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Abstract 
 

A key motive of human-robot interaction is to make robots and humans interact through 

different aspects of the real world. As robots become more and more realistic in 

appearance, so has the desire for them to exhibit complex behaviours. A growing area of 

interest in terms of complex behaviour is robot dancing. Dance is an entertaining activity 

that is enjoyed either by being the performer or the spectator. Each dance contain 

fundamental features that make-up a dance. It is the curiosity for some researchers to 

model such an activity for robots to perform in human social environments. From current 

research, most dancing robots are pre-programmed with dance motions and few have the 

ability to generate their own dance or alter their movements according to human 

responses while dancing. 

This thesis explores the question “Can a robot learn to dance?”. A dancing 

framework is proposed to address this question. The Sarsa algorithm and the Softmax 

algorithm from traditional reinforcement learning form part of the dancing framework to 

enable a virtual robot learn and adapt to appropriate dance behaviours. The robot follows 

a progressive approach, utilising the knowledge obtained at each stage of its development 

to improve the dances that it generates. 

The proposed framework addresses three stages of development of a robot’s 

dance: learning ability; creative ability of dance motions, and adaptive ability to human 

preferences.  Learning ability is the ability to make a robot gradually perform the desired 

dance behaviours. Creative ability is the idea of the robot generating its own dance 

motions, and structuring them into a dance. Adaptive ability is where the robot changes 

its dance in response to human feedback. A number of experiments have been conducted 

to explore these challenges, and verified that the quality of the robot dance can be 

improved through each stage of the robot’s development. 
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Glossary of Terms 
 

Throughout the content of this thesis, the following terms where used: 

Action database (Movement database) 
A repertoire of sequences and dance actions that have undergone the process of 
pattern matching or were generated by the robot. These sequences would 
typically be of varying lengths (number of dance motions) and chosen to generate 
a different dance. 

  
Buffer (Buffering) 

Defined as the process of caching n number of dance motions from human 
partners. 

  
Dance action (Dance pattern) 

Action selected by the robot based on the action-selection algorithm. There are 
three different types of dance actions. These are referred to as dance motion, 
dance phrase and dance section in this research. 

 
Dance motion 

Basic and shortest component of dance actions. Generated after gestures are 
performed on one time step or two time steps. It is a start gesture and an end 
gesture. 

  
Dance phrase 

A dance action generated after dance motions have been performed after two 
time steps. This is achieved by the robot performing one dance motion on one 
time step, followed by moving the same dance motion or another dance motion 
on the next time step. 

  
Dance section  

The longest dance action. Generated after dance phrases have been performed 
after two time steps. This is achieved by the robot performing one dance phrase 
on one time step, followed by moving the same dance phrase or another dance 
phrase on the next time step. 

  
Formation  

Defined as a “back-and-forth” motion. A human-like movement in which the 
same joints moved in one direction on one time step are moved again on the next 
time step in the opposite direction. 

  
Gesture 

Joints selected to move in one of their individual specific directions on one time 
step. The number of joints ranges from 1-15, but their respective directions vary. 
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Opposite 

Defined as the human-like movement in which the same joints mirrored on the 
robot’s body are moved at exactly the same time on one time step regardless of 
their directions. 

  
Pattern matching  

Defined as the process of comparing human preferences and extracting common 
(the same) combinations between human preferences. 

  
Preference database 

A repertoire of sequences and their respective feedback values extracted from the 
preferences of human partners. 

  
Symmetry  

Defined as the human-like movement in which the same joints mirrored on the 
robot’s body are moved on two time steps regardless of their directions. This is 
achieved by the robot moving a set of joints on one side of the body on one time 
step and moving the opposite set of joints on the other side of the body on the next 
time step. 
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Chapter 1 
Introduction 

This Chapter introduces the idea of dancing robots as a research project and sets out the 

aims and objectives of the research presented in this thesis as well as the proposed stages 

of improving a robot dance as a robot dancing framework. 

 

1.1. Overview 

The research in Artificial Intelligence (AI) has enabled the development of machines and 

robotic systems that are more realistic in appearance in human-robot interaction. It is the 

aim of many researchers and scientists to continue to push the boundaries that separate 

man and machine, and artificial learning and art, by developing systems that demonstrate 

human ability in non-sentient agents in practical and social environments. Dance is one 

such application and is the topic of this thesis.  

The idea of robots learning to dance opens up an area of research for social 

robots. Getting robots to learn to dance, would help to prepare them for more advanced 

tasks particularly to do with dynamic non-verbal communication, and help to establish 

new ways of communicating with them. Also, in terms of entertainment, human dance is 

already one established form of entertainment. Robot dancing can be then next best thing. 

Dance in particular is a complex area of study; therefore, in the field of robotics, it 

is indeed a grand challenge. But applying it robots would not only provide advancements 

in robot dancing, but would also help to provide more understanding of dance itself. 

What makes this area of study interesting is the fact that dancing robots 

demonstrate an activity that many humans gain satisfaction from. There is a 
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psychological stimulation that is obtained through robot dancing as it allows one to either 

become the entertainer or the spectator. By being the entertainer, the person creates dance 

motions which can be performed by a robot. By being the spectator, people can observe a 

dance and provide an assessment of it. Being the entertainer and the spectator are both 

human roles and it is this application to robots is what makes robot dancing socially 

interactive. 

Great progress has been made in dancing robots. The state-of-the-art in robot 

dancing tells us that robots can dance and interact with human partners (Aucouturier et 

al., 2008a). The common approach to robot dancing is to program a robot with pre-

programmed dance steps, or to make them imitate visual motions observed from human 

dancers, which are either randomly selected during the robots dance, or are 

choreographed accordingly for a particular music signal. These approaches rely on the 

trainer to initialise a robot with dance steps rather than for the robot to explore for itself 

the dance steps to perform. This therefore limits their human-like creative ability with 

dance motions and means that a dance would quickly become uninteresting and 

predictable. Furthermore, their dancing becomes less interactive as many do not take in 

feedback from human observers, and ultimately do not learn the appropriate dance 

motions to perform or adapt their dance to the preferences of human partners. This is 

therefore not good for social interaction between humans and robots.  

Creativity is often expressed through the randomisation of actions. To achieve 

learning and adaptation, machine learning algorithms form part of the obvious solution. 

The common technologies employed to make robots learn and adapt their dance motions 

to the preferences of human partners, are Interactive Evolutionary Computation (IEC) 
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(Takagi, 2001) and Interactive Reinforcement Learning (IRL) (Thomaz et al., 2005), 

which are generally based on genetic algorithms (or neural networks) and reinforcement 

learning respectively. Other machine learning algorithms are also used such as Hidden 

Markov Models (HMM). However, their typical use has been for example, for predictive 

behaviour in mapping dance motions to the changing musical signal and not to achieve 

learning from human observers. 

The general problem between human-robot interactions is the length of time 

required in order for the robot to learn to perform the desired behaviour and the fatigue 

that humans experience doing the interaction. Both IEC and IRL technologies have 

proven to be affective in demonstrating adaptive behaviour in robots, but little work has 

been done on them to solve the problems of human-robot interaction, particularly in robot 

dance, due to the factors of human interaction (Thomaz et al., 2005). 

IEC has been the more popular choice to explore dance in robots, whereas IRL 

(and reinforcement learning in general) on the other hand has rarely been used in robot 

dancing. Many people may consider dance to be innately driven, and perhaps it is for this 

reason that biologically inspired algorithms (e.g. genetic algorithms) are used in robot 

dancing. Some, on the other hand would perceive dance to be a conscious activity in 

which case, it would be psychologically driven. 

Reinforcement learning is considered as being inspired from psychology because 

of the way in which the algorithm learns. A reinforcement learning agent learns through 

interacting with the environment through trial-and-error and explores its possible actions 

in order to find gradually the desired behaviour. It can learn through certain (example-

specific) solutions and uncertain solutions, and can change (or adapt) what it has learnt as 
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learning progresses. This is a psychological explanation of how biological systems learn, 

so reinforcement learning is considered as a psychologically inspired approach. 

Similarly, dance can be seen to follow this same process. It involves interacting 

with the environment which may consist of other dancers, the music and spectators, and it 

undergoes changes as the music changes or based on the responses provided by others. 

Dance steps are explored through trial-and-error either mimicking the dance steps of 

other dancers or through personal exploration, and the dancing improves the more it is 

carried out. Dancers can therefore be described as reinforcement learners, and the use of 

reinforcement learning in robots would help to make their dancing more human-like. 

Making robots dance using IRL would make dancing robots dance in a more human-like 

manner.  

There is currently no complete robot system that makes a robot express creativity, 

as well as learning from human partners and adaptation, to their preferences. This thesis 

therefore proposes a dancing framework that explores these three stages of development  

for robot dance. The ambition in this research is to develop a computational dance system 

that learns and perceptually improves in performance. This research proposes a learning 

computational framework based on reinforcement learning, to move us beyond these 

limitations. A virtual robot (Sony AIBO Dog) is programmed to simulate the 

development of an algorithm that meets these stages of development, in a way that 

humans may learn to dance. 
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1.2. Aims & Objectives 

The principal aim of this thesis is to develop an introductory robot dancing framework 

(robot dance system) that improves a robot’s dance at each stage of its development. This 

will be achieved by the following additional aims: 

2nd Aim:- Use and justify a suitable learning algorithm from the reinforcement learning 

approach. 

3rd Aim:- Demonstrate a robot’s improvement based on the proposed robot dancing 

framework. 

 

These aims were achieved through specific objectives, which were to: 

1. Identify and propose the stages in a robot’s dance for a robot dancing framework 

based on current state-of-the-art that would improve its dancing (Chapter 2). 

2. Integrate the tools that would enable a robot to improve its dancing and 

synchronise its dance motions to the beat of the musical signal (Chapter 3). 

3. Implement each stage of a robot’s improvement based on previously learnt 

behaviour (Chapters 4, 5 and 6). 

4. Implement knowledge of human dance (Chapter 5). 

5. Demonstrate the improvement of a robot dance based on human observation 

(Chapter 5) and human interaction (Chapter 6). 

 

The project to develop an introduction to a robot dancing framework is a result of 

achieving these aims and objectives, which as been achieved in this thesis. 
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1.3. Research Methodologies 

There are at least, three stages of improvement that are critical to make dancing robots 

improve their dance: learning, in terms of learning what dance actions to perform to the 

music; creativity, in terms of generating new movements as opposed to utilising pre-

programmed moves, so that robots form their own dance motions and their own dance, 

and structuring these movements into what can be defined as a “good dance”; and 

adaptation, whereby a dance is changed according to human feedback. The three stages 

of improvement are described further in the following sections. 

 

1.3.1. Learning To The Beat 

Human learning is based on how others judge their dancing and how successful the 

dancer’s movements match the expression of the music. Human learning is continuous 

and this would be expected of robot dancers. Many current dancing robots do not learn 

how to dance and cannot respond to human feedback. They rely on the trainers to 

initialise desirable dance steps for them to perform. With such an approach, everytime a 

new dance step is required, the robot would have to be re-programmed. Like humans, 

robot dancers are expected to receive feedback of their dancing and learn from it. 

Therefore, the first challenge is to give a robot the ability to learn the fundamentals 

necessary for dance. 

Reinforcement learning is the chosen approach to learning in this thesis for two 

reasons. The first reason is that it can be used to “evaluate” a learning agent’s behaviour, 

as well as provide “instructions” as to what the learning agent should do more often than 

other actions. Dancing is an activity whereby guidance and feedback is required in order 
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for it to be accomplished. Therefore dance can be considered both evaluative and 

instructional as a dance agent must undergo criticism in order for it to improve its 

dancing. 

Dancers improve their dance as they receive guidance from their trainers. This 

makes reinforcement learning a potential solution to learning to dance because dancing 

requires feedback concerning how good the movements are, and not necessarily what are 

the best moves. Indeed, in using reinforcement learning, many varying rewards can be 

given to the agent at anytime, to indicate subjective opinions, and the agent is left to 

make its own judgement on the feedback. This is what makes dancing evaluative. The 

robot will have to compare the feedback it gets to make valued judgements. What makes 

dance instructive, is the fact that, upon performing a movement, the dancer experiences a 

direct response, internally (e.g. pleasure) and/ or externally (e.g. from the audience) as 

feedback. In other words the dancer is told what moves to do and what moves not to do. 

The second reason for choosing reinforcement learning is because with the help of 

this approach learning can occur through the learning agent’s exploration of behaviours 

i.e. a trial-and-error approach. When dancers first encounter music, they are not informed 

of what dance steps to take and so they begin to dance by moving and observing their 

own movements and the movements of other dancers. Dancers create and experiment 

with new and old movements to the music throughout the dance. It is for these two 

reasons that reinforcement learning is selected to explore learning in dancing robots. 
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1.3.2. Generating Dance Motions 

Human dancers have the ability to create their own movements by combining joint 

movements in different ways and different directions, and even when taught dance 

routines, humans combine different dance steps during their dance. This enables 

observers to comment on the dance. The pre-programmed or imitated dance steps 

programmed in current robots do not allow robots to explore or create movements for 

themselves. Dancing robots require the ability to form their own movements that appear 

not to be random or pre-sequenced, but autonomous, as pre-programmed routines and 

movements quickly become uninteresting and predictable. 

 Current robots are able to initially maintain human interest because their dance 

already consists of whole motions. That is, their movements are human-like in 

appearance and the transition between dance motions are logical and also human-like. 

This is often achieved by pre-programming a robot with primitive human-like behaviours 

(e.g. moving the head up and down as one dance motion) and connecting each dance 

motion to the next by terminating each dance motion to the same position or adjusting the 

dynamics of each motion to balance the robots posture using Zero Moment Point (ZMP) 

(Vukobratovic, 2004).  

Robots can be provided with some initial dance behaviours. However, restricting 

robots with initial dance steps, limits the robots exploration of dance steps. The important 

thing is how dancing robots generate their own dance behaviours, and combine them to 

generate dance patterns to form different dances. Like humans, robot dancers are 

expected to explore their own movements and learn the fundamental features of dance 

motions so that the dancing is more autonomous and progressive in appearance. 
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Therefore, the second stage of development is to give a robot the ability to generate its 

own dance motions, which can be structured to form a dance. 

 

1.3.3. Adapting To Human Preferences 

Adaptive behaviour closely follows from learning. Whilst learning in this research 

focuses on identifying the generic individual desirable dance steps to perform, adaptation 

in this research is concerned with the ability to make robots change their dance according 

to human preferences. The adaptive ability of current robot dancers focuses on mimicking 

audio or visual rhythms, for example the dynamics of the music or the motions of human 

partners perceived in the environment. Little work has been done in robots being able to 

adapt their movements based on how human partners judge a robot’s dance. 

Human preferences are subjective in nature and sometimes conflict, and so the 

ability to alter a dance to accurately match the preferences of one or more trainers is what 

would make a robot dance adaptive. The challenge for dancing robots in achieving 

adaptation is to maintain human interest whilst satisfying and correctly evaluating their 

preferences. Maintaining human interest can be achieved by being creative with dance 

motions, but this does not achieve adaptation. For true adaptive behaviour, robot dancers 

are expected to explore further the human response they receive in order to learn human 

preferences and adapt to them as this is typically, how humans learn to dance. 

 

As described above, this thesis proposes an introductory framework to robot 

dancing and aims to address all these three stages of development. These will be further 

explored in Chapters 4, 5 and 6 respectively. 
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1.4. Thesis Contributions 

This thesis serves its purpose as an introductory framework to improve a robot’s dance as 

one area of social interaction between humans and robots, by implementing learning 

ability in a robot, as well as the ability generate its own dance motions suitable for human 

judgement, and the ability to respond to human feedback. It is a stepping stone towards 

understanding the process of dance mechanics, combining abstract disciplines of art, 

rhythm and perception, necessary for dance in robots. This thesis addresses three stages 

of improving a robot’s dance. These are: the ability to learn while synchronising dance 

motions to the music; the ability to generate dance motions autonomously without the 

need to re-program the robot each time; and the ability to generate an improved dance 

based on the preferences of human partners. These stages of development are linked to 

form the proposed dancing framework for robots. This is the first contribution of this 

thesis. 

 The second contribution is the learning and development of human-like attributes 

from dance studies in order to make the robot generate its own dance motions that are 

suitable for human judgement and help the robot in expressing creativity. 

The third contribution is the use of the Sarsa algorithm and Softmax algorithm 

from reinforcement learning for learning and action-selection respectively in robot dance 

to help make the robot learn and adapt its dancing based on the direct interaction of 

human partners. Human partners are able to interact with a dancing robot and simply 

specify the parts they like and dislike unlike common approaches, which only take into 

consideration the parts the observer prefers. 
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The thesis presents some interesting results of dance that were not evident in the 

current state-of-the-art. It tells us that the increasing number of joints used in the robots 

dance, increases the quality of the dance up until a certain point, which suggests that the 

quality of dance may perhaps level off. Furthermore, the research confirms the theory that 

a robot dance can improve significantly when it incorporates the fundamental mechanics 

of dance and the preferences of human partners. The research shows that dance must have 

a structure; dance motions must be sequenced in order to develop a dance and joints must 

be moved in certain ways to each other to ensure aesthetic appeal. 

 

1.5. Structure of Thesis 

Following from this chapter, Chapter 2 is a literature survey of the current state-of-the-art 

in robot dancing. It focuses on the limitations of current robot dancing approaches and 

highlights the observable and measurable features of human dance that can be modelled 

and conceptualised for the robot dancing framework proposed in this thesis. 

Chapter 3 provides an overview of the dancing framework and the components 

for creating the framework necessary for addressing the stages of its development. In 

particular, it describes the experimental platform; the robot; the beat detection algorithm 

used in this research and the learning algorithm and action-selection method used in this 

research. 

Chapter 4 describes a simple approach to make the robot learn to be rhythmic to 

the musical beat with the direct use of traditional reinforcement learning. Initial 

experiments were conducted to determine what learning coefficient values can be used 

throughout the further experiments in this research. 
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In Chapter 5, the learning achieved in Chapter 4 is built upon. Here, the robot 

learns the desirable movements, by exploring the combination of primitive motions. 

These primitive motions are performed in different ways to generate autonomous 

behaviour and the robots own dance motions. These dance motions are then combined to 

generate different dance patterns and help structure the dance. The robot also learns the 

structure of dance. Empirical results are obtained to determine what improves the robots 

dance. 

Chapter 6 builds further on the learning achieved in Chapters 4 and 5. In this 

chapter, the robot adapts its dance in response to the preferences of at most two observers 

whilst still maintaining creative, by generating new patterns with the preferences received 

from human partners. Empirical results are obtained to determine whether or not there is 

a significant difference in satisfaction when different preferences are combined in a robot 

dance. 

Chapter 7 concludes this thesis and identifies future directions for the research.  
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Chapter 2 
Literature Review - Robot Dancing 

 

This chapter provides a literature survey on the current approaches that researchers have 

used to explore robot dance, focusing on three stages of development that are required for 

a dancing framework: learning appropriate behaviours, creating dance motions, and 

adapting to human feedback. Each of these is discussed based on the current state-of-the-

art in robot dancing. This chapter also identifies the measurable fundamental attributes of 

human dance necessary for robot dance. 

 

2.1. What Is Dance?  

Dance is a creative and entertaining art form, driven by bodily movement and music, 

often expressed for social interaction, live performances, cultural practices and sport (for 

example gymnastics, skating, swimming and martial arts). Dance is a non-verbal 

communication human attribute that conveys the emotions of dancers. It is a discipline in 

itself that branches into many areas such as style (e.g. Ballet, Ballroom, Waltz, and 

Tango), composition (commonly known as dance choreography), health (e.g. for losing 

weight and exercise) and therapy (e.g. for boosting personal confidence). Even animals 

dance, for example, during mating season. 

There are many definitions of dance, of which most still remain vague. Like all 

human behaviour, it is difficult to clearly define what is actually meant by dance, but it 

can be generally defined from two perspectives – as an art form in relation to music and 

conceptually as a series of connected patterns of movement.  For example, as a general 

description, the Babylon English dictionary defines dance as a “move [done] 
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rhythmically to music, often following pre-composed steps and movements; skipping or 

bouncing about in a dance-like manner”. 

Van Camp (1981, p. 22) elaborates further by saying the components of human 

movement are: 

“…formalized (e.g. by being stylized or performed in certain patterns), 

with such qualities as grace, elegance, and beauty, to the accompaniment 

of music or other rhythmic sounds … [and it is] an art performed by 

individuals or groups of human beings, in which the human body is the 

instrument and movement is the medium. The movement is stylized, and 

the entire dance work is characterized by form”. 

 

From the two definitions, it is possible to obtain an idea of what dance is, 

however, they do little to help us take practical steps towards teaching robots to dance. 

For example, using Van Camp’s definition, which “formalized patterns” can be used to 

demonstrate dance? How can qualities such as “grace, beauty, and elegance” be 

measured? What is a “stylised movement” and how can we compute “form”? Is music 

necessary in dance? What is “rhythm”? 

What appear to be the answers to these questions rely on human judgement and so 

therefore, the evaluation of whether robots can dance and how well they dance is 

determined by the results obtained from people. Robots do not understand these 

definitions and so are typically provided with well connected dance motions in order to 

express these definitions.  
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A more conceptual definition on the other hand of dance is a definition proposed 

by McGreevy-Nichols et al. (2005) who say:  

 

“Communication through movement should be the goal when building a 

dance. … Movements are like words. You put words together to make 

sentences. In dance, these sentences are called dance phrases. Sentences 

are put together to make paragraphs in the same way that dance phrases 

are linked to make sections. Sections, when linked together, make a 

dance”. 

 
Figure 2.1 shows a more conceptual understanding of this definition. 

 
Figure 2.1 – The relationship between language and the structure of dance 

 

In this definition, language is built up of words that are put into phrases that are 

joined to form meaningful sentences and paragraphs. Dance can similarly be understood 

as the structure of components that are connected together in human-like ways. The basic 
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component of dance might be called a gesture which is a simple single movement. 

Generally, in relation to movement, a gesture can be described as a whole motion such as 

a hand wave as a form of greeting, or a stand alone posture such as a “thumbs up” to 

indicate approval. In dance, a gesture is considered literal like sign language, making it 

possible to develop dance notations illustrated as written scripts (The Chicago School of 

Media Theory, 2004). 

 In this research, a gesture is interpreted as a stand alone posture of single or 

multiple joints that are moved in one direction (the same or different) at each moment. 

Gestures performed on two time steps make dance motions, which in turn build up to 

form sequences. In other words, a dance motion can be defined as a start gesture and an 

end gesture. 

Dance motions are chained together to create dance phrases and dance sections, 

which together create the dance performance. So, combining the definitions above, a 

dance can be observed as one piece, built up step by step of sequences of dance motions 

in human-like transit, synchronised to the music (Aucouturier et al., 2008a). The next 

section goes through this in greater detail. 

