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Abstract

Gestures consist of movements of body parts and are a mean of communication that conveys
information or intentions to an observer. Therefore, they can be effectively used in human-robot
interaction, or in general in human-machine interaction, as a way for a robot or a machine to
infer a meaning, e.g., a person’s particular intention or state. In order for people to intuitively
use gestures and understand robot gestures, it is necessary to define mappings between gestures
and their associated meanings – a gesture vocabulary. The task is to determine human and robot
gesture vocabularies. In the former case, the vocabulary defines which gestures a group of people
would intuitively use to convey information, while in the latter case, it displays which robot gestures
are deemed as fitting for a particular meaning. Once these vocabularies are defined, their effective
use depends on techniques for gesture recognition, which considers classification of body motion
into discrete gesture classes, relying on pattern recognition and machine learning.

This thesis addresses both research areas, presenting development of gesture vocabularies as
well as gesture recognition techniques, focusing on hand and arm gestures. Prior to the gesture
vocabularies and recognition, attentional models for humanoid robots were developed as a prereq-
uisite for human-robot interaction and a precursor to gesture recognition. A method for defining
gesture vocabularies for humans and robots, based on user observations and surveys, is explained
and experimental results are presented. As a result of the robot gesture vocabulary experiment, an
evolutionary-based approach for refinement of robot gestures is introduced, based on interactive
genetic algorithms. A robust and well-performing gesture recognition algorithm based on dynamic
time warping has been developed. Most importantly, it employs one-shot learning, meaning that it
can be trained using a low number of training samples and employed in real-life scenarios, lowering
the effect of environmental constraints such as relative positions and orientations of the sensor and
the person, and gesture features. Finally, an approach for learning a relation between self-motion
and pointing gestures is presented.





Zusammenfassung

Gesten sind Bewegungen von Körperteilen, und ein Kommunikationsweg, der einem Betrachter
Informationen oder Absichten übermittelt. Daher können sie effektiv in der Mensch-Roboter-
Interaktion, oder in der Mensch-Maschine-Interaktion allgemein, verwendet werden. Sie stellen
eine Möglichkeit für einen Roboter oder eine Maschine dar, um eine Bedeutung abzuleiten, zum
Beispiel den Zustand oder die Absicht einer Person. Um Gesten intuitiv benutzen zukönnen und
Gesten, die von Robotern ausgeführt werden, zu verstehen, ist es notwendig, Zuordnungen zwi-
schen Gesten und den damit verbundenen Bedeutungen zu definieren – ein Gestenvokabular. Es
geht darum, Mensch- und Robotergestenvokabulare festzulegen. Im ersten Fall definiert das Voka-
bular welche Gesten ein Personenkreis intuitiv verwendet, um Informationen zu übermitteln. Im
zweiten Fall zeigt es, welche Robotergesten zu welcher Bedeutung passen. Sind diese Vokabulare
einmal definiert, hängt ihre effektive und intuitive Benutzung von Gestenerkennung ab, das heißt
von der Klassifizierung der Körperbewegung in diskrete Gestenklassen durch die Verwendung von
Mustererkennung und maschinellem Lernen.

Die vorliegende Dissertation befasst sich mit beiden Forschungsbereichen, das heißt mit der
Entwicklung von Gestenvokabularen sowie Gestenerkennungstechniken, wobei der Fokus auf Hand-
und Armgesten liegt. Als eine Voraussetzung für die intuitive Mensch-Roboter-Interaktion wird zu-
nächst ein Aufmerksamkeitsmodell für humanoide Roboter entwickelt. Danach wird ein Verfahren
für die Festlegung von Mensch- und Roboter-Gestenvokabulare vorgelegt, das auf Beobachtungen
von Benutzern und Umfragen beruht. Anschliessend werden experimentelle Ergebnisse vorgestellt.
Eine Methode zur Verfeinerung der Robotergesten wird entwickelt, die auf interaktiven genetischen
Algorithmen basiert. Ein robuster und performanter Gestenerkennungsalgorithmus wird entwickelt,
der auf Dynamic Time Warping (dynamischer Zeitverzerrung) basiert, und sich durch die Verwen-
dung von One-Shot-Learning auszeichnet, das heißt durch die Verwendung einer geringen Anzahl
von Trainingsgesten. Der Algorithmus kann in realen Szenarien verwendet werden, womit er den
Einfluss von Umweltbedingungen, zum Beispiel die relativen Positionen und Orientierungen des
Sensors und der Person, sowie Gesteneigenschaften, senkt. Schließlich wird eine Methode für das
Lernen der Beziehungen zwischen Selbstbewegung und Zeigegesten vorgestellt.
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Chapter 1

Introduction

1.1 Background

Humans rely on various communication methods, such as speech and gestures. Traditionally,
communication channels in human-machine interaction do not fully overlap with those used in
interpersonal communication, which can result in decrease of system’s intuitiveness and increase
in perceived workload during the interaction. Recently, a shift towards more natural and intuitive
ways of interaction is observed, such as in use of natural language processing and speech synthesis
for issuing commands and providing feedback, respectively.

Another intuitive form of communication are gestures. A gesture is defined as a movement of
body parts, most commonly hands and head, with the goal of communicating a particular message
(Mitra and Acharya, 2007). They are observed in early development of infants, such as imperative
and declarative pointing to specify a particularly interesting point in their environment, prior to
development of speech. Furthermore, there is evidence for gesturing in other primates (Tomasello
et al., 1997; Pika et al., 2003; Liebal et al., 2006). Due to their ubiquitous use in interpersonal
interaction, they could be employed as a natural and intuitive way in human-machine, and in
particular in human-robot interaction.

A different form of gestures is already used in human-computer interaction, where a gesture
represents motions performed with fingers on touch-sensitive surfaces. However, the focus of this
thesis is on use of gestures in human-robot interaction, focusing on the use of gestures that occur
naturally in interpersonal interaction. Use of gestures in human-robot interaction is investigated
through three, inter-connected areas.

The first area considers methods of developing gesture vocabularies, mappings between gestures
and their associated meanings . There are human and robot gesture vocabularies, and partial
overlap between those can appear. Gesture vocabularies depend on use-case scenario and features
of the people that will interact with the robot, as well as on a morphology of the robot, which
defines which gestures can be performed and correctly recognized by a human observer.

The second area deals with gesture recognition. Gesture recognition is a research area within
machine learning and pattern recognition, covering detection, segmentation and recognition of
gestures in human motion. Its main application is in human-computer, and later in human-
robot interaction, as a way to provide an intuitive interface. In human-computer interaction,
communication with gestures was unidirectional, as computers do not posses required capacities
to gesture. On the other side, some robots posses limbs which can be used to generate gestures, in
order to convey a message in a more intuitive way to a human listener. This poses an open question
of defining which gestures should the robot use and how should they be designed. As a result,
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there is a need for a comprehensive study on the use of gestures in human-robot interaction, taking
in consideration various gesture-related aspects, with the goal of having an intuitive interaction,
which defines the main topic of this thesis.

The third area is gesture synthesis, which comprises of methods of how and when should a
robot produce a gesture. It includes generative models controlling when a robot gestures, which
can be related to robot’s particular state, or what is it currently saying. However, gesture synthesis
is partially out of the scope of this work.

1.2 Objectives
Having in mind above outlined areas in gesture use in human-robot interaction, there are three
main research questions that are addressed by the thesis:

• How to develop gesture vocabularies, that is sets of gestures mapped to their associated
meanings for a particular interaction scenario?

• How can gestures be learned, recognized and reproduced?

• How can gestures be disambiguated?

Having in mind that gestures differ between different groups of people, effective methods are
needed for development of mappings between gestures and actions they represent, so called gesture
vocabularies. Identified gestures need to be analyzed to see whether different gesture classes from
a vocabulary can be distinguished and successfully recognized.

Following from the previous, the aims of the thesis are:

• Study gestures that occur in interpersonal interactions and introduce an effective method for
development of gesture vocabularies,

• Develop a system for gesture recognition and disambiguation,

– Develop an algorithm for dynamic gesture recognition,

– Propose an approach for gesture disambiguation, which can follow the recognition phase.

1.3 Methodology
Use of gestures in human-robot interaction requires a multifaceted approach, as represented with
the flow diagram in Figure 1.1. While some gestures will be used across different scenarios, some
will be specific for a particular scenario. Therefore, the first part of the process is to define a
use-case scenario. For example, the use-case scenario used here is the robot waiter scenario, which
describes the interaction occurring between a customer and a waiter in a bar or a restaurant. A
set of actions, both user-initiated, such as asking for a menu, and robot-initiated, such as offering
a suggestion, can be extracted from the scenario. The gestures coupled with these actions form a
gesture vocabulary.

There is more than one approach to selecting gestures to represent the actions. A simple
way would be to have a system developer to design gestures and predefine the mappings between
gestures and actions. However, with this approach the user is taken out of the loop. A better way
would be to look at recorded instances of extracted actions and use the gestures that occur within
the recordings. Alternatively, users could be asked to rank and select gestures from a defined
set of gestures, or a sample of the user group could be surveyed to find out which gestures they
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Figure 1.1: Flow diagram of the procedure for using gestures in human-robot interaction
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associate with the actions. The latter approach is used in this work. Firstly, it directly interacts
with persons who would interact with the robot. This direct approach might provide gestures
that better represent gestures that would be used. A disadvantage of this approach is that it is
probable that the resulting mapping between gestures and actions will be many-to-many. However,
depending on the particular case, this might not be an issue, if surrounding context is taken into
account.

Analysis of the results of the user studies performed for development of human and robot gesture
vocabularies drives the further part of the process. In case of gestures appearing in the robot
gesture vocabulary (RGV), the results of the study might not be satisfactory – the participants
might not see the gestures as good enough. In this case an interactive procedure can be applied
for improvement of robot gestures. Interactive genetic algorithm is an appropriate choice, as it can
be used in cases where aesthetic qualities are being used as a rating. Gestures appearing in human
gesture vocabulary (HGV) drive the development of the gesture recognition and disambiguation
systems. In some cases, the vocabulary will contain static gestures, or poses. However, the focus
in this work is on the recognition of dynamic gestures.

There are prior methods for recognition of dynamic gestures. However, there was lack of focus
on application of gesture recognition approaches in real-life cases. Some of the issues were relying
on large training datasets or ignoring some of the environmental issues. Therefore, the approach
taken here is based on one-shot learning, where learning algorithms rely on small training datasets.
Furthermore, in order to alleviate some of the environmental factors, a pre-processing pipeline was
envisioned to improve correct recognition under different situations. The disadvantage of one-shot
learning approaches is that they are highly dependent on correct performance of training samples.
To evaluate the gesture recognition algorithm, training and test data was collected.

Some other areas are studied in this thesis. Namely, the effect of attention models on percep-
tion of the robot was studied in a user survey. This is identified as one of the prerequisites for
natural human-robot interaction. Godspeed questionnaire was selected as a standardized method
for evaluation of robot’s appearance and behavior. This can show how particular robot’s behavior
affect how the others perceive it. An interesting question arose during the research of gesture
recognition. Namely, it would be interesting to see how can relation between gestures and actions
be learned. Two experiments were performed to see how can gestures lead to action execution.

1.4 Contribution

The main contributions of the work presented in the thesis are:

• An approach for development of human and robot gesture vocabularies based on user studies,
thus increasing the intuitiveness of gestures.

– Human and robot gesture vocabularies were developed for an example robot waiter
scenario.

• An approach based on interactive genetic algorithms for improvement of robot gestures ac-
cording to particular aesthetic preferences of a user or a group of users.

• System for gesture recognition and disambiguation focused on real-life use.

– One-shot learning algorithm for gesture recognition requires very low number of gesture
samples for training and is highly robust to environmental interferences, such as position
and orientation of the person relative to the robot, gesture location, size of the person,
and therefore the size of the gesture, and the speed of performed gestures.
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1.5 Structure

The rest of the thesis is organized as follows. Chapter 2 presents a general literal review on what
gestures are and how they are defined in literature, as well as present gesture taxonomies in gesture
studies. Furthermore, the concept of a gesture space, in which the gesturing occurs, is explained,
showing that gestures are not limited to a particular location in gesture space across different
persons. Chapter 3 introduces the notion of attentional models and presents an implementation of
an attentional model for a humanoid robot, as a prerequisite for intuitive human-robot interaction.
The effect of different behaviors on the way others perceive the robot was tested to identify the
influence of particular characteristics of robot’s behaviors. Chapter 4 introduces the notion of
gesture vocabularies and how they can be developed for both humans and robots. The procedure is
applied on development of a human and a robot gesture vocabulary for a robot-waiter interaction
scenario. Chapter 5 presents the gesture recognition and disambiguation framework. Firstly,
development of a robust gesture recognition algorithm is presented, focusing on its use in real
world scenarios. Most importantly, the algorithm applies one-shot learning, which means that the
training is performed using low number of training samples. This is followed by presentation of
a theoretical concept for gesture disambiguation. The second part of the chapter introduces an
approach for learning the relation between visual sensory input and motor commands, using the
example of pointing gestures. Finally, Chapter 6 discusses the obtained results, highlights main
accomplishments, what are the important outcomes and what could be possible future research
directions based on the presented results.

Due to the diverse research directions, chapters 3, 4 and 5 begin with overview sections, outlining
what is presented in the chapter, followed by background sections, which cover the literature reviews
in their respective fields, instead of having a separate chapter devoted to the literature review.

1.6 Publications

Following publications resulted from the work presented in this thesis.
Journal articles
Related to Chapter 3:

• Schillaci, G., Bodiroža, S. and Hafner, V. V. (2012), Evaluating the Effect of Saliency
Detection and Attention Manipulation in Human-Robot Interaction, International Journal
of Social Robotics, DOI: 10.1007/s12369-012-0174-7.
All authors actively participated in the design and implementation of the experiments. Pointing algorithm was

developed by Guido Schillaci.

Peer-reviewed conference proceedings
Related to Chapter 3:

• Bodiroza, S., Schillaci, G. and Hafner, V.V. (2011), Robot Ego-sphere: An Approach for
Saliency Detection and Attention Manipulation in Humanoid Robots for Intuitive Interac-
tion, in Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2011), Bled, Slovenia.

Related to Chapter 4:

• Bodiroža, S., Stern, H. I., Edan Y. (2012), Dynamic Gesture Vocabulary Design for Intuitive
Human-Robot Dialog, in Proceedings of the 7th ACM/IEEE International Conference on
Human-Robot Interaction (HRI 2012), Boston, USA.
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Related to Chapter 5:

• Bodiroža, S., Hafner, V. V. (2014), GRaD: Gesture Recognition and Disambiguation Frame-
work for Unconstrained, Real-Life Scenarios, in Workshop Proceedings of 13th International
Conference on Intelligent Autonomous Systems (IAS-13), pp. 347-353, Padua, Italy.

• Jevtić, A., Doisy, G., Bodiroža, S., Edan, Y., and Hafner, V. V. (2014), Human-Robot
Interaction through 3D Vision and Force Control, in Proceedings of the 9th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI 2014), p. 102, Bielefeld, Germany.
Guillaume Doisy and Aleksandar Jevtić worked on person following and pointing algorithms. Aleksandar Jevtić

integrated the separate parts into the final demo.

• Bodiroža, S., Jevtić, A., Lara, B. and Hafner, V. V. (2013), Learning the Relation of Motion
Control and Gestures Through Self-Exploration, in Proceedings of the Robotics Challenges
and Vision Workshop, Robotics: Science and Systems Conference (RSS 2013), Berlin, Ger-
many.

• Bodiroža, S., Doisy, G. and Hafner, V. V. (2013), Position-Invariant, Real-Time Gesture
Recognition Based on Dynamic Time Warping, in Proceedings of the 8th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI 2013), Tokyo, Japan.
Guillaume Doisy provided support with the transformation matrices.

• Doisy, G., Jevtić, A. and Bodiroža, S. (2013), Spatially Unconstrained, Gesture-Based
Human-Robot Interaction, in Proceedings of the 8th ACM/IEEE International Conference
on Human-Robot Interaction (HRI 2013), Tokyo, Japan.
Guillaume Doisy and Aleksandar Jevtić worked on person tracking, position estimation and following algorithms.

Peer-reviewed conference presentations
Related to Chapter 4:

• Bodiroža, S., Stern, H. I., Hafner, V. V., Edan, Y. (2012), A Diachronic Approach for
Human-Humanoid Discourse, presented at the 5th Conference of International Society for
Gesture Studies, Lund, Sweden. abstract

Related to Chapter 5:

• Bodiroža, S., Jevtić, A., Lara, B. and Hafner, V. V. (2013), Learning Motion Control for
Guiding a Robot using Gestures, presented at the 4th Israeli Conference on Robotics, Tel
Aviv, Israel.

• Doisy, G., Jevtić, A., Bodiroža, S. and Edan, Y. (2013), Spatially Unconstrained Natural
Interface for Controlling a Mobile Robot, presented at the 4th Israeli Conference on Robotics,
Tel Aviv, Israel.
Guillaume Doisy and Aleksandar Jevtić worked on person tracking, position estimation and following algorithms.

Following publications were published based on the results not related to the work presented
in the thesis:

Peer-reviewed conference proceedings

• Kajić, I., Schillaci, G., Bodiroža, S. and Hafner, V. V. (2014), Learning Hand-Eye Coordina-
tion for a Humanoid Robot Using SOMs, in Proceedings of the 9th ACM/IEEE International
Conference on Human-Robot Interaction (HRI 2014), pp. 192-193, Bielefeld, Germany.
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• Kajić, I., Schillaci, G., Bodiroža, S. and Hafner, V.V. (2014), A Biologically Inspired Model
for Coding Sensorimotor Experience Leading to the Development of Pointing Behaviour in
a Humanoid Robot, Workshop on “HRI: a bridge between Robotics and Neuroscience” at
HRI-2014, Bielefeld, Germany.

Code and anonymous datasets resulting from the work on this thesis are available upon request.



Chapter 2

Defining Gestures

In the scope of human-machine interaction, Mitra and Acharya (2007) define gestures as “expressive,
meaningful body motions involving physical movements of the fingers, hands, arms, head, face, or
body with the intent of conveying meaningful information, or interacting with the environment.”
Due to their impact in the communication, the work presented here focuses on arm gestures with
intent of information transfer.

A typical gesture taxonomy would include manipulative and communicative gestures, where
the latter can be further divided into symbols, which can be referential or modalizing, and acts,
which can be mimetic or deictic (Quek, 1995). Communicative gestures are of higher interest with
regards to the aspects of human-robot and human-computer interaction, and are therefore the
main target for recognition and disambiguation.

From communicative stance, gestures can be observed within a narrower frame. Kendon (1986)
defined a gesture as a movement of body, as already stated above, but with a clear goal of com-
municating a thought or emotional state. He specifies that gestures are autonomous, which can
appear without speech, or gesticulation, appearing together with speech. McNeill (1986) defines a
gesture as “any spontaneous body movement during speech (usually of the hands) not performed
for a practical purpose, i.e., not a manipulation of the physical environment to bring about some
change of state.” Gesture movements can be observed as a hierarchy, as presented by McNeill et al.
(1990) (see Figure 2.1).

Arm use and body posture refer to adoption of particular body postures and arm usage patterns.
As mentioned by McNeill et al. (1990), Kendon observed stretches where either the left or right
arm, or both arms were used, with switches in usage during the interaction. A consistent stretch
can roughly be interpreted as a “paragraph”, and a shift in usage defines a kinesic unit on this level.

Head movements can appear during a single stretch of consistent arm use and body posture.
Gesture unit is defined as the period between rests of the limbs, starting when the limbs starts

moving, and ending when the limbs return to the resting position.
A gesture phrase occurs within a gesture unit, and consists of preparation, stroke, and retrac-

tion.
Preparation refers to the movement of a limb from its rest position to a position where the

gesture begins. Pre-stroke hold may occur for a brief period before the actual stroke, after the
limb has reached its starting position in the gesture space. McNeill et al. note that the preparation
is optional, however, it is rarely omitted. The hold marks the temporary halt in the movement, but
without returning to the resting position, which would mark an end of a current gesture phrase.

Stroke is the central part of a gesture phrase and represents the meaning of the gesture, that is
the information that is being transferred to the listener. It is synchronized with linguistic segments
that may co-appear with the stroke. Additionally, the stroke is usually performed within the central
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Figure 2.1: Gesture levels, adapted from McNeill et al. (1990)

gesture space, an area bounded with waist, shoulders and arms. A post-stroke hold can occur after
the stroke, but before the retraction.

Retraction is an optional part of the gesture phrase that is performed to return active hands
and arms to their resting positions. In case the current gesture continues into another gesture, this
part may be omitted.

Preparation-hold and Stroke-hold parts represent hold of active limbs in the current pose for
a brief period of time. These two segments usually appear to compensate for desynchronization
between co-expressive spoken utterances and gestures.

The focus of the work presented here is recognition of a gesture stroke. The main assumption
made is that little information is present in the preparation and retraction, and that therefore the
stroke contains the most information of a gesture. This assumption is well supported by McNeill
et al. (1990): “While a gesture phrase cannot exist without a stroke, by definition, the other phases
are optional. [ . . . ] In this book most of our observations refer to the lowest level of the kinesic
hierarchy, and within this level, to the stroke phase. [ . . . ] The stroke is the phase that carries the
gesture content.” It directly influences the design of the recognition algorithm and of the training
samples. The recognition should be invariant to the actual starting position of the gesture (e.g.,
a resting position, or a continuation from a previous gesture). Therefore, training samples should
be prepared in such way to minimize included motion related to the preparation and retraction.

Kendon (1988) suggests gesticulation “appears as one of the resources a speaker has for convey-
ing meanings. [ . . . ] one finds that gesticulation appears to serve a very wide range of communica-
tive functions. It may be used to disambiguate potentially ambiguous words; it may be used as a
device to convey aspects of meaning the speaker’s words convey only in part, or perhaps not at
all; it may be used to complete a spoken utterance, substituting for a segment of the sentence that
which is not spoken. In many cases it is possible to see how the speaker deploys gesture together
with speech in a way that suggests that he divides the conveyance of his meaning between these
two modalities in a way that quite aptly achieves an economy of expression or a particular effect
on the recipient.”

Furthermore, Kendon (1988) argues that there is “no sharp dividing line [that] can be drawn
between spontaneous gesturing that encodes meaning in a holistic fashion and gestures which, like
so-called ‘emblems,’ are not shaped on the spur of the moment but follow an established form
within a communication community, or which, like the signs in a sign language, can be shown to
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Figure 2.2: Kendon’s continuum, adapted from McNeill et al. (1990)

be structured systematically out of recombineable elements and which do indeed refer to meaning
units of great generality, as do words.” McNeill et al. (1990) named this the “Kendon’s continuum”
(see Figure 2.2). Moving along the continuum from gesticulation toward sign languages, the co-
expressive speech declines, and the language-like properties of gestures and their formalization
increase.

Since sign languages posses certain language-like properties, in particular the standardization of
sign language signs, their meaning can be more easily obtained. On the other hand, gesticulation,
‘language-like’ gestures and emblems lack standardization, present in sign languages. Hence, the
need to define gesture vocabularies, as it was presented in Chapter 4.

With regards to the recognition task, gestures can be static or dynamic. Static gestures repre-
sent a specific body posture that is held for a certain amount of time and the meaning of the gesture
is held in the particular configuration of relevant body parts. As stated by (Stern et al., 2008),
a static gesture is indicated with a fixed position, orientation and configuration, that is having
a static posture, while a dynamic gesture is characterized with variations in position, orientation
or configuration over time. An “OK” gesture, with a thumb and an index finger forming a ring,
while the other fingers are kept extended, is an example of static gestures. On the other hand, the
meaning of dynamic gestures is encoded in the motion of some body parts. Greeting someone or
attracting someone’s attention with a waving gesture is an example of dynamic gestures. Finally,
some gestures contain both static and dynamic component, e.g., signs in sign languages.

Task of gesture recognition is to detect these intentional postures or motion and to classify them
into particular gesture classes. It has numerous applications, including sign-language for hearing-
impaired people, computer interfaces, natural and intuitive human-robot interaction, gaming in-
dustry, system remote control, among others. Various tools have been used for gesture recognition,
based on the approaches ranging from statistical modeling, computer vision and pattern recogni-
tion, image processing, connectionist systems, etc. (Mitra and Acharya, 2007).

Depth image-based sensors have opened up new possibilities in object detection and recognition.
Pixels in a depth image carry information about the object’s distance from the sensor; hence,
the image segmentation is performed taking into account distance gradients. One of the main
advantages of this technology is that it is in large part insensitive to illumination changes, which
is a major bottleneck for 2D image segmentation methods (Liu and Fujimura, 2004).

Gesture space is the area in front of the gesturing person, in which most of the gestures occur
(McNeill, 1992). It can be seen as a shallow disk, with bottom half flattened when the person is
gesturing seated. Figure 2.3 illustrates different zones of the gesture space, while Figure 2.4 displays
occurrence of different types of gestures in the gesture space, based on gesturing of six persons.
Gestures prevalently appear in the frontal plane of the body and occurrences of gestures behind
the body plane is rare. Cultural influences can affect the density of occurrence, e.g., Turkana
speakers tend to gesture more in the area around the head, compared to the European speakers
(as observed on English, French, German, Italian and Georgian speakers). In the cases presented
in Figure 2.4, iconic gestures tended to occur more in the central area (Figure 2.4a, metaphorics
in the lower central area (Figure 2.4b), deictics in the peripheral area (Figure 2.4c) and beats were
grouped in clusters, where each cluster belonged to one person and indicated their “favorite” area
for these gestures (Figure 2.4d).
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Figure 2.3: Gesture spaces (McNeill, 1992, image taken from Chapter 3)

2.1 Gesture Taxonomies in Human-Robot Interaction and
Human-Computer Interaction

This section presents gesture taxonomies described by Quek (1995), Pavlovic et al. (1997), and
Nehaniv et al. (2005).

Quek (1995) differentiated gestures into manipulative and communicative gestures, with regard
to their use in human-computer interaction. The purpose of manipulative gestures is object manip-
ulation while communicative gestures are used to transfer information. One qualitative difference
is the possibility of visual interpretation. Communicative gestures are visible, providing enough
information for their recognition. This means that occluded body parts carry no information re-
quired for interpretation. On the other hand, manipulative gestures, e.g. rotation movements of
arms while opening a valve, are usually not used for information transfer and, therefore, they might
not be fully visible and even interpretable.

