ranges of free parameters (Combal et al. 2002; Si et al. 
2012; Duan et al. 2014).  Expectations of variables include 
the values of certain variables and the relationships that 
couple variables together, e.g., the water thickness and dry 
matter content can be coupled at a ratio of 4:1 (Darvishzadeh 
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Fig. 5  Conceptual framework for inversion based on LUT, NN, Bayesian expert systems, or support vector regression (SVR).  
CR, canopy reflectance;
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et al. 2008; Vohland and Jarmer 2008).  In addition, prior 
knowledge can be applied in cost functions in Bayesian LUT 
inversions (Li et al. 2001; Pinty et al. 2007).

Prior knowledge has been collected from the following 
sources in relevant studies: (1) contemporaneous remote 
sensing products (Houborg et al. 2007); (2) relevant studies 
and the experience of experts, e.g., phenological informa-
tion (Si et al. 2012), best guesses of insensitive variables 
(Fang et al. 2003; Houborg et al. 2009), and variables 
that can be coupled together (Verhoef and Bach 2007; 
Darvishzadeh et al. 2008; Vohland and Jarmer 2008); 
(3) in situ measurements (Broge and Leblanc 2000); (4) 
model simulations (Wang et al. 2010); and (5) the results 
obtained during previous steps in the inversion process 
(Li et al. 1997).

Second, the dimensionality of the data can be increased 
by introducing uncorrelated multisource data.  Essentially, 
the ill-posed problem occurs because the number of un-
knowns exceeds the number of equations.  By increasing 
the dimensionality of the data, more known parameters and 
constraints can be introduced to help eliminate the uncertain-
ties in physical models.  In related studies, the multisource 
data employed to retrieved the LAI includes multitemporal 
data (Trombetti et al. 2008), multiangular data (Verrelst et al. 
2012), and multiscale data (Fernandes et al. 2002).

Third, the strategies employed for physical model in-
versions can be improved.  Innovative inversion strategies 
have been developed to reduce the uncertainties in physical 
model inversion, e.g., the multistage, sample-direction-de-
pendent, target-decisions (MSDT) inversion strategy (Li 
et al. 1997), the Bayesian LUT inversion (Li et al. 2001; 
Pinty et al. 2007), and the object-based inversion (Atzberger 
2004; Atzberger and Richter 2012; Laurent et al. 2014).  
Essentially, these strategies aim to constrain the uncer-
tainties of variables by excavating, expressing and utilizing 
prior-knowledge from the aspects of variable optimization, 
multitemporal data and spatial signatures.  For instance, the 
MSDT inversion technique requires the preferential inversion 
of the most sensitive parameter(s) using the bands that are 
most sensitive to it/them.  The inverted results are then used 
to dynamically update the prior knowledge to retrieve other 
variables until all of the variables have been determined 
(Li et al. 1997).  Such procedure significantly reduces the 
uncertainty of the variables step by step, and the inversion 
results can be refined gradually.  These studies showed 
the feasibility of constraining the ill-posed problem by using 
innovative inversion strategies.  However, model inversion 
still relies on operators’ skill and is far from routinization at 
present, as Myneni et al. (1995) argued, “at the present 
time, inversion of physical models is more of an art than 
exact science”.  In the near future, inversion techniques that 

reduce the uncertainties in model inversions while retaining 
the universality of physical models will continue to be an 
interesting topic.

In conclusion, RT models are the most popular for crop 
canopies (Fig. 1), where the SAILH model provides an ideal 
compromise between accuracy and convenience.  However, 
3-D models provide more realistic simulations of canopies 
and the surrounding environment.  In the future, given the 
development of high-spatial-resolution remote sensing, the 
data are more likely to comprise the pixels of pure canopies.  
Thus, more computationally efficient RT models can be ap-
plied, even for closed canopies of forests, as demonstrated 
by Zarco-Tejada et al. (2001).  In addition, the need for 
large-scale studies demands more easily applied and easily 
inverted 3-D models that can be applied more easily, which 
represent more realistic scenes.  In further studies of inver-
sion strategies, the methods employed for physical model 
inversion should be improved dramatically to address the 
ill-posed problem and the differences between the simulated 
and measured spectra.  More intelligent learning algorithms 
should be helpful for addressing the problems of LUTs.

