340 research outputs found

    Improved VIIRS and MODIS SST Imagery

    Full text link
    Moderate Resolution Imaging Spectroradiometers (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP)/Joint Polar Satellite System (JPSS) satellites, are capable of providing superior sea surface temperature (SST) imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. VIIRS additionally does two irreversible data reduction steps onboard: pixel aggregation (to reduce resolution changes across the swath) and pixel deletion, which complicate both bow-tie correction and destriping. While destriping was addressed elsewhere, this paper describes an algorithm, adopted in the National Oceanic and Atmospheric Administration (NOAA) Advanced Clear-Sky Processor for Oceans (ACSPO) SST system, to minimize the bow-tie artifacts in the SST imagery and facilitate application of the pattern recognition algorithms for improved separation of ocean from cloud and mapping fine SST structure, especially in the dynamic, coastal and high-latitude regions of the ocean. The algorithm is based on a computationally fast re-sampling procedure that ensures a continuity of corresponding latitude and longitude arrays. Potentially, Level 1.5 products may be generated to benefit a wide range of MODIS and VIIRS users in land, ocean, cryosphere, and atmosphere remote sensin

    Machine Learning Approach to Retrieving Physical Variables from Remotely Sensed Data

    Full text link
    Scientists from all over the world make use of remotely sensed data from hundreds of satellites to better understand the Earth. However, physical measurements from an instrument is sometimes missing either because the instrument hasn\u27t been launched yet or the design of the instrument omitted a particular spectral band. Measurements received from the instrument may also be corrupt due to malfunction in the detectors on the instrument. Fortunately, there are machine learning techniques to estimate the missing or corrupt data. Using these techniques we can make use of the available data to its full potential. We present work on four different problems where the use of machine learning techniques helps to extract more information from available data. We demonstrate how missing or corrupt spectral measurements from a sensor can be accurately interpolated from existing spectral observations. Sometimes this requires data fusion from multiple sensors at different spatial and spectral resolution. The reconstructed measurements can then be used to develop products useful to scientists, such as cloud-top pressure, or produce true color imagery for visualization. Additionally, segmentation and image processing techniques can help solve classification problems important for ocean studies, such as the detection of clear-sky over ocean for a sea surface temperature product. In each case, we provide detailed analysis of the problem and empirical evidence that these problems can be solved effectively using machine learning techniques

    CIRA annual report FY 2013/2014

    Get PDF

    Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin

    Get PDF
    The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting

    CIRA annual report FY 2011/2012

    Get PDF

    CIRA annual report FY 2015/2016

    Get PDF
    Reporting period April 1, 2015-March 31, 2016

    Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed

    CIRA annual report FY 2014/2015

    Get PDF
    Reporting period July 1, 2014-March 31, 2015

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017
    corecore