Communicative gestures can be symbols and acts. Symbols are arbitrary in nature. They can
be referential or modalizing. Referential symbols refer to an object or a concept (e.g. holding the
index and the middle fingers up as a peace sign). Modalizing symbols influence how a statement is
understood (e.g. saying “Have you seen its size?” with the hands wide apart to indicate that the
object was large). Acts can be mimetic and deictic. Mimetic gestures imitate the referred object
or its use, such as holding both clenched fists together in front of the body and then pulling them
closer, as if they are pulling something with a rope. Deictic gestures are gestures that point to
the referent. They can be further classified as specific (pointing to a particular object), generic
(pointing to an object which symbolizes the whole class) and metonymic (pointing to an object to
signify some other entity related to it).
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(a) Iconics (b) Metaphorics

(c) Deictics (d) Beats

Figure 2.4: Frequency of gestures according to their type (McNeill, 1992, image taken from Chap-
ter 3).

Pavlovic et al. (1997) extends the taxonomy by Quek to include unintentional hand movements,
such as rubbing hair with the hand, that do not carry any useful information.

Nehaniv et al. (2005) present a gesture taxonomy for application of gestures in human-robot
interaction, including irrelevant or manipulative gestures, side effect of expressive behavior, sym-
bolic gestures, interactional gestures and referential gestures. Irrelevant and manipulative gestures
correspond to unintentional hand movements and manipulative gestures, as used by Pavlovic et al.
(1997). Side effects of expressive behavior represent gestures that can be observed during speech,
with no particular information transfer role. Symbols are defined in a similar way as they are de-
fined by Quek (1995). Interactional gestures are used to mediate the interaction between partners.
Referential gestures are similar to deictic gestures, as defined by Quek (1995).
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The goal of manipulative gestures is usually not information transfer, therefore the focus of
this work is on communicative gestures, according to the taxonomy presented by Quek (1995).
Considering classification by Nehaniv et al. (2005), the focus of the work is on symbolic and
interactional gestures. Furthermore, the focus is on dynamic uni- or bi-handed gestures, and
partially on static gestures, by including dynamic information contained in the preparatory and
return movements. While the hand pose provides relevant information for certain gestures (e.g.,
the mentioned “peace” sign, or a dynamic gesture together with a particular hand posture crucial
for correct recognition), the framework does not take it into account.

Deictic gestures represent a special case. The primary goal of deictic gestures is to manipulate
the attention of an interacting partner to an object or an event of interest, as reported by Masa-
taka (2003). The proposed framework does not handle pointing gestures. However, they have a
characteristic signature, containing of the preparatory movement, the hold, during which the finger
is still and pointing to a location of interest, and the retraction, taking the hand to the resting
position, or preparing for the next gesture. The framework could be extended to include additional
branch for processing of pointing gestures, in case they are detected based on their signature.

Finally, the choice of these classes is supported by the analysis presented by McNeill (1992).
He presented a frequency of gesture types during narration. In summary, a third of narrational
clauses were accompanied with iconic gestures, while another third were accompanied with beats.
A quarter of the clauses did not have co-occurring gestures, and a smaller part were occurrences
of metaphorics and deictics.



Chapter 3

Attention Systems for Human-Robot
Interaction

3.1 Overview

Evidence from developmental psychology studies show that the development of skills to understand,
manipulate and coordinate attentional behavior is a requirement for imitation learning and social
cognition. Pointing is a way for manipulating the attention of someone else. It is not yet clear
whether this behavior is innate, learned by imitation, or if it results from reaching behaviors, in
its first developmental stage. Recognizing and performing pointing gestures is very important for
being able to share attention with another person (Kaplan and Hafner, 2006). In this chapter,
an implementation of an attentional model for a humanoid robot is presented, employing both a
mechanism for saliency detection and a mechanism for pointing gesture generation (Hafner and
Schillaci, 2011).

Moreover, the ability to distinguish between animate and inanimate objects (implemented here
by a motion detection filter) and whether this object is a person to interact with, as well as
the ability to detect and follow eye gaze (which requires the recognition of faces) are essential
prerequisites in the development of a Theory of Mind – or Mindreading (Baron-Cohen, 2001) –
the ability to understand the motivations and desires of other people which identifies the clear
distinction between us, humans, and other animals.

The robot is also equipped with something similar to human focused attention. It is not hard to
imagine an everyday situation during which a person focuses their attention on a certain aspect of
the environment, e.g. talking to someone, reading an interesting article or doing work. During the
time when their attention is focused on these processes, they suppress most other salient events.
This is modeled with a change from exploration to interaction phase once certain conditions have
been satisfied, and it is explained later in more detail.

Section 3.3 of the chapter presents the notion of an attentional model and prior work, and a
developed implementation of an attentional model in a humanoid robot, using an egosphere as
a model of memory representation. This attentional model enables the robot to explore its near
environment and locate and remember important detected features, such as motion and faces. Four
different behaviors were implemented in order to realize an interaction game. It was tested through
an interaction game with participants and the Godspeed questionnaire was used to measure how
the participants perceived different behaviors of the robot.

The ability to share the attention with another individual is essential for having intuitive
interaction. Two relatively simple, but important prerequisites for this, saliency detection and

14
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attention manipulation by the robot, are identified. By creating a saliency based attentional
model combined with a robot ego-sphere and by adopting attention manipulation skills, the robot
can engage in an interaction with a human and start an interaction game including objects as a
first step towards a joint attention.

An interaction experiment is proposed in which participants can physically interact with a
humanoid robot equipped with mechanisms for saliency detection and attention manipulation.
The experiment tests four combinations of activated parts of the attention system, resulting in
four different behaviors.

The aim is to identify those physical and behavioral characteristics that need to be emphasized
when implementing attentive mechanisms in robots, and to measure the user experience when
interacting with a robot equipped with attentive mechanisms.

Two techniques are adopted for evaluation of saliency detection and attention manipulation
mechanisms in human-robot interaction – user experience, measured by qualitative and quantita-
tive questions in questionnaires, and proxemics, estimated from recorded videos of the interactions.

Section 3.4 discusses the main outcomes of the work and states the main conclusions presented
in this chapter.

This chapter is partially based on work presented in Bodiroza et al. (2011), Schillaci et al.
(2013).

3.2 Background

Gestures are important in human-robot interaction, as they can enable intuitive and natural in-
teraction. However, interaction relies on the ability to share attention. Kaplan and Hafner (2006)
identified the prerequisites for joint attention. Being able to detect, locate and attend to a promi-
nent feature in environment is an important prerequisite, since every interaction relies on presence
of an agent with whom another interacts. As Kaplan and Hafner (2006) pointed out, there are
multiple open questions to development of joint attention. This chapter addresses the issue of
equipping the robot with an attentional model that will enable it to explore its immediate envi-
ronment and find interesting features.

Social robotics, a new area in human-robot interaction has seen an increase in research in the
past decades. As a result, there is a shift in a typical robot working environment from industrial
halls to everyday places, such as homes (Jones, 2006), workplaces and service business, e.g., a
museum tour-guide robot (Thrun et al., 2000) and a guide robot in a shopping mall (Kanda et al.,
2009). As a result, a requirement for natural and intuitive human-robot interaction has emerged.

Current social robotic systems usually rely on interaction protocols which decrease the intu-
itiveness of the interaction itself, causing frustration and despair in the user. Recently, interest has
been focused on measuring the efficacy of robot behaviors and its perceived intelligence based on
the evaluation from human users (Burghart and Steinfeld, 2008). Indeed, measuring human-robot
interaction could suggest what and how to improve in the cognitive abilities and in the appearance
of the robot.

When human-robot interaction fails, the reason most often lies in the fact that the robot
and the human try to communicate about different things and that the human partner has wrong
expectations of the robotic partner. Several prerequisites have been identified (Kaplan and Hafner,
2006; Schillaci and Hafner, 2011a) about both physical and cognitive features that let a robot
interact effectively and naturally with a human user.

Two skills that can be given to the robot and in combination already result in interesting
interaction behavior are the ability to focus the attention on salient features and the ability to
manipulate each other’s attention by looking and pointing.
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There are different existing approaches for saliency detection and visual attention. One ap-
proach relies on using saliency maps, also known as attention activation maps, proposed by Itti
and Koch (2001), based on the Feature-Integration theory (Treisman and Gelade, 1980). In this
method, an image is analyzed using pre-attentive bottom-up processes. Later on, this model has
been extended to include motivation-influenced top-down processes, like in the work of Frintrop
et al. (2005). First, the image is analyzed in parallel for particular low-level features, such as color,
orientation, motion and so on. However, these features are also influenced by a top-down process,
which is motivation-specific, as well as depending on the current context, e.g. searching for faces
or specified objects. Therefore, regions detected by the bottom-up process are analyzed for specific
features. The result of these processes is a saliency map, where salient regions are represented with
higher peaks in the map, and their height (or intensity) represents their saliency values. This is
in accordance with Treisman (1985), who states that the visual perception process is functionally
divided in two levels: early pre-attentive and later attentive. During the pre-attentive stage a
rapid scanning of the image is performed, while in the attentive stage the attention shifts toward
selected regions.

Another approach partly relies on saliency maps, but also introduces the concept of a multi-
modal salient ego-sphere (Peters et al., 2001; Fleming et al., 2006). It is a tessellated sphere, where
each of the nodes (vertex on the tessellated sphere surface) represents one point in space. Input
images are analyzed by using the aforementioned saliency detection method or by other methods
such as face detection (Viola and Jones, 2004) for generation of saliency maps. The mean value
of salient regions from the resulting maps are then assigned to the nodes, which are closest to the
real position of the projection of the salient region to the sphere surface.

Ruesch et al. (2008) described a framework which is based on the previous concept. However,
due to the higher computational capacity of the iCub robot, they use a matrix projection of the
ego-sphere, which leads to higher precision of the perception of the world. This also increases
the computational complexity, due to required image transformations and a higher number of
arithmetic operations required per iteration.

Here the emphasis is placed on the fact that robots need to reach joint attention with the users
for having successful interactions. This has not been achieved so far, since joint attention not only
requires attention on the same features in the environment, but also skills in attention detection,
attention manipulation, social interaction skills and even intentional understanding (Kaplan and
Hafner, 2006). In other words, interacting partners need to share their attention on a particular
feature, coupled with intention detection and understanding. Features can be physical (e.g. visual
or auditory), as well as abstract (e.g. mental imagery). Without joint attention a robot will not
be able to achieve a degree of interaction that could be compared to a interpersonal interaction.
That is, the robot would still need to rely on receiving precise commands from the interacting
participant, which would relate to the actions that it could automatically perform.

Several metrics for measuring HRI have been proposed, from measuring the ability of a robot
to engage in temporally structured behavioral interactions with humans (Jonsson and Thorisson,
2010), to evaluating robot social effectiveness from different points of view (engineering, psycho-
logical, sociological) (Steinfeld et al., 2006). A series of metrics was adopted for the survey, based
on cognitive science studies about measuring social skills in humans and based on studies about
how robots are perceived by humans and whether this perception affects the expectation humans
have about robot intelligence, the so-called Godspeed questionnaire (Bartneck et al., 2009).

Quantifying human behavior usually requires joint analysis of video recordings, questionnaires
and interviews. In this work, the first two methods are used for quantifying the quality of robot
behavior. Four interaction experiments between a humanoid robot and a user were setup and
recorded. After each experiment, the user was asked to fill a questionnaire on the quality of the
interaction and on the perception of several functional and physical properties of the robot. To the
best of author’s knowledge, very few studies have been done so far on correlating human perception
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of robot skills (measured with the Godspeed questionnaire, whose reliability was tested) with
proxemic distances. For example, Takayama and Pantofaru (2009) adopted part of the Godspeed
questionnaire in their measurements, finding that people who held more negative attitudes toward
robots felt less safe when interacting with them. They also studied human personal space around
robots, finding that experience with owning pets decreases the personal space that people maintain
around robots, experience with robots decreases the personal space that people maintain around
robots, and a robot looking at people in the face influences proxemic behaviors. The latter suggests
to perform proxemics analysis when measuring attentive mechanisms in robots.

By choosing a system which resembles the human visual attention system, it can easily be that
the expectations of the interacting person will have a higher satisfaction rate. In this case the user
might perceive the interaction to be more intuitive and natural.

3.3 Implementation of an Attentional Mechanism for a Hu-
manoid Robot

In this section, an implementation of an attentional model for a humanoid robot is described,
encompassing two fundamental skills for joint attention. Furthermore, the quality of this imple-
mentation is evaluated through a user study. By evaluating robot skills, the goal is to identify those
characteristics that need to be emphasized when implementing attentive mechanisms in robots and
to identify correlations between them.

3.3.1 Saliency Detection and Attention Manipulation

Attention is a cognitive skill, studied in humans and observed in some animal species, which
lets a subject concentrate on a particular aspect of the environment without the interference of
the surrounding. There is evidence from developmental psychology studies that the development
of skills to understand, manipulate and coordinate attentional behavior lays the foundation of
imitation learning and social cognition (Tomasello, 1995).

In our world, we are constantly surrounded with items, such as objects, people and events,
which stand out to their neighboring items. This is represented with the saliency of those items.
Saliency detection represents an attentional mechanism, through which those items are discovered,
and it enables humans to shift their limited attentional resources to those objects that stand out
the most.

There are two approaches that can be combined – a bottom-up, pre-attentive process and a
top-down process influenced by motivation. Bottom-up detection uses different low-level features
(e.g. motion, color, orientation and intensity) for saliency detection. Top-down detection relies on
high-level features, and it is highly influenced by our current goals and intentions. In this case,
the motivation system was partially preprogrammed to show how different behaviors can result in
the activation or deactivation of parts of the attention system, actually implementing a top-down
approach for saliency detection, or in the activation of attention manipulation. The combination
of bottom-up and top-down processes is highly inspired by similar mechanisms in humans (Itti and
Koch, 2001; Treisman, 1985).

Figure 3.1 gives an overview of the attention mechanism implemented on the humanoid robot
Nao.

Saliency Detection

Saliency detection represents a process of image analysis during which regions of interest are
detected in the scene. The implemented approach employs bottom-up, based on low-level feature
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Figure 3.1: Overview of the attentive mechanism. Frames are analyzed by three different filters
which are activated by the motivation system. Optical Flow and Face Detector filters feed the
ego-sphere, while the marker detector filter stores objects in a different vector. The motivation
system activates or deactivated filters and movements according to its current state.

detection, and top-down processes, based on current motivation, partially reproducing similar
mechanisms in humans (Itti and Koch, 2001; Treisman, 1985).

Three filters are used in the current setup: motion detection, face detection and object detection.
Motion detection is performed using Farnebäck’s optical flow filter. Face detection is performed
using the method developed by Viola and Jones (2004). AR markers are used as a shortcut for
simplified object detection.1 Information coming from face and motion detection filters are stored
in an ego-sphere, keeping track from which of those two channels information come from. The robot
directs its attention to the point which has the highest saliency. In the current implementation,
AR marker data are stored separately outside the ego-sphere.

Ego-Sphere. Saliency ego-sphere is a multi-modal, egocentric, spherical map, which represents
salient areas in the robot’s surrounding. It enables a robot to shift its attention from one salient
area to another one in an apparently random and natural fashion.

The sphere is centered at the robot’s neck coordinate system, while the saliency map of its
surrounding is projected on the sphere’s surface. Through mechanisms of habituation, inhibition
and forgetting of salient areas the robot is able to explore its surroundings, and by finding areas of
maximum saliency, it locates the next area to be attended. Furthermore, the robot uses pointing to
point to the currently attended object, as a first step towards joint attention (Kaplan and Hafner,
2006).

There are different representations of the ego-sphere. One representation is where full salient
maps of different scenes are stored in a matrix, which represent spherical surface and where images
are aligned to a certain extent (Ruesch et al., 2008). Another approach is to reduce the projection
and search space by tessellating the sphere and storing information about salient areas in the edges
of the tessellated sphere (Fleming et al., 2006), as illustrated in Figure 3.2. The latter approach
introduces errors in projection of salient areas, because projection space is reduced to a set of nodes
on the sphere surface. Additionally, the mean saliency of a salient area is computed and assigned

1http://www.hitl.washington.edu/artoolkit/
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to the closest point, which is found using nearest neighbor search. While the former approach has
higher precision and finer representation of salient areas, the latter approach is faster, due to the
lower number of arithmetic operations that need to be performed during the projection and the
search. Due to Nao’s computational limitations, the ego-sphere is represented with a tessellated
sphere, where information about salient areas is stored in the edges of the sphere.

Figure 3.2: Illustration of an ego-sphere representation.

The sphere tessellation is performed by recursive division of triangle faces of an icosahedron.
By increasing the recursion depth, which represents the number of recursive calls to the tessellation
function, each initial face is divided into a higher number of smaller faces, achieving a higher number
of nodes and smaller error of projection of salient nodes. The relation between the recursion depth
and the tessellation frequency, used by Peters et al. (2001), is ft = dr

2, where ft is the tessellation
frequency and dr is the recursion depth. In essence, the tessellation frequency represents the
number of edges which connect centers of two neighboring pentagons. The implementation uses
a recursion depth of 4, resulting in 2562 nodes, with the mean theoretical projection error being
1.15◦ and maximum 2.65◦.

Habituation, inhibition and forgetting. These processes are employed in order to favor shift
of attention to information in new locations. This is inspired by the inhibition of return mechanism
in humans (Posner et al., 1985). Habituation is the process during which the robot gets used to
the attended point, which results in loss of interest in that point. It is modeled with the following
function:

h(t) = h(t− 1) + wh(1− h(t− 1)), (3.1)

where wh ∈ [0, 1] represents the habituation weight.
When habituation to a certain salient point exceeds a predefined habituation threshold level,

inhibition is turned on with a change from 1 to 0, which results in the appearance of a shift of
attention to the next most salient point. The reported saliency of a point is the product of its
current inhibition value and its saliency.

However, inhibition has a temporary nature and it is updated with an inhibition weight, ac-
cording to the following function:

i(t) = i(t− 1) + wi(1− i(t− 1)), (3.2)
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where wi ∈ [0, 1] represents the inhibition weight.
Habituation and inhibition weights affect the speed of the respective processes. For certain

filters, such as motion, locations of salient regions will quickly change in time. Motion can be used
to initially draw attention, but it should also decay faster, because it is only present for a short
period of time. Other filters can be employed to detect different salient objects in and around these
areas, such as face or color detection. Under the assumption that the face does not move much
during the interaction, a robot should have slower habituation to locations that contain faces.

The values of salient locations decay according to the decay factor d ∈ [0, 1], which enables a
form of short-term memory for the robot. After each iteration, each salient location will have a
lower value than before, thus newer information will have higher saliency than older information.

Attention Manipulation

The ability to draw attention of others is compulsory for having a natural and effective interaction.
Pointing gestures can be seen as one of the approaches for this attention manipulation. Therefore,
recognizing and performing pointing gestures is very important for being able to share attention
with another person, as joint attention relies on the ability of the person to catch the interest of
its interlocutor toward an object (Kaplan and Hafner, 2006).

Looking back and forth between the person and the object, or pointing toward the object are
examples of non-verbal attention manipulation behaviors. The following subsections present how
pointing gesture capabilities in a humanoid robot were implemented.

Pointing. Expression of pointing gestures has also been observed during the first 18 months,
but the course for becoming a fundamental communication tool can be divided into two phases, as
shown in the following subsection.

Already at the age of 9 months, infants are able to use imperative pointing gestures (Baron-
Cohen, 2001). This form of pointing is exhibited by the child regardless of whether an adult is
present in the room or is actually looking at the child. Since imperative pointing is not directly
used to draw attention, it is possible that it arose from grasping objects within the reach of the
child and turned into pointing for objects that were outside the field of grasp.

Some studies showed that there is no relation between producing pointing gestures and under-
standing them (Desrochers et al., 1995). This hints to the conclusion that the two skills develop
independently from each other and strengthens the hypothesis that pointing may arise from grasp-
ing and is not learned by imitation. Schillaci and Hafner (2011b) tested this hypothesis, through
a robotic experiment where a humanoid robot learned to reach objects (or positions in its action
space) by building a body map during random body babbling.

Body Babbling. Body babbling observed in infants has been classified by Meltzoff and Moore
(1997) as a mechanism that provides experience for mapping movements to the resulting body con-
figurations. Schillaci and Hafner (2011a) used analogous motor babbling for learning the mapping
between different sensory modalities and for equipping the robot with predicting abilities of sensory
consequences (in this case, the position of the hand of the robot) from control commands applied
to its neck and its arm. Learning through self-exploration was implemented on a humanoid robot,
whose dimensions resemble those of a child, actually simulating the real visual input perceived by
a young human subject (Schillaci and Hafner, 2011b).

The robot was equipped with an elementary attentive system for perceiving parts of its own
body. During babbling, the robot performed random arm movements and tried to follow them
moving its head according to the attentive system. 2

2These behaviors were implemented on the humanoid robot Nao. For learning, four degrees of freedom of the
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Figure 3.3: A typical babbling sequence using the Nao platform. In the lower part are the corre-
sponding frames grabbed by the on-board camera (note that the camera is placed below the fake
eyes of the Nao).

Figure 3.4: Example of a sequence of pointing gestures performed by the robot, generated with
the learned model.

Predictive Model. Proprioceptive data (joints angles) and external data (visually estimated
position of the hand of the robot) collected during babbling were stored into a knowledge base for
feeding a simple predictive model used for anticipating visual consequences of motor commands
applied to the arms and to the neck of the robot or, inversely, for solving the inverse kinematics
problem (that is, for generating joint configurations of the arm in order to reach a given point in
the action space of the robot).

Forward predictions have been performed using a k-Nearest Neighbors based algorithm, as
explained by Schillaci and Hafner (2011a)).

The pointing experiment described by Hafner and Schillaci (2011) was implemented using the
predictive model for generating joints configurations of the arm of the robot that result in placing
its hand as close as possible to an object tagged with a fiducial marker and situated outside the
field of reach of the robot. This resulted in pointing towards an object, when it was outside the
reach of the robot (Hafner and Schillaci, 2011). Thus, it was demonstrated that the system used
for reaching points in the action space of the robot’s arm can be used for generating pointing
gestures outside of its field of reach. Figure 3.4 shows the robot performing a sequence of pointing
gestures toward an object tagged with a marker.

Parameters

The following parameters for the algorithm were chosen so that overall the ratio of accuracy and
speed is optimized.

Camera resolution and image scale factors. The camera resolution is set to 320 × 240
pixels. However, the image is resized for different filters. In the case of face detection in a typical
experimental setup, there is enough level of detail after scaling down by 2. The image for motion

arm, two degrees of freedom of the neck, together with the estimated position of the hand (extracted from the video
grabbed from the bottom camera of the robot) were used. The hand was tagged with a fiducial marker, which
allowed an easy and fast estimation of its position both in the image and in the frame of reference.
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detection is scaled down by 4, which is inspired by the human peripheral vision. Human peripheral
vision is blurred, but it provides good results for motion detection.

Minimum blob size for motion detection. Some parameters were adopted and tuned in
order to avoid tracking motion caused by noise. Dense Optical Flow has been computed using the
Farnebäck algorithm, which outputs an image with the same size as the original image containing
the magnitude of the movement for each pixel of the image.

First, a minimum flow magnitude threshold is set in order to prevent adding points to the
ego-sphere generated by noise. The value was empirically set to 7. (velocity in pixel). Then, blobs
were detected in the flow magnitude image, taking into account only blobs bigger than a given size
(50 pixel, in a 80 × 60 image), in order to cut out isolated moving pixels or small areas probably
generated by noise.

Minimum face size and scale factor. Minimum face size for the Viola-Jones algorithm is set
to 35× 35pixels and the scale factor is set to 1.4 (faces detected up to 1.5m).

Habituation and inhibition weights, habituation threshold level, decay step for forget-
ting. These parameters influence for how long the robot will focus on one salient area and how
fast it will forget older salient areas. They were chosen so that the robot seems responsive enough
in a typical interaction. The habituation weight, wh, is lower for the face detection compared to the
motion detection. For the inhibition weight, wi, the relation is reversed. This results in a behavior
where the robot habituates faster to motion, since it is present for a short amount of time at one
location, while the face usually does not move much in the usual direct interaction. In the current
implementation, weights are wh,face = 0.4, wh,motion = 0.7, wi,face = 0.5, wi,motion = 0.15, and
the decay factor is d = 0.2.

3.3.2 Behaviors

A partially preprogrammed motivation system was implemented by which the robot can change
its behavior due to its current beliefs and desires. Four different behaviors were implemented, as
explained in the next subsections. This motivation system was implemented to show how each
behavior can result also in the activation or deactivation of part of the attention system, actually
implementing a top-down approach for saliency detection.

Exploration

In this motivation state, all the saliency filters are activated, the ego-sphere is updated frame by
frame, and control commands are applied to the joints of the head to let the robot focus on salient
events. As depicted before, the robot is attracted by movements, faces and objects.

Interaction

In the interaction phase, the robot is not exploring anymore using face and motion filters. Its
behavior is now focused on looking and pointing at the object (such movements are generated
using the predictive model explained before).

Interaction avoidance

In this state, the robot just detects markers and, if any, moves its head toward a configuration
far from the current one, actually trying to look towards areas which do not contain any markers.
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Figure 3.5: Nao with colored stickers that indicate the position of the fake eyes.

This behavior has been implemented for trying to convince the user that the robot is bored and it
does not want anymore to follow the interaction session.

Full Interaction

This behavior is composed of a sequence of the previous behaviors. The first performed action is
exploration. Once the robot has detected a person to interact with and an object which can be
used to draw the attention of the user, its motivation state changes to interaction. The interest
value decreases over time and it specifies the lapse of time the robot stays in the interaction state.
It was observed in a previous interaction experiment that users used to bring the object and hand
it to the robot for the whole session. Using this interest decay variable, the interaction phase can
be interrupted and the robot’s behavior can be modified to interaction avoidance. The interest
variable (initialized as 1) decrease slowly (by 0.005) when the person is handing the object to the
robot or rapidly (by 0.025) if not. Motion of the marker is used as the indicator that a person is
holding the object with the marker.

When the interest factor goes below zero, the robot would shift its behavior to interaction
avoidance. After a while, the current behavior is set back to exploration.