 

2.2. Current Progress in Robot Dancing 

The first documented sign of a dancing robot goes as far back as 60AD created by a 

Greek engineer by the name of Hero (NewScientist, 2007). He was responsible for 

constructing a “three-wheeled cart” that could move around on its own accord, powered 

by “a falling weight that pulled on a string wrapped round the cart’s axle” (NewScientist, 

2007). This invention was said to be “dancing” because it moved around with no 
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assistance, except by the shifting weight attached to it. The robot did not move to music 

and the dancing only continued until the string ran out. 

Much progress has been made since the work of Hero. Today, robots are able to 

dance by detecting the dynamics (intensity and tempo) of the music and mimicking the 

movements of human partners (for example in Jens et al. (2010)). Research into robot 

dancing has been strongly associated to entertainment and social interaction (Aucouturier 

et al., 2008a). However, the reasons behind robot dance vary between different 

researchers. For some, robot dance is used to allow robots to have the ability to detect 

rhythmic movement in humans (for example the work of Oliveira et al. (2008) and 

Tanaka & Suzuki (2004)). For others, it’s to preserve and perform dance motions (for 

example, the work of Nakaoka et al. (2004)) so that it can be passed down to future 

generations; or to help researchers obtain better understanding of human movement 

(Shiratori et al., 2006), Shiratori & Ikeuchi (2008) and animal behaviour (Landgraf et al., 

2010). Other reasons include the better understanding of human-robot interaction (Tanaka 

et al., 2006); and to become physical dance partners to humans (Jens et al. 2010). 

The widely accepted approaches to robot dance include pre-programmed motions, 

which are either randomly selected or sequenced for a chosen music signal (for example, 

the work of Grunberg et al., (2009) and Santiago et al. (2011)); motion capture (for 

example in (Shiratori & Ikeuchi, 2008)) to extract key poses of human movement, which 

again can be either randomly selected or sequenced to music; dance with human partners 

(e.g.  for example in Jens et al., (2010), Takeda et al., (2007), and Gentry & Murray-

smith (2003)) and by receiving dance motions from stand alone computer applications, 
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which are controlled by human operators (e.g. the work of Shiratori et al., (2006) and 

Ellenberg et al., (2008)). 

Whilst these ideas are all aspects of dance and have shown to be successful in 

robot dance, they limit the exploration of more advanced behaviours in robot dance, such 

as the ability for learning, generating dance actions and adaptation. For example, most 

robots do not have any learning ability and so can only demonstrate some form of 

creative behaviour in their dance, whilst others can adapt their dance motions to the 

music, but cannot adapt to human feedback.  Some researchers suggest some form of 

framework for dancing robots (e.g. Oliveira et al., (2008); Aucouturier et al., (2008b) and 

Kim et al., (2007)) that combines aspects of the current approaches to robot dance. 

However, these frameworks do not address learning, creativity and adaptation in their 

development. Typically, these advanced behaviours are explored individually and, as of 

yet, there is no complete system for dancing robots that combines them. This is important 

as it would help to maintain human interest and interaction in social environments. The 

following sections describe how researchers have currently addressed these advanced 

behaviours in robot dance. 

 

2.3. Learning in Robot Dance 

The most recent advancement in robot dance is the use of motion caption technology. 

This works by using special cameras to capture motion data as moving regions of a 

human partner (Nakaoka et al., 2010). These motions are either stored in a database to be 

reused or are imitated in real time. The primary difficulty in using these data for robot 
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dance is that robots do not have the same degrees of freedom as humans. Thus, some 

processing is necessary to convert the human poses into usable robot poses. 

The HRP humanoid robot (Nakaoka et al., 2004) was one robot which was used 

to accomplish the task of converting human motion capture data into a form that provided 

realistic movements in the robot, while maintaining balance. The robot learnt dance 

motions by observing movements in real time, performed by a human partner, using a 

method known as Learning From Observation (LFO) and a method known as Zero 

Moment Point (ZMP) for dynamic balance control (Nakaoka et al., 2004). Nakaoka, et al. 

(2005), on the other hand, analysed motion capture data to build a database of basic 

motions and instructions that were then used by the robot to perform dance moves. 

Although robot dancing based on motion capture is representive of how humans 

may generally learn to dance from other human dancers, it is typically combined with 

learning algorithms which are either biologically inspired or probabilistic in nature. For 

example, the QRIO robot was used to explore a Recurrent Neural Network with 

Parametric Bias (RNNPB) to keep a record of and learn simple human gestures which 

were imitated dynamically (e.g. to different speeds) from human partners (Tanaka & 

Suzuki, 2004). Tanaka et al., (2005), on the other hand, used Bayesian inference to 

update its knowledge base of action sequences whilst in different interactive states. This 

was achieved by increasing the robot’s belief (probabilities) if the robot had observed a 

response to its action sequences, and decreasing when the reaction from the human 

partner stopped. 

As an alternative to motion capture (and pre-programmed movements), the 

MIURO robot was made to dance using a neural network based model known as 
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FitzHug-Nagumo (FHN) in order to generate Chaotic Itinerancy (CI), which is the idea of 

randomly generating seemingly autonomous behaviour, synchronised to music 

(Aucouturier et al., 2008b). Although a neural network was used to make the robot dance, 

the robot underwent no learning, but rather the input parameters of the network were 

altered and updated to encourage varying synchronised and spontaneous behaviours.  

Some researchers employed predictive algorithms to achieve robot dancing. For 

example, the Ms DanceR robot was programmed with knowledge of ballroom dance 

steps to dance with a human partner, moving in directions estimated by the human 

partner, using Hidden Markov Models (HMM) (Takeda et al., 2006) and Neural 

Networks (Hirata et al., 2005).   

The current state-of-the-art for learning in robot dancing, tells us that learning 

algorithms are used in two ways. Either, to make dancing robots autonomously respond 

to the dynamics (speed and intensity) of music or, be able to adjust their movements to 

imitate human partners and synchronise with perceived rhythmic motions. There is no 

attempt to use these learning algorithms to actually distinguish between “good” and 

“bad” dance steps judged by a human partner or the appropriate behaviours to perform. 

Instead, they are used to illustrate the idea of dance in robots and not make robots learn to 

dance. Nor can they learn the appropriate dance steps that are suitable to develop their 

own dance. 

 

2.4. Generating Dance Motions in Robot Dance 

The most common way to make robots dance is by pre-programming single dance 

motions that are either choreographed in sequences by a trainer to be performed to 
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predefined music, or selected at random and altered dynamically to match changing audio 

or visual rhythms in real time for example, in the work of Michalowski et al. (2007), 

Sinozaki et al. (2007), Oliveira et al. (2008) and Nakaoka et al. (2010), and in robots 

such as the hexapod dancing robot (Gizmodo, 2008); the Adam Frucci White Guy Dance 

Robot; the Hasbro iDog Robotic Puppy and Ampbot robots (TrendHunter, 2001). 

 The problem with pre-programming dance motions is that first of all, it limits the 

robots ability to generate its own motions and maintain human interest (Tanaka and 

Suzuki, 2004) and secondly, in order to change or improve a dance, the robot will have to 

be re-programmed each time, if different dance steps are required for a dance. This 

approach is neither desirable nor practical and therefore, autonomous behaviour is 

required of them.  

There is no doubt that the above creative robots can be recognised as dancing, but 

the interest is finding the actual aesthetic characteristics that they display and the syntax 

that dance follows. The question in particular is what are the characteristics of dance 

behind the different approaches to creativity in robot motions that make their movements 

become a dance? 

As described above, dance is a combination of imitation and patterns, consisting 

of structured rhythmic behaviours and related motions in succession (Michalowski et al., 

2007). A dance can be detected if the movements are human-like (Sinozaki et al., 2007) 

or at least resemble the way in which humans move. Most non-salient dancing platforms 

(e.g. robots or animated characters) are humanoid or human-like in appearance (e.g.  in 

the work of Oliveira et al. (2008); Tanaka et al. (2005), and Solis et al. (2005)) excluding 
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few (e.g. the work of Michalowski et al. (2007) and Sinozaki et al (2007)), but all 

demonstrate the aesthetic characteristics of dance motions. 

Dance consists of dance motions that are made up of basic motion primitives 

synchronised to the music. Music itself has patterns and consists of a structure. The 

correct mapping of movements to music requires that the musical structure and patterns 

be perceived and therefore, visible in a dance (Nakaoka et al., 2007). 

From the current state-of-the-art, dance steps containing selected primitive 

motions were pre-programmed in dance motions and consequently the robot dances 

appeared human-like and natural. But this made the robots less autonomous in their 

dancing. Therefore, the logical step to achieve autonomous and creative dance steps 

would be to first have a set of predefined gestures that can be combined and sequenced to 

form chains of dance sequences. Shinozoki, et al. (2007) explored this idea by developing 

a system that enabled robots to construct dance routines from basic pre-programmed 

dance steps. Similarly, Riley et al. (2000) used human examples to generate dance 

movements for the robot. 

The idea of having single dance steps in robots that can be grouped together to 

generate varying sequences and dance patterns is a promising approach as it is a 

conceptual way to describe human dance. But the science of dance is more than just 

grouping dance motions in sequences. Dance motions themselves have a syntactic 

description (Erdem et al., 2008), which can be observed in dance in general. There are 

certain ways in which gestures are related and move together in order to achieve 

creativity in dance and enhance aesthetic pleasure. The following sections go into this in 

more detail. 



Towards A Framework To Make Robots Learn To Dance 

 23

2.4.1. The Structure of Dance 

Like music, dance is a combination of related patterns consisting of structured rhythmic 

behaviours (Michalowski et al., 2007). These rhythmic behaviours are made up of 

primitive motions performed in real time to the music which are sequenced and combined 

to form a dance. 

Recall, the definition proposed by McGreevy-Nichols et al. (2005) of dance was:  

 

“Communication through movement should be the goal when building a 

dance. … Movements are like words. You put words together to make 

sentences. In dance, these sentences are called dance phrases. Sentences 

are put together to make paragraphs in the same way that dance phrases 

are linked to make sections. Sections, when linked together, make a 

dance”. 

 

Conceptually, this can be illustrated as shown below in Figure 2.2: 



Towards A Framework To Make Robots Learn To Dance 

 24

 

1. Movements (words) … produce Dance Phrases (sentences) 

 

2. Dance Phrases (sentences) … produce Dance sections (i.e. parts of the dance) 

 

3. Dance sections, linked together … produce a Dance! 

 
Figure 2.2 – Conceptual design structure of dance proposed by McGreevy-Nichols et al. 
(2005) 

 

Where i, j and k are the total number of movements, phrases and sections 

respectively. Movements (or dance motions) are the fundamental building blocks of 

dance, which could be a build up of skilful gestures in transition. It is the transition from 

whole dance motions to sequenced dance motions that gives a dance a structure. This 

would help to generate interlocking patterns of coordinated movements that are cyclic 

(repetitive) in behaviour as well as seemingly autonomous. 
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Many robots today are pre-programmed with whole dance motions so in order to 

achieve autonomous creativity and skilful gestures, dancing robots first need to develop 

their own dance motions.  

 

2.4.2. The Relationships in Gestures 

Whilst some researchers have limited robot dance to specific music and dance genres 

(e.g. the work of Hirata et al. (2005) and Yuuki et al. (2009)), the fundamentals of dance 

are much more generic and can be applied to different dance and music genres. In 

everyday human movement, there are specific ways in which joints move in order to 

achieve a task. Some examples include, walking, running, and jumping. All these skilful 

actions are executed in certain ways, using certain joints and muscular contractions. The 

joints and muscles used are what provide humans with the fundamentals to perform 

hierarchical tasks, but it is their relationships that determine their desirability and 

aesthetic appeal. These basic concepts are what form dance techniques and make the 

movements appear more skilled, because, in their use, they demonstrate an improved 

performance and can be used to produce more interesting motions. 

Human dance is largely made up of perceptually meaningful and skilful gestures. 

From dance studies, there are at least three ways in which gestures are related for 

aesthetic appeal, necessary for any human dance and movement in general. They are 

called Symmetry, Canon and Form.  

Symmetry is defined as the movement of opposite joints (Smith-Autard, 1988) in 

unison. These specific joints must be moved at the exact same time and can either be 

symmetric (i.e. moving in the same direction) or asymmetric (i.e. moving in opposite 
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directions) (Figure 2.3). Symmetric images are perceived as calmer, but not 

psychologically stimulating, whilst asymmetric images are more interesting and realistic 

(Humphrey, 1959). 

Canon also requires the movement of opposite joints, but these can be moved one 

after the other (Smith-Autard, 1988). This helps to give the sequential effect in dance and 

looks progressive. Both Symmetry and Canon are largely due to the mechanics of the 

human body and understanding of body movements. Human bodies are very much 

symmetrical and everyday movements include the movements of opposite joints, both 

against each other and working with each other. This is known as Opposition and 

Succession (Figure 2.3) respectively in dance studies and can be performed in sequential 

succession (i.e. one after each other) or simultaneously (i.e. in unison), e.g. standing or 

walking. 

 
Figure 2.3 – Symmetrical and asymmetric movements that work with each other (opposition) and 
against each other (succession) (Humphrey, 1959) 
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Form is the skill that actually gives the dance a “shape” and sense of style, 

(Smith-Autard, 1988). It is what completes a dancers movements and a dance. There are 

many ways in which form can be achieved, but the most common and basic form is 

known as Ternary Form (Smith-Autard, 1988), which is whereby gestures follow a “back 

and forth” motion, for example, a set of joints starting from position A, which move to 

position B and then back to position A. This way of dancing is very common and one of 

the easier forms to learn for humans. It is a way of movement that is very pleasing to 

observe as perceptually, it gives the impression of completeness and ensures the 

satisfaction of an observer’s expectations (Smith-Autard, 1988). Forms can be used for 

the development of dance sequences and dance routines as well as to create different 

effects with dance steps. 

Human gestures are made up of a set of joints which are moved at chosen speeds 

and directions. These dynamics of movements combined with fundamental ways of 

relating gestures (i.e. Symmetry, Canon and Form) form basic motions, which are 

common amongst dancers and can be combined in different ways to give each dancer 

their own style of dancing (Erdem et al., 2008). Many robots already dance with given 

primitive (basic) motions containing already aspects of Symmetry, Canon and Form; for 

example, in the work of  Sinozaki et al. (2007) and Shiratori et al. (2004). However, 

autonomous behaviour would be better achieved if these gestured relationships were 

explored and learnt while dancing, as this will engage human partners as the robot 

demonstrates improvement in its dancing. This would not only teach the robot what to do, 

but also, keep a record of how to do specific motions. 
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2.4.3. The Number Two 

The definition proposed by McGreevy-Nichols et al. (2005) gives a practical solution to 

model the structure of dance, but it does very little to specifically quantify each part of 

the dance structure. For example, how many “movements” make up a dance phrase? How 

many dance phrases produce a dance section? At what point do dance sections become a 

dance? 

In Western culture (and many others), there is a significant relationship between 

the number two and dancing. Establishing this simple relationship provides a powerful 

building block from which more complicated dance moves can be constructed. It is 

possible to establish this simple relationship by looking at the mechanisms of the human 

body of which the main expressive components of the body in dance typically include 

arms and legs. These individual components and their combinations, are based on the 

power of two, and can immediately be synchronised with rhythmic sound (e.g. most 

popular music and poetry), both written and oral (Hall, 2005). 

Rhythm is the main component of rhythmic sound and dance. Rhythm is an 

intrinsically mathematical concept. This is because rhythm is measured and counted in 

distinct, repeating, segments. In speech and music, rhythm is measured by patterns of 

syllables and sections respectively. Rhythm is subdivided into units known as measures, 

and each measure contains a set number of beats (meter).  

Arguably, the concept of the number two in rhythm was used before even music 

and dance, with its fundamental roots in spoken word and poetry. For example, as early 

as 200 B.C. a system of rhythm for speech had been devised based on two time units - 

short and long (Hall, 2005) which were used and combined in speech and poetry. This 
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same idea of long and short also became the basis for musical rhythm and dance and 

structure. 

 

(1) The Number Two in Music 

In music, the number two is very prominent, particularly in relation to the time signature 

of Western music. A time signature is denoted by two numbers written as a fraction (e.g. 

¾). The top number in a time signature designates how many beats are used per measure. 

The bottom number indicates the type of note that is used to count the beat. For the top 

number, the number two is not so important here. It is in the bottom number that the 

number two is important. The longest note in musical notation (without adding additional 

modifiers) is known as the whole note. A whole note consists of four beats of equal 

length. From there, notes are defined that are each one-half the duration. For example, in 

a time signature of 4/4, there are four beats per measure (top number) and the quarter note 

(indicated by the bottom number 4 to mean ¼ of a whole note) gets a beat. In other 

words, each beat within a measure will last for a ¼ of a whole note. Table 2.1 below 

shows the breakdown of musical notes in a 4/4 time signature. 

Note Type 
Duration of note 

in beats 
Bottom Number of 

Time Signature 
Power of 2 

For note duration 
Whole Note 4 1 22 

Half Note 2 2 21 

Quarter Note 1 4 20 

Eighth Note ½ 8 2-1 

Sixteenth Note ¼ 16 2-2 

Table 2.1 – The number two in a 4/4 time signature 
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As can be seen above, all of the fundamental musical notes are related to powers 

of two. In conventional music, it is not possible to have time signatures with numbers 

other than two (bottom number) since it determines the length of a beat with reference to 

the whole note. This, therefore, forms the first mathematical basis for understanding 

music and rhythm. Of course, this does not mean that all musical rhythms are based on 

the power of two, but it is certainly the case for most other common musical rhythms 

such as 2/4, 3/4 and 6/8 time signatures. As a result of this fact, many different types of 

music and dance have been created based on these musical rhythms. Table 2.2 below 

shows some common time signatures and the types of music and dance associated with 

them for which the number two in human movement is important. 

 

Time signature Music Style (genre) 

4 / 4 Folk, blues, rock, jazz, pop, classical 

3 / 4 Waltz time 

2 / 4 Latin music, marching bands 

6 / 8 Strauss Waltzes, Viennese Waltz 

2 / 2 Latin samba music 

Table 2.2 - Common time signatures and their respective music styles (Craig, 2005) 
 

Table 2.2 reveals that many forms of music and dance are based on time 

signatures that are fundamentally based on the power of two. The significance of this 

relationship is that it demonstrates how music and dance are closely related and that it is 

possible to model this same behaviour on robots. 
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(2) The Number Two in Dance 

In addition to the definition proposed by Van Camp (1981) of dance (Section 2.1), she 

also stated that dance is a “stylized movement synchronized with music and rhythm”. The 

most significant element of the definition is that the movements are synchronised to the 

rhythm of the music. Since the mathematical basis for most popular music is the number 

two, it is no surprise that many dances (Table 2.2) also have the same basis as a result of 

the mechanics of the human body. It is the dual symmetry of the human body that allows 

dance movements to be tightly tied to the number two found in the rhythm of popular 

music. 

The human body is composed of many pairs e.g. two feet, two arms, two legs. 

Human joints are typically also made to move in two directions (e.g. same and opposing 

directions), therefore, making it possible to perform movements such as nodding the head 

forwards and backwards and side to side; and lifting the arms and legs up then down. 

Some joints can even move in two ways for example, the forearm can be extended and 

bent. It is for this reason that logically, popular dance movements can be broken down 

into movements that alternate between two body positions. Mathematically, this neatly 

corresponds and synchronises to all meters of rhythm that are based on the number two. 

Dance instructors take advantage of this simple fact when teaching children how to 

dance. Table 2.3 shows some common body movements that are taught to children as part 

of music and dance education. 
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Movement Description 

The Rocker The child sits with legs crossed and rocks back and forth. 

The Squirrel The child sits and makes forward and backward circles 

with his/her arms. 

The Owl The child rocks his/her head forward and back or side to 

side. 

The Starfish The child lies on the floor and alternates lifting his/her 

arms and legs up and down. 

Table 2.3 - Children's Dance Moves (Kramer, 2010) based on the number two 
 

In much the same way there is a relationship between human gestures using the 

number two, that is also applied to dancing partners. For example, Table 2.4 shows four 

ways in which symmetry can be established between dancing pairs. 

 
Symmetry Description 

Translation Movements are done with all dancers facing the same direction. E.g. if 

the leader raises his/her right hand the dancers raise his right hand. 

Reflection Movements are mirrored with the dancers mimicking the leader who 

faces them. If the leader raises his right hand, the dancers raise his/her 

left hand. 

Rotational The leader faces the dancers. If the leader raises his/her right hand, the 

dancers raise their right hand. 

Glide Movements are done with all dancers facing the same direction. If the 

leader raises his right hand the dancers raise his left hand. 

Table 2.4 - Symmetrical movements in paired dancing (Schaffer and Stern, 2009) 
 
 

Again, the combinations of the dance steps, are all based on the number two, and 

can be combined in multiple combinations that can be synchronised to music and to other 
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dancers. It is therefore the mechanics of the human body and interaction with other 

dancers that is used to achieve synchrony with the music. 

Typically, many dancing robots are humanoid in appearance and therefore already 

have these human-like attributes, making their dancing appear natural and human-like, 

but not all robots are humanoid in appearance and so knowledge of the syntax of dance 

would benefit human-robot interaction in dance in general, and give dancing robots more 

autonomous and creative dance behaviours. This can be achieved by making them learn 

the fundamental ways in which the body and bodily components relate to each other, and 

use this knowledge to generate dance patterns and sequences that follow the musical 

rhythm. 

 

2.5. Adaptation in Robot Dance 

Adaptation is the process by which a learning agent (e.g. humans) change behaviours 

through interacting with the environment. Most dancing robots in the current state-of-the-

art show adaptation by directly responding to the audio or visual changes in the 

environment, such as changes in the dynamics of the music (e.g. the work of Shiratori et 

al. (2006) and Solis et al. (2005)) or in the rhythmic motions detected of human dancers 

(e.g. the work of Riley et al. (2000) and Tanaka et al. (2006)). The primary limitation in 

these dancing robots is two-fold. Firstly, the robots do not learn from their adapted 

behaviours, but instead, just mimic changing rhythms. Secondly, these robots cannot 

receive feedback from human partners on their dancing. Thus, changes in the robots 

selection of dance motions would have to undergo re-programming. To achieve real time 

adaptation, without the need to re-program the robot, it is clear that a logical approach to 
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this would require the robot to have real time interaction with human partners, so that the 

desired and undesired preferences can be explored and performed. The advantage of this 

is that the observers can influence the way a robot improves its dancing without having to 

program the robot each time or even have knowledge of dance or robots. Instead the 

observer only needs to express their likes and dislikes, to guide the robot’s dancing. The 

most common way in which this has been achieved is though the exploration of two main 

technologies known as Interactive Evolutionary Computation (IEC) and Interactive 

Reinforcement Learning (IRL). 

 

2.5.1. Interactive Evolutionary Computation 

Interactive evolutionary computation (IEC) is a biologically inspired interactive learning 

approach based on evolutionary computations (Suga et al., 2005) and works by using 

genetic algorithms (Graf, 1995) or neural networks (Dozier, 2001) and the evaluation is 

determined by human feedback. During the process, different variations of generated 

behaviour are tested to see if a solution closer to the trainer’s preferences has been found.  