4.4. The scale effects in crop LAI estimation

Notably, there are scale effects in crop LAI estimation.  
The cause of scale effect includes: the non-linearity of 
inversion models and the heterogeneity of land cover.  
The former is quite obvious; and the latter is illustrated as 
follows.  The in situ measured LAI values and the spectra 
simulated with a CR model are at point scale, however, 
remotely sensed hyperspectral data are mainly (except  
in situ measurement of spectra) at pixel scale.  Thus, there 
is an implicit assumption that the pixels applied in LAI 
retrieval are pure pixels.  Such assumption is usually far 
from the reality, especially in China, where farmlands are 
usually composed of small parcels, resulting in mixed pixels.  
The existence of mixed pixels causes LAI estimations of 
different scales theoretically incomparable with each other, 
and also incomparable with in situ measurements.  Studies 
of scale transformations are undertook to eliminate scale 
effects in LAI retrieval.  Using hyperspectral data, Winter 
and Winter (1999) proposed the popular method of end-
member detection referred as N-finder; Zortea and Plaza 
(2009) extracted end-members using the incorporation of 
spatial and spectral information.  Fan et al. (2010a, 2012) 
proposed the equation of scale transformation based on the 
second derivative of the Kuusk model.

5. Hybrid inversion methods

The methods employed for LAI estimation based on sta-
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tistical models perform well in small-scale studies when 
sufficient training samples are provided.  These algorithms 
are simple and easy to implement.  By contrast, methods 
based on physical models yield stable performance at a 
larger scale, thereby allowing us to analyze the factors that 
affect the canopy reflectance, but their algorithms are much 
more complex.  Hybrid inversion methods aim to combine 
the advantages of both methods.

Two classes of hybrid inversions can be distinguished 
(Fig. 6).  First, hybrid inversions at the physical model 
stage, i.e., simplifying the parameterization of physical 
models by introducing the characteristic parameters of 
input variables (Fang and Liang 2005), or improving the 
physical model itself based on empirical relationships (Fan 
et al. 2010b).  Second, hybrid inversions at the inversion 
stage, i.e., constructing a statistical predictive model of 
LAI with a physical model.  Two options are available.  LAI 
values of some sample sites can be firstly estimated by 
inverting a physical model.  Then, a statistical predictive 
model of LAI can be constructed using the estimated LAI 
values and the characteristic parameters computed from 
the remotely sensed canopies spectra.  Otherwise, the 
statistical relationships can also be constructed between 
the characteristic parameters computed from synthetic 
spectra using a physical model, and the corresponding 
input LAI values for the physical model.  The LAI values 
in the study area are then estimated using this statistical 
model (Eklundh et al. 2003; Houborg and Boegh 2008).  
For instance, Houborg and Boegh (2008) simulated the 
reflectance of barley using the ACRM model, then related 
LAI to normalized difference vegetation index (NDVI) and 
NIR spectral reflectance and related chlorophyll content 
to green spectral reflectance.  

6. Selection of LAI retrieval approaches 
and prospects

In this review, we have explained the general concepts 
employed in LAI estimation based on remote sensing using 
hyperspectral data.  We summarized the possible advantag-
es and limitations of hyperspectral data in LAI estimation.  
The approaches used for LAI retrieval can be categorized 
into three types: approaches based on statistical models, 
physical models, and hybrid inversions.  We highlighted the 
technical difficulties that may hinder LAI retrieval, e.g., the 
“curse of dimensionality” and the ill-posed problem, as well 
as their possible solutions.  In this section, we compare three 
approaches for retrieving LAI (see section 6.1) and their 
possible development in future studies (see section 6.2).

6.1. Selection of LAI retrieval methods

First, the most important step of LAI retrieval is selecting 
an appropriate method according to the actual situation and 
the requirements of the study.

The scale of the study should be considered first.  Statis-
tical predictive LAI models are based simply on numerical 
relationships, and thus they rely greatly on the specific 
location, including the crop’s condition and soil background 
reflectance.  Therefore, statistical models are convenient for 
small-scale studies.  By contrast, physical models are stable 
across a wide range of vegetation types and over a large 
area.  Thus, LAI estimation by inverting physical models can 
be applied universally at a large scale.

Second, in terms of the data requirements, the ground 
truth LAI information is necessary to construct statistical 
predictive models.  Thus, the accuracy of the ground truth 
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data determines the accuracy of LAI retrieval.  In practice, 
physical models also need to be localized based on prior 
knowledge in order to ensure the correction of the input 
variables and to constrain the ill-posed problems (see sec-
tion 5.3) (Jacquemoud et al. 1995).  Nevertheless, physical 
models merely require general ranges and best guesses of 
parameters.  The bias between the best guesses and the 
ground truth will not necessarily distort the inversion accura-
cy and the input variables can be optimized gradually during 
the inversion progress (Li et al. 1997).  Thus, LAI estimation 
by inverting physical models is much less restricted with 
ground data.  Some hybrid inversion strategies also allow 
the construction of statistical predictive models without in 
situ measurements of LAI (see section 5.4).