3.3.3 Robot Platform

The robot platform is the Nao from Aldebaran, a humanoid robot around 57cm tall. For the
experiment, only the degrees of freedom in the arms and the neck were used. The lower camera is
positioned below two eyes, which resulted in the robot not seeing an object if it is brought close to
the eyes. For that reason two fake eyes were placed on the sides of the lower camera, and the real
eyes were covered with a tape, as shown in Figure 3.5. Figure 3.6 shows a typical setup during the
experiment.
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The attention mechanism was implemented in C++ using the framework of the Nao Team
Humboldt (Burkhard et al., 2010). The attentional mechanism is fully executed on-board the
robot and there is no remote processing of the data. The robot is connected to the computer
through Ethernet. A robot control program is running on the computer which is used to visualize
the data and activate required modules for the attentional mechanism in the framework.

Such robot was adopted for measuring the users’ expectations about the robot’s skills due to its
anthropomorphic form. Moreover, its small child-resembling size could reduce users’ expectations,
thus increasing the positive evaluation of the interactions.

The robot has limited computational resources. The implementation described here, at the
current state, lets the robot process all the filters at a rate of approximately 7-8 frames per second.
The computationally most expensive algorithms are those related to image processing, e.g. the
face detection filter and the optical flow filter, which together take almost 110 ms per calculation.
This results in slower movements and reactions when the robot is in the exploration state and
in the exploration part of the full interaction state, which could affect the intuitiveness of the
interaction. However, in a preliminary experiment, the participants rated the speed of robot as
good. An interesting research question could ask what is the proper movements speed a robot
might exhibit in order to be perceived as not dangerous or with good reaction times. This topic is
included in the future development of this work.

Furthermore, in the current experiment, although the fastest processing was in interaction
avoidance, people perceived the robot as less responsive than during interaction and full interaction.

3.3.4 Experimental Setup

For testing the robot’s abilities on saliency detection and attention manipulation, set up an in-
teraction experiment is set up in which participants could physically interact with the Nao robot
equipped with the mechanisms previously shown. After the interaction, participants were asked to
fill in a questionnaire about their perception of the interaction (see subsection 3.3.4).

The proposed experiment aimed at several goals: test the quality of the implemented saliency
detection and attention manipulation mechanisms; identify those physical and behavioral charac-
teristics that need to be emphasized when implementing attentive mechanisms in robots; measure
the user experience when interacting with a robot equipped with attentive mechanisms; find cor-
relations between heterogeneous robot features perceived by the participants during the exhibition
of attentive mechanisms; analyze the differences in the perception depending on the different be-
haviors performed by the robot.

An overview of the attentive mechanism was presented before in Figure 3.1. Frames are analyzed
by three different filters which are activated by the motivation system. When the current state of
the robot is exploration, all the filters are active. Optical Flow and Face Detector filters feed the
ego-sphere, while the marker detector filter stores objects in a different vector. When both a face
and an object have been detected, the behavior of the robot changes to interaction, deactivating the
ego-sphere and activating the pointing gestures. When the interest on interaction is low enough,
the behavior changes to interaction avoidance. The marker detector is still active, because the
robot just generates head movements in order to avoid the sight of the object (for letting the user
understand that the robot is not interested in the pointing interaction anymore).

The implementation was tested on the four behaviors, as described previously in Subsection
3.3.2.

Hypotheses

Several outcomes of the experiment were expected. It was expected that the level of interactiveness
of the robot was positively correlated with the level of excitement and perceived intelligence.
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Figure 3.6: Experimental setup showing interaction between the Nao and a person.

Playing with the robot in the interaction state might be more exciting and satisfactory than
playing with it in the avoid interaction one.

Multi-modal interaction (through arms and head movements) might increase the perception of
interactiveness. Similarly, a less interactive behavior might decrease user satisfaction and cause
the participants to behave nervously.

Anthropomorphic attributes might be positively correlated with the perception of intelligence.
Hafner and Schillaci (2011) demonstrated how pointing gestures can emerge from reaching

behaviors. In a preliminary experiment, participants were asked how they interpreted the move-
ments of the robot performing the interaction behavior, expecting that reaching commands can be
perceived as a desire to grasp the object.

Procedure

The experiments consisted of the robot performing the behaviors described in the previous section
in four separate interaction sessions, one per each of the four behaviors. The experiment supervisor
manually activated or deactivated them. Figure 3.6 shows a frame taken from a typical interaction
session. The user sat in front of the robot at a distance of ca. 90 cm. For each person, each
interaction test lasted one minute. The interaction was recorded with a standard camera (resolution
640× 480) placed at ca. 2 meters perpendicularly to the robot-user axis. Beside the table where the
robot was standing there was a scale drawn on a whiteboard for the visual estimation (estimated
average error: 5cm) of the distance between the nose of the user and the head of the robot and
from the hand of the user and the head of the robot; according to the type of interaction, it was
noticed that the users move their hands closer to the robot.

After each of the four interaction sessions, the participants were asked to fill a questionnaire
about the quality of the interaction with the robot and about the perception of robot behaviors.

Participants

In total 28 people participated in the survey, which results in a total of 112 questionnaires (four
questionnaires per participant, one for each interaction). Some participants missed to answer some
questions, but those were only a few questions. It is interesting to note that few participants had
negative or neutral responses in all four experiments, regardless of the experiment, together with
comments saying that Nao did not want anything because it is a machine. This might be perceived
as a negative bias towards robots.

Of 28 participants, 8 were female (28.57%) and 20 were male (71.43%). There were 17 Germans,
2 Italians, 2 Serbians, 2 Poles, 1 Czech, 1 Dutch, 1 Estonian and 1 French. Regarding previous
experience with robots, 25 persons (89.29%) had none and 3 (10.71%) had previous experience –
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one with industrial robots, one with Aldebaran Nao and one with Lego Mindstorms. The average
age of the participants was 28.12 (σ = 5.64). Among the participants, 75% had university level
education and 25% had high-school level education.

Unfortunately, not all the participants allowed us to film their interaction because of privacy
reasons (even though they were informed that the data will be kept anonymous and videos will
not be published against their will). The video database is composed of 10 videos for exploration,
7 for interaction, 8 for avoid interaction and 9 for full interaction.

Measurements

Only recently, performance criteria different from those typical for industrial robots have been
adopted for measuring the success of social and service robots. Current criteria lie within the
satisfaction of the user (Bartneck et al., 2008).

Two techniques were adopted for evaluating the interaction: questionnaires and proxemics
estimated from recorded video sequences of the interaction. So far, the wish was to adopt only
metrics related to socio-cognitive skill perception instead of measuring the affective state of the
user through the use of physiological sensors.

Questionnaires. A qualitative, anonymous survey was conducted to evaluate how people per-
ceive their interaction with the Nao. Questionnaires are often used to measure the user’s attitude.
The first problem was related to what type of questionnaire to adopt. Developing a valid ques-
tionnaire can take a considerable amount of time and the absence of standardization makes it
difficult to compare the results with other studies. That is why a standardized measurement tools
for human-robot interaction were adopted in the experiment, in addition to some metrics that
were found interesting for this research. The Godspeed questionnaire (Bartneck et al., 2009) was
adopted as a part of the survey, which uses semantic differential scales for evaluating the attitude
towards the robot. Such a questionnaire contains questions (variables) about five concepts (latent
variables): Anthropomorphism, Animacy, Likeability, Perceived Intelligence and Perceived Safety
(for a detailed description and for the set of questions, please refer to Bartneck et al. (2009)).

Anthropomorphism refers to the attribution of human features and behaviors to non-human
agents, such as animals, computers or robots. Anthropomorphism variables were (left value scored
as 1, right value scored as 5): fake – natural, machinelike – humanlike, unconscious – conscious,
artificial – lifelike, moving rigidly – moving elegantly.

Animacy is the property of alive agents. Robots can perform physical behaviors and reactions
to stimuli. The participants’ perception about robot animacy can give important insights for
improving robot skills. Variables were: dead – alive, stagnant – lively, mechanical – organic,
artificial – lifelike (different from the one in anthropomorphism, as related to the animacy), inert
– interactive, apathetic – responsive.

Likeability may influence the user’s judgments. Some studies indicate that people often make
important judgments within seconds of meeting a person and it is assumed that people are able
to judge also a robot (Bartneck et al., 2009). Likeability variables were: dislike – like, unfriendly
– friendly, unkind – kind, unpleasant – pleasant, awful – nice.

Perceived Intelligence is one of the most important metrics for evaluating the efficacy of the
implemented skills. It can depend on robot competence, but the duration of the interaction is also
one of the most influencing factors, as users can become bored if the interaction is long and the
vocabulary of the robot’s behaviors is limited. Variables were: incompetent – competent, ignorant
– knowledgeable, irresponsible – responsible, unintelligent – intelligent, foolish – sensible.

Perceived Safety is a metric for estimating the user’s level of comfort when interacting with
the robot and the perception of the level of danger. Variables were: anxious – relaxed, agitated –
calm, quiescent – surprised (this variable was recoded, as explained in the next paragraph).
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The reliability of the questionnaire was analyzed by the authors of the Godspeed, who claim that
such questions have sufficient internal consistency and reliability; to confirm this, Cronbach’s alpha3

was computed for each latent variable again. It was found that Cronbach’s alpha was negative
(α = −1.111) for the latent variable Perceived Safety, due to a negative average covariance among
items. This violated reliability model assumptions for that set of variables, due to a miscoding of a
variable. In fact, the questionnaire is written in such a way that high values of one variable mean
the same thing as low values of the other variable; the miscoded variable was: Quiescent (scaled
as 1) to Surprised (scaled as 5), probably due to the fact that participants intended quiescence
as a synonym for calmness (the previous variable was Agitated, coded as 1, or Calm, coded as
5). After recoding the quiescent – surprised variable, the Cronbach’s alpha proved to be higher
(αPerceivedSafety = 0.839)4. No other problems were found with the rest of the latent variables:
αAnthropomorphism = 0.825, αAnimacy = 0.853, αLikeability = 0.813, αPerceivedIntelligence = 0.750.

In addition to the Godspeed questionnaire, a new latent variable for measuring the concept
of User Satisfaction was introduced, with two variables: frustrating – exciting and unsatisfying
interaction – satisfying interaction (high Cronbach’s alpha: αUserSatisfaction = 0.799).

Open questions were also introduced about the understanding of the behavior of the robot,
its desires, its aiming to interact or not, its successfulness, its gender (with the explanation of
the chosen one), its age, type of communication during the interaction, expectations about future
improvements and differences between Nao and humans.

Proxemics. According to the sociological concept of proxemics, humans, as well as animals, use
to define personal spheres which delimit areas of physical distance that correlate reliably with
how much people have in common (van Oosterhout and Visser, 2008). The boundaries of such
spheres are determined by factors like gender, age and culture. Coming inside the sphere of another
person may let him/her feel intimidated, or staying too far can be seen as cold or distant. Four
spheres were identified, according to van Oosterhout and Visser (2008): Intimate Distance (from
0 to 45 cm), reserved for embracing, touching, whispering; Personal Distance (from 45 to 120 cm),
reserved for friends; Social Distance (from 1.2 to 3.6m), reserved for acquaintances and strangers;
Public Distance (more than 3.6m), reserved for public speaking.

However, in human-robot interaction, no assumptions about the existence of such boundaries
have been made. The focus has been pointed on identifying those factors that influence interaction
distance. Interaction distance can be influenced by factors like user age or gender, pet ownership,
crowdedness in the environment or available space, as shown by van Oosterhout and Visser (2008);
Takayama and Pantofaru (2009). However, their analyses did not include users’ perceptions about
the behavior or features of the robot.

Proxemics measurement were included, hoping to find some correlations between interaction
distance and the factors treated in the questionnaire. Participant behavior was analyzed also from
measuring the distances between the face of the robot and the face of the user and between the
face of the robot and the hand of the user5.

As introduced in Subsection 3.3.4, proxemics analysis were done by gathering data from video
recorded during the interaction sessions (Figure 3.6 shows a sample frame). The user sat in front
of the robot at a distance of ca. 90 cm. The interaction was recorded with a standard camera
(resolution 640× 480) placed at ca. 2 meters perpendicularly to the axis robot-user. Beside
the table where the robot was standing there was a scale drawn on a whiteboard for the visual

3High Cronbach’s alpha values are those greater than 0.5, which specify that the used set of variables are good
for defining a certain concept.

4For recoding, the variable was flipped: 1 = 5, 2 = 4, 3 = 3, 4 = 2, 5 = 1.
5When interacting with the robot, participants did not use two hands at the same time. Almost all of them

performed movements only with one arm, or at least they alternated between left and right. Only the movements
of the active arm were registered.
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estimation (estimated average error: 5cm) of the distance between the nose of the user and the
head of the robot and from the hand of the user and the head of the robot. Videos were annotated
manually: every 5 seconds the face-face and face-hand distances were visually estimated by the
operator, manually projecting their positions onto a scale drawn on the whiteboard.

Participants were sitting on a chair (they all started at the same distance to the robot), but
they were told to feel free to interact in any way they considered more appropriate. However, it
happened only in very few cases (only 2 participants) that they stood up. In both the cases, the
face-face and face-hand distances were gathered as projected onto the horizontal line parallel to
the table.

Results

This subsection presents the quantitative evaluation of the experiments. An earlier experiment
uncovered some interesting patterns (Hafner and Schillaci, 2011; Bodiroza et al., 2011). It seemed
that if a person holds the object close to the robot’s hand, then Nao’s pointing will be perceived
as a desire to grasp the object. This could indicate that, along with the hypothesis that pointing
emerges from grasping, there is also a reverse connection – pointing can be perceived as grasping,
if the object is too close to the hand6. Furthermore, most of the participants in the preliminary
experiment responded that Nao was either likeable or very likeable and that the speed of experiment
was good (out of three possible answers: too fast, good and too slow), even though the execution
speed was lower than in the current experiment. All participants in the preliminary experiment,
except one, had no previous experience with robots.

Figure 3.7 shows the means and the standard deviations of the responses.
First, it was checked whether the distributions of the collected data are normal or not, in

order to select the proper statistical tests. For each variable (that is, for each question), the
superimposition of the histogram of the data with a normal curve characterized by the mean and
the variance of the data was checked. Almost all the histograms did not fit well together with the
corresponding normal curves. Thus, the kurtosis and the skewness of the data was measured7, in
order to have a more precise measurement of the normality of the distributions. The distributions
of all the variables related to the questionnaire had kurtosis and skewness between −2 and +2,
while 17 out of 64 distributions related to the variables of the proxemics analysis8 did not.

Due to the non-normality of such distributions, it seems to be more appropriate applying non-
parametric statistical tests for the whole analysis. However, the use of ANOVA on Likert-scale
data and without the assumption of normality of the distributions of the data to be analyzed is
controversial. In general, researchers claim that only non-parametric statistics should be used on
Likert-scale data and when the normality assumption is violated. Vallejo et al. (2010), instead,
found that the Repeated Measures ANOVA9 was robust toward the violation of normality assump-
tion. Simulation results of Schmider et al. (2010) confirm also this observation, since they found in
their Monte Carlo study that the empirical Type I and Type II errors in ANOVA were not affected
by the violation of assumptions.

6The used robot platform had no movable fingers and it was therefore unable to grasp an object.
7In general, when kurtosis and skewness are between −2 and +2, the data is not too far away from a normal

distribution. When that is not the case, corrections (like Box-Cox transformations) can be applied to the data in
order to apply the tests that have assumptions of normality.

8For each of the four behaviors performed by the robot, two variables were created for the average value and
variance of the distance between the face of the Nao and the nose of the participant for the following cases: during
the first 15 seconds of the interaction, between the 15th second and the 45th second of the interaction, and during
the last 15 seconds of the interaction (in total 6 variables). The same variables were created for analyzing the
distance between the face of the Nao and the user’s hand closest to the robot.

9Repeated measures ANOVA compare the average score for a single group of subjects at multiple time periods
(observations).
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Figure 3.7: Results of the experiment from the Godspeed questionnaire
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Correlations

A Spearman’s Rank Order correlation10 was run to determine the relationship between perceived
factors and between them and average human-robot distances. Each run was done for each exper-
imental session (exploration, interaction, interaction avoidance and full interaction).

Tables 3.1 and 3.2 show some of the most relevant correlations. In addition to the data shown
in the tables, it has to be noted that in the exploration test there was a strong, positive correlation
between almost all the anthropomorphism variables and the perceived intelligence attributes related
to competence and knowledge; in interaction, the higher the likeability of the robot, the higher the
variance of face-face distance during all the interaction tests (r = 0.805, P = 0.029, N = 7); in full
interaction, perceived intelligence was found to be positively correlated with almost all the other
variables (except those related to perceived safety) with r > 0.5 and almost always significant at
the 0.01 level.

Repeated Measures ANOVA

Because the participants of the four different observations were the same in each group, the Re-
peated measures ANOVA test was adopted (post-hoc test using Bonferroni correction) for the
analysis of variances. Also known as within-subjects ANOVA test, repeated measures ANOVA
is the equivalent of the one-way ANOVA but for related, not independent groups. The test was
performed on all the dependent variables11 .

Post-hoc tests revealed that the four different behaviors performed by the robot have not
changed significantly the participants’ perception of the anthropomorphic attributes related to
naturalness, humanlikeness, consciousness and artificiality. Table 3.3 shows the statistically signif-
icant results of repeated measures ANOVA on the questionnaire variables.

Proxemics variables contain a high number of missing values. In order to perform repeated
measures ANOVA on those variables, missing values had to be replaced with multiple imputa-
tion (n = 20). New samples were created, where proxemics information was inferred using the
questionnaire variables as predictors12.

Table 3.4 shows the statistically significant results of the repeated measures ANOVA on the
proxemics variables.

Latent Growth Curve Model

A latent growth curve model was also used to assess the change in user perception over the four
behaviors. This model uses a structural equation to estimate two latent variables, the slope and

10Spearman’s correlation coefficient is non-parametric, looks at ranked (coded) variables (without looking at the
data directly) and does not have the normality assumption on the distributions, thus it can be used for skewed or
ordinal variables. The correlation was evaluated with 2-tailed test of significance. Missing values were excluded
with cases pairwise.

11Mauchly’s test has been used as statistical test for validating repeated measures ANOVA. It tests the sphericity,
which is related to the equality of the variances of the differences between levels of the repeated measures factor.
Sphericity, an assumption of repeated measures ANOVA, requires that the variances for each set of difference scores
are equal. Sphericity can not be assumed when the significance level of the Mauchly’s test is < 0.05. Violations of
sphericity assumption can invalidate the analysis conclusions, but corrections can be applied to alter the degrees
of freedom in order to produce a more accurate significance value, like the Greenhouse-Geisser correction. When
the significance level of the Greenhouse-Geisser estimate is < 0.05, statistical significant differences revealed by
post-hoc test can be elicited from the pairwise comparisons between the observations. Repeated Measures ANOVA
does not tell where the differences between groups lie. When repeated measures ANOVA is statistically significant
(both with sphericity assumption not violated or with Greenhouse-Geisser correction), post-hoc tests with multiple
comparisons can highlight exactly where these differences occur.

12For multiple imputation, all the available variables that can predict the values of missing data should be included.
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intercept, to assess the average linear change across the measurements, where the individual mea-
surements are the indicators of the latents13. The estimated population distribution of the linear
change (or growth) trajectory, denoted by the slope and the intercept of a linear function, are de-
rived from this structural equation model. The estimator selected for the procedure was a Bayesian
estimator with non-informative priors14. All calculations were produced with Mplus 6.11.

The estimated slopes for many of the items were almost all positive, with also positive credibility
intervals, meaning that there is a significant positive trend in the average score from the first
observation (exploration) to the last observation (full interaction)15.

3.4 Discussion and Conclusions

It was shown that by using a combination of bottom-up and top-down processes of attention
and the ego-sphere (as explained in Subsection 3.3.2) as a short-term memory representation, it
is possible to have an interaction between the robot and a person, even on robots with limited
computational capacities such as the Nao. The combination of motion, face and object detection
has led to simple interactions between a person and the Nao.

With the current implementation, the Nao was able to process approximately 5-6 frames per
second. Future optimizations could improve the speed of execution, but the first results of a
qualitative survey show that the speed of experiment is perceived as good even at this state.

Despite the small sample size of the data collected during the experiments (especially regarding
the proxemics analysis), the outcomes suggested many elements and features that need to be
carefully taken into account when developing attentive mechanisms for intuitive robot behavior.

Godspeed Questionnaire

The adoption of the Godspeed questionnaire allowed us to test its qualities. Questionnaires are im-
portant tools in measuring user perceptions and the Godspeed provided us with a good instrument
for measuring the quality of the implemented robot behaviors. Its authors noted that comparing
different robots and their settings by means of the same measurement index will help roboticists in
making design decisions. The indices of the Godspeed questionnaire have been tested as measures
of human-like characters (Ho and MacDorman, 2010). The results indicated significant and strong
correlations among some relevant indices and new indices have been proposed. This matches the
comments of most of the participants of the experiments which complained about the similarity
between many questions and about some high-level attributes which were difficult to assign to
the robot. The problem with the recorded variable and the previous notes suggest to not adopt
the original version of the Godspeed questionnaire for further experiments, but rather its revisited
version.

To the best of our knowledge, no other study on attentional mechanisms for robots has adopted
the Godspeed questionnaire as a metric. However, Ham et al. (2011) studied the combined and
individual contribution of gestures and gazing to the persuasiveness of a story-telling robot mea-
suring user perception with the Godspeed questionnaire. The robots used persuasive gestures (or
not) to accompany the persuasive story, and also used gazing (or not) while telling the persuasive

13The loadings are constrained to be 1 for the intercept latent and to 0 to 3 (depending of the time of measurement)
for the slope latent.

14This estimation strategy was appropriate as the more commonly used maximum likelihood estimator often
produces biased (or often inestimable) results with such small sample sizes. The Bayesian estimator is more robust
to both small samples and violation of distributional assumptions that could emerge from small samples.

15Further analysis can be done on piecewise linear growth, for breaking up the curvilinear growth trajectories into
separate linear components, thus for analyzing whether there was an increase or a decrease between exploration and
interaction, between (interaction to interaction avoidance, and so on.
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story. Their results indicated that only gazing had a main effect on persuasiveness, while the use
of gestures did not. Also, the combined effect of gestures and gazing on persuasiveness was greater
than the effect of either gestures or gazing alone. This study suggests that adding multiple social
cues can have additive persuasive effects, matching what is to be discussed in the next subsection
about multi-modal interaction and efficient feedback systems.

Correlations

Correlation analysis confirmed the initial expectations and suggested directions for improvement
of robot attentional mechanisms. Positive correlations between anthropomorphic attributes and
perceived intelligence confirmed that a robot with human-like appearance can increase the level of
its perceived intelligence. However, an excessive human-like appearance can entail the interacting
person having too high expectations about the robot’s cognitive capabilities, which can provoke
disappointment whenever the robot does not fulfill such expectations. The positive correlations
between the anthropomorphic attributes and the perceived intelligence reflect a good balancing
between Nao’s human-like appearance and its implemented cognitive capabilities. Confirming this
hypothesis, most of the participants did not try to communicate vocally with the robot, suggesting
that they were not expecting this interaction modality due to the absence of a mouth in the robot’s
face and due to any other robot’s verbal capability.

Positive correlations between the robot’s interactiveness and user excitement and perception
of lifelikeness and intelligence (see Table 3.1, correlations between Animacy: interactive and Per-
ceived Intelligence: intelligent) suggested also that interactive capabilities emerging from atten-
tional mechanisms can increase the perceived level of intelligence of the robot. Such results confirm
also the thought that a robot has to be highly interactive for being perceived as a highly intelligent
agent, and it has to be responsive for increasing user satisfaction.

A relevant contribution in the user satisfaction is given by the robot’s responsiveness and
interactivity and it can be increased by improving its feedback system. A well designed feedbacks
system could reduce the consequences of some robot limitations. In the experiments, participants
experienced issues related to the limited field of view of the Nao (58◦). It is plausible that humans
expect of humanoids to have approximately matching characteristics, such as the field of view, or
two eyes for vision.16 During the experiments, participants, without being aware of that, were often
waving to the robot or handing over the object out of the robot’s field of view causing no reactions
to it. This resulted in affecting the perception of the robot’s responsiveness and interactiveness.
A little foresight in the feedback system could have probably reduced this effect, like changing the
color of head LEDs, or emitting sounds, whenever the robot detected something.

Multi-modal interaction (through arm or head movements) increased the level of interactiveness
perceived by participants, as suggested by the correlations between Animacy and Interactive, as
well as several other variables (see Table 3.1) which during interaction were higher than when
the robot performed other behaviors17. The consideration of Ham et al. (2011) about combining
gestures and gazing for increasing the persuasiveness and the likeability of the robot matches the
consideration about multi-modal interaction. Elegance in movement positively correlating with
user satisfaction suggests that the robot might perform smooth and natural movements in order
to increase the quality of the interaction.

A trustworthy and lifelike robot can be better accepted as a companion or as a co-worker,
where close interaction is needed, as suggested by the negative correlation between lifelikeness and
face-face average distance recorded during interaction (r = 0.805, P = 0.029, N = 7).

16Video cameras are not located in the positions of the eyes on the Nao, which leads to unmet expectations.
17During interaction, the robot performed arm and head movements during the whole session.



3.4. DISCUSSION AND CONCLUSIONS 33

Repeated Measures ANOVA

Repeated measures ANOVA results showed that the aliveness of the robot during exploration
scored lower than during interaction and full interaction, again supporting the initial expectation
that multi-modal interaction increases the expressiveness of the robot behaviors (in exploration,
the robot performed only head movements). Again, more expressive movements or a better de-
signed feedback system could have increased the level of perceived animacy, likeability and user
satisfaction.

The less the interaction was perceived as satisfactory, the more often and the more frenetically
the participants moved their hand. Repeated measures ANOVA confirmed that the variance of face-
hand distance is higher during interaction avoidance (the least satisfactory robot behavior for the
users) than during the other behaviors. It is also interesting to note how successful the interaction
avoidance behavior was, by which the robot did cause frustration to the users, according to its
motivation of avoiding the interaction. Several participants commented this behavior assigning
mental states to the robot, like shyness and angriness.

A saliency based attentional model combined with a robot ego-sphere and implemented it on
a humanoid robot was introduced. Human-robot interaction experiments, in which this model
was used, presented that different attentional behavior of the robot has a strong influence on the
interaction as experienced by the human.