Randomness is introduced into the process by allowing a certain percent of generations to 

occur so that no part of the search space is excluded for exploration. This approach has 

proved satisfactory in different areas such as 3D modelling (Nishino et al., 2001), image 

processing (Poli and Cagnoni, 1997) and robot dancing (Vircikova and Sincak, 2010).  

The advantage of IEC is that it replaces a pre-programmed fitness operation with 

a human agent. However, the disadvantage is that first, a person cannot make decisions as 

fast as a computer.  Therefore, the use of a human agent reduces the progress of 

convergence (reaching a “best” dance) and greatly limits the number of possibilities that 
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can be tested.  Second, unlike machines, humans quickly get tired and bored, making it 

more and more difficult for the human agent to make decisions regarding the fitness of 

the current generation, after hundreds of generations of samples have been presented 

(Takagi, 2001).  

 For many researchers who have explored the idea of human feedback on robotic 

dance systems, the common experimenting approach is to limit the feedback of dance 

partners to one dance partner at a time, and limiting human feedback to only positive 

rewards. For example, in the work of Dozier (2001), the robot interacted with one 

observer for a limited time (4 seconds). Vircikova and Sincak (2010) implemented an 

interactive system, in which human agents observed the dance of seven humanoid robots, 

each with varying dance moves. Each observer was required to rate the overall dance 

quality from 1 – 5. The work in both papers showed successful results and suggested that 

the robots could adapt their movements to a human observer, however the results were all 

based on the feedback of a single observer and participants were limited to give one type 

of feedback, to express one type of preference. Little was shown to determine the result 

of the robot responding to preferred and non-prefered dance behaviours. This however, 

has been demonstrated using Interactive Reinforcement Learning (IRL). 
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2.5.2. Interactive Reinforcement Learning 

Interactive reinforcement learning (IRL) (Thomaz et al., 2005) is a psychologically 

inspired interactive learning approach, based on traditional  reinforcement learning 

algorithms and like IEC, the reward signals are replaced by a human agent as opposed to 

a pre-programmed model. The human agent can interact with the learning agent (e.g. a 

robot) at anytime and vary the rewards as they wish, during the robots learning process. 

 Like IEC, IRL has shown to be successful in areas that require adaptive 

interactive learning (e.g. the work of Leopold et al. (2008) and Liu & Su (2004)), but 

little has been used in robot dance. Of particular interest is the work by Thomaz and 

Breazeal (2007). The authors implemented a reinforcement learning approach which 

allowed humans to interact with a real robot and a computer game. They used the idea of 

positive and negative rewards in their work to guide learning in two ways: 1) learning by 

refining a sequence of actions towards a goal; 2) learning as a means to encourage 

exploration. In their implementation, after the execution of each action, the robot system 

had a “small delay to allow for human reward”.  

Thomaz and Breazeal (2007) limited human input to scalar values in the scale of 

+1 to -1 for preferred and non-preferred actions respectively. Their results showed that 

participants gave more positive rewards than negative rewards. This same approach of 

positive and negative rewards for IRL had been explored by others such as Leopold et al. 

(2008); Austermann & Yamada (2008) and Dozier (2001). The use of positive and 

negative rewards is a simple way for a robot to gain knowledge of the preferred and 

unwanted dance steps of a dance.  However, this has a number of problems. In particular, 

if the rewards are not consistent then contradictions can occur in the observer’s feedback 
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(Thomaz et al., 2005). For example, a “good” dance move in one part of the robot’s 

dance maybe a “bad” dance move in another, which could cause contradiction in the 

robot’s understanding of the true reward. Also, as rewards are given in real time, the 

wrong movements may be rewarded, in which case, the robot may learn to do the wrong 

actions. Therefore, an effective way of processing such rewards would have to be 

adopted. Nevertheless, compared to IEC, the ability to do this in IRL makes it a better 

approach for representing the likes and dislikes of observers. 

 

2.6. Summary 

This chapter summarised the important developments that have been made in the quest to 

first enable robots to dance and then instil in them the capacity to create autonomous 

adaptive behaviour. Although progress has been made in this area of robot dancing, the 

fundamental limitation is that dancing robots dance as a result of pre-programmed 

human-like examples and the quality of their dancing do not improve with this approach.  

Approaches to robot dance have ranged from choreographed dance patterns to 

mimicking visual motions based on motion capture and predicting dance steps based on 

human dance partners. Whilst, these approaches have successfully established dance in 

robots, the creativity and autonomous behaviour of dancing robots is limited because they 

typically cannot generate their own dance motions and cannot adapt their dance motions 

to human preferences. For example, most robots do not have any learning ability and so 

can only demonstrate some form of autonomous behaviour in their dance, whilst others 

can adapt their dance motions to the music, but cannot adapt to human feedback. 
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In order to improve a robot dance, it is necessary that dancing robots posses 

mechanisms that encourage them to learn the appropriate dance behaviours to perform; 

adapt to the preferences of human partners, and be creative with their dance motions, in 

order to maintain human interest. These stages in the robots development can be achieved 

by highlighting the attributes of dance that give dance its aesthetic appeal. This is evident 

in the ways humans move. 

In everyday human movement, apart from the relationship between gestures, it is 

also clear that dance motions have a numerical commonality as part of their definition. 

The description of skilful dance motions suggests that they occur in two time steps or 

factors of two. Using the definition from dance literature, both Canon and Form require 

two time steps in order to be achieved, whereas Symmetry requires one time step. For this 

reason, the number two is a good indication of a quantifiable value for each part of the 

dance structure. To achieve seemingly natural, human-like movement in dancing robots, 

many researchers automatically provide this knowledge to them as opposed to making 

them learn them. 

The number two is necessary for aesthetic beauty as perceptually this is what 

humans are familiar with in everyday movement e.g. the mechanics of the human body. 

Therefore, naturally, if we can break down dance motions into gestures of two time steps 

then this enables skilled motions (whole motions that contain Canon, Form and 

Symmetry) to be performed as well. Robots can then form their own primitive dance 

motions and learn which ones are more desirable through their interaction with human 

partners. 
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A learning approach of particular interest in this thesis that can be used to enable 

human subjects to interact with a robot is Interactive Reinforcement Learning (IRL). This 

is a promising approach to interactive learning because it is based on an adaptive learning 

algorithm (reinforcement learning) that makes the learning agent adapt its behaviour as 

the environment changes, and is capable of evaluating both preferred and non-preferred 

preferences.  
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Chapter 3 
The Robot Dancing Framework 

This chapter provides an overview of the proposed framework and in particular, the robot 

and the beat detection algorithm that was used in this research and the learning approach. 

 

3.1. General Overview 

The fundamental problem with the way in which current robots dance is that there is no 

system that gives them the ability to learn appropriate dance steps, create their own 

movements and adapt to human preferences. The current state-of-the-art can do one or 

the other, but not all. Furthermore, existing implementations require that robots be re-

programmed each time a new dance is required and therefore the trainers need to have 

knowledge of how to program the robots. In this thesis, a robot dancing framework is 

presented that addresses these key points. The fundamentals explored in this dancing 

model include: 

 Real time analysis and extraction of key music features; 

 Development and learning of a collection (repertoire) of desirable dance steps; 

 Creative dance steps and sequences that are synchronised to the music; 

 Adaptation of dance steps and arrangement of dance steps into different 

combinations based on human feedback. 

 

Figure 3.1 shows how these fundamentals are combined in this thesis to form a 

dancing framework. 
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In Figure 3.1, Pre-programmed gestures refers to the initial simple movements 

available to the robot, which are joint and direction specific e.g. raising an arm, which is 

different to dropping the arm, or the head rotating to the left, different to its rotation to the 

right. These gestures are then explored to form primitive and sequenced dance steps (e.g. 

a dance action that moves the head up and down), which are then stored as a repertoire in 

the Action Database as actions. These are then evaluated using the Sarsa learning 

algorithm based on rewards defined by the trainer. The actions are then selected by the 

Softmax action-selection method for the robot to perform. 

The Music is analysed and the musical beat is extracted in real time, while the 

learning algorithm is running and the robot performs the chosen actions in time with the 

beats detected. The music is not stored in the robot’s repertoire. This means that the robot 

can learn the appropriate behaviours whilst different music is being played. The 

Feedback Controller (e.g. the trainer) then observes the robot’s movements and provides 

 
      Figure 3.1 – Integrated framework for dancing robots 
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feedback, and the Feedback Extractor receives the feedback and stores these in the 

Action Database for the learning of which actions are preferred and non-preferred by the 

Feedback Controller. The result is a file containing a sequential list of actions, sent to the 

Robot for it to perform. 

The focus of this research is to develop an adaptive dancing model that learns in 

real time in a real environment (i.e. with real music and real people), without the need to 

re-program the robot. Like humans, the learning for dancing robots must be achieved in 

stages of development. In this thesis, the robot gradually improves the quality of its dance 

as it learns the desired behaviours which are 1) learning to perform movements to the 

beat, 2) combining basic movements to create its own sequences and 3) learning from the 

preferences of human partners. These will be explored respectively in Chapters 4, 5 and 

6.  

The implementation and experiment of the robot’s stages of development were 

conducted using a virtual environment. The robotic test bed was the Sony AIBO dog and 

its dancing was demonstrated using a simulation package known as Webots (Cyberbotics, 

2011). The Sarsa algorithm and Softmax method were implemented for learning and 

action-selection respectively. The output of the system was the complete dance sequence 

generated. This was read directly by the robot and the actions were performed on each 

beat detected by the beat detection algorithm. The beat was extracted in real time, using 

the BPM Detection Library (adionSoft, 2007) which was integrated into the Webots 

environment for real time processing. All integrations and processing (i.e. the learning 

algorithm; the action-selection algorithm; the Webots environment and the beat detection 
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algorithm) were programmed in C++. The following sections will go into more detail of 

these components of the dancing framework. 

 

3.2. The Robotic Test Bed 

3.2.1. Sony AIBO Robotic Dog 

The Sony AIBO dog is a small robotic dog in appearance (Figure 3.2), developed by 

Sony, whose name is an abbreviation of Artificial Intelligence Robot (AIBO). Different 

models have been developed. The model used in this research was the ERS-7 model. The 

robot had previously been successfully programmed by Sony to demonstrate realistic dog 

behaviours as well as emotions using gestured movements and coloured lights. It has the 

ability to recognise faces and voices using built-in pattern matching and detection 

algorithms and currently posses predefined dance routines that are performed to 

predefined music.  

 

The Sony AIBO dogs (ERS-Model), are equipped with a 576 MHz on board 

processor with 64 MB RAM. The operating system is Aperios, developed by Sony, built 

 
Figure 3.2 – Sony AIBO Real Robot Dog (ERS-7 model) 
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on the Open-R architecture (Operating System, 2009) and it has a total of 20 degrees of 

freedom (DOF). These consist of head: 6 DOFs (neck: 3, ears: 2, and mouth: 1), legs: 12 

DOFs (3 for each leg), and tail: 2 DOFs. All joints are used in this research except those 

pertaining to the ears, mouth and the tail as they were not considered to be significant 

joints necessary for dance. 

The AIBO dogs are a popular choice for robotic research because they are 

relatively  inexpensive; have many degrees of freedom and already possess a variety of 

useful capabilities such as distance and touch sensors, a camera (for image recognition), 

and microphones for audio input. The Sony AIBO dogs are sufficient enough to 

demonstrate the stages of dance development explored in this thesis. 

 

3.2.2. Webots 

In order to simulate the robots dancing, the Webots software simulator developed by 

Cyberbotics (Cyberbotics, 2011) was used. Webots is a development software 

environment that comes with many industrial robots including the Sony AIBO dog 

(Figure 3.3) and the robots can be programmed using popular languages such as C++, 

Matlab and Java. 
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The Webots simulation package was used to demonstrate the robot’s dancing to 

human partners as well as receive human preferences. The learning algorithm and the 

action-selection algorithm were not integrated with the Webots simulator, but instead 

were processed separately after the robot had finished dancing. In other words, the 

learning and action-selection did not take place while the robot was dancing. Each dance 

that human partners observed was pre-generated prior to their feedback. This was because 

processing the learning and action-selection of human feedback while the robot was 

dancing was a computational expense and resulted in huge delays in synchronising the 

robot’s movements to the music, which in turn affected the appearance of the robot’s 

dance and mixed up the rewards given (i.e. the wrong rewards were given to the wrong 

behaviours). This also conflicted with the music, causing it to stop and repeat itself at 

different times. For this reason, the learning algorithm and action-selection algorithm 

were performed separately from the Webots environment and a file was generated of an 

entire dance that was directly read by the robot. This not only increased the learning 

speed, but also ensured that the robot’s dance could be observed and human trainer 

preferences could be recorded, without adding more work to the CPU. 

 

 
Figure 3.3 – Image of Sony AIBO Dog used (ERS-7 model) in Webots 
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3.3. Synchronising To The Music 

In order to detect the beat of the music in real time, the BPM Detection Library 

(adionSoft, 2007) was used and integrated with the developed system. This enabled the 

robot to move its joints at the same time to the beats of the music as detected by the 

algorithm. The BPM Detection Library is an open-source real time rhythm detection 

program, which can be used to detect the rhythm (beat, tempo and time signature) of 

music either as real time input from a microphone or decompressed music files on a 

computer stored in various formats, for example, .mp3 or .wav files. The program is 

particularly suited for music genres which have steady beats, which is typical of Western 

music. To perform real time dancing to the music, the robot executed each dance step 

from the generated dance sequence on each detected beat. When no beats were detected 

(e.g. the music stopped playing) then the robot would stop dancing at that point. 

 

3.4. Learning Algorithm 

The learning approach taken in this thesis is from reinforcement learning. Reinforcement 

learning is an adaptive computational approach in the field of machine learning which 

works by applying the same principles of reinforcement in psychology, which are used by 

animals and humans to learn. The basis of reinforcement learning is a direct feedback 

system, whereby the learner is either rewarded or punished based on the actions that are 

performed. Positive reinforcements encourage behaviour to be reproduced, while 

negative reinforcements discourage behaviour from being repeated (Dayan, 2005).  

Research in machine learning use Supervised Learning and Unsupervised 

Learning. Supervised Learning is learning from examples provided by the environment 
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(Sutton and Barto, 1998). The learning approach is example-specific, only learning what 

it has been instructed to learn in specific environments. The learning agent is specifically 

told what to do for every example in the training set, and then it simply replicates the 

correct answers as defined by the trainer. Unsupervised Learning, on the other hand, 

makes use of unlabelled data. The learning approach is required to categorise and cluster 

the data as a way of labelling the data. Reinforcement Learning lies somewhere between 

Supervised Learning and Unsupervised Learning, which works with some level of 

supervision from the trainer, but the level of supervision is less than in Supervised 

Learning. That is, the agent is only instructed of the correct behaviours once it has 

performed actions. 

Reinforcement learning has the advantage of applying what it has learnt in related 

environments, as well as the ability to modify what it has learnt, which is what makes it 

suitable for adaptive behaviour. A reinforcement learning agent learns through trial-and-

error from its own experience. The learning framework works by making the agent adapt 

through directly interacting with its environment in order for it to learn efficiently (Sutton 

and Barto, 1998). 

 

3.4.1. How Reinforcement Learning Works 

Reinforcement learning works by “defining the interaction of an agent and its 

environment in terms of states, actions, and rewards” (Sutton and Barto, 1998). It 

provides a mapping of perceived states to actions known as policy. A policy can be 

defined as “what actions to take in what states” (Sutton and Barto, 1998). The agent 

keeps a record of the actions performed in each state and associates the link with a value 
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function, used for action selection in future states. The value function for actions 

performed in different states (or state-action pairs) is determined by the rewards the agent 

receives in doing actions in states. The value function estimates the value of taking an 

action in a state. It is the expected return (total rewards received over time) of doing 

actions in different situations (states) in the future. It is therefore the aim of the learning 

agent to maximise some measure of its future performance (Sutton and Barto, 1998). 

Actions with greater returns increase the value of state-action pairs, which in turn, 

encourage the performance of more desirable behaviours. 

For reinforcement learning a balance must be made by an agent between choosing 

more desirable actions and choosing unexplored actions, just in case there are “better” or 

other desirable actions that have not been discovered yet. The agent’s interaction with the 

environment is the sequential process of selecting actions modelled as a Markov Decision 

Process (MDP). This works by dividing the learning problem into four elements – a set of 

states; a set of actions; state transition probabilities and a set of rewards that are 

associated to an action performed in a state. 

Reinforcement learning can take place in two modes – offline learning whereby 

the agent learns by interacting with a simulation (model) of the environment, and online 

learning where the interaction is with the real environment. In both approaches, learning 

is achieved, but their actual use is problem dependent, for example, learning problems 

that are too big, complex or dangerous to model in a real environment may be best suited 

for offline learning as opposed to online learning. The problem of making dancing robots 

learn to dance is a complex problem and although it is possible for them to learn through 

online learning, due to the computational costs on the real robot (e.g. the amount of work 
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that the motors have to undergo or the dangerous positions that joints can be in), it is 

better for them to learn through offline learning e.g. using a virtual robot that responds to 

music being played and human feedback in real time. 

Typically, the standard application of reinforcement learning is for the learning 

agent (e.g. a robot) to explore different states and perform behaviours that put it in 

another (or the same) state. Often, a weighted positive or negative reinforcement (reward/ 

punishment) is recorded for the state the learning agent ends up in or the actions it takes. 

This cycle continues until the agent has reached the desired goal. The value function is 

applied to each state (or state-action pair) for effective action selection and then the cycle 

is repeated. That is, the value function tells the algorithm what state to go to or action to 

perform in the next time step that would put the robot in a better situation (i.e. maximise 

the total expected rewards). After a sufficient number of trials have been run, each state 

(or state-action pair) in the MDP will have a probability that will drive the agent towards 

better and better solutions. Once an acceptable performance level is found, the learning 

algorithm will still continue to run as before but without updating any of the probabilities 

(Gosavi, 2003).  

 

3.4.2. Comparison Between Q-Learning and Sarsa 

As a solution to learning in dancing robots, two of the most popular algorithms, known as 

Q-Learning and Sarsa, from traditional reinforcement learning are considered. Both 

algorithms are similar in their procedure and in the updates of value functions of state-

action pairs. However, the fundamental difference between them is how the decision 

policy (the mapping of actions to states) is applied. 
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As described above, a policy is a rule that determines the choice at each situation. 

In Q-Learning, a particular policy is chosen (exploited) and applied throughout the 

learning process. In Sarsa, the policy is evaluated and updated after each action selection. 

Both algorithms have two learning coefficients referred to as the learning rate (α) and 

discount factor (γ). The learning rate is used to determine if new information should be 

considered (when 0 < α ≤ 1) or not (when α = 0). The discount factor weights the value of 

future rewards after taking an action in the next state. For example, if γ = 0, then future 

state-action pairs are not considered, whilst 0 < γ < 1 would mean that future state-action 

pairs are considered. This is particularly important during the robots transition from one 

state-action pair to another as it determines to what degree the next state-action pair 

influences the robot’s learning. 

Although both Q-Learning and Sarsa have been successfully applied to learning 

problems, Q-Learning has been widely used in the field of robotics “due to its algorithmic 

simplicity” (Martinson et al., 2002) and the speed at which it finds the optimum policy 

(Poliscuk 2002). Sarsa on the other hand is more consistent in choosing policies in the 

learning process than that of Q-Learning, which suggests that it is more suited in areas 

where consistency and dynamic learning are more important than the speed of learning 

(Poliscuk, 2002 and Srinivasan, 2005). 

Sarsa has also been found to outperform Q-Learning in environments that require 

learning without previous exploration. For example, in what is called the cliff-walking 

task (Sutton and Barto, 1998), Q-Learning and Sarsa were compared to determine their 

difference in learning. The task was for each algorithm to reach the goal state, without 

entering detrimental states. The end result was that, although Q-Learning found the 
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optimum (shortest) path to the goal state from the initial state, it was more likely to walk 

the learning agent “off the cliff” (i.e. enter the detrimental states) than Sarsa. The Sarsa 

algorithm reached the goal state by learning the longer but safer path. This is because it is 

possible for Q-Learning to exploit sub-optimal actions during the learning process, 

whereas Sarsa, would evaluate each choice as it is made before taking the next action, 

making it less likely to walk off the cliff. This suggests that Sarsa is better in situations 

where there is no prior knowledge (Poliscuk, 2002). This makes Sarsa a better choice for 

environments that cannot be adequately pre-modelled and simulated. Furthermore, it is 

suggested that real-world biological systems (i.e. humans and animals) are more likely to 

learn in a way that is similar to Sarsa rather than Q-Learning (Morris et al., 2006). 

Learning to dance can be Q-Learning-like or Sarsa-like. For example, in break 

dancing competitions dancers often perform the same signature moves throughout their 

dancing to win points, or a belly dancer may continue to drop her hips up and down to 

please the crowd. These actions are exploited behaviours and so would follow a Q-

Learning-like approach. On the other hand a social dancer at a celebration may simply 

copy the dance moves from other dancers and observe the feedback from the audience. 

This is more like a Sarsa approach to dance. The difference in these two types of dancing 

is that in the former the dancer already has knowledge of the “better” dance move (and 

the response), whereas in the latter, the dancer may not have any prior knowledge of the 

“correct” dance steps and, therefore, be ready to adapt its dance behaviours according to 

the feedback. Therefore, a Sarsa implementation would be a logical choice for a dancing 

robot in terms of learning and adaptation. 
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A Q-Learning approach to robot dancing would suggest that there are “optimal” 

(“best”) dance steps in which dancing robots must select during their dance, and as a 

result, is more likely to make them learn the wrong dance steps, because it would be 

possible for the algorithm to consider sub-optimal dance actions as the optimal dance 

behaviours. A Sarsa approach would ensure that dancing robots evaluate the feedback 

they receive from their dance steps and so, therefore, slowly, but carefully learn the 

appropriate dance steps. Algorithm 3.1 shows the traditional Sarsa algorithm. 

 

 
 

 

Algorithm 3.1: Traditional Sarsa Algorithm (Sutton and Barto, 1998) 

 

1. Initialise parameters 

2. Repeat (for each episode) 

3.  Initialise the starting state (
ts ) 

4.  Choose action (
ta ) from state (

ts ) using derived policy from Q 

5.  Repeat (for each episode) 

6.   Perform action (
ta ), receive reward ( r ) 

7.   Agent is in next state (
1ts ) 

8.   Choose action (
1ta ) from 

1ts  using policy from Q 

9.   Update value function, current state and action 
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10.  Until terminal state is reached 
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In this algorithm, the parameters (line 1) would be the value function (otherwise 

known as the Q-factor,  asQ , ); the set of states ( Ss ); the set of actions ( Aa ); the 

reward function ( r ) for transiting from one state to another.   is the learning rate; and   

is the discount factor and t is the time step moment for being in a state ( s ) or performing 

an action ( a ). An episode (line 2) is a sequence of actions in the set A  that leads the 

agent from an initial state to the goal state. 