Third, in terms of the objective of the application, statisti-
cal predictive models are suitable for effective LAI monitoring 
(Yang et al. 2007a, b).  Physical models can isolate and an-
alyze the effects of each parameter and disturbance, which 
means that they can be used to study the influential factors 
and to estimate multiple vegetation variables simultaneously.  
More recent studies have aimed to improve physical mod-
els in terms of their clear theoretical basis, portability, and 
potential (Atzberger and Richter 2012; Verrelst et al. 2012).

In conclusion, this comparison shows that the two 
methods are complementary to some extent.  A suitable 
approach for retrieving the LAI should be selected based 
on a comprehensive assessment of the actual situation and 
the requirements of the study.  Statistical predictive models 
are preferred because of their simplicity and computational 
efficiency during dynamic monitoring or small scale applica-
tions, whereas LAI estimation methods based on physical 
models are selected mainly because of their portability, 
independence from the ground data, and ability to estimate 
multiple variables and to study the factors that influence the 
RT in canopies.

6.2. Prospects for future research

Based on our review, we propose a conceptual framework 
for LAI, as shown in Fig. 7, in which the general steps and 
key technical issues are outlined.  In the context of LAI 
estimation using remote sensing techniques, our review 
provides adequate evidence to support the following pros-
pects for future studies.

First, efforts should be made to utilize hyperspectral data 
effectively for LAI estimation.  In section 2, we stated that 
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even if hyperspectral data provide no direct improvements 
in LAI retrieval, they have the potential to reduce the uncer-
tainties that affect LAI estimation by improving the estimated 
accuracy of other variables (e.g., chlorophyll/water content 
and average leaf angle) as well as improving atmospheric 
correction and pixel unmixing.  Thus the accuracy and sta-
bilities of LAI estimation can be improved indirectly using 
hyperspectral data.  To achieve this objective, the input 
variables in physical models should be refined gradually 
during the inversion process, and the enhancement of other 
variables should contribute to LAI inversion.  Therefore, the 
conventional inversion strategies for physical models are 
inadequate, and more sophisticated techniques should be 
developed.  MSDT (Li et al. 1997), object-based inversion 
(Atzberger and Richter 2012), and Bayesian LUT inversion 
(Pinty et al. 2007) provide some innovative ideas, which 
warrant further investigation.  Approaches that use hyper-
spectral data to eliminate disturbances from the atmosphere, 
soil background, and mixed pixels should also be studied 
further.

Second, multisource data, such as multisensor, multian-
gular, and multiscale data, as well as spatial information from 
remote sensing should be applied comprehensively in LAI 
estimations.  The effects of the curse of dimensionality (see 
section 2.2) and the ill-posed problem (see section 5.3) on 
physical model inversions demand additional constraints, 
which can be obtained from multisource data.  Previously, 
various types of multitemporal data (Dorigo et al. 2009), 
multiangular data (Verrelst et al. 2012), and multiscale data 
(Yan et al. 2003) have been tested, but spatial information 
has not been applied widely.  In future studies, it would be 
useful to apply spatial information, including texture, spatial 
positions, and the topological relationships between intra- 
and interfeatures (objects), as demonstrated by Atzberger 
and Richter (2012), in LAI estimations and related process-
es, e.g., pixel unmixing.  In addition, the further application of 
spatial information (e.g., object-based inversion) requires a 
fine spatial resolution, which must be obtained from remote  
sensing data of high spatial resolution.  Another interesting 
objective would be to combine the advantages of hyper-
spectral and high-spatial-resolution data in LAI estimation.

Third, it is necessary to improve canopy reflectance 
models.  Accurate canopy reflectance simulations are the 
basis of LAI estimation using physical models.  However, 
the simulated canopy reflectance is sometimes far from 
realistic because of inaccurate parameterization and pa-
rameter optimization, especially in complex scenarios; e.g., 
row-planted crops.  Moreover, in the current physical models, 
the different species present in canopies are distinguished 
using only input variables.  These “universal” RT models 
for various species and various scenarios are beneficial 
for natural landscape studies, but they are not the optimum 

solution for agricultural studies.  Various input variables 
cause difficulties during parameterization, as discussed 
above.  Thus, in future studies, more accurate, specialized 
RT models should be studied intensively and developed for 
certain typical crop types and various scenarios to simplify 
the parameterization process, as well as improving the 
accuracy of the simulated canopy reflectance (Yan et al. 
2003; Zhao et al. 2010).
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