It was shown that it is possible to have an ongoing interaction between the robot and a person,
even on robots with limited computational capacities such as the Nao. Techniques used are a
combination of bottom-up and top-down processes of attention and an ego-sphere as a short-term
memory representation in combination with motion, face and object detection.

The adopted questionnaires were useful for correlating perceived physical and behavioral robot
features with proxemics data. Some trends were noticed suggesting that some of the perceived
variables could influence the distances during interaction.

Through the discussion of the results in the previous section, those characteristics that need to
be emphasized and those skills that have to be taken into account (like providing enough feedback
during the interaction) when implementing attentive mechanisms in robots were identified.

These experiments represent a step in a good direction toward reaching joint attention between
a human and a robot. It was shown that basic attention manipulation is possible, even with simple
robot platforms, such as the Nao, and that participants will assign different characteristics to it
based on its behavior.

Following abbreviations are used throughout tabular results: Ani – Animacy, Ant – Anthro-
pomorphism, Lik – Likeability, PI – Perceived Intelligence, PS – Perceived Safety, US – User
Satisfaction, avg – average, var – variance, FF – distance between the face of the robot and the
face of the user, FH – distance between the face of the robot and the closest hand of the user, all
– considering the whole duration of the test (60 seconds).
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Table 3.1: Most relevant correlations (part 1).

Exploration Interaction Inter. Avoidance Full Interaction

Variables correlated R p N R p N R p N R p N

Ant: humanlike Ani: alive 0.581 0.001 28 0.654 0.000 28 0.665 0.000 28 0.546 0.003 28

Ant: humanlike Ani: interactive 0.513 0.005 28 0.605 0.001 27 0.504 0.006 28

Ant: humanlike PI: knowledge-
able

0.416 0.031 28 0.562 0.003 26 0.571 0.002 27 0.606 0.001 27

Ant: humanlike PI: competent 0.476 0.011 28 0.677 0.000 27 0.623 0.000 28 0.564 0.002 28

Ant: humanlike PI: intelligent 0.559 0.002 27 0.573 0.001 28 0.713 0.000 28

Ant: natural PI: knowledge-
able

0.498 0.008 27 0.557 0.003 26 0.553 0.003 27

Ant: natural PI: competent 0.565 0.002 28 0.612 0.001 27 0.572 0.001 28

Ant: moving ele-
gantly

PI: knowledge-
able

0.697 0.000 26 0.399 0.044 26 0.654 0.000 27 0.422 0.028 27

Ant: moving ele-
gantly

PI: competent 0.694 0.000 27 0.483 0.011 27 0.542 0.003 28 0.454 0.015 28

Ant: moving ele-
gantly

Lik: friendly -0.500 0.007 28

Ant: lifelike var FH (15s−45s) -0.786 0.012 9

Ani: lifelike Lik: friendly 0.663 0.001 23 -0.425 0.043 23

Ani: interactive Ant: lifelike 0.673 0.012 13 0.660 0.000 27 0.556 0.002 28

Ani: interactive Lik: friendly 0.398 0.036 28 0.451 0.018 27 0.655 0.000 28

Ani: interactive PI: intelligent 0.462 0.013 28 0.705 0.000 26 0.403 0.033 28 0.619 0.000 28

Ani: interactive US: exciting 0.710 0.000 28 0.551 0.004 26 0.706 0.000 28

Ani: interactive US: satisfying 0.470 0.012 28 0.687 0.000 26 0.725 0.000 28

Ani: responsive avg FF all (60s) 0.633 0.037 11

US: satisfying in-
teraction

Ant: moving ele-
gantly

0.505 0.007 27 0.482 0.011 27 0.390 0.040 28

US: satisfying in-
teraction

Ant: lifelike 0.576 0.002 26 0.653 0.000 27 0.516 0.005 28

US: satisfying in-
teraction

Ani: responsive 0.696 0.000 28 0.722 0.000 27 0.673 0.000 28

PS: quiescent avg FF (last 15s) -0.879 0.009 7

PS: quiescent avg FH (last 15s) -0.805 0.029 7
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Table 3.2: Most relevant correlations (part 2).

Exploration Interaction Inter. Avoidance Full Interaction
Variables correlated R p N R p N R p N R p N

var FH (0s− 15s) PS: quiescent -0.670 0.048 9

var FH (60s) Lik: friendly 0.802 0.030 7 -0.673 0.047 9

var FH (60s) Lik: kind -0.738 0.023 9

var FH (60s) Lik: pleasant -0.829 0.006 9

var FH (60s) US: satisfying in-
teraction

-0.738 0.023 9

var FF dist.
(15s− 45s)

Lik: friendly 0.809 0.028 7

avg FF (60s) US: exciting 0.709 0.032 9

avg FF (60s) PI: intelligent 0.729 0.026 9
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Table 3.3: Statistically significant results of repeated measures ANOVA on the questionnaire vari-
ables. Cases with sphericity assumption violated were corrected with Greenhouse-Geisser method.
The table shows the statistically significant pairwise comparisons (illustrating the changes in means
from an observation to another), taken from the post-hoc test with Bonferroni correction.

Variable Sphericity
assumed

From
observ.

To ob-
serv.

Mean dif-
ference

Std. er-
ror

Significance

Ant: moving elegantly no
1 3 -0.889 0.252 0.010
2 3 -0.481 0.154 0.026

Ani: alive yes
1 2 -0.75 0.203 0.006
1 4 -0.893 0.165 0.000

Ani: lively yes
1 2 -1.222 0.284 0.001
1 4 -0.741 0.224 0.016

Ani: organic no
1 2 -0.750 0.239 0.025
2 3 -0.500 0.159 0.024

Ani: interactive yes
1 2 -0.815 0.251 0.019
2 3 1.222 0.202 0.000
3 4 -1.000 0.233 0.001

Ani: responsive yes
1 2 -0.786 0.259 0.032
2 3 1.464 0.260 0.000
3 4 -1.214 0.243 0.000

Lik: friendly no
1 3 1.000 0.230 0.001
2 3 1.250 0.270 0.001
3 4 -1.107 0.274 0.002

Lik: kind yes
1 3 0.786 0.243 0.019
2 3 1.107 0.248 0.001
3 4 -0.929 0.224 0.002

Lik: pleasant no
1 3 0.929 0.185 0.000
2 3 1.250 0.222 0.000
3 4 -0.964 0.238 0.002

Lik: nice no
1 3 0.714 0.198 0.008
2 3 0.786 0.249 0.023

PS: quiescent yes
1 2 0.593 0.194 0.031
2 3 -0.481 0.154 0.026

US: exciting no

1 2 -0.852 0.218 0.004
2 3 1.407 0.234 0.000
2 4 0.444 0.154 0.047
3 4 -0.963 0.285 0.014

US: satisfying yes
1 2 -1.037 0.196 0.000
2 3 1.519 0.222 0.000
3 4 -0.963 0.229 0.002
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Table 3.4: Statistically significant results of repeated measures ANOVA on the proxemics variables.
Cases with sphericity assumption violated were corrected with Greenhouse-Geisser method. The
table shows the statistically significant pairwise comparisons (illustrating the changes in means
from an observation to another), taken from the post-hoc test with Bonferroni correction. Missing
values were replaced with multiple imputations. The new dataset contained 560 samples.

Variable Sphericity
assumed

From
observ.

To ob-
serv.

Mean dif-
ference

Std. er-
ror

Significance

avg FF all no

1 2 13.675 0.419 0.000
1 3 11.876 0.302 0.000
1 4 9.734 0.355 0.000
2 3 -1.799 0.360 0.000
2 4 -3.941 0.436 0.000
3 4 -2.142 0.280 0.000

var FF all no

1 2 -6.218 2.058 0.016
1 3 -82.552 3.014 0.000
1 4 14.558 1.914 0.000
2 3 -76.334 2.361 0.000
2 4 20.776 1.633 0.000
3 4 97.110 2.862 0.000

avg FH all no

1 2 14.767 0.544 0.000
1 3 18.439 0.547 0,000
1 4 21.423 0.539 0.000
2 3 3.672 0.294 0.000
2 4 6.656 0.314 0.000
3 4 2.985 0.307 0.000

var FH all no

1 2 20.337 3.861 0.000
1 3 -217.131 7.246 0.000
2 3 -237.468 6.718 0.000
2 4 -28.076 5.602 0.000
3 4 209.392 6.904 0.000



Chapter 4

Gesture Vocabularies for
Human-Robot Interaction

4.1 Overview

This chapter presents three experiments on gesture vocabularies. In relation to Figure 1.1, it covers
the topics from defining use-case scenarios up to obtaining gesture vocabularies and their analysis,
as well as improvement of robot gestures through application of interactive genetic algorithms,
as presented in Figure 4.1. This is the first part that concerns the topic of use of gestures in
human-robot interaction. In the next chapter, the second part will be discussed.

Section 4.2 presents background work in the topic of design of human gesture vocabularies
and discusses robot gesturing and how robot morphology might affect it. Section 4.3 provides a
definition of gesture vocabularies.

Section 4.4 introduces an example use-case scenario describing interaction between a customer
and a robot waiter, based on interpersonal interactions observed in bars or restaurants. Based on
this, two experiments are performed to develop gesture vocabularies for a human and a robot. Both
experiments are performed as user surveys. In the first experiment on human gesture vocabularies
the participants were asked to produce a gesture they associate with particular actions, which
were afterwards coded by a person, in order to discover the mappings between gestures and their
associated actions. In the second survey the participants were asked to rate different qualities of
gestures produced by a robot in a simulation, as well as rank them.

An approach to refining of robot gestures based on interactive genetic algorithms is presented
in Section 4.5. The approach uses a human rater as a fitness function for rating robot gestures
based on their aesthetic qualities. The ratings are used as fitness values for standard procedures
of producing offspring in classical genetic algorithms.

The work presented in this chapter is based on work presented in Bodiroža et al. (2012).

4.2 Background

Stern et al. (2008) approached development of human gesture vocabularies as a multi-objective opti-
mization problem, taking in consideration three performance measures: intuitiveness, stress/comfort,
and accuracy. The first measure presents how intuitively a gesture represents its associated com-
mand. The second measure relates to the effort required to perform a particular gesture or the
stress. The last measure reflects the ability of a gesture recognition system to accurately recognize

38
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gestures from the defined gesture vocabulary. In addition, it is mentioned that a good gesture vo-
cabulary should be intuitive, physically easy to perform, easy to recognize by a recognition system,
easy to learn and to remember, as a consequence of intuitiveness and effortlessness. In this work,
development of human gesture vocabularies will be approached from another side, that is instead of
having persons choose gestures from a predefined set, they will be asked to freely produce gestures.

Interaction modalities, such as visual, auditory and gestural, have been employed to provide
feedback to a listener. Rea et al. (2012) used an iRobot Roomba augmented with colored lights to
communicate the mood of the others present in the room. Mazzei et al. (2012), as well as Bazo et al.
(2010) developed systems for generating facial expressions to convey a range of emotional states.
Salem et al. (2010) worked on run-time production of related co-speech gestures. Some of those
communication channels are present in interpersonal interaction, such as speech and gestures, while
other are not, such as use of chirping sounds and indicator lights. Hegel et al. (2011) worked on
developing a set of guidelines for design of those feedback signals. However, in order for interaction
to be intuitive to a person, gestures performed by a robot must be intuitive. Production of human
and robot gestures is affected by multiple aspects. Namely, human gestures are affected by the
quality of gesture recognition algorithms, and production of robot gestures is affected by robot’s
morphology. These aspects are reviewed in the rest of the section.

Gesture recognition and gesture production are primary research directions in the area of ges-
tures in human-robot interaction. The former considers the task of classifying the perceived motion
of the hand and arm into one of the gesture classes. While the state of the art has improved over
time, some issues are still commonly present, such as occlusion, both self-occlusion and occlusion
by another object, and recognition when the orientation between the person and the robot differs
from the one during the learning. Some of these methods are also capable of learning new gestures,
when the classification is unsuccessful, in which case these gestures are assigned to new clusters.
On the other hand, perception of robot gestures has not been well investigated, and there is a need
for work in this area.

Gesture production is another important area. In here, the goal is synthesis and execution
of gestures, which are intuitive to a human person observing the robot. The research can be
divided into following main subareas. On one side, there is research on generation of co-speech,
iconic gestures (Ng-Thow-Hing et al., 2010; Wachsmuth and Kopp, 2002). This is usually achieved
through analysis of videos of narratives, where a person is describing some story and observing
which co-speech gestures appear, with which words and what is the particular timing between
a vocal and a gesture utterance. A gesture production system is then trained to learn these
connections and autonomously produce co-speech gestures with speech, taking in consideration the
particular timing of gestures. Since each trained model is tied to a particular person, gesturing of
different persons can be modeled and emulated. Another area concerns the trajectory interpolation
of gestures. A gesture can be represented as a sequence of 3D points in space describing the position
of an end-effector at particular points in time. The easiest way to define the complete gesture
trajectory from keyframes is to perform linear interpolation of points between two consecutive
keyframes. However, this often results in rigid, linear and chopped movements. Other interpolation
methods can be applied in order to generate curved motion, which is perceived as more natural and
human-like. These are usually based on B-splines. Keyframes represent geometric knots, through
which a spline curve passes. Parametric knots are then computed based on the geometric knots,
which are used to compute the interpolated curved trajectory.

A robot can learn gestures through imitation or demonstration. These gestures can also be
adapted and improve using interactive genetic algorithms. The problem can arise in the difference
between morphologies of robot’s and person’s arm and hand. Ende et al. (2011) reported that a
particular subset of their gesture vocabulary had higher human recognition rate when they were
performed by a human or a humanoid robot, than when they were performed by an industrial
manipulator attached to the ceiling.
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Actuation of the manipulators can be achieved using different methods. Usual are serially
connected, serially actuated joint segments, pull cable-driven segments and pneumatically actuated
segments. Serially connected, serially actuated joint segments have an actuator for each degree
of freedom. In a humanoid arm, these joints are revolute joints, performing a rotational motion.
An example can be seen in robots such as Aldebaran Nao and Sony Aibo. Pull cable-driven joint
segments are actuated by tensile forces in a pull cable around the joint. An example can be seen
in Ecce robot, which is designed to mimic human motion (Marques et al., 2010; Potkonjak et al.,
2011).

Another important aspect for gesture production is the morphology of the hand and the arm.
A lack of hand dexterity in a robot can prevent it from performing gestures, where important
information is encoded in a hand pose (e.g., gestures typically used for counting, or the “victory”
gesture, where the index and the middle fingers resemble a “V” shape). Based on the observations
on how people gesture, a set of gestures is defined as a gesture vocabulary for the robot (Bodiroža
et al., 2012). Due to the similarities in morphologies of the arm in a human and in a Nao robot,
the participants of the experiments were still able to understand and rate well the robot’s gesture,
as it is shown in the Section 4.4.2.

There has been little research in development of robot gesture vocabularies, with an exception
of work by Ende et al. (2011), and it was usually dealing with a small gesture vocabulary for a few
actions, where each action was represented with one particular gesture. The proposed approach
takes into account that a robot can use more gestures to represent one action and that these
gestures should be drawn from a pool of alternative gestures, which is defined for each action. The
goal of this is to increase the quality of the human-robot interaction, through making the robot
seem more human-like, in the way that it can use different gesture alternatives to represent a single
action.

4.3 Defining Gesture Vocabularies
Human-human interaction commonly relies on numerous communication channels, such as speech,
facial expressions, and gestures, in order to have a redundant and reliable transfer of information,
and so that the message can be reconstructed even when one part of it is lost due to the noise (e.g., a
person talking and gesturing in a loud environment). Similarly, the communication in human-robot
interaction should be multi-modal to achieve more robust and accurate communication. However,
the accuracy of various recognition algorithms, including gesture recognition, is still not sufficiently
high.

Chapter 3 presented the importance of joint attention for successful human-robot interaction.
However, there are other contributing factors. One of them are efficient means for information
transfer, whether it is communicating intentions, or giving a command. Gestures are featured
prominently in interpersonal interaction. A person gestures consciously, e.g., when pointing out
directions, but they can also occur unconsciously during the interaction within a group of people.
Two persons interacting do not need to see each other for gestures to appear. Gesturing is observed
in such cases when a person is talking over a phone, or when a person is blind (Iverson and Goldin-
Meadow, 1998). Therefore, they could be used as an intuitive communication method in human-
robot communication. However, meaning of a particular gesture is highly context-dependent and
is influenced by various factors, such as cultural background. In order to alleviate this issue, ges-
ture vocabularies can be used. They represent a bidirectional, commonly many-to-many mapping
between a set of meanings and a set of gestures, as defined below.

Definition 4.1 Given a set of meanings

M = Ma ∪Mi ∪Mm
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Meanings Gestures Meanings Gestures

M1 G1 M1 G1

M2 G2 M2 G2...
...

...
...

Mn Gn Mn Gm

Modeled world Real world

Figure 4.2: Example of a designed gesture vocabulary for a modeled world, and a gesture vocabu-
lary seen in the real world

consisting of sets of actions, Ma = {ma1, . . . ,mai}, intentions, Mi = {mi1, . . . ,mij}, and
messages, Mm = {mm1, . . . ,mmk}, and a set of gestures

G = Garms ∪Ghead ∪ . . .

consisting of all body gestures, Gi = {gi1, . . . , gim}, where i denotes a particular body part or
multiple body parts, a gesture vocabulary is represented with multi-valued functions v1 and v2,
such that

v1:M → G, v2:G→M

mapping meanings and gestures.

When the development of gesture vocabularies is not given enough forethought, e.g., when they
are defined by the application designer, it can lead to a decrease in the intuitiveness of interaction.
On the other side, by carefully designing gesture vocabularies, building on the results of the analysis
of interpersonal interaction, the issue of decreased intuitiveness could be partially prevented.

This chapter is partially based on a paper by Bodiroža et al. (2012), underlain by the work of
Stern et al. (2006).

4.4 Case Study: Gesture Vocabularies for a Robot Waiter
Scenario

A robot waiter scenario is used as an example scenario to display the procedure for obtaining two
gesture vocabularies. The scenario considers usual interaction occurring between a customer and
a waiter. Two gesture vocabularies, that is sets of gesture-meaning mappings are obtained, one
for a robot waiter and one for a person interacting with it. First, dialogs which occur in natural
customer-waiter interaction were obtained through observation of those interactions. These were
used as a basis for obtaining a set of discrete, or atomic meanings, which are initiated either by a
customer or by a waiter. A set of gestures, corresponding to the meanings, is then defined through
a user survey or by observing human participants in case of human gesturing, or by designing
robot gestures in case of robot gesturing. Currently, most of the gesture vocabularies are usually
hand-designed. While being practical, it excludes potential users, which will later interact with
the robot, and it can therefore influence the intuitiveness of the system to the user.

In the current scenario, one of the expectations is to see prevalent use of deictic (i.e., pointing
gestures) and symbolic gestures in developed gesture vocabularies, as primary goal is to indicate the
intention of the user. Most of the gestures are expected to be codified. These gestures, contrary to
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Figure 4.3: Procedure for obtaining human and robot gesture vocabularies

a creative gesture, is the one which has a fixed representation in our own gesture vocabularies, with
mapping between the sensorimotor signals (motor commands and perception) and the semantic
information it carries (Poggi, 2002). A preliminary experiment showed that participants indeed
used prevalently deictic and symbolic gestures (Bodiroža et al., 2012). Participants used deictic
gestures to specify an object of their attention. The gesture refers to an object of interest and
manipulates the attention of the recipient, e.g. a robot waiter, and the transferred message can be
implied in certain situations. For example, pointing to an empty glass can indicate a request for
another glass of the same drink.

Stern et al. define three performance measurements for gesture usability: intuitiveness, comfort
and recognition rate (Stern et al., 2006,0). The first two measures are human-related, while the
last if algorithm-related. In author’s recent work preliminary results showed that most of the
participants will choose the same gesture, or two gestures will emerge among the others (Bodiroža
et al., 2012).

A usual and easy approach for definition of human gesture vocabularies is to predefine the
gestures which need to be recognized by the algorithm, as well as their meanings, such as in the
work of Ende et al. (2011) and Mai et al. (2011).

However, it is common to observe many-to-many mapping of gestures and their meanings in a
human gesture vocabulary. Allowing many-to-many mappings increases intuitiveness as it partially
relaxes the limitations placed on the user, due to the occurrence of alternative gestures for single
actions. However, it also introduces the need for analysis of contextual information in the gesture
recognition process (e.g., in the case of a pointing gesture, to which object the user is pointing).

A flow diagram representing a method of obtaining human and robot gesture vocabularies is
presented in Figure 4.3.

4.4.1 Human Gesture Vocabulary

A human gesture vocabulary can be obtained through different approaches. A naïve approach
would be to hard-code a set of gestures which can be used to transfer meanings to a robot. In
this case, the mappings between gestures and their respective meanings are defined by the system
designer. However, this approach might prove not to be intuitive for an everyday user, as gestures
are not universal (Kendon, 2004) and gesture models, that is the way a particular person associates
gestures with their meanings, differ between people (Bergmann et al., 2010).

A procedure for obtaining an intuitive human gesture vocabulary is proposed here. It uses a
human-in-the-loop model, where a resulting human gesture vocabulary highly depends on charac-
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teristics of a group of experiment participants. By using this model, a possible bias of the system
designer is removed from the vocabulary. In summary, the proposed procedure is as follows:

• Through analysis of a scenario, define a set of actions that are initiated by a person (e.g.,
asking for a menu in a restaurant),

• Conduct a survey, in which each action is presented to participants, and asking them to
perform a gesture they associate with a respective action, in case they can relate a gesture
to that action,

• Find gestures with high agreement levels, that is a number which represents percentage of
users that chose that gesture as a representative for a particular action, and

• Define a human gesture vocabulary, by creating relations between actions and their repre-
sentative gestures, that is those that had high agreement levels.

Expected results are to have one or two gestures per each action, which are ranked higher than
others. Additional questions in the survey (such as speed and precision) can be used to modify
the selected gesture (e.g. if the speed is not adequate or if the trajectory is not good enough). A
proposal to improve the results using interactive genetic algorithms is introduced in Section 4.6.1.

Experimental Setup and Procedures

A method for selection of a human gesture vocabulary using a survey was developed (Bodiroža
et al., 2012).

Prerequisite for the determination of a human gesture vocabulary is a scenario, which describes
the nature of the interaction (e.g. the interaction between a customer and a waiter, or within
rescue teams). The scenario contains a list of actions that are carried out in these interactions (e.g.
order a drink or clean the table in the robot waiter scenario). Furthermore, a target user group
needs to be defined and survey participants need to represent well this group. It is suggested that
gesture vocabularies are not culturally universal (Graham and Argyle, 1975; Morris, 1979; Walker
and Nazmi, 1979; Kendon, 2004). Therefore, a gesture vocabulary obtained in one culture might
not be adequate for another.

Contrary to the usual approach of introducing restrictions on which kind of gestures can be
used, the following method does not put these constraints on participants. The expected results
is to get gestures which can be classified in the following categories: one gesture representing the
whole service, two gestures – one representing the action itself, and the other the object, or pointing
gestures, which indicate the currently attended object.

Participants performing gestures were recorded with Microsoft Kinect, a RGB-D camera sensor
capable of recording both color and depth images. A sequence of recorded color images was
converted into a video. All videos were then coded by a person. OpenNI framework was used
for skeletal tracking of participants from depth images. Skeletal tracking provides a 3D location
of participants in Kinect’s frame of reference and this data can be used for testing of a gesture
recognition system. The Kinect was placed below a display with a diagonal of 50 inches at a
distance of 2m from the participant.

Each participant was first introduced to the experimental procedure, including the means and
the goals of the experiment, and was asked to sign a consent form, approved by the Ethical Com-
mittee of the Ben-Gurion University of the Negev. They were sitting down during the experiment.
Each session took around 15 minutes. The actions are displayed to the participant in a sequential
order. Each action is represented with a sentence, that would be used in order to carry out the
service (e.g. “I would like to order a drink.” in the case of the service order a drink). Each sentence
has marked keywords, which represent the action (i.e. a verb) and the object (i.e. a noun).
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The robot platform is the Nao from Aldebaran, a humanoid robot around 57cm tall. For the
experiment, only the degrees of freedom in the arms and the neck were used – 4 degrees of freedom
in each arm and 2 degrees of freedom in the neck. This robot was chosen due to the movable arms
and humanoid shape. Moreover, its small child-resembling size could reduce users’ expectations,
thus increasing the positive evaluation of the interactions. The gestures’ motions were implemented
using MotionNet implemented in C++ using the framework of the Nao Team Humboldt1. All the
gestures were performed and recorded with a video-camera.

The participants were 8 Industrial Engineering students (mean age = 28.75, σ = 3.77) from
Ben-Gurion University of the Negev.

Results

The results are presented in Table 4.1. The preselected meanings, based on the described scenario,
were “call waiter” (1), “order beer” (2), “cancel beer” (3), “order this” (4), “cancel this” (5), “ask
for a suggestion” (6), “clean table” (7), “take away glass” (8), “bring bill” (9), “take away bill” (10)
and “where is the toilet” (11). Participants used following gestures (agreement level AL > 25%):
pointing (1), writing on an imaginary piece of paper (2), index finger wave (3), hand wave “no” (4),
sliding gesture for canceling (5), circular movement of hand over a surface (6), circular movement
of finger over a surface (7), handling the object (8), raised hand (9), hand wave (10), no gesture
(11). Tasks were call waiter (1), order beer (2), cancel beer (3), order this (4), cancel this (5), ask
for a suggestion (6), clean table (7), take away glass (8), bring bill (9), take away bill (10) and
where is the toilette (11).

Table 4.1: Results of the human gesture vocabulary experiment. Columns are meanings, rows are
gestures, values represent percentage of people that used a specific gesture for a specific task.