The algorithm iteratively explores a possible action in a state until a terminal state 

(i.e. the goal state) is reached. An action ( a ) is selected using an action-selection method, 

of which the most common implementation is to use an approach that always embody 

exploitation (e.g. an greedy  approach). That is, the idea of choosing an action 

believed to be the “best” most of the time, and on occasion, choosing an action at random 

as part of the exploration. 

The actual processing of the reward signal is carried out in line 9 where the value 

function (  tt asQ , ) for the current state (
ts ) and action (

ta ) undergoes the update by 

taking into consideration the value function (  11 ,  tt asQ ) of the next action (
1ta ) 

performed in the next state (
1ts ). The reinforcement learning agent therefore learns 

which actions it should do in different states that maximise the expected cumulated 

rewards. 

The crucial difference between the traditional Sarsa algorithm and the traditional 

Q-Learning algorithm is in the update of the value function (line 9). The update equations 

for traditional Sarsa (equation 3.1) and traditional Q-Learning (equation 3.2) are shown 

below. 
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 The difference is that traditional Sarsa selects an action based on the next 

observed policy, whereas traditional Q-Learning selects the action based on the next 

optimum policy. In computational terms traditional Q-Learning learns by computing the 

difference between the current Q-factor and the maximum Q-factor observed, whereas 

traditional Sarsa learns by computing the difference between the current Q-factor and the 

next observed Q-factor. Traditional Sarsa actually uses the value of the next action to 

guide its learning whereas, Q-Learning uses the maximum value observed. 

 

3.4.3. Action-Selection Method 

During learning, an important concept is choosing between actions that have previously 

been explored and those which have been unexplored. One of the main challenges of 

reinforcement learning is balancing the exploration and exploitation of actions. The aim 

is to determine when best to make use of existing knowledge and when to search for 

other options, which is known as exploitation and exploration respectively. greedy  is 

a popular action-selection method (Sutton and Barto, 1998). However, the problem with 

greedy  is that during exploration, each action is equally considered as the next and it 

does not distinguish between sub-optimal actions and the worse actions. A logical 

solution to this is to have a weighted value for each action and this is implemented in the 

Softmax action-selection algorithm (Sutton and Barto, 1998). 

        tttttttt asQasQrasQasQ ,,,, 11      (3.1) 

        ttttttt asQasQrasQasQ ,,max,, 1     (3.2) 
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Softmax works by increasing the probability of selecting an action in a state, if the 

expected reward for the action is perceived to be higher (Dandurand et al., 2007). An 

example of the Softmax calculation is shown in equation 3.3. In other words, each state-

action pair has a weighted probability associated with it and the algorithm works by 

selecting higher weighted state-action pairs more often, similar to how humans may make 

decisions (Dandurand et al., 2007). 

Softmax is based on a set of assumptions, which are represented by different 

parameter values. Their use simplifies the action-selection process by having parameter 

values that help a learning agent to make the correct choice. The primary parameter is 

known as the temperature (Sikora, 2005). The temperature is a value greater than 0 and is 

essentially a weight that is added to the actions of each state-action pair.  

Softmax can be used to exploit and explore actions gradually by using the Gibbs 

or Boltzmann distribution (Gray, 2007). The idea behind the temperature parameter is 

that at higher temperatures (Sikora, 2005) the learning agent explores more actions and as 

the temperature decreases exploration decreases also. Therefore, the temperature 

parameter effectively controls the trade off between exploitation and exploration. Fu & 

Anderson (in Gray, 2007, p. 168) have shown that Softmax is closer to the way humans 

and animals make decisions compared to a method like greedy . Therefore Softmax 

would provide a more realistic approach for dancing robots to select dance steps. 
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In equation 3.3 ),Pr( as  is the probability of selecting an action (a ) in state ( s ). 

),( asQ  is the value function (otherwise known as the Q-value or Q-function) of an action 

( a ) in state ( s ) and n  is the number of actions available in a state ( s ).  is the 

temperature parameter described above. 

 The temperature ( ) parameter is set by assigning to it a value or a series of 

different values. For example, Dandurand et al. (2007) used values from 1-10, where 1 

represented hardmax ( greedy ) and all other numbers represented different Softmax 

values. This was to determine a suitable Softmax value for balancing exploitation and 

exploration. Sikora (2005) used values of 5, 50, 500 and a meta learning mechanism to 

dynamically select a value that appeared to be the best for action-selection. Both 

researchers concluded that if a fixed temperature value was required (for stationary 

environments), then a value of five was the best to achieve weighted probabilities 

between actions. This also coincides with findings from psychological research and 

appears to be the same value for “estimates of [the] human working memory size” 

(Dandurand et al., 2007). 

 

3.5. Summary 

The underlining structure of the dancing model consisted of the integration of a real time 

beat detection algorithm, as well as a robotic system to demonstrate the dance. C++ is a 

supporting language of Webots and the beat detection algorithm is written in C++. This 

means that the entire system can be developed using C++. The Sony AIBO robotic dog 

can be used as a test bed for this research project and the Webots simulator can be used to 
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demonstrate the robots dancing and receive human feedback. The Adion beat detection 

program can be integrated into the system so that the robot would synchronise its 

movements to the musical beat in real time.  

Using knowledge of reinforcement learning, a dancing framework can be 

developed for dancing robots to learn to dance. Reinforcement learning works by trial-

and-error, enabling behavioural adaptation in response to changes in the environment and 

reward signals. Adaptation is an important part of dance, and dancers typically explore 

different dance actions in order to improve their performance. Therefore, reinforcement 

learning is a suitable approach to model dance in robots. 

Two main algorithms from reinforcement learning, Q-Learning and Sarsa, were 

considered in this chapter. Q-Learning is widely used by researchers. However, in 

relation to learning to dance, it is less appropriate than Sarsa as the Sarsa algorithm has 

shown to be closer to the way in which humans learn. 

For action-selection, the Softmax algorithm is considered better than greedy  

because greedy  is equally likely to pick the “worst” or the “best” action but Softmax 

distinguishes the suitability of actions by weighting them.  
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Chapter 4 
Learning To Dance To The Beat 

This chapter explains a simple approach to make the robot learn to perform actions on the 

beat in real time through the application of the Sarsa algorithm and the Softmax 

algorithm from traditional reinforcement learning. Initial experiments were first 

conducted in order to determine which parameter values can be used to assist the robot in 

learning. 

 

4.1. Methodology 

In this first stage, the research began with the direct implementation of the Sarsa 

algorithm for learning and the Softmax algorithm for action-selection in order to 

determine suitable parameter values that can be used to help the robot learn to follow the 

beat of a musical signal in real time. With the suitable parameters obtained, the robot was 

then to learn to bop its head to the beat, followed by learning to perform predefined dance 

motions on the strong and weak beats of the music signal. 

After each action-selection, the robot received scalar rewards which were defined 

internally to the system. The states were where the robot was in relation to the music (e.g. 

on-the-beat or off-the-beat), and the robot’s actions were the decisions that the robot 

could make e.g. what movement to make depending on the strength of the music signal. 

These are described in more detail below. 

Algorithm 4.1 shows the complete algorithm used in these experiments. 
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Algorithm 4.1: Sarsa Algorithm for Learning To Follow The Beat 
_______________________________________________________________________ 

1. Initialise parameters 

Sarsa parameters:  asQ , , r , α,   
 Softmax parameters:   
2. Play music 
3. Repeat (while music is playing) 

4.  Randomly choose beat state ( ts ) 

5.  Select an action ( ta ) to do 

6.  Check state-action pair ( tt as , ) in action database 

7.  If in action database Then 
8.   Select ( as, ) according to Softmax ( ),Pr( as ) 
9.   Perform action ( a ) in chosen state ( s ) 
10.  Else 

11.   Perform action ( ta ) 

12.   Write ( tt as , ) in action database 

13.  Update value-function for state-action ( tt as , ) pair  
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14.  For all state-action pairs ( as, ) Update Softmax 
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In the above algorithm, the robot learns to perform dance actions on the beat by 

randomly selecting dance behaviours and being rewarded (or punished) accordingly. 

Q(st,at) is the value of the current decision (at) whilst in the current state (st); α is the 

learning rate;   is the discount factor. Both the learning rate and the discount factor are 

of values between the range [0,1].   is the temperature parameter that controls how far 

apart are the probability values of state-action pairs; rt is the immediate reward given for 

the current decision (at) performed in the current state (st) and Q(st+1,at+1) is the value of 

the next decision (at+1) performed in the next state (st+1) the robot will be in. 
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4.2. Experimental Procedure 

Learning to dance to the rhythm was divided into three experiments. The first experiment 

was an initial exploration of the traditional Sarsa algorithm to determine what parameter 

values to use. The second was for the robot to learn to perform a single head motion in 

real time with the music to on-the-beat rhythms (i.e. on each time-signature). The third 

was for the robot to learn to perform correct dance motions to the correct strength of the 

music signal in real time. The following sections go into these in more detail. 

 

4.2.1. Experiment 1 (Learning Parameters) 

In this experiment, the Sarsa algorithm was explored offline (without the music and 

robot) with the input of different parameter values for the learning rate (α) and the 

discount factor (γ) to determine the suitable parameters that can be used for all the 

experiments that will be conducted in this research. Only one state was defined in the 

system containing four actions (named Dance Action 1, Dance Action 2, Dance Action 3 

and Dance Action 4) of which a reward of +1 was associated to one action (Dance 

Motion 1) and the remaining actions given a reward of 0. 

 

4.2.2. Experiment 2 (Bop To The Beat) 

In this experiment, the robot was programmed to learn to bop its head (move its head up 

and down) as a single dance motion in real time to the beat of the musical signal using the 

Sarsa algorithm. The music file used was “Any Dream Will Do” by Jason Donovan. This 

was used because of the simple beat structure. The robot could move its head anytime 

while the music was being played. The states of the system were defined as on-the-beat 
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and off-the-beat which meant “bopping the head on the beat” and “bopping the head off 

the beat” respectively. These two states were the choices for the robot when deciding to 

perform the head motion. 

The robot could perform the head movement on any state while the music was 

being played. The states were specifically defined to help with the learning. Although, the 

robot could have been programmed to move its head anywhere while the music was 

being played, the actual detection of distinctive states would have proved much harder as 

the chances of actually performing the head movement on a beat were very slim. The 

consistent performance of the head movement to off-the-beat rhythms with little attempts 

(or no attempts) performed on on-the-beat rhythms would cause the robot to learn the 

wrong behaviour due to the accumulation of the wrong rewards or the lack of exploration 

of on-the-beat rhythms. For this reason, the robot was programmed to perceive the music 

as two states defined as on-the-beat and off-the-beat and were given threshold ranges to 

categorise them. 

 

Figure 4.1 illustrates the states of the music in which the robot can perform the 

movement. Here, once the beat detection algorithm had made a prediction (ηt) as to when 

 

 
Figure 4.1 – Description of on-the-beat and off-the-beat rhythms where t is the time for each 
beat occurrence and ηt is the predicted number of seconds between each beat. The shaded 
region is on-the-beat state and outside of this range is off-the-beat state. 
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the next beat (Beat(t+1)) would occur, on-the-beat states were defined to be in the range 

+/-0.1 seconds of the predicted time (ηt). This was so that the robot could perceptually be 

seen to be in sync with the music if, for example, the beat actually occurred earlier or 

later than the predicted time. This range is indicated by the shaded area in the diagram 

above (Figure 4.1). If the head movement occurred outside the on-the-beat state, then the 

robot was recorded as being in state off-the-beat. Furthermore, the robot was 

programmed to move its head in one state at a time. For example, if the first state 

selection was on-the-beat, then the robot would perform the head movement once on the 

next on-the-beat rhythm. If after this, the next state selection was for off-the-beat, then 

the robot would perform the head movement once, immediately after or wait for the next 

off-beat state. In other words, the robot would select what state to perform the head 

movement and if the robot found itself in the selected state then it would perform the 

head movement, otherwise it would record the state it found itself in and perform the 

action the next time the desired state came up. The learning rate was made high (α = 0.8) 

and the discount factor was made low (γ = 0.2) based on the initial results obtained from 

Experiment 1. 

 

4.2.3. Experiment 3 (Dance To The Strongest Beat) 

In the third experiment, the emphasis was to explore dance using more dance motions. 

The robot was to learn to perform a dance motion to the strongest beat of the musical 

signal detected and all other dance motions on the weaker beats, whilst the music is 

playing. The strongest beat was used as an indication of the downbeat in music literature, 

which is defined as the first count of a music signal’s time-signature (i.e. the “1” in the 
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count of “1-2-3-4” of a 4/4 time-signature or in a “1-2-3” of a 3/4 time-structure). In 

dance choreography and music conducting for example, it is usually used to indicate 

when a particular dance movement or instrument in the orchestra should come in to the 

music. In this experiment, only one dance motion was required to be performed on the 

strongest beat and all other dance motions performed on weaker beats. 

Using the Adion beat detection algorithm (adionSoft, 2007), the strongest beat 

was determined by determining the strength of beats of the musical signals by isolating 

the energies (intensity/frequency signals) of each beat detected. This was determined by 

setting a threshold. If the energy of the next detected beat was greater than the threshold 

then it was a strong beat, otherwise a weak beat. The threshold was calculated to be a 

continuous working average of all the previous beat intensities detected. 

This approach was based on the assumption that if the human ear detects beats 

based on the different loud sounds of the musical signal, at varying periodic intervals, and 

the beats can be classified as either strong or weak, then the loudest sound of a strong 

beat is a good indication of the beginning of a time signature, i.e. the downbeat. There are 

other algorithms for detecting the beat and determining the downbeat of the music, 

however, the approach proposed here worked really well for this experiment. The same 

music signal as in Experiment 2 was used to test the strong beat, and the robot was 

programmed to receive immediate rewards using the Sarsa algorithm. 

The robot was rewarded after each dance motion performed. Five predefined 

dance motions were used. The predefined dance motions are described in Figure 4.2, 

where A was defined to be the initial home position of the joints, and B was the position 

moved to by the joints in question. 
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Figure 4.2 – Positions of the different dance motions for Experiment 3 

Dance Motion 1 = {head; 10 degrees upwards} 

  
(Position A)  (Position B) 

Dance Motion 2 = {leg1 and leg2; 45 degrees sideways} 

  
(Position A) (Position B)

0 degrees 

10 degrees 

Dance Motion 3 = {leg1; 90 degrees upwards} 

  
(Position A) (Position B)

Dance Motion 4 = {leg2; 90 degrees upwards} 

  
(Position A)   (Position B) 

Dance Motion 5 = {leg1 and leg2; 90 degrees upwards} 

  
(Position A)   (Position B) 

leg1 

leg2 

leg1 

leg2 
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The transition from position A to position B, and from position B back to A, 

formed two single movements (gestures) into one motion. This meant that the robot’s 

joints always started and ended in the same state (i.e. position A); ready to undertake the 

next action.  

The robot’s rhythmic ability was to perform actions only to on-the-beat rhythms. 

For this, it was not necessary to define a beat range as was done for Experiment1. Instead, 

when the beat was detected, the robot would automatically perform the action chosen. 

 The five dance motions were internally defined in the robot’s system prior to 

learning. The robot selected actions using the Softmax algorithm and learnt to perform 

the actions on the beats.  

Dance Motion 2 was pre-programmed to be the designated dance motion that the 

robot was to learn to perform on the downbeat (strongest beat), and all the other four 

dance motions could be performed on any of the other weaker beats. Table 4.1 summaries 

this expectation. 

 

Action Name State 

Dance Motion 1 Weaker Beat 

Dance Motion 2 Strongest Beat 

Dance Motion 3 Weaker Beat 

Dance Motion 4 Weaker Beat 

Dance Motion 5 Weaker Beat 

Table 4.1 – Summary of what state to perform actions 
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A scalar reward of +1 was always given to the desired dance motions performed 

at the right place. Credit (reward) was distributed according to the previous state-actions 

pairs that the robot performed prior to receiving the reward. The learning rate was made 

high (α = 0.8) and the discount rate was made low (γ = 0.2) based on the initial results 

obtained from Experiment 1. 

 

4.3. Results & Observations 

4.3.1. Experiment 1: Results & Analysis 

The idea of Experiment 1 was to explore which parameters can be used for the learning 

rate (α) and the discount factor (γ) in the Sarsa algorithm for the robot to learn the 

appropriate behaviours while following the music. The temperature (τ) value of the 

Softmax action-selection method was kept constant at a value of five. The algorithm was 

defined with one state and four possible dance motions that could be performed in that 

state. A fixed reward value of +1 was given to Dance Motion 1 and all other dance 

motions (Dance Motions 2, 3 and 4) were given a reward value of 0. The experiment was 

run over five trials with 20,000 time steps for each trial. The results can be seen in the 

figures below. 

 

(1) Results of Exploring the Learning Rate 

To begin with, the learning rate was explored with increasing values from zero to one, 

whilst the discount factor was kept at a fixed low (γ = 0.2) the first time, and at a fixed 

high (γ = 0.8) the second time. A record of the average total occurrence of dance motions 

over five trials of running the algorithm was kept, with each trial terminating after 20,000 
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time steps. Figures 4.3 and 4.4 show the results with a low discount factor and Figures 

4.5 and 4.6 show the results with a high discount factor. 

 

 

From Figure 4.3, we see that higher values of the learning rate produced the 

desired motion (Dance Motion 1) to be selected more often, when the discount factor 

remained fixed at a value of 0.2. This is supported by Figure 4.4 shown below. 
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Figure 4.3 – Average occurrence of dance motions with the discount factor made low (γ = 0.2) 
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 From Figure 4.4, we see that when the learning rate (alpha) was zero, there was 

no learning in the algorithm and the performance of the algorithm improved with time for 

increasing values of the learning rate. 
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Figure 4.5 – Average occurrence of dance motions with the discount factor made high (γ = 0.8) 
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Figure 4.4 – Learning performance of dance motions with the discount factor made low (γ = 0.2) 
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Figure 4.5 shows the result with a high value of the discount factor (γ = 0.8). 

From Figure 4.5, we see that the increasing values of the learning rate produced the 

desired motion (Dance Motion 1) to be selected more often for all values of the learning 

rate up until a value of approximately 0.7, but performed rather unpredictably after that. 

Generally, the performance appeared to be worse in comparison to the low value of the 

discount factor explored, with the total occurrence of dance motions being selected more 

closely together at γ = 0.8 than at γ = 0.2. This is supported by the results shown in Figure 

4.6 below. 

 

 Figure 4.6 shows that the increase in the learning rate (alpha) did not encourage 

the algorithm to perform the desired behaviour (Dance Motion 1) with increasing time, 

when the discount factor was at a value of 0.8. In fact, for some values of the learning 

rate, the performance worsened.  There appears to be no learning taking place. Based on 

these details, it can be concluded that higher values of the learning rate would perform 

better with a low discount factor of 0.2 than with a high discount factor of 0.8. 
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Figure 4.6 – Learning performance of dance motions with the discount factor made high (γ = 0.8). 
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 (2) Results of Exploring the Discount Factor 

The discount factor was explored in the same way as the learning rate was explored, by 

testing out increasing values of the discount factor against a low learning rate (α = 0.2) 

and a high learning rate (α = 0.8). As was carried out above, a record of the average total 

occurrence of dance motions over five trials of running the algorithm was kept, with each 

trial terminating after 20,000 time steps. Figures 4.7 and 4.8 show the results with a low 

learning rate and Figures 4.9 and 4.10 show the results with a high learning rate. 

 

Figure 4.7 shows that an increase in the discount factor, while the learning rate 

remained low (α = 0.2), actually made the total occurrence of the dance motions closer 

together, decreasing the learning performance of the algorithm. This too can be supported 

from the results shown in Figure 4.8 below. 
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Figure 4.7 – Average occurrence of dance motions with the learning rate made low (α = 0.2) 
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Looking at Figure 4.8, performance seemed to improve with smaller values of the 

discount factor at a low learning rate of α = 0.2. 
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Figure 4.9 – Average occurrence of dance motions with the learning rate made high (α = 0.8). 
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Figure 4.8 – Learning performance of dance motions with the learning rate made low (α = 0.2). 
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On the other hand, from Figure 4.9, as the discount factor approached a value of 

one, the occurrence of the desired dance motion (Dance Motion 1) decreased if the 

learning rate remained fixed at a high value of 0.8. Figure 4.10 below supports this 

conclusion, showing that the algorithm performs more optimally over time with 

decreasing values of the discount factor, and  a high value of the learning rate (α = 0.8). 

 

In conclusion, the algorithm showed good results when the discount factor was 

low and poor results when set high. Table 4.2 below summarises these results obtained 

and shows a ranking of the experiment based on performance, where the best 

performance is ranked first place, then the next best performance is ranked second place, 

and so on, down to fourth place. 
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Figure 4.10 – Learning performance of dance motions with the learning rate made high (α = 0.8). 
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Learning Rate (α) Discount Factor (γ) Result Performance 
Ranking 

Low Low Good 2 

Low High Bad 3 

High Low Good 1 

High High Bad 4 

Table 4.2 – Summary results of Experiment 1 
 

These results were obtained with one state defined and a possibility of choosing 

an action from four actions. Setting the learning rate high (α = 0.8) and the discount 

factor low (γ = 0.2) seemed to produce a better learning performance compared to the 

other combinations explored. Therefore, these parameter values will be used for all 

experiments in this research. 

 

4.3.2. Experiment 2: Results & Analysis 

For Experiment 2 (bopping to the beat), the performance of the robot on each attempt to 

move its head on the beat and the percentage average of selecting the desired behaviour 

(on-the-beat) over five trials was recorded. Each trial constituted to a complete run of the 

robot bopping its head to the music and consisted of on average 600 time steps of action 

selection. Figure 4.11 below shows the result. 
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 Looking at Figure 4.11, we see that the robot gradually increased the number of 

times it selected the optimal action to perform the head movement as the music was 

playing. Although 100% optimality was not reached, we can see that this would have 

been achieved given that the music had continued playing. 

 

4.3.3. Experiment 3: Results & Analysis 

For Experiment 3, recall that the idea was for the robot to learn to perform Dance Motion 

2 on the strongest beat intensity (otherwise known as downbeat in this research) detected 

and all other dance motions (Dance Motions 1, 3, 4 and 5) to be selected on any of the 

weaker beats. 

Figure 4.12 below shows the results of Experiment 3. The graph shows the results 

of the average rewards received out of the first 600 time steps in five trials (runs) of the 

robot’s dance to the music in real time.  

Figure 4.11 – Experiment 2 results of learning to select the head movement in real time on 
the beat using Sarsa 
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The reward that the algorithm could receive after performing dance motions in the 

correct states, was one. All other dance motions performed in the wrong states of the 

system received a reward of zero. Figure 4.12 shows the robot’s explorative behaviour in 

the initial stages leading to a gradual progression in performance as the music continued 

playing. Here, the graph shows that it would gradually converge to one, given that the 

music had continued playing and the robot was allowed to continue selecting actions. 

