1,188 research outputs found

    Evolutionary Robot Vision for People Tracking Based on Local Clustering

    Get PDF
    This paper discusses the role of evolutionary computation in visual perception for partner robots. The search of evolutionary computation has many analogies with human visual search. First of all, we discuss the analogies between the evolutionary search and human visual search. Next, we propose the concept of evolutionary robot vision, and a human tracking method based on the evolutionary robot vision. Finally, we show experimental results of the human tracking to discuss the effectiveness of our proposed method

    Human Detection and Gesture Recognition Based on Ambient Intelligence

    Get PDF

    Towards a framework to make robots learn to dance

    Get PDF
    A key motive of human-robot interaction is to make robots and humans interact through different aspects of the real world. As robots become more and more realistic in appearance, so has the desire for them to exhibit complex behaviours. A growing area of interest in terms of complex behaviour is robot dancing. Dance is an entertaining activity that is enjoyed either by being the performer or the spectator. Each dance contain fundamental features that make-up a dance. It is the curiosity for some researchers to model such an activity for robots to perform in human social environments. From current research, most dancing robots are pre-programmed with dance motions and few have the ability to generate their own dance or alter their movements according to human responses while dancing. This thesis explores the question Can a robot learn to dance? . A dancing framework is proposed to address this question. The Sarsa algorithm and the Softmax algorithm from traditional reinforcement learning form part of the dancing framework to enable a virtual robot learn and adapt to appropriate dance behaviours. The robot follows a progressive approach, utilising the knowledge obtained at each stage of its development to improve the dances that it generates. The proposed framework addresses three stages of development of a robot s dance: learning ability; creative ability of dance motions, and adaptive ability to human preferences. Learning ability is the ability to make a robot gradually perform the desired dance behaviours. Creative ability is the idea of the robot generating its own dance motions, and structuring them into a dance. Adaptive ability is where the robot changes its dance in response to human feedback. A number of experiments have been conducted to explore these challenges, and verified that the quality of the robot dance can be improved through each stage of the robot s development

    Hand and Arm Gesture-based Human-Robot Interaction: A Review

    Full text link
    The study of Human-Robot Interaction (HRI) aims to create close and friendly communication between humans and robots. In the human-center HRI, an essential aspect of implementing a successful and effective HRI is building a natural and intuitive interaction, including verbal and nonverbal. As a prevalent nonverbally communication approach, hand and arm gesture communication happen ubiquitously in our daily life. A considerable amount of work on gesture-based HRI is scattered in various research domains. However, a systematic understanding of the works on gesture-based HRI is still lacking. This paper intends to provide a comprehensive review of gesture-based HRI and focus on the advanced finding in this area. Following the stimulus-organism-response framework, this review consists of: (i) Generation of human gesture(stimulus). (ii) Robot recognition of human gesture(organism). (iii) Robot reaction to human gesture(response). Besides, this review summarizes the research status of each element in the framework and analyze the advantages and disadvantages of related works. Toward the last part, this paper discusses the current research challenges on gesture-based HRI and provides possible future directions.Comment: 10 pages, 1 figure

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    Graphical models for social behavior modeling in face-to face interaction

    No full text
    International audienceThe goal of this paper is to model the coverbal behavior of a subject involved in face-to-face social interactions. For this end, we present a multimodal behavioral model based on a Dynamic Bayesian Network (DBN). The model was inferred from multimodal data of interacting dyads in a specific scenario designed to foster mutual attention and multimodal deixis of objects and places in a collaborative task. The challenge for this behavioral model is to generate coverbal actions (gaze, hand gestures) for the subject given his verbal productions, the current phase of the interaction and the perceived actions of the partner. In our work, the structure of the DBN was learned from data, which revealed an interesting causality graph describing precisely how verbal and coverbal human behaviors are coordinated during the studied interactions. Using this structure, DBN exhibits better performances compared to classical baseline models such as Hidden Markov Models (HMMs) and Hidden Semi-Markov Models (HSMMs). We outperform the baseline in both measures of performance, i.e. interaction unit recognition and behavior generation. DBN also reproduces more faithfully the coordination patterns between modalities observed in ground truth compared to the baseline models