1 2 3 4 5 6 7 8 9 10 11
1 0 62 0 100 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 75 0 0
3 0 0 37 0 25 0 0 0 0 0 0
4 0 0 25 0 0 0 0 0 0 0 0
5 0 0 0 0 37 0 0 0 0 0 0
6 0 0 0 0 0 25 100 0 0 0 0
7 0 0 0 0 0 25 0 0 0 0 0
8 0 0 0 0 0 0 0 75 0 87 0
9 37 0 0 0 0 0 0 0 0 0 0
10 50 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 25 0 0 0 0 62

The tasks with high agreement levels were easy to characterize either with action, deictic, or
iconic gestures. Tasks with low agreement levels could not be easily characterized. This yields
one guideline for the task analysis – chosen tasks should be easy to depict with gestures. It was
expected that participants will use certain gestures that are fairly regular for certain tasks (e.g.,
an action gesture simulating drinking for ordering a beer), such as with tasks Order a beer and
Order this. But, this was not the case, since a fairly high number of participants used pointing
(to a menu) for both tasks. Some gestures were used for more tasks. Unlike the approach where
one limits gestures for certain tasks, such as in Mai et al. (2011), here is proposed that a robot
should consider other contextual information, e.g., if the person is holding a menu or if there is a
spill on the table. Thus, two-way connections between gestures and tasks must be created. As all
agreement levels are above 25% it is easy to extract the G-T pairs from Table 4.1 that constitute
such a unique complex GV.

1Motion generating tool, a part of the Nao Team Humboldt’s framework for the Aldebaran Nao.
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Figure 4.4: Obtained human gesture vocabulary, with excluded gesture 11 (“no gesture”) and
meaning 11 (“Where is the toilet?”)

4.4.2 Robot Gesture Vocabulary

Human-human interaction uses different modalities to transfer a message. These modalities can be
combined to increase readability and robustness of the communication. Gestures are one commu-
nication channel and they often co-occur with speech. In order to be more readable, a humanoid
robot should produce gestures during its interaction with a human, when necessary.

Previously, researchers have focused on work related to the lifelike gesture production (Ng-
Thow-Hing et al., 2010; Wachsmuth and Kopp, 2002), which usually focused on how to adapt the
robot gestures’ trajectories and co-expressive timing to resemble human gestures. On the other
hand, there has been some work in how well participants understand certain robot gestures (Ende
et al., 2011). However, to the best of author’s knowledge, there has been no attempt of devising
a robot gesture vocabulary by letting participants rank gesture-action mappings with multiple
proposed gestures for a particular action.

Objective

The goal of this work is to develop a method for defining robot gesture vocabularies for a particular
scenario. The procedure is similar to the procedure for obtaining a human gesture vocabulary and
is as follows:

• Analyze the scenario and define a set of actions that can be initiated and performed by a
robot,

• Develop few robot gestures per each action, where the gestures are observed from the inter-
personal interaction,

• Conduct a survey asking participants to rate the gestures for each action, in terms of how
well do they fit a particular action,

• Conduct statistical analysis to find gestures which are ranked better than others,

• Define a robot gesture vocabulary, containing gesture-action mappings.



4.4. CASE STUDY: GESTURE VOCABULARIES FOR A ROBOT WAITER SCENARIO 47

Expected results are to have one or two gestures per each action, which outrank other proposed
gesture for the specified action. Additional questions in the survey (such as speed and precision)
can be used to modify the selected gesture (e.g. if the speed is not adequate or if the trajectory
is not good enough). A proposal to improve the results using interactive genetic algorithms is
introduced in the Future work section.

Robot Platform Aldebaran Nao

The robot platform used for the experiment is the RoboCup version of Aldebaran Nao, a humanoid
robot around 57cm tall with 21 degrees of freedom. For the purpose of the experiment, only the
degrees of freedom in the arms and the neck were used – 4 degrees of freedom in each arm and 2
degrees of freedom in the neck. This robot was chosen because it has movable arms and a humanoid
shape, which can make it easier on the human user to understand gestures (see results of study by
Ende et al. (2011)). Moreover, its small child-resembling size could reduce users’ expectations, thus
increasing the positive evaluation of the interactions. The gesture trajectories were implemented
using MotionNet implemented in C++ using the framework of the Nao Team Humboldt2. All the
gestures were recorded with a standard video camera.

User experiments

In the experiment to develop a robot gesture vocabulary participants were asked to rate gestures
for eight different actions, listed in Table 4.2. There were two or three alternative gestures for
each action. These gestures were performed by Aldebaran Nao, a humanoid robot, and were
video-recorded.

The experimental procedure was as follows. The participants first watched all video recordings
of representative gestures of one action in a randomized order. They were asked to rate the
following three characteristics for each alternative gesture: overall impression (scale 1 . . . 9), speed
(scale −4 . . . 4) and precision (scale 1 . . . 9)3. They were also asked to rank the displayed gestures
from the best to the worst, where worst rated would get assigned a rating of 1, while each better
would have a rating incremented by 1.

The participants were 21 Israeli students (13 male, 8 female, mean age = 25.38, σ = 2.27) from
Ben-Gurion University of the Negev.

A part of the designed gestures, representing actions presented both in human and robot vo-
cabularies, were the same as those obtained in the human gesture vocabulary experiment. The
intention was to test whether these gestures, that are also present in a human gesture vocabulary,
will achieve higher ratings. Table 4.2 presents the actions and their alternative gestures4.

In the following text, the gestures will be numbered, instead of being named (e.g., “gesture 4.1”,
instead of “Pointing to the cup as a sign to take it away”).

Analysis

The collected data was analyzed using repeated measures ANOVA (independent variables were
“speed”, “precision” and “overall impression”, dependent variables were gestures). Additionally,
Spearman’s rank was determined with bivariate correlation to determine statistically significant
correlations between independent variables.

2Motion generating tool, a part of the Nao Team Humboldt’s framework for the Aldebaran Nao.
3Precision was defined as how smooth was the gesture trajectory or how precise was the pointing.
4The RoboCup version of the Nao robot has no movable fingers, therefore pointing is performed with the hand

and not with the finger
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Table 4.2: Selected actions and their representative gestures

1. “Hi, my name is Robowa.” 1. Pointing with the hand to the name tag on
the chest.
2. Putting hands close together in front of self.
3. Waving with the hand.

2. “Did you call me?”
1. Pointing with the right hand to the name
tag on the chest.
2. Right arm a bit stretched, as if it is offering
something.

3. “Would you like to order?”
1. Waving with the hand up-down in front of
the menu.
2. Pointing with the right arm to the menu.
3. Both arms stretched and open, with the
palms up.

4. “Can I take away this cup?” 1. Pointing with the right hand to the cup.
2. Raising right hand to the chest and waving
away towards the cup.

5. “Would you like me to suggest a special
drink?”

1. Pointing with the right arm to the menu.
2. Circling with the hand in front of the menu.
3. Waving with the hand up-down in front of
the menu.

6. “Would you like me to bring you a
napkin?”

1. Rubbing the mouth with the hand.
2. Right arm a bit stretched, as if it is offering
something.

7. “Do you want me to clean the table?” 1. Circling with the hand over the table.
2. Raising right hand to the chest and waving
away towards the table.

8. “Do you want the bill?”
1. Making a checkmark sign with the right
hand in the air.
2. Making a writing movement with the left
hand over the right hand.
3. Making a rectangular sign with both hands,
indicating the shape of the bill.
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To calculate the correlations, variable “speed” was recoded in the following manner: −4 = 0,
−3 = 1, −2 = 2, −1 = 3, 0 = 4, 1 = 3, 2 = 2, 3 = 1, 4 = 0; and variable “ranking” was recoded in
the following manner: 1 = 3, 2 = 2, 3 = 1.

Results

All correlation results report Spearman’s rho values (Tables 4.3–4.10). The number of data samples
in all cases was N = 21. Statistically significant correlations are marked with bold font, where
one asterisk denotes significance at the 0.05 level, and two asterisks denote significance at the 0.01
level.

Table 4.3: Correlations for gesture alternatives of action 1.

Gesture alternative 1 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .393 .441*
Sig. (2-tailed) . .078 .045

Speed Corr. Coefficient .393 1.000 .305
Sig. (2-tailed) .078 . .179

Precision Corr. Coefficient .441* .305 1.000
Sig. (2-tailed) .045 .179 .

Gesture alternative 2 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .436* .730**
Sig. (2-tailed) . .048 .000

Speed Corr. Coefficient .436* 1.000 .339
Sig. (2-tailed) .048 . .133

Precision Corr. Coefficient .730** .339 1.000
Sig. (2-tailed) .000 .133 .

Table 4.4: Correlations for gesture alternatives of action 2.

Gesture alternative 1 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .288 .519*
Sig. (2-tailed) . .206 .016

Speed Corr. Coefficient .288 1.000 .624**
Sig. (2-tailed) .206 . .002

Precision Corr. Coefficient .519* .624** 1.000
Sig. (2-tailed) .016 .002 .

Gesture alternative 2 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .578** .783**
Sig. (2-tailed) . .006 .000

Speed Corr. Coefficient .578** 1.000 .394
Sig. (2-tailed) .006 . .077

Precision Corr. Coefficient .783** .394 1.000
Sig. (2-tailed) .000 .077 .

Results indicate significant correlation between “precision” and “overall impression” for most
gestures. “Speed” does not seem to be highly correlated with any of the other two variables. There
were in total 20 gestures, in 18 of them, “precision” and “overall impression” were correlated, in 7
of them “speed” and “precision” were correlated, in 4 of them “speed” and “overall impression” were
correlated.

It was assumed that there will be a significant correlation between “speed” and “overall impres-
sion” in most cases. However, results indicate that the speed of the gesture do not affect much its
overall impression.

Furthermore, there was correlation between “overall impression” and the ranking of the gesture
for most of the alternatives. Additionally, for some smaller subset, there was also correlation
between the “precision” and the ranking of the alternatives. No significant correlations were found
between the “speed” variable and rankings.
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Table 4.5: Correlations for gesture alternatives of action 3.

Gesture alternative 1 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 -.024 .469*
Sig. (2-tailed) . .916 .032

Speed Corr. Coefficient -.024 1.000 .417
Sig. (2-tailed) .916 . .060

Precision Corr. Coefficient .469* .417 1.000
Sig. (2-tailed) .032 .060 .

Gesture alternative 2 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .141 .701**
Sig. (2-tailed) . .541 .000

Speed Corr. Coefficient .141 1.000 -.018
Sig. (2-tailed) .541 . .938

Precision Corr. Coefficient .701** -.018 1.000
Sig. (2-tailed) .000 .938 .

Gesture alternative 3 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .696** .736**
Sig. (2-tailed) . .000 .000

Speed Corr. Coefficient .696** 1.000 .567**
Sig. (2-tailed) .000 . .007

Precision Corr. Coefficient .736** .567** 1.000
Sig. (2-tailed) .000 .007 .

Table 4.6: Correlations for gesture alternatives of action 4.

Gesture alternative 1 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .086 .661**
Sig. (2-tailed) . .710 .001

Speed Corr. Coefficient .086 1.000 .187
Sig. (2-tailed) .710 . .418

Precision Corr. Coefficient .661** .187 1.000
Sig. (2-tailed) .001 .418 .

Gesture alternative 2 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .446* .612**
Sig. (2-tailed) . .043 .003

Speed Corr. Coefficient .446* 1.000 .403
Sig. (2-tailed) .043 . .070

Precision Corr. Coefficient .612** .403 1.000
Sig. (2-tailed) .003 .070 .

Table 4.7: Correlations for gesture alternatives of action 5.

Gesture alternative 1 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .336 631**
Sig. (2-tailed) . .136 .002

Speed Corr. Coefficient .336 1.000 .315
Sig. (2-tailed) .136 . .165

Precision Corr. Coefficient .631** .315 1.000
Sig. (2-tailed) .002 .165 .

Gesture alternative 2 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .203 .575**
Sig. (2-tailed) . .378 .006

Speed Corr. Coefficient .203 1.000 .102
Sig. (2-tailed) .378 . .661

Precision Corr. Coefficient .575** .102 1.000
Sig. (2-tailed) .006 .661 .

Developed Robot Gesture Vocabulary

Based on the result of the statistical analysis, following gestures were chosen for a robot gesture
vocabulary:

• Action “Hi, my name is Robowa”: G1.1 Pointing with the hand to the name tag on the chest.

• Action “Did you call me?”: G2.1 Pointing with the right hand to the name tag on the chest.
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Table 4.8: Correlations for gesture alternatives of action 6.

Gesture alternative 1 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .352 .703**
Sig. (2-tailed) . .117 .000

Speed Corr. Coefficient .352 1.000 .494**
Sig. (2-tailed) .117 . .023

Precision Corr. Coefficient .703** .494** 1.000
Sig. (2-tailed) .000 .023 .

Gesture alternative 2 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .202 .487*
Sig. (2-tailed) . .381 .025

Speed Corr. Coefficient .202 1.000 .473*
Sig. (2-tailed) .381 . .030

Precision Corr. Coefficient .487* .473* 1.000
Sig. (2-tailed) .025 .030 .

Table 4.9: Correlations for gesture alternatives of action 7.

Gesture alternative 1 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .398 .533*
Sig. (2-tailed) . .074 .013

Speed Corr. Coefficient .398 1.000 .420
Sig. (2-tailed) .074 . .058

Precision Corr. Coefficient .533* .420 1.000
Sig. (2-tailed) .013 .058 .

Gesture alternative 2 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .387 .620**
Sig. (2-tailed) . .083 .003

Speed Corr. Coefficient .387 1.000 .473*
Sig. (2-tailed) .083 . .030

Precision Corr. Coefficient .620** .473* 1.000
Sig. (2-tailed) .003 .030 .

Table 4.10: Correlations for gesture alternatives of action 8.

Gesture alternative 1 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .424 .552**
Sig. (2-tailed) . .055 .009

Speed Corr. Coefficient .424 1.000 .735**
Sig. (2-tailed) .055 . .000

Precision Corr. Coefficient .552** .735** 1.000
Sig. (2-tailed) .009 .000 .

Gesture alternative 2 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .176 .785**
Sig. (2-tailed) . .445 .000

Speed Corr. Coefficient .176 1.000 .210
Sig. (2-tailed) .445 . .362

Precision Corr. Coefficient .785** .210 1.000
Sig. (2-tailed) .000 .362 .

Gesture alternative 3 Overall impression Speed Precision

Overall impression Corr. Coefficient 1.000 .210 .582**
Sig. (2-tailed) . .362 .006

Speed Corr. Coefficient .210 1.000 .446*
Sig. (2-tailed) .362 . .043

Precision Corr. Coefficient .582** .446* 1.000
Sig. (2-tailed) .006 .043 .

• Action “Would you like to order?”: G3.1 Waving with the hand up-down in front of the menu.

• Action “Can I take away this cup?”: G4.1 Pointing with the right hand to the cup.

• Action “Would you like me to bring you a napkin?”: G6.1 Rubbing the mouth with the hand.

• Action “Do you want me to clean the table?”: G7.1 Circling with the hand over the table.
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For following actions, no single gestures are determined:

• Action “Would you like me to suggest a special drink?”

• Action “Do you want the bill?”

In this section, detailed results for all actions are presented.

Action “Hi, my name is Robowa”
This action represents a robot introducing itself. Gesture 1.1 ranked better than both gestures

1.2 and 1.3 (r1 = 2.65, r2 = 1.55, r3 = 1.8, p < 0.01) . The mean overall impression of the gesture
1.1 was higher than of the gesture 1.2 (p < 0.01).

GA1 GA2 GA3
1

2

3

R
an

ki
ng

GA1 GA2 GA3
0
2
4
6
8

10

O
ve

ra
ll

im
pr

es
si

on

GA1 GA2 GA3
−4
−2
0

2

4

Sp
ee

d

GA1 GA2 GA3

2

4

6

8

10

P
re

ci
si

on

Figure 4.5: Rankings and mean overall impressions of gesture alternatives for action 1

Table 4.11: Means and standard deviations (in brackets) for overall impression, precision and speed
of gesture alternatives of action 1.

Overall impression Speed Precision
Gesture alternative 1 7.10 (1.221) -0.90 (0.995) 7.14 (1.315)
Gesture alternative 2 4.76 (2.256) -0.81 (1.167) 5.24 (2.071)
Gesture alternative 3 6.00 (1.789) 1.05 (1.203) 5.67 (1.983)

Action “Did you call me?”
The action is executed when the robot assumes that a guest called it. Gesture 2.1 ranked better

than gesture 2.2 (r1 = 2.85, r2 = 2.15, p < 0.01). The mean OI of the gesture 2.1 was higher than
of the gesture 2.2 (p < 0.01).

Action “Would you like to order?”
This gesture is performed when robot would like to serve a guest. Gestures 3.1 and 3.2 ranked

higher than gesture 3.3 (r1 = 2.6, r2 = 2.1, r3 = 1.3, p < 0.01). The mean OI of the gesture 3.1
was higher than of the gesture 3.3 (p < 0.01).

Action “Can I take away this cup?”
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Figure 4.6: Rankings and mean overall impressions of gesture alternatives for action 2

Table 4.12: Means and standard deviations (in brackets) for overall impression, precision and speed
of gesture alternatives of action 2.

Overall impression Speed Precision
Gesture alternative 1 7.00 (1.414) 0.19 (1.167) 6.62 (1.161)
Gesture alternative 2 3.86 (1.153) -0.76 (1.300) 4.19 (1.806)
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Figure 4.7: Rankings and mean overall impressions of gesture alternatives for action 3

This gesture is performed when robot would like to take away an empty cup. Gesture 4.1
ranked higher than the gesture 4.2 (r1 = 2.9, r2 = 2.1, p < 0.01) The mean OI of the gesture 4.1
was higher than of the gesture 4.2 (p < 0.01).

Action “Would you like me to suggest a special drink?”
This gesture is executed when the robot would like to make a suggestion (e.g. if the guest is
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Table 4.13: Means and standard deviations (in brackets) for overall impression, precision and speed
of gesture alternatives of action 3.

Overall impression Speed Precision
Gesture alternative 1 7.24 (1.446) 0.76 (1.513) 6.43 (1.248)
Gesture alternative 2 6.10 (1.895) -0.05 (1.244) 6.14 (1.652)
Gesture alternative 3 4.62 (1.962) -0.62 (1.244) 4.95 (1.857)
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Figure 4.8: Rankings and mean overall impressions of gesture alternatives for action 4

Table 4.14: Means and standard deviations (in brackets) for overall impression, precision and speed
of gesture alternatives of action 4.

Overall impression Speed Precision
Gesture alternative 1 7.57 (1.363) 0.43 (1.535) 7.00 (1.549)
Gesture alternative 2 3.90 (1.895) 0.81 (1.167) 4.62 (1.627)

indecisive). There were no significant differences between these gestures.

Table 4.15: Means and standard deviations (in brackets) for overall impression, precision and speed
of gesture alternatives of action 5.

Overall impression Speed Precision
Gesture alternative 1 6.19 (1.965) -0.33 (1.317) 5.90 (1.895)
Gesture alternative 2 5.05 (1.717) 1.00 (1.483) 5.29 (1.821)
Gesture alternative 3 6.43 (1.248) 0.00 (1.049) 5.86 (1.352)

Action “Would you like me to bring you a napkin?”
In case the robot notices the customer needs a napkin, it will perform this gesture. Gesture 6.1

ranked higher than the gesture 6.2 (r1 = 2.8, r2 = 2.2, p < 0.01). The mean OI of the gesture 6.1
was higher than of the gesture 6.2 (p < 0.01).
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Figure 4.9: Rankings and mean overall impressions of gesture alternatives for action 5
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Figure 4.10: Rankings and mean overall impressions of gesture alternatives for action 6

Table 4.16: Means and standard deviations (in brackets) for overall impression, precision and speed
of gesture alternatives of action 6.

Overall impression Speed Precision
Gesture alternative 1 6.81 (2.015) 0.71 (1.419) 6.52 (1.504)
Gesture alternative 2 4.81 (1.632) -0.67 (1.653) 4.81 (1.662)

Action “Do you want me to clean the table?”
When the customer makes a spill, the robot can be proactive and perform a gesture, suggesting

it will clean the table. Gesture 7.1 scored higher than the gesture 7.2 (r1 = 2.8, r2 = 2.2, p < 0.01).
The mean OI of the gesture 7.1 was higher than of the gesture 7.2 (p < 0.01).

Action “Do you want the bill?”
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Figure 4.11: Rankings and mean overall impressions of gesture alternatives for action 7

Table 4.17: Means and standard deviations (in brackets) for overall impression, precision and speed
of gesture alternatives of action 7.

Overall impression Speed Precision
Gesture alternative 1 6.14 (2.104) 0.43 (1.535) 5.90 (1.446)
Gesture alternative 2 4.52 (1.965) 0.48 (1.365) 5.29 (1.617)

There were no significant differences between these gestures.
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Figure 4.12: Rankings and mean overall impressions of gesture alternatives for action 8

Discussion

There were statistically significant differences in rankings of gestures in 6 out of 8 actions. The
results lead to the set of gestures for the Aldebaran Nao in a robot waiter scenario presented in
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Table 4.18: Means and standard deviations (in brackets) for overall impression, precision and speed
of gesture alternatives of action 8.

Overall impression Speed Precision
Gesture alternative 1 5.05 (1.830) 0.57 (1.287) 5.71 (1.648)
Gesture alternative 2 5.81 (1.914) 0.62 (1.322) 5.95 (1.746)
Gesture alternative 3 5.48 (1.778) 0.48 (1.327) 6.10 (1.700)

Table 4.19: Resulting robot gesture vocabulary

1. “Hi, my name is Robowa.” 1. Pointing with the hand to the name tag on
the chest.

2. “Did you call me?” 1. Pointing with the right hand to the name
tag on the chest.

3. “Would you like to order?” 1. Waving with the hand up-down in front of
the menu.
2. Pointing with the right arm to the menu.

4. “Can I take away this cup?” 1. Pointing with the right hand to the cup.
5. “Would you like me to suggest a special
drink?”

No significant difference in rankings.

6. “Would you like me to bring you a napkin?” 1. Rubbing the mouth with the hand.
7. “Do you want me to clean the table?” 1. Circling with the hand over the table.
8. “Do you want the bill?” No significant difference in rankings.

Table 4.19.
In the case of actions for suggesting a special drink and asking if the customer wants a bill

there were no statistically significant differences in rankings. A possible explanation for why is it
so in the case of the former action is that it might be too specific, and that participants would not
associate any particular gesture with this action in interpersonal interaction too. For the latter
action, the possible reason might be that proposed gestures cannot be easily understood when
performed on this particular robot.

General Remarks

Some general remarks were provided by the participants, who were asked after the experiment to
suggest which features would overall improve the understanding of the robot’s gestures. Six out of
21 said they would prefer the robot to also include sound feedback in the form of speech. Also, six
participants said that human-like hand and fingers, as well as their movements would be preferred
to the current state5. Four participants said they prefer the introduction of head movements.
Four participants noted some gestures should differentiate more, stating that the gestures for two
different actions would appear the same to them. The use of interactive genetic algorithms can
improve the gestures, through adaptation of robot gestures by employing aesthetic selection, as
described in Section 4.5.

5Aldebaran Nao RoboCup version was used for the experiment, which has no movable fingers or rotatable wrist.
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4.4.3 Comparison of Present Actions in Human and Robot Gesture Vo-
cabularies

Some actions are present in both human and robot gesture vocabularies, namely: ordering a drink,
asking for a suggestion, asking to clean the table, asking to take away a glass or a cup, and asking
for a bill. For ordering a drink, based on the results of the preliminary human gesture vocabulary
experiment (Bodiroža et al., 2012), 62% of the participants used pointing in case where the sentence
was “I would like to order a beer”, and 100% chose pointing to the menu when the sentence was
“I would like to order this”. Although a gesture where the robot waves over the menu is selected
here, another alternative is pointing which was also rated relatively high (means of the overall
impressions of the gestures 3.1 and 3.2 are oi31 = 7.24 and oi32 = 6.09, respectively). When
participants wanted to ask the robot for a suggestion, 50% of them used a circular movement
of the hand or the finger over the menu. However, in the case of the robot gesture vocabulary,
significant differences in the rankings and the means of the overall impressions for this action were
not found. In order to ask the robot to clean the table, 100% of the participants opted to use
the gesture where they move the hand in a circular way over the table. In the case of the robot
gestures, another group of the participants rated the same gesture the highest, only performed by
the robot (oi71 = 6.14). The precision of the gesture wasn’t that high (p71 = 5.9), which probably
affected the overall impression (Spearman’s rank between these two variables for this gesture is
r = 0.53, p < 0.01). Most of the participants, in particular 75% of them, would handle the object
when they wanted the robot to take it away. Only small number of them would perform a gesture
which would simulate the action of pushing away the object with the hand. Similarly, the same
gesture performed by the robot, G4.2, was rated lower than the gesture in which the robot points
to the cup, G4.1 (oi41 = 7.57, oi42 = 3.9, p < 0.01). The action of a robot pointing to the object
can be seen as analogous to a person handling the object. When the participants wanted to ask
for the bill, most of them, in particular 75%, would perform the gesture in which they write on an
imaginary piece of the paper in the air. However, in the case of the robot performing the gesture,
no significant difference was found between the three alternatives, which indicates this gesture
should be improved.

4.5 An Evolutionary Approach for Improving Robot Ges-
tures

The results of the experiment for selecting gestures for a robot gesture vocabulary showed that
not all actions had highly rated gestures. This outcome led to the proposal of employing an
evolutionary approach for improving robot gestures. The approach that was employed was an
interactive genetic algorithm. Genetic algorithm represent a class of search algorithm. They are
inspired by the principles of natural selection, namely mating, selection and mutation. Following
subsection provides a more in-depth description of the foundations of genetic algorithms.

4.5.1 Genetic Algorithms

Beginning with a preliminary survey, Holland (1992) poses a problem of adaptive systems consisting
of three founding blocks:

• E, the environment of the system under adaptation

• τ , an adaptation plan applied to the system’s structures, with the goal of generating im-
provement, and
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• µ, a way to evaluate the result of the adaptation.

Further on, he defined a general framework (J, E , χ), along the lines outlined in the prelimi-
nary survey, where J represents a set of adaptive plans to be compared, E possible environments
(uncertainties) of an adaptive system, and χ a criterion for comparing plans in the set of J.

An adaptive system within this framework is defined as a set of objects (A,Ω, I, τ), where
A = {A1, A2, . . . } is the set of attainable structures, the domain of action of the adaptive plan,
Ω = {ω1, ω2, . . . } is the set of operators for modifying structures, with ω ∈ Ω being a function
ω:A → P, where P is some set of probability distributions over A, I is the set of possible inputs
to the system from the environment, and τ : I ×A→ Ω is the adaptive plan which, on the basis of
the input and structure at time t, determines what operator is to be applied at the time t.