 

Figure 4.12 – Experiment 3 results of learning to perform actions on the correct music 
states using Sarsa. 
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Figure 4.13 – Experiment 3 results of learning to perform actions on the correct 
states using Sarsa 
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Figure 4.13 specifically shows the average occurrence of the five dance motions on the 

detected downbeat and the weaker beats of the music signal. As can be seen from Figure 

4.13, on average, dance motions were selected on the correct states. 

 

4.4. Summary 

Three simple experiments were carried out to show the working behaviour of 

reinforcement learning applied to robot dancing.  Their main purposes were to explore 

the fundamentals that are necessary for learning in the dancing framework. These 

included obtaining the values for learning coefficients, following the beat correctly and 

learning to do dance steps on the correct beat intensities. The results demonstrate that 

both the Sarsa algorithm and the Softmax algorithm can be used for the learning 

framework and action selection respectively. 

Whilst this implementation of the reinforcement learning algorithms can be used 

to learn desirable behaviours, it does not provide a complete dancing model by itself. 

There is more to dancing than demonstrating rhythmic behaviour by using predefined 

movements.  Dancing requires the formation and coordination of dance steps and 

combinations and not just the use of the same actions all the time. Although a simple 

solution was explored in Experiment 3, i.e. by selecting different actions to perform on all 

beats except the downbeat, the robot was still limited to predefined movements. 

Furthermore, these experiments did not consider feedback from human observers. The 

next chapter explores the fundamentals necessary for creative and structured dance steps 

in robots, followed by learning from human feedback in Chapter 6.  
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Chapter 5 
Generating Dance 

 

The previous chapter shows how it is possible to implement traditional reinforcement 

learning to enable the robot learn to perform predefined actions to the beat of the music in 

real time. While the use of reinforcement learning in the previous chapter gave the robot 

the ability to learn the appropriate dance behaviours, it did not teach the robot how to 

generate its own actions and be creative with them.  This chapter describes how a robot 

can generate its own dance actions (using internally defined positive and negative 

reinforcements), which can be grouped together to generate more aesthetically pleasing 

dances, whilst dancing to music. 

 

5.1. Methodology 

5.1.1. Generating Dance Actions 

In the previous chapter, the robots initial training was to learn to perform dance actions to 

on-the-beat rhythms, using the underlying structure of the Sarsa algorithm. Rewards were 

fixed and pre-assigned throughout the learning process.  The approach taken in this stage 

of the research begins with the robot only moving to the beat (i.e. not off-the-beat 

rhythms) and generating dance actions based on the knowledge described earlier of the 

definition of a dance (Chapter 2) and the fundamental movements/ skills (Chapter 2) 

necessary for aesthetic display. The aim in this chapter is for the robot to learn to perform 

meaningful (human-like) dance actions, as opposed to unrelated movements, which can 

be combined to form longer, repetitive sequences in its dancing. To achieve this, the 
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robot is programmed to randomly choose any number of joint combinations to do on any 

beat and is rewarded (or punished) for each selection it makes. 

There are three skills (fundamental movements) necessary for the robot to learn. 

They are known as Opposite, Symmetry and Formation in this research and are defined as 

follows: 

 Opposite skill is the movement of opposite joints that are on opposite sides of the 

robot’s body moved together in unison. For example, the movement of the left 

and right joints or front and behind joints, at the exact same time on a beat. 

 Symmetry skill is the movement of the same opposite joints moved one after the 

other. In dance literature, symmetry refers to the exact mirroring of the body at 

the same time, which is the same definition in this research for Opposite skill 

above. However, in this research, Symmetry is used to mean movements that are 

mirrored, shortly after each other, for example, on the next beat. In dance 

literature, this is known as Canon. 

 Formation skill is defined as a “back and forth” motion of joints, for example left 

and right movements or upwards and downwards on a beat. This is known as 

Form in dance studies. 

These definitions are based on the literature reviewed in Chapter 2 and are 

initially predefined in the system for the robot to learn.  Each accomplished skill is 

weighted with fixed reward values (internal to the system) so that after many selections 

the robot learns to dance with skilled dance motions only. The robot retains a repertoire 

of each newly generated skilled and unskilled dance motion that is created from the 
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random selection of joints and their directions. This is the basic component of a dance 

motion, called a gesture. A gesture is described in this thesis as “the movement of one or 

more joints in one direction (the same or different) on one time step”. A time step is the 

selection of a dance behaviour typically on a beat. Dance motions are formed when two 

sets of gestures are performed on two time steps. These dance motions become “skilled” 

when the gestures that make up the dance motions can be classified as either Opposite, 

Symmetry or Formation as described above. Opposite skill by definition requires only 

one time step. Therefore, with the exception of Opposite dance motions, all dance 

motions (skilled or unskilled) require two time steps. 

The complete history of generated dance motions performed by the robot is stored 

in the action database.  The robot performs random gestures on every beat. For each 

gesture that is selected, the action database is scanned for dance motions that exactly 

match the current and previous gestures selected. If one or more matches of gestures 

(current and previous) are found in the action database, then an action will be selected 

according the Softmax rule.  If no match is found, then the algorithm considers the 

selected movement a “new” movement (i.e. because it is not in the action database) and 

the gestures form a new dance motion, for the robot to perform and is recorded in the 

action database and rewarded accordingly. The decision to choose (explore/ exploit) a 

dance motion on each beat is based on the Softmax algorithm, which provides varying 

probability values for each dance motion. Figure 5.1 below shows a flow diagram of the 

formation of dance motions. This approach is employed so that the robot is guaranteed to 

explore new dance behaviours since, on every beat, it randomly chooses gestures to 
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perform, but would only perform those movements if they were new (i.e. not in the action 

database) or according to Softmax. 

 

 Figure 5.1 shows the complex architecture used to generate initial dance motions 

for the robot. Each component of the architecture is numbered for the purpose of 

explaining the component parts. The robot begins generating motions as soon as a beat is 

detected. Once a beat is detected, this is registered as the first time step (process 1). The 

robot then selects one or more joints to move in random directions for each joint selected 

(process 2). The robot does not perform these gestures but merely temporarily stores 

 
      Figure 5.1– Data flow diagram for developing dance motions 
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them as a movement it would “like” to do. In order to decide properly, whether or not this 

gesture should be performed, the robot must first check its action database to see whether 

or not it has performed this gesture before (process 3). If the selection is in the action 

database, then the robot would select and perform the dance action according to Softmax. 

In other words, there is no guarantee that that particular selection would be performed. 

On the other hand, if there is no such history for the selected gesture in the action 

database, then the robot performs the behaviour, in order to obtain immediate feedback 

on the behaviour and then add the gesture to the action database as an action for future 

selections. However, before adding the selection to the action database, the robot must 

first check what type of behaviour it is. As described above, dance behaviours consisting 

of two gestures performed on two time steps are stored in the action database as dance 

motions, with the exception of an Opposite dance motion, which is generated after one 

time step. Dance motions that have been generated after two steps can be either skilled or 

unskilled in their definition. This is shown in processes 5 – 10 in Figure 5.1. 

 In process 8, the robot does a check on the current (t+1th) and previous (tth) 

gestures performed to determine their exclusive disjunctions (xor). In other words, a 

dance motion is only generated (process 9) if both gestures performed on the tth and 

t+1th time steps are either both Opposite skills or not. If the check results to false (i.e. 

“No” in Figure 5.1), then a dance motion is generated and this is stored as an action in the 

action database (process 10). Both current and previous gestures must be the same type in 

order for a dance motion to be generated. Table 5.1 shows the possible logical outcomes 

and the equivalent exclusive disjunctive bitwise values after gestures have been 

performed on two time steps. 
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Gt 
Gesture Type 

Gt+1 
Gesture Type 

Gt 
Bitwise 
Value 

G t+1 
Bitwise 
Value 

G t xor 
Gt+1 

Bitwise 
Value 

Dance 
Motion 
Type 

(Gt xor Gt+1)

Stored In 
Action 

Database? 

Non-Opposite Non-Opposite 0 0 0 Dance 
Motion 

Yes 

Non-Opposite Opposite 0 1 1 Not A Dance 
Motion 

No 

Opposite Non-Opposite 1 0 1 Not A Dance 
Motion 

No 

Opposite Opposite 1 1 0 Dance 
Motion 

Yes 

Table 5.1 – Exclusive disjunctions of gestures to generate dance motions on two time steps. For the last 
row, although Opposite gestures form dance motions themselves, when two Opposites have been 
performed on two time steps, it’s possible to generate dance motions that contain more than one skill, 
producing more interesting movements. See text for details. 
 

 It is possible for non-opposite joints performed on two time steps to form a dance 

motion. The final dance motion (Opposite and Opposite) shown in Table 5.1, would 

produce very interesting motions. Opposite moves performed after each other does 

constitute to a dance motion, but would not be an Opposite dance motion, but rather a 

dance motion with a Symmetry skill or a Formation skill. The movement could consist of 

opposite joints moved on opposite sides of the body (i.e. Symmetry skill) or the same 

joints moved in a “back and forth” motion on two time steps (i.e. Formation skill). This 

differs from an Opposite dance motion in that, to achieve an Opposite dance motion, 

opposite joints need only be performed on one time step and not two. 

This approach generates a series of dance motions that are intertwined and are 

related, demonstrating more control in the robot’s autonomous behaviour. Figure 5.2 

shows a conceptual view of two examples of the generation of dance motions (DM) on 

different time steps (t). 
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 Figure 5.2a, shows the generation of intertwined dance motions where the most 

recent gesture becomes the previous gesture for another dance motion. Figure 5.2b, 

shows a mixture of dance motions generated on one and two time steps. DM(t), DM(t+1), 

DM(t+2) and DM(t+5) from Figure 5.2b can be representations of Opposite dance motions 

generated. Notice here that this type of dance motion is not connected to neighbouring 

gestures, but becomes a dance motion performed on its own. However, it is possible for 

Opposite gestures (Opposite dance motions), performed one after the other on two time 

steps, to form new dance motions (i.e. a dance motion of two Opposites) as described 

above in Table 5.1. This produces a rather special case dance motion that has more than 

one skill. For example, if DM(t) and DM(t+1) were the same Opposite gestures performed 

in opposing directions then this dance motion would be a Formation dance motion 

consisting of Opposite gestures. On the other hand, if the gestures were exactly opposite 

Figure 5.2– State flow diagram for developing dance motions. a) is an example of dance 
motions generated on two time steps. b) is a an example of a series of dance motions generated 
on one and two time steps. 



Towards A Framework To Make Robots Learn To Dance 

 84

to each other on the body, then this would generate a Symmetry dance motion with 

Opposite gestures in its definition. 

Once a dance motion has been generated, this could be a skilled or an unskilled 

dance motion depending on what joints were moved on gesture Gt and gesture Gt+1. 

Gestures on their own are not stored in the action database except if they are Opposite 

skills, in which case, they are known as Opposite dance motions. However, gestures are 

randomly selected (but not necessarily performed) so that new dance combinations can be 

explored and generated. 

 Steps 1 to 14 in Figure 5.1 describe the robots exploration of “new” dance 

behaviours i.e. dance motions that are generated and are not listed in the robot’s action 

database. During these steps, the robot autonomously performs a mixture of movements 

and generates desirable initial dance motions which are stored in the action database, and 

rewarded depending on the dance motion generated. 

Steps 15 to 17 are used for both the exploration and exploitation of existing 

actions. This is achieved by the Softmax algorithm (process 15).  
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5.1.2. Structuring A Dance 

Whilst it is necessary for the robot to have a repertoire of basic dance motions, this alone 

is not sufficient enough for a dance. The dance motions should be arranged in such a way 

to demonstrate control and more interesting dance patterns. From Chapter 2, McGreevy-

Nichols et al. (1995) proposed a definition of dance being a build up of basic dance 

motions which, when combined, form longer sequences known as a dance phrase and 

dance section. Their definition was in relation to the way humans structure and develop 

their dancing. It is therefore a logical approach that can be applied to dancing robots and 

this chapter makes use of this knowledge. 

As described above, a dance motion is generated after two time steps (beats), or in 

the case of the Opposite skill, this was after one time step. These dance motions were 

then combined to form dance phrases and dance sections in a similar way to the 

generation of dance motions. The logic in this research was that, in order for a dance 

phrase to be generated, two dance motions would have to be performed sequentially, i.e. 

one dance motion immediately following another dance motion. Similarly, to generate a 

dance section, dance sections were formed after two dance phrases were performed 

sequentially i.e. one dance phrase immediately following another dance phrase. Figure 

5.3 shows an illustration of this structure. 
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Figure 5.3 shows the typical structure of generated patterns that use dance 

motions generated after two time steps. It shows that dance motions are generated after 

gestures are performed after two steps. Dance phrases require four gestures (or two dance 

motions) and dance sections require eight gestures (or two dance phrases). Of course, if 

any of the dance patterns (i.e. dance motions, phrases and sections) contain at least one 

dance motion that is an Opposite skill, then the length (number of gestures) of each dance 

pattern would be less and variable, for example, an Opposite dance motion would result 

in a dance phrase of at least two time steps and a dance section would have at least for 

time steps.  

This build up of dance actions (dance motion; dance phrase or dance section) 

forms the robot’s dance into a long continuous series of movements, where each 

movement follows from the other. However, each dance motion, dance phrase and dance 

section is stored individually as actions in the action database and treated as individual 

actions that the robot can select. Each of these is rewarded accordingly and the robot 

gradually learns which type of dance pattern (i.e. a dance motion, dance phrase or dance 

section) it should do more often.  

    Figure 5.3 – Illustration of dance structure where Gt represents gestures performed on time t 
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The reasoning to implement this dance structure was two-fold.  First, this 

approach allowed repetitions to occur in the robots dance to a degree similar to human 

dance. Second, a smooth transition could be perceived in the dancing that resembled the 

way humans dance and organise their motions. 

The complete algorithm integrated with reinforcement learning is shown in 

Algorithm 5.1 and 5.2 below. Algorithm 5.1 shows the main algorithm used for the 

generation of gestures, while Algorithm 5.2 shows the approach taken to structure and 

build sequences of the robot’s dance motions in dance phrases and dance sections. With 

reference to reinforcement learning, the state of the robot was always on-the-beat (learnt 

in Chapter 4) and the action was any selection the robot performed e.g. a dance motion, 

dance phrase or dance section. All rewards were internally defined and the robot was 

always rewarded immediately after each action. 
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Algorithm 5.1: Generation Of Dance Actions 
__________________________________________________________________________ 

Initialise parameters  

 Sarsa parameters:  asQ , =0, r ={1,2,3}, α=0.8,  =0.2  
 Softmax parameters:  =5  
Play music 
While music is playing 

 Choose joints & direction (i.e. gesture, 
tG ) randomly 

 Search 
tG  in action database ( KBaction  ) 

 If 
tG  is in KBaction   Then 

  Select action (
ta ) from KBaction   using Softmax 

  Perform 
ta  

  Call Algorithm 5.2 
 Else 

  Perform gesture (
tG ) 

  If 
tG  is an Opposite skill Then 

   Add gesture (
tG ) to action database ( KBaction  ) 

   Update KBaction   
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  Else 

   Cache gesture (
tG ) 

   Choose joints & direction (
1tG ) randomly 

   Check 
tG  and 

1tG  is an action in KBaction   

   If an action is Formation or Symmetry skill Then  

    Select action (
ta ) with highest Softmax 

    Perform 
ta  

    Call Algorithm 5.2 
   Else 

    Add 
tG  and 

1tG  to KBaction   

    Update action database ( KBaction  ) 
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Algorithm 5.2: Structuring A Dance 
_______________________________________________________________________ 

1. Check 
ta  is a Dance Motion (DM) or Dance Phrase (DP) in KBaction   

2. If action 
ta  is DM or DP Then 

3.  Check previous action (
1ta ) in  KBaction   

4.  If 
1ta  not in  KBaction   Then 

5.   tt aa 1  

6.   Call line 4 of Algorithm 5.1 
7.  Else 

8.   Check dance action type (i.e. DM or DP) for both 
1ta  and 

ta   

9.   If 
1ta  and 

ta  are same dance action type Then 

10.    Check 
1ta  and 

ta  are an action ( a ) in KBaction   

11.    If action Then 
12.     Update action database ( KBaction  )  

             111111 ,,,,   tttttttt asQasQrasQasQ   

13.    Else 

14.     Group 
1ta  and 

ta  as an action (
1ta ) 

15.     Write 
1ta  to KBaction   

16.     Update action database  

             tttttttt asQasQrasQasQ ,,,, 11    

17. Else 
18.  Update action database ( KBaction  ) 

          111111 ,,,,   tttttttt asQasQrasQasQ   

19. Call line 4 of Algorithm 5.1 
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Algorithm 5.2, checks to see if actions performed (on one or two time steps) are 

the same or different. Only actions which are of the same dance action type (i.e. actions 

that are either both dance motions or dance phrases) are grouped together to form longer 

sequences. For example, it is not possible to group together a dance motion and a dance 

section as one action. The actions must be the same in order for them to form whole 

actions. This definition is described internally in the system. The joints that constitute to a 

skill are also defined in the system. 

In these algorithms,  asQ ,  is the Q-factor (value) of doing an action (dance 

motion, phrase or section) in a state (on-the-beat) at respective time steps; and α and γ are 

the learning rate and discount factor learning coefficients respectively. 

As can be seen in Algorithm 5.1, the algorithm always randomly picks joints to 

move, however the actual decision as to which joints to move is based on the Softmax 

calculated probabilities. Softmax ensures that the algorithm does not always pick what it 

“thinks” is “best”, but those that are not also. However, the random selection of joints is 

still necessary to allow the robot to explore new joint combinations that had not yet been 

explored. 

For this part of the dancing framework, the aim is only to teach the robot what 

movements are acceptable, regardless of the music. It is an attempt to allow the robot to 

create its own initial movements, as opposed to providing it with pre-programmed 

movements. The following section describes the experimental process. The interest here 

is in exploring the relationships between joints and the number of joints that would make 

the dance aesthetically pleasing, and not whether or not the dance matches the music, 

except dancing on-the-beat (which was achieved in Chapter 4). 
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5.2. Experimental Setup 

The aim of this experiment was to determine the aesthetic beauty of dance and for the 

robot to generate dance patterns to show autonomous behaviour. An online questionnaire 

containing various videos of the virtual robot dancing was used to retrieve the results. 

 

5.2.1. Experiment Procedure 

The robot created several dances using the algorithm, with immediate rewards after each 

choice of actions, with values 0 for unskilled movements and 1, 1.5 and 2 for skilled 

movements that formed dance motions, dance phrases and dance sections respectively. 

Unskilled movements were movements performed without any skill, whereas skilled 

movements were movements that utilised at least one skill. All actions were stored in an 

action database as part of the learning. The system was to not only learn to do skilled 

actions more often but, learn to do more skilled dance sections.  

For the online questionnaire, a collection of robot dancing videos was used for 

three experiments showing the robots dance after learning the skills and different dance 

actions. All the videos were the same length, showing the robot dancing to the chosen 

music, which was “Any Dream Will Do” by Jason Donovan. 

The first experiment focused on how the number of joints affected the quality of 

the dance. The second experiment focused on how the different dance skills affected the 

quality of the dance. The final experiment focused on how a skilled and structured dance 

affected the quality of the dance. 
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5.2.2. Data Gathering 

All experiments were conducted online and had to be conducted in sequence i.e. 

beginning with Experiment 1, then proceeding to Experiment 2 and finally to Experiment 

3. Figure 5.4 below shows an illustration. Initially, 40 participants began the experiment 

(Experiment 1), however, this reduced to 18 participants for Experiment 2 and 

Experiment 3. 

 

 

The first experiment studied the relationship between the number of joints and the 

quality of the dance. In this experiment, the robot’s dance movements were constrained 

by the number of joints that could be used during each beat. Four dances were created 

using a maximum of 2, 5, 10 and 15 joints for each dance. Participants (40 in total) were 

asked to rate the quality of each dance using a five point scale, labelled “very poor”, 

“poor”, “neutral”, “good” and “very good”. The quality ratings were then converted into 

a numerical scale with 1 corresponding to “very poor” and 5 corresponding to “very 

   
Figure 5.4 – Illustration of online questionnaire 
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good” for the purpose of analysing the results. The participants were also asked to rank 

the dances giving their favourite dance first place, then second place and so on, down to 

fourth place. The preference ratings were then converted to scores with 1 being equal to 

fourth place and 4 being equal to first place. The order of the scale was reversed so that 

high scores on the performance quality scale could be correlated with high scores on the 

preference scale. 

The second experiment focused on the relationship between different skills used 

and the quality of the dance. Four dances were created. The robot was programmed to 

apply a single skill (i.e. a dance containing 100% of each skill – Opposite, Symmetry and 

Formation) in each of the first three dances. The robot was then programmed to consider 

equally all three skills in the forth dance. The same participants were asked to rate the 

quality of the dance and rank their preferences like they did for Experiment 1. 

Additionally, participants were asked about the difficulty in identifying the skill or skills 

being demonstrated in the dances using a four point scale labelled: “really easy”, “easy”, 

“hard”, and “really hard”. These ratings were then converted (as above) to a score of 1 to 

4 with 1 for “really hard”, 2 for “hard”, 3 for “easy”, and 4 for “very easy”. This way the 

higher rating was given a higher score and used in the analysis. 

The third experiment focused on assessing the quality of the dances made up of 

random, unskilled and skilled movements. In the first dance (random), the robot’s 

movements were performed on the beat, but they did not form skilled motions (i.e. 

motions did not contain Opposite, Symmetry or Formation). Neither was the robot 

programmed to form dance motions, phrases nor sections. The robot simply moved joints 

at random to the beat and no learning was implemented. 
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In the second dance (unskilled), the robot’s movements were synchronised to the 

beat, but skills were not done. However, there was learning that is, unskilled dance 

motions formed dance phrases, which in turn, formed unskilled dance sections. In the 

final dance (skilled), the robot’s movements were programmed to use skilled dance 

motions, which in turn formed skilled dance phrases and skilled dance sections, all 

synchronised to the music. The participants (18 in total) were again asked to provide 

preferences and ratings of the quality of the dances as described above. Table 5.2 below 

summarises the experiments, and the variables that were captured. 

 
Experiment Dance Type Dance 

Performance 
Rating 

Dance 
Preference 

Rating 

Skill 
Identifications 

Rating 
1.  
 

Number of Joints 
 

(40 participants) 

2 joints 1 = Very Poor
5 = Very Good

1 = Lowest 
4 = Highest 

N/A 

5 joints 1 = Very Poor
5 = Very Good

1 = Lowest 
4 = Highest 

N/A 

10 joints 1 = Very Poor
5 = Very Good

1 = Lowest 
4 = Highest

N/A 

15 joints 1 = Very Poor
5 = Very Good

1 = Lowest 
4 = Highest 

N/A 

2.  
 