    Gestures in human-robot interaction

    Get PDF
    Gesten sind ein Kommunikationsweg, der einem Betrachter Informationen oder Absichten übermittelt. Daher können sie effektiv in der Mensch-Roboter-Interaktion, oder in der Mensch-Maschine-Interaktion allgemein, verwendet werden. Sie stellen eine Möglichkeit für einen Roboter oder eine Maschine dar, um eine Bedeutung abzuleiten. Um Gesten intuitiv benutzen zukönnen und Gesten, die von Robotern ausgeführt werden, zu verstehen, ist es notwendig, Zuordnungen zwischen Gesten und den damit verbundenen Bedeutungen zu definieren -- ein Gestenvokabular. Ein Menschgestenvokabular definiert welche Gesten ein Personenkreis intuitiv verwendet, um Informationen zu übermitteln. Ein Robotergestenvokabular zeigt welche Robotergesten zu welcher Bedeutung passen. Ihre effektive und intuitive Benutzung hängt von Gestenerkennung ab, das heißt von der Klassifizierung der Körperbewegung in diskrete Gestenklassen durch die Verwendung von Mustererkennung und maschinellem Lernen. Die vorliegende Dissertation befasst sich mit beiden Forschungsbereichen. Als eine Voraussetzung für die intuitive Mensch-Roboter-Interaktion wird zunächst ein Aufmerksamkeitsmodell für humanoide Roboter entwickelt. Danach wird ein Verfahren für die Festlegung von Gestenvokabulare vorgelegt, das auf Beobachtungen von Benutzern und Umfragen beruht. Anschliessend werden experimentelle Ergebnisse vorgestellt. Eine Methode zur Verfeinerung der Robotergesten wird entwickelt, die auf interaktiven genetischen Algorithmen basiert. Ein robuster und performanter Gestenerkennungsalgorithmus wird entwickelt, der auf Dynamic Time Warping basiert, und sich durch die Verwendung von One-Shot-Learning auszeichnet, das heißt durch die Verwendung einer geringen Anzahl von Trainingsgesten. Der Algorithmus kann in realen Szenarien verwendet werden, womit er den Einfluss von Umweltbedingungen und Gesteneigenschaften, senkt. Schließlich wird eine Methode für das Lernen der Beziehungen zwischen Selbstbewegung und Zeigegesten vorgestellt.Gestures consist of movements of body parts and are a mean of communication that conveys information or intentions to an observer. Therefore, they can be effectively used in human-robot interaction, or in general in human-machine interaction, as a way for a robot or a machine to infer a meaning. In order for people to intuitively use gestures and understand robot gestures, it is necessary to define mappings between gestures and their associated meanings -- a gesture vocabulary. Human gesture vocabulary defines which gestures a group of people would intuitively use to convey information, while robot gesture vocabulary displays which robot gestures are deemed as fitting for a particular meaning. Effective use of vocabularies depends on techniques for gesture recognition, which considers classification of body motion into discrete gesture classes, relying on pattern recognition and machine learning. This thesis addresses both research areas, presenting development of gesture vocabularies as well as gesture recognition techniques, focusing on hand and arm gestures. Attentional models for humanoid robots were developed as a prerequisite for human-robot interaction and a precursor to gesture recognition. A method for defining gesture vocabularies for humans and robots, based on user observations and surveys, is explained and experimental results are presented. As a result of the robot gesture vocabulary experiment, an evolutionary-based approach for refinement of robot gestures is introduced, based on interactive genetic algorithms. A robust and well-performing gesture recognition algorithm based on dynamic time warping has been developed. Most importantly, it employs one-shot learning, meaning that it can be trained using a low number of training samples and employed in real-life scenarios, lowering the effect of environmental constraints and gesture features. Finally, an approach for learning a relation between self-motion and pointing gestures is presented
    • …
    corecore