On the example of genetics, he defined following meaning of objects:

• A, populations of chromosomes represented, for example, by the set of distributions over the
set of genotypes A1,

• Ω, genetic operators such as mutation, crossover, inversion, and so on,

• J, reproductive plans combining duplication according to fitness with the application of
genetic operators; for example, if each operator ωi ∈ Ω is applied to individuals with a fixed
probability pi, then the set of possible plans can be represented by the set,

{(p1, . . . , pi, . . . , pb) where 0 ≦ pi ≦ 1}

• E , the set of possible fitness functions {µe:A → R}, each perhaps stated as a function of
combinations of co-adapted sets,

• χ, comparison of plans according to average fitnesses of the populations produced; for exam-
ple,

inf
E∈E

inf
t

inf
τ ′∈J

µE(τ, t)/µE(τ
′, t)

Adaptive plans applied on the general framework, lead to the genetic plans – adaptive plans
using generalized genetic operators. A genetic algorithm can be described as follows:

(a) Set t = 0 and initialize a population B by selecting M structures at random from A1 to form
B(0) = {Ah(0), h = 1, . . . ,M}.

(b) (i) Observe and store the performances {µE(Ah(0)), h = 1, . . . ,M}. Proceed to step (c).
(ii) Observe the performance of A′(t) and replace µE(Aj(t)(t) by µE(A

′(t)).

(c) Increment t by 1.

(d) Select one structure Ai(t)(t) from B(t) by taking one sample of B(t) using the probabilities
Prob(Ah(t)) = µE(Ah(t))/

∑M
h′=1 µE(Ah′(t)), h = 1, . . . ,M .

(e) Determine the operator ωt ∈ Ω to be applied to Ai(t), ωt = ρ(Ai(t)(t)), and then use ωt

to determine a new structure A′(t) by taking a sample of A1 according to the probability
distribution Pt = ωt(i(t), A1(t), . . . , AM (t)) ∈ P℘.

(f) Assign probability 1/M to each number 1, . . . ,M , select one number 1 ≦ j(t) ≦ M accord-
ingly, and replace Aj(t)(t) by A′(t). Proceed to step (b.i).
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B(t) represents a population at a time t, consisting of its members, represented by structures
Ai, i = 1, . . . ,M . By applying genetic operators Ω to a selected member Ai(t)(t), which can be seen
as a “parent”, a new member A′(t) is produced, which can be seen as an “offspring” of its “parent”. As
each new member A′(t) replaces an older member Aj(t)(t), the size of B(t) remains constant through
time. Function ρ determines which genetic operator are appropriate to a particular member of the
population. With some operators, such as with a cross-over operator, a second member from the
population needs to be selected, e.g., as a “mate” for Ai(t)(t), that is:

A(t) = (A1(t), . . . , AM (t), µE(A1(t)), . . . , µE(AM (t)))

The state is defined with the population B(t), as well as with the performances µE(Ah(t)), h =
1, . . . ,M of the structures of the population.

4.5.2 Interactive Genetic Algorithms
Interactive genetic algorithms represent a class of algorithms, in which set E = {µe} is replaced
with a human rater, performing the role of a fitness function. This is in particular applied when
the selection is aesthetic in its nature. A defining characteristic of the aesthetic selection is that
it is hard or impossible to define a function µe, which evaluates aesthetic qualities of a population
B. On the other hand, the quality of “appealing” comes naturally to humans and in this case, they
can be employed to evaluate members of a population, seen as using them instead of explicitly
defined fitness function.

An example for aesthetic selection is evolution of biomorphs. Biomorphs were created by
Dawkins (2013). They represent a 2-dimensional shape resembling a living organism, and they
were used as an example of artificial evolution of shapes in order to illustrate the process of
natural evolution. In the book, some particular examples of biomorphs were presented, that looked
“interesting” to a human eye. This type of evolution, where a fitness of a member is evaluated based
on its aesthetic qualities is a problem that can be approached with interactive genetic algorithms
and it was addressed in a work by Smith (1991). The initial population was randomly generated
and a participant was asked to rate the presented members of the population. Through use of
genetic operators ω ∈ Ω, together with the ratings used as fitness values for the selection of mating
partners, new members were created, which replaced older members of the population.

A very important characteristic, that specifically differentiates interactive genetic algorithms
from standard ones, is that the size of population B(t) is limited to a low number, as well as the
possible number of generations t = 1, . . . , N , given that a human rater cannot be asked to evaluate
thousands of members Ai(t) for a large number of generations.

Another experiment was performed by Horowitz (1994), in which he presented a procedure for
learning user’s preferences for generating musical rhythms.

4.5.3 Evolution of Robot Gestures
Given the results of the experiment on development of robot gesture vocabularies, an approach to
improve robot gestures in a guided way was envisioned. As it was already mentioned, interactive
genetic algorithms have been applied in previous work by others for the goal of evolution based
on aesthetic selection. Given that the improvement of gestures is in essence an aesthetic selection
problem, interactive genetic algorithms were chosen to be used in the experiment.

Each gesture is encoded as a chromosome, consisting of genes. The chromosome represents the
trajectory of the gesture, and each gene represents one point in space, also known as keyframe,
that is a part of the trajectory. The evolution is achieved through application of genetic operators.

The algorithm used two genetic operators: single-point crossover and adaptive mutation. Se-
lection algorithm for the crossover was queen selection algorithm developed by Stern et al. (2006).



4.5. AN EVOLUTIONARY APPROACH FOR IMPROVING ROBOT GESTURES 61

Queen selection algorithm differs from the standard selection algorithm, in the way that there is
a set of queens, consisting of NQ members with highest fitness values. For mating purposes, one
mate partner is selected from the queen set, while the other member is selected from the whole
population. Mutation was performed on the level of keyframes, instead of on the level of single
joint angles. That is, if a particular keyframe from a sequence is to be mutated, first a set of nearby
keyframes was obtained and a mutated keyframe was selected from this set. This represents a new
point in the gesture trajectory, thus replacing the old point.

Following parameters were selected empirically:

• Population size of N = 26 with six members chosen for presentation in each generation.

• Elitism was used, through which the member of the population with highest fitness is kept
in the population.

• Maximum number of generations was set to 20.

• Number of queens in the queen set of NQ = 5.

• Crossover probability of pc = 0.7.

• Adaptive mutation was employed, meaning that the current probability of a mutation of a
member was inversely related to its fitness value, that is pm,i = 1− fi.

Initial population for an action consisted of pre-designed gestures BP(0) = {AP,h(0), h =
1, . . . , NP }, obtained through the experiment on robot gesture vocabularies, random modifica-
tions of the pre-designed gestures BM(0) = {AM,h(0), h = 1, . . . , NM}, and randomly generated
gestures BR(0) = {AR,h(0), h = 1, . . . , NR}, satisfying relation NP +NM +NR = N .

Experimental Setup

A graphical interface for the evolution experiment was developed, which implements the interactive
genetic algorithm as a back-end for improvement of gestures, while an animated 3D model of the
Aldebaran Nao robot was used to perform the evolved gestures. A screenshot of the program can
be seen in Figure 4.13.

The first experiment was conducted with 26 students of the Department of the Industrial
Engineering and Management, Ben-Gurion University of the Negev, Israel. Of those, 23 filled out
the statistical survey (7 female, 16 male, mean age = 25.26, σ = 1.84). The participants were
asked to rate the gestures for the following three meanings: “Hi, my name is Robowa” (Action 1),
“Can I take away this cup?” (Action 2), and “Would you like me to clean the table?” (Action 3).
Sizes of pre-designed gestures sets were NP,A1 = 3, NP,A2 = 2, and NP,A3 = 1 for Actions 1, 2,
and 3, respectively. Sizes of randomly modified gestures sets were NM,Ai = 13−NP,Ai .

During the experiment, a participant would select an action, after which six randomly chosen
gestures from the whole population would began playing in parallel in simulated model. They were
asked to assign fitness values to the presented gestures, based on how well they fit to the chosen
action. After rating, they were instructed to click on the “Next” button and repeat the procedure
for all following generations, until a pop-up message would instruct them that the evolution was
over. The stopping criteria were either one of the success criteria, or that the generation number
reached the allowed number of generations. The latter criterion was to prevent high familiarization
with the gestures, which might hinder valid rating of gestures.
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Figure 4.13: Experimental environment for evolution of robot gestures

Table 4.20: Results of the first experiment on gesture evolution with first success criterion

Action 1 Action 2 Action 3 Overall
Valid runs 24 19 18 61
Successful runs 13 10 11 34
Success rate 54.17% 52.63% 61.11% 55.74%

Results

Three variations of a success criterion were defined to evaluate whether a particular run was
successful: (1) to have a mean fitness of the generation above a particular threshold, in this case
above 0.85, (2) to have at least one member of the population in the final generation having fitness
value of 1, or (3) to have at least one member in any of the generations having fitness value of 1.
Table 4.20 presents a summary of the experimental results.

The number of successful runs for the third action increased significantly between the second
and the third variations of the success criterion. This is a result of the fact that some of the
gestures were very long and therefore it was hard to associate them with the related actions. This
was also reported by some of the experiment participants. The underlying cause was one of the
pre-designed gestures, which was a longer sequence of keyframes. While the gesture itself was
intended to be easily associable with its action, its length affected the duration of its descendants
and this could cause the average length of gestures in the whole population to increase. Due to
the nature of the algorithm, it is less probable to evolve a meaningful gesture, when its defined as
a longer sequence of keyframes, compared to shorter sequences. Hence, in some experiment runs,
the mean fitness value would increase up to a certain generation, followed by a decrease, once the
duration of the gestures in the population increased (e.g. see Figure 4.14) To correct this problem,
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Table 4.21: Results of the first experiment on gesture evolution with second success criterion

Action 1 Action 2 Action 3 Overall
Valid runs 24 19 18 61
Successful runs 14 12 11 37
Success rate 58.33% 63.16% 61.11% 60.66%

Table 4.22: Results of the first experiment on gesture evolution with third success criterion

Action 1 Action 2 Action 3 Overall
Valid runs 24 19 18 61
Successful runs 15 12 16 43
Success rate 62.5% 63.16% 76.19% 67.19%

that pre-designed gesture was removed from the initial population in the follow-up experiment.
Two examples of trends of mean fitness values of successful and unsuccessful evolutions are

presented in Figures 4.15 and 4.16.
To verify the results obtained during the first experiment that the evolution was indeed suc-

cessful and not a result of a participants’ familiarization with the gestures, a second experiment
was conducted with 7 participants from the Humboldt-Universität zu Berlin.

The experiment was modified, so that after the evolution was finished, due to either of the
criteria, another set of six gestures were displayed to the participant. This set consisted of three
best-ranked gestures from the first and from the last generation. After the gestures were rated,
the ratio between the ratings of the gestures from the last and from the first generations was
calculated. The ratio can be interpreted in the following way. If the ratio is equal to 1, then
there is no difference in perception of the best gestures from the initial generation and from the
last generation. The value of the ratio above or below 1 indicates that the gestures from the last
generation were rated as better or worse compared to the best gestures from the first generation.

The verification was performed on the same actions as during the previous experiment: “Hi,
my name is Robowa” (Action 1), “Can I take away this cup?” (Action 2), and “Would you like me
to clean the table?” (Action 3). Following table 4.23 presents ratios for all three actions, as well
as overall ratio.

The results show that the gestures evolved through the presented procedure are indeed perceived
as better fitting to the actions, even when they are directly compared to the best rated gestures
from the first generation. This shows that the ratings of the gestures do not artificially inflate
due to getting accustomed to the experiment, but are getting better suited to the related actions.
Another visible result is that the initial ratings and those obtained in the verification step are
consistent.

Table 4.23: Results of the verification experiment on gesture evolution (standard deviation values
reported in brackets).

Action 1 Action 2 Action 3 Overall
Mean ratings, first generation, initial 0.38 (0.32) 0.41 (0.21) 0.41 (0.22) 0.4 (0.26)
Mean ratings, first generation, verification 0.33 (0.36) 0.55 (0.34) 0.44 (0.3) 0.42 (0.33)
Mean ratings, last generation, initial 0.96 (0.05) 0.92 (0.07) 0.96 (0.06) 0.95 (0.06)
Mean ratings, last generation, verification 0.88 (0.19) 0.76 (0.27) 0.92 (0.14) 0.87 (0.2)
Ratio 3.94 (4.22) 1.56 (0.74) 2.21 (0.57) 2.7 (2.68)
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Figure 4.14: A decrease in mean fitness value for Action 7 during one experimental run.

Figure 4.15: An example of the trend of mean fitness value for a successful evolution.
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Figure 4.16: An example of the trend of mean fitness value for an unsuccessful evolution.

4.6 Discussion and Conclusions

4.6.1 Development of Gesture Vocabularies

Section 4.4 defined a methodology to select a set of gestures for a humanoid robot and a human,
known as gesture vocabularies. The gestures were selected through two user surveys, in which
the participants were asked to rank different gesture alternatives based on the measures of overall
impression, speed and precision. Furthermore, they were asked to also rank the gestures from the
best to the worst. Proposed methodology can be applied with different robot morphologies and
different actions.

Lack of statistically significant results in few cases can lead to two explanations. One explana-
tion is that the designed gestures are not well-known for the particular action, leading to the result
where no particular gesture rated higher than the other. Another is that the gestures were not
clearly readable on this particular robot. Proposed solution is to use interactive genetic algorithms
to evolve a set of better gestures for these, as well as other actions, as it will be explained later.

To summarize, the first step is to define a set of actions for a particular task. Then, an initial
set of robot gestures is defined for each task, with the idea of being similar to those performed by
humans. These gestures are performed on a chosen robot and recorded. The next step is a survey
where each participant is asked to rank these gestures from the best to the worst, and assign how
precise the gestures are, is the speed of the gestures good and what their overall impression of the
gestures is. Statistical analysis points out which gestures rated better than others. In case there
is some improvement needed, a follow-up gesture evolution experiment can be run to evolve a set
of more fit algorithms.
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4.6.2 Evolution of Robot Gestures
The results of the experiment on robot gesture vocabulary showed the possible need to improve on
the pre-designed gestures. As a way to achieve this, a method was envisioned based on aesthetic
selection to improve the appearance of gestures performed by a humanoid robot. Interactive genetic
algorithms were applied, based on their intended use in problems where it is hard, if not impossible
to define a fitness function, such as in the problems of aesthetic selection.

The experimental results show that interactive genetic algorithms can be employed to improve
robot gestures for predefined actions. The procedure starts with pre-designing gesture alternatives
for one action, using them as a seed in the initial population, and then asking experiment par-
ticipants to rate these gestures according to how well they fit to the current action. A follow-up
validation step, in which three best rated gestures from the first and the last generations were
presented in parallel in randomized order, confirmed that participants rated evolved gestures as
better than those from the first generation, which confirms the good applicability of interactive
genetic algorithms in evolution of gestures.



Chapter 5

Gesture Recognition and
Disambiguation

5.1 Overview

This chapter relates to the topic of gesture recognition and disambiguation. In relation to the Figure
1.1, it covers the area of recognition of dynamic gestures and their disambiguation, as outlined in
the Figure 5.1. Furthermore, the topic of learning of relations between observed pointing gestures
and associated motor actions is explored through two experiments.

Sections 5.2 and 5.3 present a summary of gesture recognition methods and gesture represen-
tations, and reviews an application analysis for gestures in HRI and HCI. A short summary of the
issues in gesture recognition is presented.

Two main areas are covered. Firstly, Section 5.4 introduces the gesture recognition and disam-
biguation framework. The main aim is recognition of dynamic arm gestures, while static gestures
could be recognized to a certain extent, due to their different nature. The pre-processing pipeline,
recognition method used and the disambiguation procedure are described in detail. The goal of
this framework is to make the mechanisms of gesture recognition itself as abstract as possible, thus
lowering the effect of interpersonal variations, in order to be able to use a simple recognition algo-
rithm. Features that are ignored during the recognition can be used in the disambiguation step, in
case they are relevant for this particular message. Section 5.5 presents the framework validation,
including the required future validation. Performance of the recognition algorithm was measured
using an extended testing method, which includes negative samples to simulate real-world envi-
ronment. The results were obtained using a local gesture dataset, as well as the dataset compiled
by Celebi et al. (2013).

Section 5.6 presents an example human-robot interaction scenario. In this scenario, a person
can control the robot through gestures, giving it commands for what it should do.

Secondly, learning of deictic gestures is explored in Section 5.7, through use of internal models.
They were employed in two experiments. In the first experiment, self-exploration lead to an exe-
cution of rotational movements, as a result of observed deictic gestures. The following experiment
was based on learning by demonstration, where the initial execution mechanism was extended to
translational movements.

The work presented in this chapter is partially based on following publications: Bodiroža et al.
(2013a), Bodiroža et al. (2013b), Bodiroža and Hafner (2014), Doisy et al. (2013) and Jevtić et al.
(2014).

67
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Figure 5.1: Research topics covered in Chapter 5
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5.2 Background
Gestures are a prominently used modality in interpersonal interaction, usually accompanying
speech. Therefore, they can be used as an intuitive interface for human-robot interaction, as
well as human-machine interaction in general. In Chapter 3, certain aspects of robot’s behavior
have been identified in order to increase intuitiveness of interaction, such as enhanced feedback
from the robot. Deictic gestures were employed by the robot to manipulate partner’s attention.
Gestures can also be used by the interacting partner in order to manipulate robot’s attention and
to indicate their own intentions and goals.

To enable use of gestures by humans, they need to be recognized by the robot. Gesture recog-
nition is a process where data representing motion and pose information, which can be acquired
through sensors, such as RGB and depth cameras, motion trackers, accelerometers and so on, is
classified into one of the trained gesture classes. In order to have an effortless interaction, it is
important to have robust gesture recognition, accommodating for inter- and intra-personal varia-
tions in gesturing. One of the prerequisites for robust gesture recognition are developed gesture
vocabularies, which have been covered in Chapter 4.

Automatic gesture recognition, used in human-robot and human-computer interaction, has
been an active area of research for at least three decades. As an example, Bolt (1980) developed
a method for controlling an interface using speech and pointing gestures. However, there are still
recurring issues that hinder its application in unconstrained, real-life scenarios. Most of the present
algorithms for gesture recognition work well under certain assumptions, such as the location of the
person in the scene or the direction of the gesture movement. Therefore, gesture recognition
performs well while the adopted assumptions are satisfied, but fails when they are violated. The
goal of this work is to reduce the number of required assumptions, in order to have both reliable
and robust gesture recognition process.

Interpersonal variations in gesturing present a prominent issue, which lower the successfulness
of gesture recognition. Furthermore, these variations are in some cases irrelevant with regard
to the message to be conveyed. Inter- and intra-personal variations in gesturing is a recurring
issue in gesture recognition. In previous chapter possible complexity of gesture vocabularies was
made visible and the issues in their design and it presented which gestures people associate with
particular actions (Bodiroža et al., 2012; Stern et al., 2006). Current approaches usually impose
a limitation on the way how a gesture is performed, e.g., by enforcing a particular location in the
gesture space where a gesture can be performed, or the direction of the gesture (e.g. see example
gestures in work by Schlömer et al. (2008)). In some cases, these variations are not relevant for
the exact associated meaning of the gesture. For example, a person might want to make a “circle”
gesture, where it is not relevant whether the circle is large or small, or if it is gestured clockwise
or counter-clockwise. Further issue is that people are not always standing still while they gesture
in real-life conditions. However, these abstracted features are highly relevant in some cases. For
example, if a user performs a “right to left swipe” gesture, the direction of the motion is important,
but it is possible that it can be discarded during the recognition step. This can be addressed with
the post-recognition disambiguation.

5.3 Gesture Recognition and Representations, Application
and Advantages of the Proposed Framework

Approaches in gesture recognition were reviewed by Mitra and Acharya (2007), and more recently
by Rautaray and Agrawal (2012). Different methods have been developed, e.g., hidden Markov
models, dynamic time warping, finite state machines and time-delayed neural networks were em-
ployed for recognition of dynamic gestures. Gestures representations can also vary, such as absolute
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or relative, 2D or 3D trajectories, or first derivative of the trajectories common in recognition with
dynamic time warping (Corradini, 2001; ten Holt et al., 2007; Bodiroža et al., 2013a), quantizing
the trajectory for recognition with a HMM (Yamato et al., 1992), using orientation histograms
(Freeman and Roth, 1995), using a fixed-length histogram of features for detection using a SVM
(Dardas et al., 2010) and so on.

As previously mentioned, the main idea behind the approach presented here is that gesture
recognition in human-robot interaction should be robust, meaning that it should not be affected
by particular environmental factors. These factors include the relative position and orientation of
the person and the robot, physical size of the person, familiarity of the person with the gestures
and the ease of their retraining.

There are prior efforts to make the gesture recognition more robust, such as the one presented
by Sadeghipour and Kopp (2009), where the authors used internal simulations for gesture recogni-
tion and production. The work presented in this chapter introduces a concept of a comprehensive
framework that aims to alleviate the problems typically encountered in the field of gesture recogni-
tion. The main aim is to recognize dynamic arm gestures, where static gestures could be recognized
to a certain extent, due to their differing properties.

A recent work by Suarez and Murphy (2012) presented a review of state-of-the-art methods in
hand gesture recognition and identified some of the still-present issues in gesture recognition. It
is important to mention here that one of the identified issues is the location and orientation of a
person, for example when they are not actively facing the sensor. Another issue is unfamiliarity of
the person with a gesture set used by the system. This reiterates the need for increased tolerance
of the gesture recognition algorithm, with regards to both inter- and intra-personal variances.

Wachs et al. (2011) analyzed possible applications of hand gestures in human-computer inter-
faces. Some of the identified costs and benefits of using hand gestures are price, responsiveness,
user adaptability and feedback, learnability and low mental load, accuracy (detection, tracking
and recognition), interaction space. The implemented framework addresses some of the mentioned
issues. It is responsive, running in real time, due to the relatively simple algorithms which are used.
The framework provides partial user adaptability. Because of the preprocessing, as explained in
the Section 5.4.2, the recognition algorithm can be kept simple and it can work reliably with a low
number of training samples. Furthermore, the preprocessing of the gesture trajectories reduces
mental load and improves learnability, as some variations in performances of the same gesture are
tolerated. Interaction space is not hindered, and the user can freely move around while gesturing.

Therefore, the developed approach alleviates to some extent the issues identified by Suarez
and Murphy (2012) and takes into account the costs and benefits laid out by Wachs et al. (2011).
Additionally, due to the low number of training gestures required, a particular gesture could be
easily retrained if needed.

Noticeable differences can be observed between different persons and within one person, when
they are performing the same gesture. Some of the features influencing the variations are the size of
the gesture, its location in the gesture space, the speed of the hand(s) that perform the gesture and
direction of the hand(s). These features can carry meaningful information, but in some cases they
are irrelevant. For example, a person might want to indicate that an object had a circular shape
and use a mimetic gesture that represents a circle. There are different possible ways to perform
this gesture, which can be observed – it can be performed with the hand moving clockwise or
counter-clockwise, or the resulting circle can vary in size between different persons. In other cases,
these variations are relevant, and should be used to disambiguate between particular gestures, e.g.
whether the round object was big or small, which could be indicated with the size of the “circle”
gesture.

Table 5.1 summarizes some of the issues, identified in gesture recognition and relevant for the
scope of this work, and proposed solutions presented in the rest of this chapter.
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Table 5.1: Issues in gesture recognition

Issues Proposed solutions

Interpersonal orientation Frame of reference transformation

Gesture size Normalization, standardization

Gesture location Trajectory alignment (e.g., by alignment of
first points or centroids)

Varying distribution of trajectory samples Uniform resampling

Varying starting and ending points of a ges-
ture

Bag of points

5.4 GRaD: A Framework for Gesture Recognition and Dis-
ambiguation

The goal of the framework for gesture recognition and disambiguation (GRaD) is to handle the
issues that are common in gesture recognition in real-life scenarios.

Two key points are:

• gestures, regardless of whether the mentioned features are relevant or irrelevant, can be
recognized using low number of training samples, and

• disambiguation, performed after recognition, discerns different gesture classes based on the
training, such as “large circle” or “small circle” in case where two groups of training samples
are present, one related to the former, and one to the latter class, or just a “circle” if there
was only one class for a general “circle” gesture.

A low number of training samples is a highly important feature of the framework, enabling
gesture recognition to become an easy to use, ubiquitous interface, having in mind that in adaptive
systems, new gestures need to be added and current ones need to be modified while the system is
in use.

Depth sensors have recently became affordable, alleviating the issues in gesture data acquisi-
tion imposed by computer vision. However, the data they provide is usually noisy and contains
outliers. In addition, some features are not relevant for the recognition itself, while being rele-
vant for disambiguation in some cases. In order to have robust gesture recognition, raw data is
preprocessed to smooth the recorded trajectory and to remove particular features, such as gesture
size, direction, velocity and velocity profile, location in the gesture space and starting and ending
points of the gesture, that are not relevant for the recognition of the basic gesture. The idea is to
make the gesture recognition invariant with regard to these features. Furthermore the recognition
is performed on a trajectory which is standardized and aligned with the comparison gesture.

Figure 5.2 represents the general outline of the framework. A gesture trajectory is obtained
through a sensor. The trajectory is preprocessed before the recognition. The output of the recog-
nition algorithm is the identifier of the recognized gesture. In case there is some ambiguity, i.e.,
if this identifier is mapped to more than one gesture, then the identifier together with additional
features is provided to the disambiguation algorithm to determine what is the observed gesture.

5.4.1 Data Acquisition
A gesture is represented as a time sequence A of 3D joint positions Ai, for i = 1 . . . n. This can
be extended to include more than one joint, that is a gesture being represented as a set of time



72 CHAPTER 5. GESTURE RECOGNITION AND DISAMBIGUATION

Gesture trajectory

Preprocessing Feature extraction Additional extensions

Recognition

Abstract gesture Disambiguation

+

Gesture Additional information

Figure 5.2: Proposed Gesture Recognition and Disambiguation (GRaD) framework

sequences A = {Ajoint 1, . . . ,Ajoint m}, where m is the number of joints used for recognition.
Joint positions can be obtained using different sensors, e.g. using RGB cameras, motion trackers
or accelerometers. In this work, depth information is used to perform gesture recognition. Recent
release of affordable sensors such as Microsoft Kinect and Asus Xtion PRO Live has allowed a
wider acceptance of the depth-image technology by the scientific community. Human skeleton
tracking algorithms (Shotton et al., 2011) use depth information to segment the human body into
joints, which can be applied to gesture recognition. They provide 3D positions of body joints with
a 30Hz frame rate.