Movement 
Skills 

 
(18 participants) 

100% Opposite 1 = Very Poor
5 = Very Good

1 = Lowest 
4 = Highest 

1 = Really Hard
4 = Really Easy 

100% Symmetry 1 = Very Poor
5 = Very Good

1 = Lowest 
4 = Highest 

1 = Really Hard
4 = Really Easy 

100% Formation 1 = Very Poor
5 = Very Good

1 = Lowest 
4 = Highest 

1 = Really Hard
4 = Really Easy 

33% for each 
skill 

1 = Very Poor
5 = Very Good

1 = Lowest 
4 = Highest 

1 = Really Hard
4 = Really Easy 

3.  
 

Dance Styles 
 

(18 participants) 

Random 1 = Very Poor
5 = Very Good

1 = Lowest 
3 = Highest 

N/A 

Unskilled 1 = Very Poor
5 = Very Good

1 = Lowest 
3 = Highest 

N/A 

Skilled 1 = Very Poor
5 = Very Good

1 = Lowest 
3 = Highest 

N/A 

Table 5.2 - Experiments and the variables captured 
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5.3. Results & Observations 

5.3.1. Algorithm Analysis 

In reference to the algorithm, the average reward over the number of movements (i.e. 

each selection of dance motions, dance phrases and dance sections) were recorded. Figure 

5.5 below shows the results. 

 

Recall that after each choice of actions, the robot was rewarded immediately with 

values 0 for unskilled movements and 1, 1.5 and 2 for skilled movements that formed 

dance motions, dance phrases and dance sections respectively. From Figure 5.5, we can 

see that initially, the algorithm explored both skilled and unskilled actions, but then 

gradually learnt to do skilled actions. The robot progressed to doing skilled dance phrases 

and dance actions for some time, before eventually exploiting dance sections most of the 

time. Note that in this experiment, no single action was desired and so the algorithm 

could select any action to perform, but patterns of skilled dance sections were more 

desirable. This result shows that the algorithm can learn to do dance sections. 

 
  Figure 5.5 – Learning performance of algorithm in five trials (runs) 
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5.3.2. Experiment 1: Results & Analysis 

In reference to the questionnaire, for Experiment 1 (how the performance is affected by 

the number of joints), the ratings for each dance were averaged for both the participant’s 

thoughts on the quality of the dancing and their preferences. Specifically, participants 

were asked to rate how good each dance was (dance performance) and rank the dances in 

order (dance preference), Figure 5.6 below shows the results, whereby higher quality 

values represent a greater satisfaction and preference of the dances. 

 
Looking at Figure 5.6, we see that both the perceptions of the dance performance 

and the dance preferences increases as the number of joints is increased, and so therefore, 

it appears that increasing the number of joints is correlated to a higher perception of 

quality. In other words, it appears to be that participants favoured higher joint numbers 

 
  Figure 5.6 – Perceived dance quality vs. number of joints moved 
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than lower ones; although, it is interesting that the maximum rating for dance 

performances (15 joints) was not that much different from 10 joints, and after 10 joints, 

the preference of the robots dancing was the same. These facts suggest that the quality of 

the dance would have levelled up and converged to the same quality if more and more 

joints were added. For example, even though it is shown that participants preferred the 

dances with increasing number of joints, there was not much difference in how they 

perceived the dances. A possible explanation for this could be because participants were 

looking at how the robot’s dancing matched the music, rather than what effect the number 

of joints had on the dance. In other words, they were looking for dynamics within the 

movements. Second, the robot was programmed to remain in one position (i.e. ‘sleeping’ 

position on the ground) to stop it from falling down and losing its balance, and therefore 

could not get up and move around. This might have affected their decisions when judging 

the robots dancing. Nevertheless, it can be concluded that the perceived quality of the 

dance increased as the number of joints that the robot was allowed to use increased, but 

possibly up to an unknown limit. 

The question, however, is whether or not there is significant improvement in the 

robots performance between the dances generated. Using the 2-tail sample t-test 

statistical approach to compare each of the alternative groups, one pair at a time, the 

hypothesis of each comparison was there is a significant difference between 

alternative groups. 

The details of the tests at 95% (p-value < 0.05) confidence are summarised below, 

with Table 5.3 showing the statistics for participant dance preferences and Table 5.4 

showing the statistics for participant dance satisfaction. 
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 n Mean Standard

Deviation
Variance df p-

value 
Conclusion 

D
an

ce
 C

om
pa

ri
so

n
s 

2 40 1.895 1.331 1.772 78 0.015 
 

H1 
 

5 joints is 
better preferred5 40 2.4737 0.6035 0.3642 78 

2 40 1.895 1.331 1.772 78 <0.001
 

H1 
 

10 joints is 
better preferred10 40 2.895 0.689 0.475 78 

2 40 1.895 1.331 1.772 78 0.001 
 

H1 
 

15 joints is 
better preferred15 40 2.895 1.331 1.772 78 

5 40 2.4737 0.6035 0.3642 78 0.005 
 

H1 
 

10 joints is 
better preferred10 40 2.895 0.689 0.475 78 

5 40 2.4737 0.6035 0.3642 78 0.073 
 

H0 
 

No Significant 
difference 15 40 2.895 1.331 1.772 78 

10 40 2.895 0.689 0.475 78 1.000 
 

H0 No Significant 
difference 15 40 2.895 1.331 1.772 78 

Table 5.3 - Experiment 1: Descriptive statistics for participant preferences between comparisons among 
dances with number of joints alternatives 
 

 n Mean Standard 
Deviation 

Variance df p-
value 

Conclusion 

D
an

ce
 C

om
p

ar
is

on
s 

2 40 2.351 1.230 1.512 78 0.130 
 

H0 
 

No Significant 
difference 5 40 2.811 1.351 1.824 78 

2 40 2.351 1.230 1.512 78 0.043 
 

H1 
 

Significant 
difference 10 40 3.027 1.572 2.471 78 

2 40 2.351 1.230 1.512 78 0.052 
 

H0 
 

No Significant 
difference 15 40 3.054 1.794 3.219 78 

5 40 2.811 1.351 1.824 78 0.531 
 

H0 
 

No Significant 
difference 10 40 3.027 1.572 2.471 78 

5 40 2.811 1.351 1.824 78 0.511 
 

H0 
 

No Significant 
difference 15 40 3.054 1.794 3.219 78 

10 40 3.027 1.572 2.471 78 0.944 
 

H0 No Significant 
difference 15 40 3.054 1.794 3.219 78 

Table 5.4 - Experiment 1: Statistics for participant satisfaction ratings between comparisons among dances 
with number of joints alternatives, where n is the number of participants and df is the degrees of feedback 
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The same participants were used to assess the groups (dances). In order for there 

to be any significance difference between groups, the calculated probability (p-value) 

would have to be less than the significant level (0.05). The results summarised in the 

above table provides evidence to suggest that the participants generally preferred a dance 

with more joints although statistically, the level of improvement (or not) between dances 

was minimal. 

 

5.3.3. Experiment 2: Results & Analysis 

For Experiment 2 (how the performance is affected by skills used), the ratings for each 

dance were also averaged for both the participant’s thoughts on the quality of the dancing 

and their preferences. In this case, the results are shown as a bar chart since the dances 

were not based on an ordinal scale. Figure 5.7 below shows the results. 

 

 
  Figure 5.7 – Dance quality vs. skilled dances 
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Figure 5.7, shows that by integrating all three of the skills (33% of each skill), 

higher marks are received in both the overall performance and the personal preferences of 

the participants. However, this skill set received the lowest mark for skill identification. 

This result makes sense since it would be more difficult for an observer to identify all 

three skills (Opposite, Symmetry and Formation) of the dance simultaneously in this 

dance, whereas the other three dances only required the participant to identify a single 

skill. The average dance performance for each skill independently was slightly varied, 

suggesting that each of these skills were relevant to determine the quality of the dance, 

but on their own, the dances were “not that bad”. However, the average preference rating 

slightly changed with Formation being the highest compared to the other individual 

skilled dances. This suggests that, taken alone, Formation skilled dance movements may 

be slightly more significant to the quality of the dance, followed by Symmetry and 

Opposite skills. This again makes sense, since according to dance studies, it is the form 

(Formation) of a dance that is the most contributing factor of a dance. 

This is supported by the statistical results obtained, shown below in Table 5.5 – 

5.7. Using the 2-tail sample t-test statistical approach to compare each of the alternative 

groups the hypothesis of each comparison was again: There is a significant difference. 

 
Group 

Comparisons 
n Mean Standard

Deviation
Variance df Conclusion 

100% Formation 18 2.667 1.085 1.176 34 H0 No Significant 
difference 100% Opposite 18 2.167 1.043 1.088 34 

100% Formation 18 2.667 1.085 1.176 34 H0 No Significant 
difference 100% Symmetry 18 2.167 0.857 0.735 34 

100% Formation 18 2.667 1.085 1.176 34 H0 No Significant 
difference 33%  for each 

skill 
18 2.889 1.278 1.634 34 

100% Opposite 18 2.167 1.043 1.088 34 H0 No Significant 
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100% Symmetry 18 2.167 0.857 0.735 34 difference 
100% Opposite 18 2.167 1.043 1.088 34 H0 No Significant 

difference 
33%  for each 

skill 
18 2.889 1.278 1.634 34 

100% Symmetry 18 2.167 0.857 0.735 34 H0 No Significant 
difference 

33%  for each 
skill 

18 2.889 1.278 1.634 34 

Table 5.5 - Experiment 2: Descriptive statistics for participant preferences between comparisons among 
dances with skills alternatives, where n is the number of participants and df is the degrees of feedback 
 

Group 
Comparisons 

n Mean 
Standard
Deviation

Variance df Conclusion 

100% Formation 18 3.333 0.900 0.810 34 
H0 

No Significant 
difference 100% Opposite 18 3.067 0.799 0.638 34 

100% Formation 18 3.333 0.900 0.810 34 
H0 

No Significant 
difference 100% Symmetry 18 3.067 0.799 0.638 34 

100% Formation 18 3.333 0.900 0.810 34 
H0 

No Significant 
difference 

33%  for each 
skill 

18 3.667 1.345 1.810 34 

100% Opposite 18 3.067 0.799 0.638 34 
H0 

No Significant 
difference 100% Symmetry 18 3.067 0.799 0.638 34 

100% Opposite 18 3.067 0.799 0.638 34 
H0 

No Significant 
difference 33%  for each 

skill 
18 3.667 1.345 1.810 34 

100% Symmetry 18 3.067 0.799 0.638 34 
H0 

No Significant 
difference 

33%  for each 
skill 

18 3.667 1.345 1.810 34 

Table 5.6 - Experiment 2: Descriptive statistics for participant satisfaction ratings between comparisons 
among dances with skills alternatives, where n is the number of participants and df is the degrees of 
feedback. 
 

Group 
Comparisons 

n Mean 
Standard
Deviation

Variance df Conclusion 

100% Formation 18 2.625 0.806 0.650 34
H0 

No Significant 
difference 100% Opposite 18 2.563 0.727 0.529 34

100% Formation 18 2.625 0.806 0.650 34
H0 

No Significant 
difference 100% Symmetry 18 3.063 0.574 0.329 34

100% Formation 18 2.625 0.806 0.650 34
H1 

Formation is 
more easier to 

identify 
33%  for each 

skill 
18 1.750   0.856 0.733 34

100% Opposite 18 2.563 0.727 0.529 34
H1 

Significant 
difference 100% Symmetry 18 3.063 0.574 0.329 34

100% Opposite 18 2.563 0.727 0.529 34 H1 Opposite is 
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33%  for each 
skill 

18 1.750   0.856 0.733 34
more easier to 

identify 
100% Symmetry 18 3.063 0.574 0.329 34

H1 
Symmetry is 

more easier to 
identify 

33%  for each 
skill 

18 1.750   0.856 0.733 34

Table 5.7 - Experiment 2: Descriptive statistics for participant difficulty ratings between comparisons 
among dances with skills alternatives, where n is the number of participants and df is the degrees of 
feedback. 
 
 

Tables 5.5 – 5.7 show the details of the analysis with confidence levels of 95%. 

Most of the comparisons support the null hypothesis i.e. no significant difference 

between alternatives in the robots performance (Table 5.6) and the personal preferences 

of the participants (Table 5.5). However, it can be concluded that it was harder to identify 

individual skills in a dance consisting of all the skills combined (Table 5.7), than a dance 

that only contained the individual skills. 

 

5.3.4. Experiment 3: Results & Analysis 

Finally, Figure 5.8 shows the result for experiment 3 (how the performance is affected by 

skilled and structured dances) and again, the ratings for each dance were averaged for 

both the participant’s thoughts on the quality of the dancing and their preferences. 

 



Towards A Framework To Make Robots Learn To Dance 

 103

 

 
From Figure 5.8, the result was that the skilled dance received the highest marks 

for both overall performance and personal preference, followed by the unskilled dance 

and then the random dance. This indicates that learning to dance with skilled movements 

creates a dance with a higher perceived quality (aesthetic appearance) than learning to 

dance with no skills and a dance that has no learning and makes use of no skills. It is also 

interesting that the difference between a random and an unskilled dance was less than the 

difference between an unskilled and a skilled dance. This suggests that, what is 

fundamentally required for dance is that dance has a skilled structure (i.e. skilled dance 

motions that form skilled dance phrases, that in turn form skilled dance sections), and that 

an unskilled dance was almost as bad as random dancing, but better because it had 

structure to it. A structured dance was more important than simply picking any action to 

any beat. Dance must have structure to it. The use of skills only made the dance look 

“better”. This was supported statistically as well. Using the same hypothesis and 

 
Figure 5.8 – Dance quality vs. dance style 
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confidence level as Experiment 1 and 2, Table 5.8 and Table 5.9 below summaries the 

results for each comparison between the alternate groups. 

 

Group 
Comparisons 

n Mean Standard
Deviation

Variance df p-
value 

Conclusion 

Random 18 1.471   0.624 0.390 34 <0.001 H1 
Skilled is highly preferred

Skilled 18 2.706 0.686 0.471 34
Random 18 1.471   0.624 0.390 34 0.086 H0 

No significant difference 

Unskilled 18 1.824 0.529 0.279 34
Skilled 18 2.706 0.686 0.471 34 <0.001 H1 Skilled is highly preferred

Unskilled 18 1.824 0.529 0.279 34
Table 5.8 - Experiment 3: Statistics for participant preferences between dances types, where n is the 
number of participants and df is the degrees of feedback. 
 

Group 
Comparisons 

n Mean Standard
Deviation

Variance df p-
value

Conclusion 

Random 18 2.706 0.920 0.846 34 <0.001 H1 
Skilled is a better dance

Skilled 18 4.235 0.831 0.691 34
Random 18 2.706 0.920 0.846 34 0.329 H0 No significant 

difference Unskilled 18 3.059 1.144 1.309 34
Skilled 18 4.235 0.831 0.691 34 0.002 H1 Skilled is a better dance

Unskilled 18 3.059 1.144 1.309 34
Table 5.9 - Experiment 3: Statistics for participant performance ratings between dances types, where n is 
the number of participants and df is the degrees of feedback. 
 

 

Looking at the above tables, we see that participants agreed that a skilled dance 

that had structure to it was “better” than an unskilled or random dance and therefore, had 

more preference for it. 
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5.4. Summary 

The idea of the robot exploring primitive gestures in order to generate and keep a record 

of desirable dance motions based on reinforcement learning was explored in this chapter. 

Gestures combine with previous gestures to form dance motions and a structure of the 

dance. This approach has lead to satisfactory results without the need for more complex 

reinforcement learning methods. 

To conclude, since dancing is subjective, the final measure of success for this 

stage of the research has proven subjective. In general, the results validate the hypothesis 

that applying synchronous, structured movements (skilled and unskilled dancing), 

produces a higher quality dance than simply creating random moves, even if the random 

moves are synchronised to the music. Furthermore, skills are needed in order to improve 

the dance and provide a means to judge the robots dancing. The build-up of dance 

motions, dance phrases and dance sections not only provided structure to the robot’s 

dancing, but also encouraged the use of repetition of an appreciable value in the dancing, 

which would have also influenced the opinions of participants. 

It is interesting that most of the participants were able to successfully distinguish 

between what they considered a “poor” dance performance versus a “good” dance 

performance, even though the appearance of the robot in this stage of the robots 

development was not humanoid. This implies that it is possible to give robots dance 

aesthetics that can be identified by human partners, and even though humanoid robots 

resemble the human body, their kinematical structure are not necessary for people to 

recognise creativity in a robot dance, even though the dance itself may be rather abstract 

when compared to how humans dance. 
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The results in this stage of the dancing model are encouraging and justify the need 

for skills and a definition (structure) of dance, and the statistical analysis of the results 

have also supported this. Since the robot is now capable of structuring a dance and 

producing desirable dance steps, the next logical step would be to have the robot’s dance 

evaluated by humans. This development idea is explored in the next chapter. 
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Chapter 6 
Adapting Dance To Human Preferences 

In Chapter 5, the approach explored gave the robot a basic repertoire of dance actions and 

dance sequences suitable for it to generate its own dance. However, the robot did not 

learn through direct interaction with human observers. As humans learn to dance based 

on observing the dances of others or under a dance instructor, it makes sense to teach a 

robot to dance with the involvement of people.   

In this chapter, the idea of adapting a robot’s dance steps to match the preferred 

movements of human subjects is explored. The chapter follows on from and incorporates 

the behaviours learnt from the previous two chapters, using interactive reinforcement 

learning (IRL) to build a database of appropriate preferred dance moves and improve its 

dancing based on human preferences. This stage of development determines whether 

learning from human partners can significantly improve the robots dance. 

 

6.1. Methodology 

There are three main considerations for the robot’s adaptive behaviour to human 

preferences. First, human subjects need to inform the robot the parts they liked and 

disliked in the robot’s dance without too many reward inputs. Second, the robot needs to 

be capable of generating diversity in its movements based on the preferences. Third, the 

system requires a way of evaluating and making use of the feedback given to influence 

the generation of new dances. For the first consideration, the Webots interface receives 

external feedback (via keyboard on a laptop) from participants, while the robot is dancing 

in real-time to the music. Participants indicate their preferred and non-preferred dance 
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movements by pressing the appropriate keys. This is then interpreted by the system as 

values of +1 and -1 for preferred and non-preferred dance movements respectively. 

For the second consideration, in order to ensure that the robot would produce 

diverse movements, the robot is programmed to change its position at random from 

“sleeping” position to “sitting” position and vice versa, and in each of these positions it is 

limited to perform certain gestures. This is so that the robot would maintain balance while 

dancing, but also incorporate varying movements in its dancing. All movements 

performed are skilled movements learnt in Chapter 5. The robot is programmed to select 

a maximum of 15 joints at a time (although this can be varied depending on the robot’s 

posture e.g. being in “sleeping” or “sitting” position), and any number of joint 

combinations (gestures) and skilled movements can be formed. The robot can also select 

the directions in which joints can be moved. 

 For the third consideration, the idea of buffering and pattern matching are 

explored. These provide a way to capture and compare the preferences based on repeated 

preferences and their rewarded values. All preferred movements are given a reward of +1 

and non-preferred movements given a reward of -1. However during the processing of the 

feedback, different matched dance sequences are weighed differently based on the total 

rewards received for each preference. This is to weigh more preferred movements  higher 

than less preferred movements. This will be described in more detail in the next sections. 
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6.1.1 Buffering 

In Chapter 2, two approaches to adaptive robotic dance movements based on human 

preferences were discussed. These were interactive evolutionary computation (IEC) and 

interactive reinforcement learning (IRL). One consideration that was pointed out was 

how to determine the desirability of preferences. The approach taken in this research is to 

store all the preferences of each participant and then the robot would only perform those 

actions that were rewarded by the participant at least twice and had total reward values 

greater than zero. 

When the observer provides feedback to the robot, it is possible that the robot will 

receive the feedback late.  For example, the observer may like a movement and decide to 

provide a positive feedback but do so just as the robot is performing the next dance 

movement.  In this case, the wrong dance movement will have received the positive 

feedback causing the robot to learn the wrong behaviour.  The same result could be true 

of negative feedback. Given these conditions, it will be difficult for the robot to 

determine dance actions which are rewarded (or punished) incorrectly. The observer can 

be equipped with different inputs to represent different feedback for example, different 

keys to represent different reward/punishment values for different observations. 

However, this will increase the number of inputs the observer has to remember. 

Therefore, the challenge is to reward/ punish actions as required without adding 

additional load on the observer. As a solution, the idea of buffering is used in this 

research. 

Buffering refers to the process of keeping a record of all the dance motions that 

were performed prior to the most recent feedback given and after the previous feedback. 
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The buffer is a cache of n number of dance actions which constitute a sequence.  Each 

time the robot receives feedback, the last n dance actions are saved in the buffer. This is 

illustrated in figure 6.1 below. 

 

Effectively, the robot associates the entire sequence with the feedback (reward/ 

punish) given. The number of dance motions of a sequence that can be stored in the 

buffer can be any value equal to 1 or above. The complete history of buffered sequences 

performed by the robot is stored in the preference database along with the reward given 

for each buffed sequence.  Figure 6.2 shows the overall system and the buffered dance 

actions being stored into the preference database. 

 
Figure  6.1 – Illustration of buffered sequences, where a is a dance motion performed at time t up 
until the most recent time (T) and f is the feedback given. Here, f2 denotes the feedback that followed 
the previous feedback (f1). 
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 The process begins by first giving the robot a generated dance (produced 

autonomously from Chapter 5), which it performs as the music is playing. While the 

robot is dancing, the observer’s chosen preferences are captured by the preference 

sequence extractor and stored temporarily in the preference database alongside with the 

reward given to be further processed within the adaptation architecture. The preference 

sequence extractor matches the robot’s gestures with the history of gestures sequenced in 

the robot dance file so that the correct arrangement of dance motions are recorded and 

stored in the preference database. Once all preferences have been captured and stored, 

each stored sequence is reduced to at most, the n number of dance motions to cache as 

predefined by the trainer. This is where the buffering takes place. The buffered sequences 

are then compared to obtain any common patterns (sequence of dance motions) among 

them. Found matches (common patterns) are then extracted and stored in the action 

database for the learning algorithm to select and update the action database, generating a 

new dance file after each selection.  

 
   Figure 6.2 – Buffering of dance actions based on human feedback 



Towards A Framework To Make Robots Learn To Dance 

 112

6.1.2 Pattern Matching 

The observer’s preferences are analysed by comparing buffered sequences in the 

preference database, to find patterns within each sequence. Specifically, if a dance motion 

(or series of dance motions) that is part of a buffered sequence is found in another 

buffered sequence and the total sum of the patterns is greater than zero, then the robot 

would put those movements in its action database so that those dance motions can be 

selected when the robot generates the new dance. Figure 6.3 shows the dataflow of the 

pattern matching system. 