5.4.2 Data Preprocessing

Data preprocessing consists of five stages and includes the following steps: frame of reference
transformation, normalization or standardization, trajectory alignment, uniform resampling and
direction-invariance. Throughout the rest of the work, the term “abstract gesture” will represent
a gesture trajectory with discarded features. For example, the “swipe left” gesture, with the hand
moving from right to left in front of the body, and the analogous “swipe right” gesture would be
recognized as the same abstract gesture, that is they would be represented with a very similar
direction-invariant trajectory.

Frame of Reference Transformation

Some gesture recognition algorithms tend to fail when the interacting partners are not standing
still during gesturing. The reason is that the data provided by a depth sensor is grounded in the
sensor’s frame of reference. To enable the algorithm to compare observed gestures independently
from the sensor relative position to the person, the coordinates of the joints are transformed from
the sensor’s frame of reference to a frame of reference fixed on the person. This frame of reference
is computed for each skeleton data and centered on joint, that is selected as the anchor point.

Therefore, the first step is to ground the points of the observed trajectory, Ai to an anchor
point fixed on a person, Aanchor, e.g. to the point between the hip joints. Doing this, trajectories
are observed in the person’s frame of reference. However, this is still sensitive to the rotation of
the person, relative to the axis drawn through the person’s and the sensor’s frames of reference.
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To resolve this issue, the absolute orientation of the anchor point is obtained and the difference
vector obtained in the first step is multiplied by the rotation matrix, R, providing the person’s
position- and rotation-invariant gesture representation (Bodiroža et al., 2013a). Similar approach
was presented by Chaaraoui et al. (2014).

Ai,invariant = (Ai −Aanchor)R (5.1)

Trajectory Scaling

To enable gesture recognition with low number of training samples, all observed and trained ges-
tures are scaled. The arm length of the person is used as a scaling factor. A vector representing
the transformed position of a particular joint is divided with the arm length, resulting in the size
of the gesture being scaled relative to the size of person who is performing the gesture.

Algorithm 1 Data scaling
Require: An array of n-dimensional points A.
Require: Arm length l

1: function ScaleTrajectory(A,l)
2: for all Dimension d in A do
3: for all Point a in A do
4: ad ← ad/l

5: return A

Trajectory Alignment

In order to make the recognition invariant with regard to the location where the gesture is performed
within the gesture space, the observed sequence A needs to be aligned with the trained sequence
B, to which the gesture is compared.

This alignment can be done in various ways. One way is to align the two sequences A and B
with regard to their starting points A1 and B1. The displacement of the first point of the observed
gesture A1 from the first point of a known gesture B1 is calculated as the difference vector, and
this displacement is subtracted from all points of the sequence A, as presented in Algorithm 2,
(Bodiroža et al., 2013a).

Algorithm 2 Trajectory alignment using the difference between first points
Require: A is an observed and B is a trained sequence.

1: function DiffAlignment(A,B)
2: dx,y,z ← b1x,y,z − a1x,y,z
3: for all Point a in A do
4: ax,y,z ← ax,y,z − dx,y,z

5: return A

Another approach is to find the centroid of sequence B, with BCoG = (
∑m

i=1 Bi)/N , where m
is the length of sequence B and subtract it from sequence A, as presented in Algorithm 3.

Testing showed that the recognition was in general better when using the centroid, especially
taking in consideration when it is combined with the bag-of-points method, explained in Section
5.4.2, to make the recognition direction-invariant.
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Algorithm 3 Trajectory alignment using the centroid
Require: A is an observed and B is a trained sequence.

1: function CentroidAlignment(A,B)
2: sumx, sumy, sumz ← 0
3: for all Point b in B do
4: sumx,y,z ← sumx,y,z + bx,y,z

5: CoGx,y,z ← sumx,y,z/len(B)
6: for all Point a in A do
7: ax,y,z ← ax,y,z − CoGx,y,z

8: return A

Uniform Resampling

The next step is resampling of the trajectory to obtain one with a uniformly-distanced points. This
is performed in order to diminish the effect of velocity profiles of different persons, as well as the
difference in distribution of points when a periodic gesture (e.g. the “circle” gesture) has different
starting points (e.g. beginning the “circle” gesture in the upper or the lower section). If this is
not performed, due to these variations the observed and trained gestures could not always be well
aligned and matched. The trajectory is resampled, so that the Euclidean distance between each
two points is equal.

Direction Invariance

Final preprocessing step is performed in order to enable recognition of a specific case of gestures,
which can be performed in different directions. For example, the “circle” gesture can be performed
clockwise or counter-clockwise, and the “hand wave” could be performed starting from left to right,
or from right to left.

A bag-of-points approach is used for making the recognition direction-invariant. Both the
observed gesture and the one to which it is compared are represented using a bag-of-points model.
A bag-of-points is a concept analogous to a bag-of-words in natural language processing. A gesture
trajectory is stored in a multiset, an unordered sequence of points, where one point in space is
allowed to have multiple instances. Each point from the observed gesture is matched to every point
in the trained gesture in order to find the closest point. Distance between two points is determined
using Euclidean distance as a measure. A “maximum mapped points” parameter defines what is
the maximum number of points from one gesture that can be mapped to one point of another
gesture. This parameter prevents the case of most of the points from one gesture being mapped
into only one or two points of the other gesture. Figure 5.3 illustrates the described procedure.

5.4.3 Gesture Recognition

As presented in the literature review and in the introduction of this chapter, there are multi-
ple approaches to gesture recognition. Depending on requirements, which are mostly defined by
the intended use-case scenario, certain machine learning and pattern recognition methods can be
applied.

Static and dynamic gesture recognition are two complementary areas. Static gesture recognition
is concerned with the recognition of static postures, such as body or hand postures, while dynamic
gesture recognition uses the dynamic component of a gesture for classification. For some areas,
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Figure 5.3: Illustration of direction invariance: remapping of points of the observed sequence xo

(second plot) by comparing them to the trained sequence xt (first plot) in order to obtain the
reconstructed sequence xr (third plot) that best matches the trained one. The plots present only
one dimension in time for illustration purposes. The observed sequence is the trained sequence
performed in the other direction.

such as sign language recognition, both static and dynamic components of a gesture might need
to be included.

The potential of use of the algorithm in real life situations is highlighted through its use on low
number of training samples. Prior to the development, main consideration was that the approach
should be practical, that is it should rely on a low number of training samples, while having high
precision (i.e., low number of false positives) and high recall (i.e., low number of false negatives).
On the other hand, it should be robust, so that it could recognize gestures of different persons,
without needing to train it with each person separately.

These initial considerations influenced the development. The developed recognition algorithm
relies on dynamic time warping, which performs nonlinear alignment of two sequences. This
algorithm was initially developed for speech recognition by Sakoe and Chiba (1978). However, it
was also successfully used in other areas, including gesture recognition, as presented by Corradini
(2001).

Acquired data were partially preprocessed, as described in the previous section. Frame of refer-
ence transformation, normalization and trajectory alignment were applied, resulting in recognition
which was location-, position-, scale- and speed-invariant.

Intuitive interaction with the robot requires generating a human gesture vocabulary. Improved
robustness in real-life scenarios was required, having in mind possible integration with person-
following, mobile robot (Doisy et al., 2013).
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Dynamic Time Warping

The gesture recognition algorithm employs the multi-dimensional dynamic time warping algorithm
in order to perform non-linear alignment of two time sequences, such as in ten Holt et al. (2007),
Corradini (2001).

Let the sequence A be the observed gesture and the sequence B the known gesture.
Let A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bm} be two time sequences of lengths n and m,

where Ai = (Aix, Aiy, Aiz) and Bi = (Bix, Biy, Biz). The DTW algorithm creates a dissimilarity
matrix D of size (n+ 1)× (m+ 1). An element of the matrix Di,j , (i = 1 . . . n, j = 1 . . .m) stores
the cumulative dissimilarity between the sequences A and B from 0-th elements of the sequences
to the (i − 1)-th element of sequence A and (j − 1)-th element of sequence B, along a particular
path through the matrix. The dissimilarity d(Ai, Bj) between two aligned points in sequences is
calculated as Euclidean distance:

(5.2)
d(Ai, Bj) = Euclid(Ai, Bj)

=
√

(Aix −Bjx)2 + (Aiy −Bjy)2 + (Aiz −Bjz)2

Additionally, two slope matrices Si and Sj of the same size as the matrix D, are maintained
to track the allowable individual moves to reach a particular point (i, j) from initial point (0, 0) in
the dissimilarity matrix. If the maximum slope value is reached, the particular movement in the
matrix only along the corresponding axis is prohibited, as explained below.

Dissimilarity matrix is initialized such that Di,j = +∞ for i = 0 . . . n, j = 0 . . .m, except
when i = j = 0, and D0,0 = 0. Slope matrices are initialized to zeros. Afterward, it calculates
the values of the elements Di,j , for i = 1 . . . n, j = 1 . . .m. For each element Di,j , it takes in
consideration three elements Di,j−1, Di−1,j and Di−1,j−1 for potential predecessors. If the element
at the position (i, j − 1) has lower value than the other two, and the value of Sii,j−1 is lower than
the maximum slope value, then it is the predecessor, and the cumulative dissimilarity is:

(5.3)Di,j = Di,j−1 + d (Ai−1, Bj−1)

The slope matrix Si is updated such that Sii,j = Sii,j−1 + 1, while Sji,j = 0. In essence, the
elements Bj−2 and Bj−1 correspond to the element Ai−1.

Else, the element Di−1,j is taken as a potential predecessor and its value is compared to the
other two. If its value is lower and the value of Sji−1,j is lower than the maximum slope value,
then this element is selected as the predecessor, and the cumulative dissimilarity is:

(5.4)Di,j = Di−1,j + d (Ai−1, Bj−1)

The slope matrix Sj is updated such that Sji,j = Sji−1,j + 1, while Sii,j = 0. In essence, the
elements Ai−2 and Ai−1 correspond to the element Bj−1.

Finally, if neither is true, the cumulative dissimilarity is:

(5.5)Di,j = Di−1,j−1 + d (Ai−1, Bj−1)

Elements at position (i, j) of both slope matrices are set to zero. In essence, the element Ai−1

corresponds to the element Bj−1.
As a result the elements of the last column of matrix D contain the dissimilarity values between

the whole sequence B and every subsequence of A. A subset of these elements is matched to a
threshold value to determine if they are within a range for the two sequences to be classified
as similar. The subset represents the dissimilarity values between the whole sequence B and
subsequences of A. The length of the subsequences is from manually set minimum length to the
whole length of the A.
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Algorithm 4 Dynamic time warping and minimum dissimilarity between warped trajectories
Require: An array of n-dimensional points A = A1, . . . , An, observed gesture
Require: An array of n-dimensional points B = B1, . . . , Bm, trained gesture
Ensure: Dissimilarity matrix D of size (m+ 1)× (n+ 1)
Ensure: Minimum dissimilarity d

1: function DTW(A,B)
2: Si ← [0](m+1)×(n+1)

3: Sj ← [0](m+1)×(n+1)

4: smax,i ← smaxi

5: smax,j ← smaxj

6: D ←

⎡⎢⎢⎢⎢⎣
0 ∞ · · · ∞
∞ 0 · · · 0

...
...

. . .
...

∞ 0 · · · 0

⎤⎥⎥⎥⎥⎦
(m+1)×(n+1)

7: for all i in 1, . . . , (m+1) do
8: for all j in 1, . . . , (n+1) do
9: if Di,(j−1) < D(i−1),(j−1) & Di,(j−1) < D(i−1),j & Sii,(j−1) < smax,i then

10: Di,j ← Euclid(B(i−1), A(j−1)) +Di,(j−1)

11: Sii,j ← Sji,(j−1) + 1
12: Sji,j ← 0
13: else if D(i−1),j < D(i−1),(j−1) & D(i−1),j < Di,(j−1) & Sj(i−1),j < smax,j then
14: Di,j ← Euclid(B(i−1), A(j−1)) +D(i−1),j

15: Sii,j ← 0
16: Sji,j ← Sj(i−1),j + 1
17: else
18: Di,j ← Euclid(B(i−1), A(j−1)) +D(i−1),(j−1)

19: Sii,j ← 0
20: Sji,j ← 0

21: curRow ← 1
22: curCol ← 1
23: while curRow < m & curCol < n do
24: if DcurRow,(curCol+1) < D(curRow+1),(curCol+1) & DcurRow,(curCol+1) <

D(curRow+1),curCol & SicurRow,(curCol+1) < smax,i then
25: curRow ← curRow+1
26: else if D(curRow+1),curCol < D(curRow+1),(curCol+1) & D(curRow+1),curCol <

DcurRow,(curCol+1) & Sj(curRow+1),curCol < smax,j then
27: curCol ← curCol+1
28: else
29: curRow ← curRow+1
30: curCol ← curCol+1
31: d ← DcurRow,curCol

32: return D, d
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The implemented algorithm is shown in Algorithm 4.
For the purpose of gesture recognition, the gesture trajectory is obtained through the skeleton

tracker. It is stored as a sequence of (x, y, z) coordinates of the person’s right hand. In the current
implementation only right hand is tracked. However, the algorithm can easily track both hands.
The height at which the Kinect is enables recording of a person at approximately shoulder level at
15fps.

Gesture recognition is continuous with a sliding window of a certain length. Every time a
new hand position is obtained, it is added to the end of a buffer. In case the buffer has reached
maximum length, its first element is removed. This trajectory is then compared using DTW with
learned trajectories.

5.4.4 Gesture Disambiguation
The work presented in this section is a theoretical concept of how a gesture disambiguation could
be performed.

The main idea of the recognition algorithm was to strip particular features from gesture tra-
jectories, therefore obtaining abstract gesture trajectories, in order to have a simple and robust
gesture recognition. The goal was to enable easy training of the algorithm, relying on as low as
one training sample for successful recognition, that would be robust and recognize the gestures
that are not performed in the same manner and that might be performed by different people.

However, the disadvantage of the approach is that in some cases these features are relevant
for correct classification of the observed gesture. This leads to induced ambiguity between these
particular subsets of gestures, which are disambiguated with these features. A concrete example is
recognition of “clockwise circle” and “counter-clockwise circle” gestures, or “swipe left” and “swipe
right”, whose only differentiating characteristic is the direction of the hand movement during
gesturing.

As presented in Figure 5.2, outlining the overall GRaD framework, one part of the algorithm is
feature extraction, which quantizes gesture features, such as size, velocity, direction and location.
Following features could be used for disambiguation.

• Gesture size is represented with the difference of maxima and minima along the three dimen-
sions of the trajectory.

• Gesture location in the gesture space is represented as the centroid of the gesture trajectory
relative to an anchor point, e.g. the point between the hip joints.

• Beginning and end of the gesture trajectory are represented as those points relative to the
anchor point.

• Gesture direction is represented as the vector along two most prominent dimensions, as the
difference between the first occurring extremum and the second occurring extremum along a
dimension.

• Simplified gesture velocity as a time duration of the particular gesture.

During the training of the recognition algorithm, dissimilarities of all 2-combination of abstract
gestures classes are evaluated. In case the dissimilarity between two gesture classes is low, these
classes are marked as requiring disambiguation. Otherwise, if the difference between a particular
abstract gesture class and every other trajectory is above the threshold, then the output of the
recognition algorithm is sufficient.

Linear classifiers could be employed to evaluate which features are potentially discriminating
between the marked classes, and therefore could be used for disambiguation between them. In case
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a recognizer produces as an output one of these two gestures, the disambiguation step is used to
determine which one of the two gestures is true. Furthermore, this step could be extended in case
there are multiple groups of similar gestures, e.g., if the training samples would contain both small
and large “clockwise circle” and “counter-clockwise circle” as four separate gesture classes.

5.5 Performance Evaluation
The aim of the framework is gesture recognition robust to the intra- and inter-personal variations
of gestures, such as size, location and speed of a gesture and the orientation and position of the
person relative to the sensor or to the robot.

Furthermore, due to the preprocessing and the abstraction it provides to the gesture recognition
algorithm, a dataset, containing gesture performances varying in size, speed, location and direction
within the same class both with the person being static and moving around, should be specifically
designed in order to fully test the effects of the proposed framework.

The evaluation was performed on the subset of the of the GRaD framework. However, gesture
disambiguation requires future validation.

5.5.1 Evaluation of the Algorithm
The algorithm used OpenNI library for Microsoft Kinect for data acquisition, and it was imple-
mented in C++ using Qt framework on Linux. The evaluation of the algorithm was performed on
a local HU dataset, recorded and compiled by the author. In addition to this, the algorithm was
tested using the dataset provided by (Arici et al., 2014).

HU Gesture Dataset

The local dataset was recorded and compiled by the author on 8 participants. It consists of following
gestures: “Counter-clockwise circle”, “Clockwise circle”, “Swipe from right to left”, “Swipe from left
to right”, “Stop”, “Push”, “Clean” and “Call”. “Counter-clockwise circle” and “clockwise circle”
represent a circular gesture in front of the body along the frontal plane in counter-clockwise and
clockwise direction, respectively. “Swipe from left to right” and “Swipe from right to left” describe
a motion where the right hand is moving from left to right, or from right to left, respectively, along
the transverse plane. “Stop” gesture is performed by raising the right hand in front of the performer
to shoulder height, holding it for a brief moment, and then lowering it back to the resting position.
“Push” gesture is performed as if the performer was pushing a button in front of them at shoulder
height with the right hand. “Clean” gesture can be seen as a gesture to remove something from the
table and it is performed by repetitive motion of the right hand from and toward the body along
the transverse plane. “Call” gesture is performed by raising the right hand laterally from a resting
position in front of the body up next to the right shoulder, as if the performer is calling someone
to join them. All gestures were performed with the right hand.

All subjects received a spoken description of a gesture they are about to perform, together
with one exemplary gesture performance. All subjects performed 5 repetitions for each of 8 ges-
ture classes. Furthermore, every participant provided 10 negative samples were included in the
dataset, to approximate real-life conditions, where people might make unintentional hand move-
ments, according to Pavlovic et al. (1997) taxonomy. These samples included both static postures
and dynamic motions. In this case, the participants were instructed to make motions that reg-
ularly occur, but that do not resemble the recorded gestures, such as scratching the shoulder or
the head, pointing to a side, or holding hands still. In some cases, 6 instead of 5 positive samples
were recorded per participant per gesture class and these extra samples were left in the dataset.
In total, there were 327 positive testing samples and 83 negative testing samples.
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Table 5.2: Confusion matrix of the recognition of the gestures from the HU dataset without
preprocessing, using dissimilarity threshold of t = 75 (rows – actual class, column – recognized
class).

CCW Circle CW Circle Swipe L Swipe R Stop Push Clean Call Neg
CCW Circle 28 0 0 0 0 0 0 0 13
CW Circle 0 3 0 0 0 0 0 0 38
Swipe L 0 0 4 0 0 0 0 0 36
Swipe R 0 0 0 26 0 0 0 0 15

Stop 0 0 0 0 31 0 0 0 10
Push 0 0 0 0 0 18 0 0 23
Clean 0 0 0 0 0 0 5 0 36
Call 0 0 0 0 0 0 0 17 24

Negative 0 0 0 0 0 0 0 6 77

The sensor was placed at the height of h = 1.4m and the person performing the gestures for
the training dataset was standing at the distance of d = 2.5m from the sensor. Two datasets were
recorded. The first dataset contains recordings from 8 participants, which were standing still facing
the sensor while gesturing. The second dataset contains recordings from 2 participants and it is
specific in a sense that the participants were moving backward and forward while performing the
gestures.

Training was performed using 2 training samples per gesture class. Every testing sample was
compared against both training samples of every gesture class using dynamic time warping. As a
result of the comparison, the higher dissimilarity value was returned.

The gesture trajectories were saved in raw format, without any preprocessing of the data,
storing the absolute (x, y, z) joint positions and the rotation matrices of the joints. Each recording
is 120 frames long, to account for the preparation and retraction phases during the recording.

Evaluation on the HU Gesture Dataset

The dissimilarity threshold value was empirically set to t = 0.15 when the gesture was preprocessed
using scaling. This states that the average distance between aligned points in training and testing
samples must not be larger than 7.5% of the maximum size of the gesture along x, y and z axes
in order for testing gesture to be classified to the class of the training gesture sample. In the case
where gesture is not scaled, the threshold value was empirically set to t = 75. Positions of only
right hand was used for comparison.

Following confusion matrices, where rows are actual gesture classes and columns are recognized
gesture classes, represent the results with different settings of the preprocessing pipeline:

• Table 5.2: No preprocessing.

• Table 5.3: Frame of reference transformation.

• Table 5.4: FoR transformation, gestural alignment.

• Table 5.5: FoR transformation, gestural scaling.

• Table 5.6: FoR transformation, gestural alignment and scaling.

Important statistics are number of true positives (i.e., correctly classified positive gestures),
true negatives (i.e., non-classified negative gestures), false positives (i.e., misclassified positive or
negative gestures) and false negatives (i.e., non-classified positive gestures). using the notion of
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Table 5.3: Confusion matrix of the recognition of the gestures from the HU dataset with frame
of reference transformation, using dissimilarity threshold of t = 75 (rows – actual class, column –
recognized class).

CCW Circle CW Circle Swipe L Swipe R Stop Push Clean Call Neg
CCW Circle 26 0 0 0 0 0 0 0 15
CW Circle 0 26 0 0 0 0 0 0 15
Swipe L 0 0 12 0 0 0 0 0 28
Swipe R 0 0 0 17 0 0 0 0 24

Stop 0 0 0 0 28 0 0 0 13
Push 0 0 0 0 0 35 0 0 6
Clean 0 0 0 0 0 0 22 0 19
Call 0 0 0 0 0 0 0 40 1

Negative 0 0 0 0 0 0 0 3 80

Table 5.4: Confusion matrix of the recognition of the gestures from the HU dataset with frame of
reference transformation and alignment of gestures, using maximum alignment difference of d = 0.2
and dissimilarity threshold of t = 0.15 (rows – actual class, column – recognized class).

CCW Circle CW Circle Swipe L Swipe R Stop Push Clean Call Neg
CCW Circle 33 0 0 0 0 0 0 0 8
CW Circle 0 36 0 0 0 0 0 0 5
Swipe L 0 0 35 0 0 0 0 0 5
Swipe R 0 0 0 36 0 0 0 0 5

Stop 0 0 0 0 40 0 0 0 1
Push 0 0 0 0 0 41 0 0 0
Clean 0 0 0 0 0 0 33 0 8
Call 0 0 0 0 0 0 0 38 3

Negative 0 0 0 0 4 0 34 3 42

Table 5.5: Confusion matrix of the recognition of the gestures from the HU dataset with frame of
reference transformation and scaling of gestures, using maximum alignment difference of d = 40
and dissimilarity threshold of t = 75 (rows – actual class, column – recognized class).

CCW Circle CW Circle Swipe L Swipe R Stop Push Clean Call Neg
CCW Circle 34 0 0 0 0 0 0 0 7
CW Circle 0 37 0 0 0 0 0 0 4
Swipe L 0 0 25 0 0 0 0 0 15
Swipe R 0 0 0 31 0 0 0 0 10

Stop 0 0 0 0 39 0 0 0 2
Push 0 0 0 0 0 41 0 0 0
Clean 0 0 0 0 0 0 35 0 6
Call 0 0 0 0 0 0 0 41 0

Negative 0 0 0 0 0 0 0 26 57
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Table 5.6: Confusion matrix of the recognition of the gestures from the HU dataset with frame
of reference transformation, and alignment and scaling of gestures, using maximum alignment
difference of d = 0.2 and dissimilarity threshold of t = 0.15 (rows – actual class, column – recognized
class).

CCW Circle CW Circle Swipe L Swipe R Stop Push Clean Call Neg
CCW Circle 39 0 0 0 0 0 0 0 2
CW Circle 0 41 0 0 0 0 0 0 0
Swipe L 0 0 38 0 0 0 0 0 2
Swipe R 0 0 0 38 0 0 0 0 3

Stop 0 0 0 0 41 0 0 0 0
Push 0 0 0 0 0 41 0 0 0
Clean 0 0 0 0 0 0 35 0 6
Call 0 0 0 0 0 0 0 40 1

Negative 0 1 0 0 1 2 2 3 74

Table 5.7: Summary of evaluation results

TPR TNR FPR FNR PPV NPV
Table 5.2 40.37 92.77 7.23 59.63 95.65 28.31
Table 5.3 63.00 96.39 3.61 37.00 98.50 39.80
Table 5.4 89.30 50.60 49.40 10.70 87.69 54.55
Table 5.5 86.54 68.67 31.33 13.46 91.59 56.44
Table 5.6 95.72 89.16 10.84 4.28 97.20 84.09

true positive rate TPR = TP
P = TP

TP+FN , true negative rate TNR = TN
N = TN

TN+FP , false positive
rate, FPR = FP

N = FP
FP+TN , false negative rate FNR = FN

P = FN
TP+FN , precision (or positive

predictive value) PPV = TP
TP+FP , and negative predictive value PPV = TN

TN+FN .
The results from tables 5.2-5.6 are summarized in Table 5.7.
Positive and negative predictive values provide information about the ratio of the actual true

positives and negatives, compared to all classified positive and negative outcomes. It can be
seen that all five settings of the preprocessing pipeline didn’t affect the positive predictive value
significantly. However, the effect of the complete preprocessing can be easily seen in the increasing
negative predictive value (see summary of the results from Table 5.6), which means the algorithm
is better at discarding negative samples when the preprocessing is used.