 

The system takes into account the possibility that not all actions would be 

preferred at the same level by the observer. If a reward had been given, the entire 

feedback sequence would be stored in the preference database. In the preference 

database, the robot would search each sequence to see if a dance motion (or series of 

 
Figure 6.3 - Pattern matching of trainer preferences  
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dance motions) had appeared more than once.  If a match is then found, the action 

database would be updated to record the matched sequences as complete actions for the 

robot to perform.  For example, if the observer preferred the same pattern of movements 

twice then the pattern would be promoted for selection for the next dance after being 

stored in the action database. A new dance would be generated based on all the actions in 

the action database and their rewarded values.  On the other hand, if the rewarded dance 

motions had only received feedback once, i.e. no match was found, then the feedback 

would be ignored and the movements would not be promoted for selection for the next 

dance. For example, consider three buffered sequences below. A dance motion is 

indicated as ‘A#’ and the transition from one dance motion to another is indicated by an 

arrow ‘’: 

1. A1A2A3A4 

2. A10A11A12A13A1A2 

3. A2A3 

 

Assuming the maximum buffer size is 6. Beginning with the third buffered 

sequence, A2A3 for example, each sub-sequence in sequence 1 and sequence 2 would 

be searched to see if they first contained the dance motions A2 and A3, and then 

contained the pattern A2-A3. The buffering process is shown in Table 6.1. 
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Here, the bold and italic blue colouring indicates the sub-sequence being matched 

with the original pattern. There is one match in the above example. Therefore the 

sequence of dance motions in transit (A2A3) and the individual dance motions 

themselves that make up the sequence (dance motion A2 and dance motion A3) would be 

promoted to the action database for selection. 

The idea of pattern matching each participant’s preferences is so that the 

movements that the observer(s) did not like are not immediately discarded in case the 

actions are incorrectly or accidentally rewarded. Patterns which have more than one 

match are more likely to be selected to generate the robots next dance. However, the 

reward associated with each pattern (sub-sequence) determines which patterns should be 

selected more often in the robot’s dance. If non-preferred movements appear in the 

robot’s next generated dance, then it would more likely not be selected as more often as 

preferred moves. Observers can then have another opportunity to further fine-tune the 

robot’s dance in the next generated dance, indicating their dislike for unwanted moves 

and encouraging preferred dance steps. This approach has two benefits. First, by 

performing pattern matching, it produces possible preferences because only repeated 

patterns are selected by the robot, leaving patterns which appear once to be discarded.  

Sequence 
No. 

Original 
Pattern 

Sequence 
No. 

Searched Buffered Sequences Match?

3 A2A3 

2 

A10A11A12A13A1A2 No 
A10A11A12A13A1A2 No 
A10A11A12A13A1A2 No 
A10A11A12A13A1A2 No 

1 
A1A2A3A4 No 
A1A2A3A4 Yes 
A1A2A3A4 No 

Table 6.1 - Pattern matching example.  
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Second, by limiting sequences to buffered sequences, the possible preferences are 

narrowed down.  

 

6.1.3 Learning From Human Partners 

Observers can provide feedback on dance moves they do and do not prefer and they are 

weighted as positive (+1) and negative (-1) reinforcements respectively. So in other 

words, observers do not have the option to rate their preferences based on a scale of 

values. This is so that the observers are not overloaded with deciding which value on the 

scale to use. Instead, the approach taken is to weigh the preferences by summing all 

subsequent rewards given for matched sequence patterns. For example, if the sequence 

A2A3 is matched in three other sequences and for each sequence a positive (+1) 

reinforcement is given, then the total reward for the action A2A3  will be +4, i.e. when 

the sequence is first performed, the robot receives a reward of +1. This pattern is then 

matched with other sequences each rewarded of +1, which will total the overall reward of 

the matched sequence to +4. This therefore indicates how much the chosen action is 

preferred. Consequently, more highly rewarded dance motions (and sequences) 

encourage the robot to do the dance movements more often than those which are rated not 

as highly. This means that some movements are exploited more than others. All 

movements are given a chance to be performed, but in the case where observers prefer 

not to see particular movements at all, this is only achieved if the total reward value for 

preferences is negative. The criteria for this was as follows: 
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 If the sum of matched preferences is greater than or equal to zero, then the dance 

sequence will be assigned a probability value (i.e. a Softmax value for action-

selection) and therefore will have a chance of being performed during the next 

interactive training session. 

 If on the other hand, the sum of matched preferences is less than zero, then a 

probability (Softmax) value will not be calculated for it, in which case, the 

movement will no longer be performed or chosen as a movement in future 

interactive training sessions. The dance sequence is recorded in a form of 

“blacklist” so that it doesn’t get picked. 

 

The reasoning behind this was first to produce dynamic rewards for matched 

dance motions, so that robots determine the desirability of preferences. Second, even if 

movements received contradictory feedback, the outcome will be determined by the 

overall summed value of positive and negative preferences.  For example, a movement 

that received one negative (-1) and two positive (+1) responses (totalling +1) would still 

have a possibility of being chosen in the future, but not as likely as a movement that 

received three positive (+1) responses (totalling +3), whereas a movement receiving two 

negative (-1) and one positive (+1) response would not be performed at all since it would 

total -1.  

The complete algorithm used for this system is illustrated below in Algorithm 6.1. 

Here, )m(sFt  and )m(sF 1t  denote the number of dance motions compared in each 

subsequent sub-sequence respectively. 
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Algorithm 6.1: Adapting To Human Feedback 

  
1. Initialise parameters: 0) a,Q(s tt  , state (

ts ) = beat; buffer size; 

time step (k) 
2. Play music 
3. While music is playing 
4.  Read in predefined dance sequence 

5.  If observer input (
tr ) then 

6.   Cache number of dance actions (n) as a feedback sequence (
tF ) 

7.   Save the sequence (
tF ) to preference database 

8. End While 
9. Clear action database 
10. Repeat (for each feedback sequence (

tF )) 

11.  Initialise parameters: 
  Number of dance motions in dance sequence (  1)m(sFt  ) at time t 

  Number of dance motions in dance sequence (  1)m(sF 1t  ) at time t+1 

12.  While  )m(sFt
 < buffer size + 1 

13.   Action 
tt sF a   

14.   Repeat (for each sub-sequence (
1tsF  ) in next feedback  

         sequence (
1tF  )) 

15.    )m(sF )m(sF t1t   

16.    While  )m(sF 1t < buffer size + 1 

17.     Action 
2t1t sF a    

18.     If  a t
and 

1ta  are the same 

19.      If 
ta  in action database 

20.       )R(a )R(a )R(a 1ttt   

21.      Else 
22.       Store 

ta  in action database 

23.       )R(a )R(a )R(a 1ttt   

24.     Else 
25.      If  )m(sF 1t

 buffer size 

26.       Observe next sub-sequence (
2tF  ) 

27.       
2t1t sF sF    

28.   End Repeat 
29.   Increment  )m(sFt

 

30.  End While 
31.  Choose action (

ta ) from action database (using Softmax) 

32.  Repeat (until k is reached) 
33.   
34.   Take action (

ta ) from action database, observe r  
35.   Add 

ta  to new dance sequence 

36.   Choose next action (
1ta  )  (using Softmax) 

37.   
1tt1tt

tt1t1ttttt

aa;ss

)]a, Q(s-)a, Q(s[r)a, Q(s)a, Q(s






 

 

38.  End Repeat 
39. End Repeat 
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6.1.4 Feedback From Multiple Observers 

The above approach mimics the idea of learning to dance based on the feedback provided 

by one observer. This idea has already been discussed in the current state-of-the-art on 

adaptive robot dance in Chapter 2, but feedback can come from multiple observers as 

well. The approach taken in this chapter supports not just the feedback from single 

observers but also multiple observers. This is achieved by storing and performing pattern 

matching on all the feedbacks provided. The preference values are summed in the same 

way as described above to give dance sequences different weights based on the feedbacks 

from all observers.  

 

6.2. Experiment Procedure  

The central music piece for all the dances shown to the participants was "Clarity" by John 

Mayer. This was chosen because of its simple beat structure as well as considered to be 

an appropriate song for people of different preferred music genres, although this was not 

important since the purpose of this next stage in the robots development was only to 

observe the working nature of the implemented adaptive algorithm on human input. 

Three experiments were conducted to explore the effects of human feedback on 

the robot’s dance. Each experiment had ten participants take part. The experiments were 

conducted over two consecutive days, with Experiment 1 and 2 being performed first on 

day 1 and Experiment 3 being done on day 2. The same participants were used in all three 

of the experiments. 
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6.2.1. Experiment 1 

For Experiment 1, the robot produced one random skilled dance, which was shown to all 

participants who then observed the dance and provided their preferences on it. Each 

participant was then required to observe the newly generated dances which incorporated 

varying percentages of their own preferences, combined with the varying percentages of 

another participant who had observed the same initial random dance. No two participant 

preferences were combined with the same participant. Figure 6.4 shows an illustration. 

 

6.2.2. Experiment 2 

Here, the robot produced a different random skilled dance for each participant. The 

participants observed their respective random dances and provided their preferences from 

it. As in Experiment 1, each participant was then required to observe the newly generated 

dances which incorporated varying percentages of their own preferences, combined with 

the varying percentages of preferences from another participant who had observed a 

 
Figure 6.4 – Illustration of Experiment 1 with two different observers. For each participant (Observer 
X), no two participants were combined with another participant (Observer Y) 
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different initial random dance. Like Experiment 1, no two participant’s preferences were 

combined with the same participant. Figure 6.5 shows an illustration. 

 

For both Experiments 1 and 2, the root’s dance movements and the participants’ 

choices, were constrained by the number of participant preference combinations. Five 

different dances were generated which incorporated varying percentages of preferences 

from the participant taking part in the experiment and the preferences saved from another 

participant. Participant preferences were divided as follows: 

 100% - this was a newly generated dance, based entirely on the participant’s own 

preferences. 

 75% - this was a newly generated dance that contained 75% of the participant’s 

own preferences and 25% of the preferences from another participant. 

 
Figure 6.5 – Illustration of Experiment 2 with two different observers. Here, each participant 
observed a different initial random dance (Di) distinguished by i. 
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 50% - this was a newly generated dance that contained 50% of the participant’s 

own preferences and 50% of the preferences from another participant. 

 25% - this was a newly generated dance that contained 25% of the participant’s 

own preferences and 75% of the preferences from another participant. 

 0% - this was a newly generated dance that contained none of the participant’s 

own preferences and 100% of the preferences from another participant. 

 

These newly generated dances were compared to the initial random dance and observed 

by the participant to determine how satisfied the participant was with the dances. 

Figure 6.6 shows an example illustration of the percentage splits. These 

combinations were done to determine if any perceived improvements were arbitrary or 

actually attributed to the preferences of participants. All participants gave a minimum of 

15 preferences, therefore, only the first 15 preferences were selected for dance 

combinations so that the preferences were not biased because different individuals gave 

different amounts of feedback. 

 

 
Figure 6.6 – Example illustration of a dance generated with 75% of one participant’s 
preferences and 25% of another participant’s preferences. 
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6.2.3. Experiment 3 

In this final experiment, the robot produced one random skilled dance for each participant 

(as in Experiment 2). For each participant who took part in the experiment, after 

observing the robot’s initial random dance, three other dances were shown to them. The 

first of the three dances shown was a newly generated random dance and the other two 

dances were combinations of the preferences of other participants. In all the three dances, 

none of them contained the participant’s own preferences. The robots dance movements 

were also constrained (as in Experiments 1 and 2) by the number of participant 

preference combinations. Preferences for the dances were divided as follows: 

 100% - this was a newly generated dance, based entirely on 100% of another 

participant’s own feedback. 

 50% - this was a newly generated dance that contained 50% of the preferences of 

two other participants’ feedback. 

 

These dances were compared to the initial random dance observed by the participant to 

determine how satisfied the participant was with the dances. Figure 6.7 shows an example 

illustration. 
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Each participant was asked to view each of the generated dances in all three 

experiments and provide their judgement on how satisfied they were with each dance. 

The participants were unaware of which of the robot’s dances were a result of their own 

preferences or if the robot had undergone any training at all. This was to determine how 

well the robot responded to the preferences and improved in its dancing. 

 

6.2.4. Data Gathering 

The main research question for these experiments was whether dances got ‘better’ as a 

function of training.  Another question was whether increasing the number of trainers 

from zero to two increased the quality of the dances generated. For Experiments 1 and 2, 

participants were given a questionnaire and were specifically asked three questions for 

each of the dances they observed: 

1. Dance satisfaction – how satisfied were you with the robot’s dance? 

2. Preferences followed – how well did the newly generated dance incorporate the 
preferences you selected from the initial random dance? 

 
Figure 6.7 – Illustration of experiment 3 
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3. Number of newly combined preferred dance moves – how many newly 
generated combinations did you prefer? 

 

Figure 6.8 shows an example of one of the dances shown to participants and the 

above questions shown on the online questionnaire. 

 

 

For question 1, responses were based on a five point ordinal scale with the labels 

“very dissatisfied”, “somewhat dissatisfied”, “neither dissatisfied nor satisfied”, 

“somewhat satisfied” and “very satisfied”. For question 2 the labels for the five point 

scale were “very bad”, “bad”, “neither bad nor good”, “good” and “very good”. The 

qualitative ratings were then converted into a numerical scale with 1 corresponding to 

“very dissatisfied” and “very bad”, and 5 corresponding to “very satisfied” and “very 

good” for the purpose of analysing the results. The participants were also asked to rank 

the six dances (including the random dance) into order of preference from 1 to 6. 

 
Figure 6.8 – Screenshot of one of the dances shown to participants and the questions asked on the 
online questionnaire 
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Question 3 was asked in Experiments 1, 2 and 3. A count of the total number of 

newly preferred dance action combinations that participants observed (compared to the 

initial random dance) for each dance except in the initial random dance was required. It 

would have been very difficult for participants to keep count of preferred moves whilst 

observing the dances, so this was achieved with the help of the experiment controller, 

who kept a count as each participant, indicated their preference. 

Experiment 3 also required that participants kept a count of the total number of 

newly generated dance actions that were not preferred. Table 6.2 below summarises the 

experiments showing the number of people participated in each experiment and the 

variables that were captured. 
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Experiment Research Question Dance Performance Rating 

1 & 2 
(10 participants) 

1.  
How satisfied were you with the 

robot’s dance? 

1 = Very Dissatisfied 
5 = Very Satisfied 

2.  
How well did the newly generated 
dances incorporate the preferences 

you selected from the initial 
random dance? 

1 = Very Bad 
5 = Very Good 

1 & 2 & 3 
(10 participants) 

3.  
How many newly generated 

combinations did you prefer in 
each dance? 

N/A 

3 
(10 participants) 

4.  
How many newly generated 

combinations did you not prefer in 
each dance? 

N/A 

Table 6.2 - Experiments and the variables captured 
 

 Ten participants took part in all three experiments. The participants were from 

different professions and aged 18 to 40. None of them had any experience of interacting 

with robots. When asked, “How would you rate your own level of dancing”, all described 

their dancing ability as “casual”. 

 

6.3. Results & Observations 

The aim of Experiments 1 and 2 were to determine if combining a participant’s 

preferences with another participant’s preferences in a dance made a difference in the 

robot’s performance. For Experiment 3, the aim was to determine if it was better for the 
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robot to learn from other people than through random exploration. For Experiment 1, the 

hypothesis was that there would not be much difference in the satisfaction rating after 

observing dances that included dances that resulted from a mix of preferences from 

another participant. For Experiment 2, the hypothesis was that combined dances (of two 

participants) would improve to a much better quality (satisfaction) dance after observing 

different initial dances because of the increase in variation of dance motions in the 

robot’s dancing. For Experiment 3, the hypothesis was that participants would prefer a 

dance that contained preferences from at least one other participant compared to a 

random dance from the robot, and that an increase in participant preferences (from no 

trainers to two trainers) would increase the quality of the dance. 

 

6.3.1. Experiments 1 & 2: Results & Analysis 

Experiment 1 and 2 were first compared to determine the robot’s performance. The 

ratings for each dance on both experiments were averaged on how satisfied the 

participants felt about each dance. Figure 6.9 below shows the average satisfaction 

ratings for each dance for both experiments. 
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Figure 6.9 shows that in Experiment 1, the participants rated dances that 

incorporated 100% of their own preferences higher than the initial random dance they 

observed, and higher than any of the dances that incorporated less than 100% of their 

own preferences. In Experiment 2 on the other hand, combining the preferences from 

another participant improved the level of satisfaction among participants. This suggests 

that the improvements in the dances were actually caused by the preferences of 

participants rather than just through random exploration.  The results also support the 

hypothesis that for Experiment 1, participants would prefer to rate their own preferences 

higher than preferences suggested by another participant, and for Experiment 2 

participants would be more satisfied with increasing combinations from another 

participant. 

For Experiments 1 and 2, at the “100%” dance, there was a clear improvement 

when compared to the initial random dance. However, this improvement was reduced for 

Experiment 1, but was increased for Experiment 2.  The explanation is that in Experiment 
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  Figure 6.9 – Participant satisfaction rating for Experiments 1 and 2



Towards A Framework To Make Robots Learn To Dance 

 129

1, each participant viewed the same initial (random) dance, so there was no or little 

diversity in dance steps.  In Experiment 2, each participant viewed a different initial 

dance, which increased the diversity in dance steps. 

Each experiment was performed by showing dances to participants in descending 

order of their preferences. That is, after beginning with a “Random” dance, the next 

dance shown to participants was a “100%” dance, followed by a “75%” dance, then a 

“50%” dance, then a “25%” dance and finally a “0%” dance. For this reason in 

Experiment 1, it could be that participants had too much of their preferences being 

repeated. After watching dances of repeated dance steps, participants would quickly 

become bored of seeing the same dance steps, thus making the dances less satisfactory 

overall compared to Experiment 2, where there was more diversity in dance steps, hence 

increasing the level of satisfaction. 

Figure 6.10 below shows us that, on average, for Experiment 1, the robot had 

actually incorporated the feedback suggested by each participant observing the dances, 

whilst in Experiment 2, the robot did not. Recall that satisfaction was a measure of how 

satisfied participants felt on each dance, and preference was a measure of how well the 

observer felt their preferences were followed. 
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The y-axis here is a rated measure of how well the participants felt that their 

preferences were performed in each of the observed dances (x-axis). In both Experiments 

1 and 2, the decrease in rating was directly related to the decrease in the participant’s own 

preferences, with Experiment 2 having the biggest decrease in comparison. Like Figure 

6.9, this also supported the hypothesis that the participants’ increase in rating was as a 

result of preferences combined in each dance and not a result of random movements.  

Participants were also asked to count (with the help of the experiment controller) 

the number of perceived newly performed dance steps they preferred for each subsequent 

dance after observing the initial random dance.  Figure 6.11 below shows the average 

number of newly performed dance combinations (to the nearest 10) for each observed 

dance. 
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Figure 6.10 – Score of how well participants felt their preferences were followed for Experiments 1 and 
2 
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As described above, in Experiment 1 there was a clear preference for dances that 

included 100% of the participant’s preferences. In Figure 6.11, as the percentage of that 

participant’s preferences decreased, the perception of preferred newly generated dance 

combinations decreased.  Experiment 2 on the other hand, had a much higher perception 

of newly performed dance combinations. These results were as expected. This indicates 

that a dance which combines the preferences of others who have observed different 

original dances, improves the quality of the dance by producing more favourable dance 

steps, compared to dances which have combinations from participants who have observed 

the same original dance. 

Finally, participants were asked to rank the six dances that they had viewed in 

order of preference, with 1 being the best dance and 6 being the worst dance. Table 6.3 

below shows the results. 
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Figure 6.11 – Average score of the number of newly generated preferred combinations for Experiments 
1 & 2 
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Taking the average of all participants’ preference ranking for the dances, in both 

Experiment 1 and 2, Table 6.3 tells us that as the inclusion of the participant’s own 

preferences increased in Experiment 1, so did their ranking of the generated dances. Each 

subsequent dance continued to be ranked higher than the initial random dance. In 

Experiment 2, the reverse was the case. The inclusion of another participant’s own 

preferences was more preferable. But in generally, any user feedback is better than the 

initial random dance that the robot began with. 

As further analysis, the percentage of each dance group in both Experiment 1 and 

2 was compared to determine if the measure of dance quality was significantly different 

for different levels of participant feedback.  In each comparison, the following hypothesis 

was tested:  “The quality of the dance is significantly different”. A p-test with a critical 

alpha of 0.05 (95% confidence) was used to determine if the difference in ratings for a 

particular percentage split was significant. 

 

Dance Type Experiment 
1 

Experiment 
2 Participant A preferences Participant B preferences 

100% 0% 1 5 

75% 25% 2 4 

50% 50% 3 3 

25% 75% 4 1 

0% 100% 5 2 

Initial Random Dance 6 6 

Table 6.3 - Dance preferences rankings for Experiments 1 and 2, where 1 indicates the most preferred dance and 
6 indicates the least preferred dance 
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(1) Experiment 1 Statistical Result 

Beginning with Experiment 1, Tables 6.4, 6.5, and 6.6 below summarise the p-test data 

for the three measures of dance quality - satisfaction rating, number of preferences 

followed, and number of newly preferred generated moves observed. For each measure of 

quality, the score for the higher percentage of participant input was compared to the score 

for quality for the lower percentage.  If the p-value was less than 0.05, then the proposed 

hypothesis was accepted. 

 
Experiment 1 – Satisfaction Comparison 

Group  n Mean sd Variance df p-value Conclusion 
Random vs. 10 2.5 0.707 5.0 18 <0.001 A dance with 100% of preferences 

is better than a random dance 100% 10 4.0 0.738 0.544 18 
Random vs. 10 2.5 0.707 5.0 18 <0.001 A dance with 75% of preferences 

is better than a random dance 75% 10 4.125 0.738 0.544 18 
Random vs. 10 2.5 0.707 5.0 18 <0.001 A dance with 50% of preferences 

is better than a random dance 50% 10 4.0 0.816 0.667 18 
Random vs. 10 2.5 0.707 5.0 18 0.019 A dance with 25% of preferences 

is better than a random dance 25% 10 3.375 0.675 0.456 18 
Random vs. 10 2.5 0.707 5.0 18 0.080 

No difference 
0% 10 3.125 0.738 0.544 18 

100% vs. 10 4.0 0.738 0.544 18 1.0 
No difference 

75% 10 4.125 0.738 0.544 18 
100% vs. 10 4.0 0.738 0.544 18 0.777 

No difference 
50% 10 4.0 0.816 0.667 18 

100% vs. 10 4.0 0.738 0.544 18 0.021 A dance with 100% of preferences 
is better than a dance with 25% of 

preferences 25% 10 3.375 0.675 0.456 18 

100% vs. 10 4.0 0.738 0.544 18 0.007 A dance with 100% of preferences 
is better than a dance with no 

preferences 0% 10 3.125 0.738 0.544 18 

75% vs. 10 4.125 0.738 0.544 18 0.777 
No difference 

50% 10 4.0 0.816 0.667 18 
75% vs. 10 4.125 0.738 0.544 18 0.021 A dance with 75% of preferences 

is better than a dance with 25% of 
preferences 25% 10 3.375 0.675 0.456 18 

75% vs. 10 4.125 0.738 0.544 18 0.007 A dance with 75% of preferences 



Towards A Framework To Make Robots Learn To Dance 

 134

0% 10 3.125 0.738 0.544 18 
is better than a dance with no 

preferences 
50% vs. 10 4.0 0.816 0.667 18 0.051 

No difference 
25% 10 3.375 0.675 0.456 18 

50% vs. 10 4.0 0.816 0.667 18 0.019 A dance with 50% of preferences 
is better than a dance with no 

preferences 0% 10 3.125 0.738 0.544 18 

25% vs. 10 3.375 0.675 0.456 18 0.535 
No difference 

0% 10 3.125 0.738 0.544 18 
Table 6.4 – Experiment 1 dance satisfaction. Here, n is the number of participants; sd is the standard 
deviation and df is the degrees of freedom 
 
 

Experiment 1 – Preferences Followed Comparison 
Group  n Mean sd Variance df p-value Conclusion 

100% vs. 10 4.875 0.483 0.233 18 0.202 
No difference 

75% 10 4.250 0.823 0.678 18 
100% vs. 10 4.875 0.483 0.233 18 0.045 

Significant difference 
50% 10 4.125 0.738 0.544 18 

100% vs. 10 4.875 0.483 0.233 18 0.105 
No difference 

25% 10 4.0 0.789 0.622 18 
100% vs. 10 4.875 0.483 0.233 18 0.074 

No difference 
0% 10 3.875 0.876 0.767 18 

75% vs. 10 4.250 0.823 0.678 18 0.574 
No difference 

50% 10 4.125 0.738 0.544 18 
75% vs. 10 4.250 0.823 0.678 18 0.785 

No difference 
25% 10 4.0 0.789 0.622 18 

75% vs. 10 4.250 0.823 0.678 18 0.605 
No difference 

0% 10 3.875 0.876 0.767 18 
50% vs. 10 4.125 0.738 0.544 18 0.773 

No difference 
25% 10 4.0 0.789 0.622 18 

50% vs. 10 4.125 0.738 0.544 18 1.000 
No difference 

0% 10 3.875 0.876 0.767 18 
25% vs. 10 4.0 0.789 0.622 18 0.791 

No difference 
0% 10 3.875 0.876 0.767 18 

Table 6.5 – Experiment 1 dance preferences followed. Here, n is the number of participants; sd is the 
standard deviation and df is the degrees of freedom 
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Experiment 1 – Newly Preferred Generated Moves Comparison 

Group  n Mean sd Variance df p-value Conclusion 
100% vs. 10 15.6 9.430 88.933 18 0.109 

No Significant difference
75% 10 9.3 7.119 50.678 18 

100% vs. 10 15.6 9.430 88.933 18 0.003 
Significant difference 

50% 10 4.5 3.923 15.389 18 
100% vs. 10 15.6 9.430 88.933 18 0.002 

Significant difference 
25% 10 4.2 3.155 9.956 18 

100% vs. 10 15.6 9.430 88.933 18 0.001 
Significant difference 

0% 10 3.1 2.470 6.100 18 
75% vs. 10 9.3 7.119 50.678 18 0.078 

No Significant difference
50% 10 3.1 3.923 15.389 18 

75% vs. 10 9.3 7.119 50.678 18 0.053 
No Significant difference

25% 10 4.2 3.155 9.956 18 
75% vs. 10 9.3 7.119 50.678 18 0.018 

Significant difference 
0% 10 3.1 2.470 6.100 18 

50% vs. 10 4.5 3.923 15.389 18 0.853 
No Significant difference

25% 10 4.2 3.155 9.956 18 
50% vs. 10 4.5 3.923 15.389 18 0.352 

No Significant difference
0% 10 3.1 2.470 6.100 18 

25% vs. 10 4.2 3.155 9.956 18 0.397 
No Significant difference

0% 10 3.1 2.470 6.100 18 
Table 6.6 – Experiment 1 newly preferred generated moves. Here, n is the number of participants; sd is the 
standard deviation and df is the degrees of freedom 

 

Note that out of all three measures, “satisfaction” (Table 6.4) was the only 

measure that allowed a comparison between the rating of the “Random” dance and the 

next generated dance that incorporated various levels of participant preferences. This was 

not necessary for the other measures of dance quality i.e. the preferences followed 

measure and the newly preferred generated moves measure, as it would not be possible to 

make such comparisons. 
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(2) Experiment 2 Statistical Result 

The same comparisons were made for Experiment 2. Recall that Experiment 2 differed 

from Experiment 1 in that it required participants to observe different initial dances, as 

opposed to the same initial dance from the robot.  Tables 6.7 – 6.9 below summarise the 

p-test data for the three measures of dance quality, which were satisfaction rating, number 

of preferences followed, and the number of newly preferred generated moves observed by 

the participant. 

Experiment 2 – Satisfaction Comparison 
Group  n Mean sd Variance df p-value Conclusion 

Random vs. 10 2.3 0.823 0.678 18 <0.001 A dance with 100% 
of preferences is 

better than a 
random dance 

100% 10 4.2 1.033 1.067 18 

Random vs. 10 2.3 0.823 0.678 18 
<0.001 A dance with 75% 

of preferences is 
better than a 

random dance 75% 10 4.5 0.707 0.5 18 

Random vs. 10 2.3 0.823 0.678 18 
<0.001 A dance with 50% 

of preferences is 
better than a 

random dance 50% 10 4.6 0.516 0.267 18 

Random vs. 10 2.3 0.823 0.678 18 
<0.001 A dance with 25% 

of preferences is 
better than a 

random dance 25% 10 4.6 0.516 0.267 18 

Random vs. 10 2.3 0.823 0.678 18 
<0.001 A dance with 0% of 

preferences is better 
than a random 

dance 
0% 10 4.7 0.483 0.233 18 

100% vs. 10 4.2 1.033 1.067 18 0.458 No Significant 
difference 75% 10 4.5 0.707 0.5 18 

100% vs. 10 4.2 1.033 1.067 18 0.288 No Significant 
difference 50% 10 4.6 0.516 0.267 18 

100% vs. 10 4.2 1.033 1.067 18 0.288 No Significant 
difference 25% 10 4.6 0.516 0.267 18 

100% vs. 10 4.2 1.033 1.067 18 0.182 No Significant 
difference 0% 10 4.7 0.483 0.233 18 
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75% vs. 10 4.5 0.707 0.5 18 0.722 No Significant 
difference 50% 10 4.6 0.516 0.267 18 

75% vs. 10 4.5 0.707 0.5 18 0.722 No Significant 
difference 25% 10 4.6 0.516 0.267 18 

75% vs. 10 4.5 0.707 0.5 18 0.470 No Significant 
difference 0% 10 4.7 0.483 0.233 18 

50% vs. 10 4.6 0.516 0.267 18 1.00 No Significant 
difference 25% 10 4.6 0.516 0.267 18 

50% vs. 10 4.6 0.516 0.267 18 0.660 No Significant 
difference 0% 10 4.7 0.483 0.233 18 

25% vs. 10 4.6 0.516 0.267 18 0.660 No Significant 
difference 0% 10 4.7 0.483 0.233 18 

Table 6.7 – Experiment 2 dance satisfaction. Here, n is the number of participants; sd is the standard 
deviation and df is the degrees of freedom 
 

 
Experiment 2 – Preferences Followed Comparison 

Group  n Mean sd Variance df p-value Conclusion 
100% vs. 10 4.5 0.527 0.278 18 <0.001 Significant 

difference 75% 10 2.9 0.316 0.10 18 
100% vs. 10 4.5 0.527 0.278 18 <0.001 Significant 

difference 50% 10 2.0 0.471 0.222 18 
100% vs. 10 4.5 0.527 0.278 18 <0.001 Significant 

difference 25% 10 1.5 0.527 0.278 18 
100% vs. 10 4.5 0.527 0.278 18 <0.001 Significant 

difference 0% 10 1.0 0.0 0.0 18 
75% vs. 10 2.9 0.316 0.10 18 <0.001 Significant 

difference 50% 10 2.0 0.471 0.222 18 
75% vs. 10 2.9 0.316 0.10 18 <0.001 Significant 

difference 25% 10 1.5 0.527 0.278 18 
75% vs. 10 2.9 0.316 0.10 18 <0.001 Significant 

difference 0% 10 1.0 0.0 0.0 18 
50% vs. 10 2.0 0.471 0.222 18 0.038 Significant 

difference 25% 10 1.5 0.527 0.278 18 
50% vs. 10 2.0 0.471 0.222 18 <0.001 Significant 

difference 0% 10 1.0 0.0 0.0 18 
25% vs. 10 1.5 0.527 0.278 18 0.008 Significant 

difference 0% 10 1.0 0.0 0.0 18 
Table 6.8 – Experiment 2 dance preferences followed. Here, n is the number of participants; sd is the 
standard deviation and df is the degrees of freedom 
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Experiment 2 – Newly Preferred Generated Moves Comparison 
Group  n Mean sd Variance df p-value Conclusion 

100% vs. 10 14.9 8.412 70.767 18 0.006 
Significant difference 

75% 10 36.4 20.173 406.933 18 
100% vs. 10 14.9 8.412 70.767 18 <0.001 

Significant difference 
50% 10 47.3 22.301 497.344 18 

100% vs. 10 14.9 8.412 70.767 18 <0.001 
Significant difference 

25% 10 65.90 21.429 459.211 18 
100% vs. 10 14.9 8.412 70.767 18 <0.001 

Significant difference 
0% 10 93.40 14.630 214.044 18 

75% vs. 10 36.4 20.173 406.933 18 0.267 
No Significant difference 

50% 10 47.3 22.301 497.344 18 
75% vs. 10 36.4 20.173 406.933 18 0.005 

Significant difference 
25% 10 65.90 21.429 459.211 18 

75% vs. 10 36.4 20.173 406.933 18 <0.001 
Significant difference 

0% 10 93.40 14.630 214.044 18 
50% vs. 10 47.3 22.301 497.344 18 0.073 

No Significant difference 
25% 10 65.90 21.429 459.211 18 

50% vs. 10 47.3 22.301 497.344 18 <0.001 
Significant difference 

0% 10 93.40 14.630 214.044 18 
25% vs. 10 65.90 21.429 459.211 18 0.004 

Significant difference 
0% 10 93.40 14.630 214.044 18 

Table 6.9 – Experiment 2 newly preferred generated moves. Here, n is the number of participants; sd is the 
standard deviation and df is the degrees of freedom 

 

Comparing Experiment 1 and Experiment 2, the results show a clear difference. 

We see that the implementation of the proposed algorithm does confirm that a dance will 

improve in terms of satisfaction and newly perceived combinations, when participants 

observe different dances (Experiment 2) compared to selecting their preferences from the 

same initial dance (Experiment 1). On the other hand, the results from Experiment 1 

show that a dance improves as more of the participant’s own feedback is incorporated 

into the subsequent dances.  
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6.3.2. Experiment 3: Results & Analysis 

In Experiment 3, participants were required to provide the number of newly generated 

moves they preferred and did not prefer for each dance as a measure to determine the 

robot’s performance. The responses for each dance were averaged and the results can be 

seen below in Figure 6.12. 

 

From Figure 6.12, we see that as the number of trainers increased from zero (i.e. a 

new random dance) to two (i.e. Participants B & C Dance), the number of preferred 

moves also increased.  This suggested that having feedback from two people produced a 

better dance (that is, a dance with more preferred moves observed by an independent 

observer) than having no feedback or having feedback from only one person (Participant 

B dance).  Movements that were not preferred on the other hand were almost the same. 

Although this was initial result showing the increased speed of learning with increasing 

trainer preferences, the similarity in values of movements that were not preferred, 

suggested that having observers identify movements that they did not prefer may not have 
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Figure 6.12 – Average score number of newly preferred combinations in Experiment 3 
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been as effective a technique as having them identify moves they did prefer. 

Nevertheless, the result did suggest that given an increase in trainers (from zero to two), 

the number of preferred newly generated dance combinations would increase. 

For Experiment 3, the increase in quality of the robot’s dance was as a result of 

increasing the number of trainers, beginning with no trainers to two trainers. This 

experiment provides evidence to suggest that a robot’s dance performance could be 

improved when it is adapted to the preferences of either a single participant or at most 

two participants. To measure this statistically, three research questions were asked for 

this experiment. The questions and their respective hypotheses were as follows: 

 
1. Does learning increase with one trainer? 

Hypothesis: There is a significant difference in learning between no training 
and 1 trainer. 

 
2. Does learning increase with two trainers? 

Hypothesis: There is a significant difference in learning between no training 
and 2 trainers. 
 

3. Does learning increase from one trainer to two trainers? 
Hypothesis: There is a significant difference in learning between 1 trainer 
and 2 trainers. 
 

Again, the 2-tailed t-test approach was used to compare the dances at a 95% 

confidence level. Table 6.10 below summarises the statistical results obtained for the 

above research questions.  
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For the first and second research questions, the result for non-preferred moves did 

not show a significant difference between the untrained (random dance) and trained 

dances supporting the null hypothesis that there was no significant difference in learning.  

However, preferred moves did show a significant difference, supporting the hypothesis 

that a significant difference did occur in learning.  

Overall, the statistical questions between the first and second research question 

suggests that some learning did occur with one trainer and two trainers, but not enough to 

be considered significant. For the third research question on the other hand, the result for 

both non-preferred moves and preferred moves did not show a significant difference 

Research 
Question 

Dance Type 
Preference 
Category 

Mean 
Standard 
Deviation 

Variance p-value Conclusion 

1. 

Does learning 
increase with 1 

trainer? 

Random 
Dance 

 
vs. 

 
One Trainer 

Dance 

Preferred 
moves 

34.65 13.901 193.225 
0.029 

Significant 
difference 55.5 23.97 574.5 

Non-Preferred 
moves 

20.5 18.68 348.94 
0.158 

NO 
Significant 
difference 31.2 13.36 178.4 

2. 

Does learning 
increase with 2 

trainers? 

Random 
Dance 

 
vs. 

 
Two Trainer 

Dance 

Preferred 
moves 

34.65 13.901 193.225 
0.005 

Significant 
difference 68.7 30.247 914.9 

Non-Preferred 
moves 

20.5 18.68 348.94 
0.473 

NO 
Significant 
difference 25.2 7.9 62.4 

3. 

Does learning 
increase from 
1 trainer to 2 

trainers? 

One Trainer 
Dance 

 
vs. 

 
Two Trainer 

Dance 

Preferred 
moves 

55.5 23.97 574.5 
0.294 

NO 
Significant 
difference 68.7 30.247 914.9 

Non-Preferred 
moves 

31.2 13.36 178.4 
0.23 

NO 
Significant 
difference 25.2 7.9 62.4 

 Table 6.10 – Research questions and statistical result for Experiment 3. Here, the top row of statistical data for each 
preference category is for the top dance type group being compared for each research question. 
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between the one trainer dance and the two trainer dance supporting the null hypothesis 

that there was no significant difference in learning. 

What is interesting here is that there was no significant improvement in learning 

between one and two trainers when one might expect that there would be. There are two 

reasons to this. The first reason being that, many of the actions performed in the one 

trainer dance could have been repeated, in the two trainer dance, depending on how 

favourable they were to the participants, thus, reducing satisfaction levels. Second, the 

same participants were used in this experiment as for Experiments 1 and 2, and therefore 

there was a good chance that they had seen some of the combinations in other dances (in 

Experiments 1 and 2), which would have affected the results in this way. More repeats of 

this experiment with more (and/ or different) participants are necessary to know for sure. 

 It can be simply concluded that increasing the number of training improves the 

results. The optimum number of trainers is to be determined. However, in general, the 

results suggest that training with at most two trainers produced better learning than no 

training at all.  This also suggests that learning occurred faster if the feedbacks from at 

most two trainers were combined, although it would be more interesting to know as 

further research, if by increasing the number of trainers, learning would continue to 

increase or not. 

 

6.4. Summary 

The results in this stage of the robot’s development are encouraging and justify the need 

for human feedback to improve the robot’s dancing. From Experiment 1, we saw that the 

quality of the dance reduced as less of the participant’s preferences were incorporated, 
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and in all subsequent dances observed after the initial random dance, there was 

improvement. In Experiment 2, the quality of the dance improved as a result of the 

incorporation of another participants’ preferences. In Experiment 3 on the other hand, 

when an independent observer observed the dances of 1 and 2 trainers, compared to a 

newly generated random dance, there was improvement in the dances in terms of new 

dance combinations suggesting that having two trainers produces a more interesting 

dance than 1 trainer or no trainers at all. 

The results suggest that training with single or multiple (at most two) trainers 

(excluding the preferences of an independent observer) produces improvement in the 

robot’s dancing than no training at all. Furthermore, combining the preferences of 

participants who have observed different dances also improves the robot’s dance. 

However, it would be interesting to explore dances that have been adapted to the 

preferences of professional dancers and choreographers. Nevertheless, the learning 

achieved in this chapter and from the previous chapters in learning to dance to the beat 

and generating dance, help to form an introductory framework to make a robot learn to 

dance. 
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Chapter 7 
Concluding Remarks & Future Work 

 

This thesis presents a framework that addresses three necessary stages of development for 

generating robot dances. The stages are: learning desirable dance behaviours; adapting 

dance motions to human preferences, and the ability to demonstrate autonomous and 

creative behaviour in exploring dance movements. This chapter highlights how these 

stages were addressed and the results obtained. Suggestions for future research directions 

in this research are also given. 

 

7.1. Thesis Achievements 

The idea of robots dancing is a recent area of study and has been explored by researchers 

in several ways. The typical approach to robot dance is to pre-program a robot with a 

collection of dance motions that are either choreographed to specific music signals, or 

can be randomly selected, synchronised to musical rhythms and dynamics. Other 

approaches include the direct mimicking of human dance motions, and applications that 

allow trainers to generate different dance patterns for a robot. All these approaches have 

proved successful. However, they limit the robot’s ability to demonstrate advanced 

autonomous and creative dance motions, which are necessary to maintain human interest, 

reducing human input and social interaction. For example, most robots do not have any 

learning ability and so can only demonstrate pre-defined behaviour in their dance, whilst 

others can adapt their dance motions to the music, but cannot adapt to human feedback. 

To address these limitations, the aim of this research was to develop a framework (robot 

dance system) that would advance a robot’s dance to firstly learn the desirable dance 
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behaviours to perform, and use these behaviours to generate its own dance steps. The 

robot would then receive and evaluate human feedback and adapt its dance to the 

observer’s preferences. The main contribution of the research is an integrated system that 

incorporates the robot’s previous experience and learnt behaviours, whilst still being able 

to adapt to human input, synchronised to music, based on traditional reinforcement 

learning.  

 The traditional Sarsa algorithm and Softmax algorithm from reinforcement 

learning, was used as a solution to make a robot learn using immediate and delayed 

rewards, to perform dance motions to musical beats. The robot was then given the ability 

to generate its own primitive dance motions. Since the robot did not know which dance 

motions were desirable, the robot had to undergo further learning. The robot would learn 

the desired dance motions to perform, based on fundamental attributes of dance described 

in Chapter 2, and structure the dance motions into chains of sequences, that when 

combined, actually produce a dance. With this approach, the robot did not have to rely on 

the trainer to provide it with initial dance steps to perform. This enabled the robot to 

explore and generate its own dance motions and sequences, which it could perform in 

seemly autonomous ways. Computational and empirical results were obtained to evaluate 

the robot’s learning and dance improvement respectively. 

A number of experiments were conducted to determine the robot’s dance 

improvement. Videos of the robots dances were shown to participants. Participants were 

requested to rate the dances using a questionnaire. The resulting work showed that 

increasing the number of joints in the robots dance and incorporating attributes of dance 

such as Opposite, Symmetry and Formation movements do perceptually improve the 
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robot’s dance.  The robot’s ability was then further developed to be able to retrieve the 

preferences of human feedback in real time and change its dance to suit their preferences. 

This research has demonstrated that a basic repertoire of dance motions can be 

combined in a structured way, similar to how humans may organise dance behaviours 

using reinforcement learning and that it’s possible to adapt a robot dance to the 

preferences of human observers. With this idea, the research has found that when a robot 

dance incorporates human-like movements that appear to be structured, the dance is 

considered to significantly improve, but even more so when human preferences are 

included in the dance. 

During the course of this research, the following publications were made:  

 
 Tholley, I.S., Meng, Q. & Chung, P.W.H., (2009). Towards a learning framework 

for dancing robots. IEEE International Conference on Control and Automation 

(ICCA), Christchurch, New Zealand, 9-11 December 2009, pp.1581-1586. 

 Tholley, I.S., Meng, Q. & Chung, P.W.H., (2012). Robot Dancing: What Makes a 

Dance? Advanced Materials Research, Vol. 403-408, pp. 4901-4909. Available 

at: www.scientific.net 

 

7.2. Future Work 

Due to the infancy of this research area, there are a number of potential future directions 

for dancing robots. Significantly, all the work presented in this thesis can be developed to 

more advanced ideas. To begin with, the proposed dancing framework only took into 

consideration the rhythm (beats) of a musical signal, and not the dynamics within the 

music or the structure of the music. A logical advancement would therefore be to 
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consider other music features such as tempo and amplitude. This would not only give the 

robot the ability to follow the music, but also the idea of the robot generating 

choreographed dance patterns based on the musical structure, or demonstrating emotion 

in its dance based on the dynamics of the music. 

 With reference to the experiments carried out in this research, more experiments 

could be conducted to answer some of the questions derived from this research. For 

example, it was discovered that it’s possible to model fundamental features of dance in 

the robot that was used in this project, but is this the same for other robots, both 

humanoid and non-humanoid in appearance? In Chapter 6, the robot’s dancing improved 

as it was trained by one and two trainers, but would this be the same for more than two 

trainers? These questions are not answered in this thesis and further experiments would 

be required to answer them.  

In this research, traditional reinforcement learning was adopted for learning and 

knowledge acquisition. Although it has proven successful in this research, it is also worth 

considering other methods that could perhaps be combined with this learning approach 

such as function approximators, and learning algorithms such as Neutral Networks and 

Genetic Algorithms for comparison. 

Moving away from the implementations of this research into completely new 

ideas, an ambitious future consideration is the idea of robots dancing with other dancers 

(i.e. robots or human partners) to increase social interaction. This thesis focused on 

humans being the spectator, but social interaction is also concerned with how objects 

relate to each other. Imitation is currently the most successful implementation of robot 

dancing. 
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A limitation of the imitation approach is that currently the dancing robots do not 

use the dance motions they have perceived to form their own movements. Adding a 

visual feedback system combined with artificial learning algorithms to make robots learn 

from other dancers, be it robots or human, could provide a complete novel way for 

creating robots that dance. Dancing robots could even go one step further and take part in 

dance competitions and talent shows mimicking TV dance programs such as “Strictly 

Come Dancing”, or artists such as Fred Astaire and Ginger Rodgers to create music with 

their dancing (like tap dancing), whereby rhythmic sounds and patterns are made with 

dance movements. 
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