Sehir University Gesture Dataset

The algorithm was also evaluated on the dataset compiled by Celebi et al. (2013). The dataset
consists of following, self-descriptive gestures: “both hands pull down”, “both hands push up”, “both
hands zoom in”, “both hands zoom out”, “left hand pull down”, “left hand push up”, “left hand swipe
right”, “left hand wave”, “right hand pull down”, “right hand push up”, “right hand swipe left” and
“right hand wave”. The authors originally evaluated their algorithm, called weighted dynamic time
warping, on a subset of those gestures: “left hand push up”, “left hand pull down”, “left hand swipe
right”, “right hand push up”, “right hand pull down” and “right hand swipe left”, as summarized
in the table 5.8. Results obtained from the recognition algorithm presented here are presented
in Table 5.9. It can be seen that both approaches provide comparable result. However, negative
samples were not present in the dataset. Positions of both right and left hand were using during
the comparison.
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Table 5.8: Confusion matrix of the recognition of the gestures from the Sehir University gesture
dataset, data represented in percentage, results from a paper by Celebi et al. (2013) (rows – actual
class, column – recognized class).

R push U L push U R pull D L pull D R swipe L L swipe R
R push up 100 0 0 0 0 0
L push up 0 100 0 0 0 0

R pull down 0 0 100 0 0 0
L pull down 0 0 0 85 15 0
R swipe L 0 0 0 0 100 0
L swipe R 0 0 0 0 15 95

Table 5.9: Confusion matrix, using the recognition algorithm presented in this chapter, using
maximum alignment difference of d = 0.6 and recognition threshold of t = 0.58 (rows – actual
class, column – recognized class).

R push U L push U R pull D L pull D R swipe L L swipe R
R push up 100 0 0 0 0 0
L push up 0 97.31 2.68 0 0 0

R pull down 0 0 97.5 1.65 0 0.83
L pull down 0 0 0 100 0 0
R swipe L 0 0 0 0 100 0
L swipe R 2.59 0 0 1.72 0 95.69

5.6 Gesture-based Control of a Person-following Robot
For a human-robot interaction to take place, a robot needs to perceive humans. The space where a
robot can perceive humans is restrained by the limitations of robot’s sensors. These restrictions can
be circumvented by the use of external sensors, like in intelligent environments; otherwise humans
have to ensure that they can be perceived. With the robot platform presented in this section as an
example interaction, the roles are reversed and the robot autonomously ensures that the human
is within the area perceived by the robot. This is achieved by a combination of hardware and
algorithms capable of autonomously tracking the person, estimating their position and following
them, while recognizing their gestures and navigating through environment1.

5.6.1 Background

The space where human-robot interactions can take place is restricted by the limited perceptual
capabilities of robot’s sensors and/or the lack of mobility of the robot. By using external sensors
and creating intelligent environments, e.g., as in the work of Morioka et al. (2004), robots are able
to follow humans. Recent release of the affordable depth sensors lead to similar solutions that do
not rely on external sensors, as presented by Doisy et al. (2012). Natural interaction techniques,
such as gesture recognition, assume that the relative position of the sensor and the human remains
unchanged during the interaction (ten Holt et al., 2007; Corradini, 2001). Such techniques need to
be improved to be used in less constrained scenarios (Bodiroža et al., 2013a). This part presents a
robot platform benefiting from the latest development in person following and gesture recognition
to expand the space where HRI can take place.

1Aleksandar Jevtić and Guillaume Doisy were responsible for person tracking, person position estimation, person
following and system integration. Author’s contribution was in gesture recognition.
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5.6.2 Framework for Extended Human-Robot Interaction

Person Tracking

Person tracking is performed using the Kinect sensor and the Microsoft Kinect SDK. The limited
57◦ horizontal viewing angle of the sensor does not allow for person tracking 360◦ around the
robot. To overcome this limitation a visual servoing control law was developed to rotate the pan-
tilt mechanism (PTM) and the Kinect sensor in the direction of the tracked person. Experimental
results showed that this visual control law ensures continuous person tracking when the person is
moving around the robot. The latency of the Kinect sensor is too high to allow for continuous
tracking when both the robot and the person are moving: in the case of fast movements the system
is not reactive enough and loss of tracking can occur. This problem was solved by adding a term
in the PTM control law which compensates the angular speed of the robot given by the odometry
(i.e. making the PTM rotate with a speed opposite to the angular speed of the robot). For a
formal description of the control law, please refer to the work of Doisy et al. (2012).

Person Position Estimation

It is possible to compute the absolute position of the tracked person by using a series of frame
of reference transformations, if the position of the person in the Kinect’s frame of reference, the
rotation angle of the PTM and the absolute position of the robot estimated from odometry are
known. In order to eliminate the noise due to the vibrations of the robot structure a 15cm jitter
filter and a low-pass filter based on a 1.5m/s speed threshold and a 1g acceleration threshold are
applied to the position estimation. The accuracy of the position estimation method was evaluated
by comparing the estimated position of a person with its known ground path during 10 trials.
Results show that this method is able to estimate the position of a person with an average error
of 4.2cm (s.d. 2.6cm) and a maximum error of 10.4cm.

Person Following

With the knowledge of the position of the person the robot can perform person following. Three
algorithms were developed and implemented on the robot platform:

• direction-following: the robot always goes in the direction of the person it follows (Morioka
et al., 2004).

• path-following: the robot reproduces the path of the person. With this technique the robot
can follow a person in an environment with low-height obstacles, e.g. chairs or tables, as-
suming that the path taken by the person is free of obstacles (see Figure 5.5).

• adaptive following: with an a priori obtained map of the environment the robot continuously
computes and takes the shortest path to reach the position of the followed person (Doisy
et al., 2012).

Position-Invariant Gesture Recognition

Gesture recognition employs the multi-dimensional dynamic time warping algorithm, similar to
the approach used by ten Holt et al. (2007) and Corradini (2001), which is used to align and
compare two time sequences. In this work, coordinates of human joints, provided by the Kinect
sensor, are used. In order for the algorithm to be independent from the relative speed, position and
orientation of the robot and the person, the joints coordinates are transformed from the Kinect’s
frame of reference to the person’s frame of reference. This frame of reference is defined by the
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center point of the left and right hip joints and a unit vector orthogonal to the ground. In essence,
the algorithm represents the subset of that presented previously in this chapter. For recognition
results, see Tables 5.10-5.17.

Robot Platform robuLAB10

The robot platform is a Robosoft’s robuLAB10, customized with a rigid structure, which supports
a TRACLabs Biclops PTM (see Figure 5.4). The mechanism can support a maximum payload of
4kg, which was enough to carry the Kinect sensor. The robot, the Kinect sensor and the PTM
were controlled by a laptop powered by an Intel quad-core i7 Q740 CPU with 4 GB of RAM.

5.6.3 Person Following by a Robot Controlled with Gestures
To demonstrate capabilities of the described robotic platform, a person-following application was
developed and tested, which was controlled by gestures. It used the specific capabilities of the
platform: person tracking to keep the sensor oriented toward the person, person position estimation
and path following to make the robot follow the person and dynamic gesture recognition to control
the robot.

System Behavior

Three robot states were defined: “passive tracking”, “active tracking” and “following”. To switch
between the states four command gestures were created: “start active tracking”, “stop active track-
ing”, “start following” and “stop following”. In “passive tracking”, the PTM and the robot were
static. In “active tracking”, the robot remained static but the PTM was moving to direct the
sensor toward the person. In “following”, the robot followed the person using the path-following
algorithm.

Experiments

To test the system’s performance, 10 trials were conducted. The user was instructed to signal to
the robot to start to actively track them, then to follow them in an environment with obstacles and
along a path similar to the one displayed on Figure 5.5 and finally to stop the following and return
to the “passive tracking” state. Performance was measured using four metrics: 1) task completion,
2) number of correctly recognized commands (hit), 3) number of incorrectly recognized commands
(false positive) and, 4) number of undetected commands.

Results

In all the trials, the user was able to initiate and to stop tracking and following using gestures with
a goal of guiding the robot to the desired location. In 10 trials, out of 40 commands (4 commands
per trial), only 5 were missed and had to be repeated and there were no false positives. These
results demonstrate the feasibility of controlling the robot using gestures. In particular, it has been
proven that it is possible to simultaneously track a person in motion, estimate their position and
recognize gestures using a single depth sensor mounted on a mobile platform without the use of
external sensors.

5.7 Internal Models for Gesture Recognition
Internal models represent a theoretical concept, consisting of a pair of inverse and forward models,
represented in figure 5.6. Depending on a problem, an inverse model can predict a motor command
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Figure 5.4: Robot platform robuLAB10.

Figure 5.5: Example of a path-following algorithm.

Mt that leads the system from the current state St to a desired state St+1, or, based on the observed
change of states from St to St+1, predicts an appropriate motor command Mt. The forward model
performs an internal simulation and predicts the state S∗

t+1 that would be the result of the motor
command Mt in the state St.

5.7.1 Inverse and Forward Models for Action Execution

Two experiments are presented, which demonstrate the possibility of using internal models for
learning the relation between motor actions and changes in sensory information, as consequences
of the action. The first experiment uses self-exploration for learning the relation between rotation
and perceived change in the position of a person’s hand. The learned mapping can be used to
train a robot how to rotate in direction indicated with a hand motion. The second experiment
uses learning by demonstration to train a robot how to reach a position on the ground, indicated
with a pointing gesture.

Similar to this approach, Dearden and Demiris (2005) perform learning of forward models for
action execution. In their work, a mobile robot observes the motion of its gripper while sending to
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it random motor commands. A forward model is obtained, that establishes the connection between
motor commands and the changes in the visual space caused by those motor commands. This way,
the system is able to imitate human movements.

Akgün et al. (2010) show how an action generation mechanism can be used for action recogni-
tion. They developed an online recognition system, that was able to recognize a reaching action
before it was fully executed.

Haruno et al. (1999) and Wolpert and Kawato (1998) present evidence for development of
multiple, tightly-coupled inverse and forward models. The forward model predicts the result of
the motor command generated by the inverse model. The selection of the best inverse-forward
model pair is done through comparison of predictions of all forward models to the expected result.
Schillaci et al. (2012) used multiple internal models to perform recognition of human behavior,
where each internal model encodes an action. Blakemore et al. (2000) present how a difference in
the prediction of the forward model and the perceived sensory input helps a person discriminate
a self-induced sensation (e.g. self-movement of the eye) from a sensation induced by others (e.g.
moving the eye by pressing on the eyelid). Furthermore, Takemura and Inui (2011) present a model
for the development of internal models for reaching movement, inspired by infant development.

Inverse
Model

Forward
ModelMt

St

St+1 S∗
t+1

Figure 5.6: Internal models. An inverse model predicts a motor command Mt that leads the system
from the current state St to St+1. A forward model predicts the state S∗

t+1 based on the current
state St and the motor command Mt.

Internal Models for Perception of Deictic Gestures

As previously mentioned in Section 2, gesture recognition is based on detection of the position
(static) or the motion (dynamic) of human body parts, usually arms, hands and legs. It has
numerous applications, including sign-language for hearing-impaired people, computer interfaces,
natural and intuitive human-robot interaction, gaming industry, system remote control, among
others. Various tools have been used for gesture recognition, based on the approaches ranging
from statistical modeling, computer vision and pattern recognition, image processing, connectionist
systems, etc. (Mitra and Acharya, 2007).

However, learning from self-exploration to observe and reproduce certain actions from gestures
of others has not been done before, apart from work of Dearden and Demiris (2005). The proposed
model learns to execute actions associated with directional gestures. The learned motor controls
are a result of a motor babbling process, during which a random motor command is generated and
a change in the sensory input is observed and stored.

5.7.2 Learning Motor Control for Rotation Based on Arm Movement
The proposed model uses as sensory situation the detected coordinates of the arm of a person as
tracked by a Kinect. The motor commands are fixed movements of the mobile platform.

In this model, the goal is to perform the fusion of sensorimotor information. To achieve this,
the system needs to collect, for each time step, a vector of the form:

(x, y, z);M (5.6)
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where (x, y, z) represent the coordinates of the hand detected by the Kinect and M represents
a random motor movement. This movement can be either in the left-right plane, performed by the
robot as a rotation for a random angle, within [−27◦, 27◦] or in the up-down plane, performed as
a tilt angle in the Kinect within [0◦, 16◦] (ranges were selected to always have the person’s upper
body visible).

Once a database of these associations is collected, it can be used as either a forward or an
inverse model, depending on the question asked.

The inverse model predicts a motor command Mt, when presented with a change in the sensory
situation from St to St+1. The forward model, given the current sensory situation St and a motor
command Mt predicts the new sensory situation after the execution of the command, S∗

t+1. In the
proposed application, that is a gesture-controlled robot, during the learning process random motor
commands induce changes in sensory situations, that is in the position of the hand. The model
associates the performed motor command Mt with the sensory situation before the execution St

and after the execution St+1. During execution the model performs a search for a motor command
Mt that matches the sensory change, only this time induced by a person by moving their hand.

It could be said, that the model learns how to execute actions. It learns how the self-motion
corresponds to changes in the world, which is then applied during the execution, when it is required
to reproduce an action that resulted in the observed change. The resulting behavior can be also
seen as an attention manipulation system, where the robot turns following the motion of a hand.

Experiments and Results

Two experiments were performed to learn the mapping between the motor commands and changes
in the sensory situation. A robot platform robuLAB, displayed in Figure 5.4 and described in
previously in Section 5.6.2 , was used in the experiments. In the first experiment, the association
of “up” and “down” gestures and Kinect’s up and down movements was formed, while in the second
experiment the association of “left” and “right” gestures and the rotation of the robuLAB platform
was learned. The following description shows the outline of both experiments, and “the platform”
represents either the Kinect or the robot platform. In the former case, the motor commands were
tilting the Kinect, while in the latter they were rotation of the robot platform around the z-axis.

A person stood in front of the platform at the beginning of the experiment. The Kinect was
tracking the location of the person’s right hand, provided by the Microsoft’s Kinect SDK. During
the learning stage, illustrated in Figure 5.7, the platform was performing motor babbling, which was
a generation of random motor commands. Every motor command induced a change in the sensory
situation, that is the change of the 3D location of the person’s hand. This change, represented
with the (x, y, z) vector of the hand movement in Kinect’s frame of reference, corresponds to the
rotation angle of the platform. In other words, if the platform rotates to the left, the hand will
be seen as moving right. However, during the execution phase, illustrated in Figure 5.8, if the
platform perceives the hand moving right, it should rotate to the right, instead of left. During
the learning process, initial rotation of the platform and the generated random motor command,
represented as a rotation angle, was stored, as well as the 3D position of the hand before and after
the rotation.

A k-nearest neighbors search algorithm was used for the implementation of the inverse model.
Theoretically, the initial state St represents the initial position of the hand, and the next state St+1

the new position of the hand, resulting from the person’s movement. The predicted motor command
Mt represents the rotation angle of the robot that it needs to perform in order to compensate for
the motion of the person’s hand. However, in order to make the implementation more robust
with regards to the person’s location in space, St and St+1 are combined and represented as the
difference vector of the new and the initial location of the person’s hand.

When a movement of the person’s hand is observed, the perceived displacement of the hand is
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Figure 5.7: Representation of the learning process

used to predict a motor command that will compensate for the motion of the arm. As a result,
the robot performs a rotation. This shows that inverse models can be used for perception of
dynamic gestures, indicating the corresponding rotation, without prior coding of this behavior.
The behavior of the robot can be indeed seen as recognition of a dynamic gesture and execution
of the corresponding, learned action.

Testing of the algorithm was done on the robuLAB robot platform, with differential drive being
used to perform rotations. Training was performed with 60 points, obtained as a result of motor
babbling. Testing was performed with hand movements to the left or to the right for 25 times.
On average, absolute hand displacement of the user was (x, y, z) = (0.43, 0.24, 0.06)m, s.d. =
(0.13, 0.12, 0.05) and the error of the prediction resulted in the absolute mismatch between the
initial hand position and the hand position after the rotation of (x, y, z) = (0.08, 0.24, 0.06)m, s.d. =
(0.06, 0.12, 0.04). The results show that this approach can be used for learning motor control for
rotation based on the depth data of the user’s hand.

This part presented learning and execution of an inverse-forward model pair to execute actions
associated with directional gestures. While only the inverse model was trained, the forward model
could be easily added and used to predict the hand location after the robot’s movement. This
information can be used for error measurement of the prediction and refinement of the initial
motion, if the error is higher then a certain threshold. An improvement of the proposed model,
presented in the following section, was developed, as an extension toward understanding of deictic
gestures, with the goal of learning a control strategy for the robot to guide itself to a specific
location, indicated by a person pointing.

5.7.3 Learning Motor Control for Rotation and Translation Based on
Pointing Gestures

This work presents an action execution system that uses as foundation basic sensorimotor schemes.
These schemes are learned as a product of the interaction of an agent with its environment. The
presented work is inspired by child development, and employs learning by scaffolding. In the exper-
iments presented, a mobile agent learns an association between changes in its sensory perception
and its movement, guided by the demonstrator. In previous section an agent was presented whose
goal was to explore its environment and learn the relation between its rotation and the sensory
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Figure 5.8: Representation of the execution process

perception caused by this motion. Once it acquired this knowledge, the agent was capable of per-
forming a mirror action to match an observed gesture. This is seen as a first step toward learning
motor control strategies for a robot control task.

As a follow up, the same mechanism is extended towards rotation and translation motions, that
is movements in two dimensions on the ground plane, while including human guidance for learning
appropriate motor commands. During training, the demonstrator points to a spot on the floor and
then guides the robot to that location, obtaining sensorimotor pairs. After learning, the agent is
capable of executing the necessary motor commands to go to a location to which the demonstrator
is pointing. Contrary to analytical approaches in pointing gesture recognition, which usually find a
line that goes through the arm and locates its intersection with the ground, the proposed approach
employs learning with scaffolding. In this approach, the agent locates shoulder and hand joints
using a RGB-D sensor.

During learning, the robot stores sensory input (x, y, z), representing the difference between
the person’s hand and the shoulder, after which it is guided by a person with a controller to
the specified point, storing the motor output (θ, r), representing rotation and translation motor
commands. Internal models learn an association between the stored gesture and the trajectory
that followed. The agent uses a pair of interconnected self-organizing maps, to learn sensorimotor
schema that map external stimuli, that is a particular configuration of the human arm, into a motor
command that would bring the robot to the predicted point on the floor. The first self-organizing
maps describes the topology of the sensory input, and the second of the motor output. Each node
of one map is connected to every node of the other map. Modified Hebbian learning is employed
to learn these connections, which are later used to find a motor command related to a particular
position of the demonstrator’s arm.

Results presented in Table 5.19 show that the robot can guide itself to positions within the
trained area. In general, it is observed that the points that were closer to the person who was
pointing had smaller errors, compared to those further away from the person, resulting in better
recognition of those deictic gestures. This was not a surprising effect, considering that the same
difference in pointing angle when pointing to a far point results in larger floor distance, compared
to when pointing to a near point. A disadvantage of the proposed approach is that a person needs
to have the same relative position to the robot as during the training. This should be addressed
as a part of future.
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Figure 5.9: Illustration of the experimental setup for motor control learning. The location of the
teacher is represented with an ellipse, while the position of the robot is marked with a rounded
rectangle.

5.8 Discussion and Conclusions

Sections 5.4 and 5.5 presented a framework for recognition and disambiguation of trained gestures,
and the results of the evaluation of the proposed approach. Recognition was based on dynamic time
warping. Main issue was to develop a recognition system which uses one-shot learning, meaning
that a very low number of training samples is used, while keeping the system robust to changes.
This was possible due to a pre-processing pipeline, in which the gestures were recorded in user’s
frame of reference, as opposed to sensor’s frame of reference. Furthermore, they were aligned to the
training instances by their starting position, as well as normalized, in order to lower the effect of
the gestural size on the recognition. Recognition results show that the system, which was trained
on gestures performed by one person with two repetitions per gesture class, can recognize gestures
performed by different persons, without having them instructed in detail how they should perform
those gestures. Furthermore, a theoretical outline was presented for disambiguation of gestures, as
well as particular features that could be used for the purposes of disambiguation.

Section 5.6 presented an example scenario, where gestures are used for control of a mobile
robot. As a proof of concept, the recognition algorithm was tested under different environmental
conditions, such as the person standing on different locations relative to the robot, or performing
recognition while the robot was in motion.

Section 5.7 presented two experiments that were exploring the possibilities of learning relations
between sensory changes and motor actions. In the first experiment, the robot learned how to
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(a) Person’s point of view (b) Robot’s point of view

Figure 5.10: Experimental setup for motor control learning.

Figure 5.11: Illustration of the interconnected self-organizing maps.

rotate around its z-axis, as a response to a pointing gesture. The learning was done through self-
exploration, during which the robot was tracking how does its own rotation affect the perceived
location of the right hand of a person standing in front of it. In the second experiment, the
robot would observe a person pointing to a particular location on the ground in front of the robot,
followed by the person guiding the robot to the pointed location. Through establishing the relation
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(b) SOM 1, dimension 2
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(c) SOM 1, dimension 3
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(d) SOM 2, dimension 1

5

10

15

20
5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) SOM 2, dimension 2

Figure 5.12: Weights of input dimensions of self-organizing maps encoding perceived pointing
(SOM 1) and related motor commands (SOM 2)

between the position of the arm and the motor commands, the robot was able to navigate to pointed
locations on the ground without explicitly implementing this feature.
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Table 5.10: Fixed PT-M with no displacement

No. (1m) Hit Miss CR FA
G1 0 10 30 0
G2 10 0 25 5
G3 5 5 30 0
G4 10 0 20 10

No. (1.5m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 29 1
G3 9 1 30 0
G4 10 0 30 0

No. (2m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 30 0
G3 9 1 30 0
G4 10 0 30 0

No. (2.5m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 30 0
G3 10 0 30 0
G4 10 0 30 0

No. (3m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 28 2
G3 8 2 30 0
G4 10 0 30 0

No. (3.5m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 22 8
G3 2 8 30 0
G4 10 0 30 0

No. (4m) Hit Miss CR FA
G1 10 0 30 0
G2 5 5 26 4
G3 2 8 30 0
G4 10 0 21 9

Table 5.11: Fixed PT-M with displacement of 0.5m to the left

No. (2m, 3m, 3.5m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 30 0
G3 10 0 30 0
G4 10 0 30 0

No. (2.5m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 27 3
G3 7 3 30 0
G4 10 0 30 0
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Table 5.12: Fixed PT-M with displacement of 0.5m to the right

No. (2m, 2.5m,3m, 3.5m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 30 0
G3 10 0 30 0
G4 10 0 30 0

Table 5.13: Fixed PT-M with displacement of 1m to the left

No. (2.5m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 27 3
G3 7 3 30 0
G4 10 0 30 0

No. (3m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 26 3
G3 6 4 30 0
G4 10 0 30 0

No. (3.5m) Hit Miss CR FA
G1 4 6 30 0
G2 2 8 29 1
G3 3 6 30 0
G4 9 1 10 20

Table 5.14: Fixed PT-M with displacement of 1m to the right

No. (2.5m) Hit Miss CR FA
G1 1 9 30 0
G2 10 0 28 2
G3 10 0 30 0
G4 10 0 24 6

No. (3m) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 26 3
G3 6 4 30 0
G4 10 0 30 0

No. (3.5m) Hit Miss CR FA
G1 8 2 30 0
G2 10 0 29 1
G3 9 1 30 0
G4 10 0 30 0
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Table 5.15: Moving PT-M, distance of 2m from the robot

No. (0◦,−45◦,−90◦) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 28 2
G3 8 2 30 0
G4 10 0 30 0

No. (45◦, 90◦,−135◦) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 29 1
G3 9 1 30 0
G4 10 0 30 0

No. (135◦) Hit Miss CR FA
G1 10 0 30 0
G2 10 0 30 0
G3 10 0 30 0
G4 10 0 30 0

Table 5.16: Robot moving forward toward the person

Hit Miss CR FA
G1 10 0 30 0
G2 10 0 29 1
G3 9 1 30 0
G4 10 0 30 0

Table 5.17: Robot moving perpendicular to the person

Hit Miss CR FA
G1 10 0 30 0
G2 8 2 25 5
G3 0 10 30 0
G4 10 0 23 7

Table 5.18: Robot person-following control

Miss
Start tracking 2
Start following 0
Stop following 1
Stop tracking 2
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Table 5.19: Average error (standard deviation in brackets) in cm during testing of the motor control
learning (Field 1 in the first row was not included in testing due to room characteristics).

1 2 3 4 5
1 0 (0) 0 (0) 3 (0) 5 (0)
2 8 (0) 5.8 (1.79) 2.6 (5.81) 2 (0) 9.2 (5.4)
3 3 (0) 2 (0) 0 (0) 3 (0) 3 (0)
4 3 (0) 5 (0) 7 (0) 4 (0) 7 (0)
5 1 (0) 13.6 (0.89) 6.8 (4.02) 15 (0) 7.5 (2.52)
6 0 (0) 14 (3.39) 1 (2.23) 9 (2.23) 4 (0)
7 12 (0) 7.2 (4.38) 4.8 (1.1) 20 (0) 23 (0)



Chapter 6

Conclusions and Future Work

The initial goals of the thesis were to address the questions of (a) methods for development of
gesture vocabularies, (b) recognition and synthesis of gestures, and (c) approaches to gesture
disambiguation. As an identified prerequisite, the question of attentional models was also tackled.
Based on the research questions, two aims of the thesis were identified – (a) to establish an effective
method for development of gesture vocabularies, and to (b) develop a method for reliable and robust
gesture recognition, together with possibility of gesture disambiguation as a post-recognition step.

6.1 Attentional Models
Chapter 3 tackles the question of attentional mechanisms as a prerequisite for effective human-
robot interaction. It presents a developed attentional model for a humanoid robot for exploration
of robot’s environment, employing a representation of short-term memory. This resulted in a
seemingly natural exploration of the environment and attentiveness to located salient features.
The particular implementation consisted of motion, face and object detection filters for detection
of salient features, with a rule for assigning and decreasing saliency of each detected feature, in order
to simulate inhibition, habituation and forgetting processes. These filters were used as a bottom-up
attentional process, while four behaviors simulating top-down influence were implemented, which
were using data provided by the ego-sphere to drive the interaction. An experiment with human
participants was performed to understand how do different behaviors of the robot affect the way
participants perceive it.

The main outcomes of the experiment was that use of attentional models provides a way to
have a seemingly natural and intuitive interaction. Furthermore, the results identified the way
different qualities of robot’s behaviors influence the way others perceive these behaviors. Once
there was a mechanism to direct robot’s attention to interesting points in its surrounding, gestural
interaction could be introduced.

6.2 Gesture Vocabularies
First main aim of the thesis was to introduce an effective method for development of gesture
vocabularies. Chapter 4 presents the efforts toward this aim. The work on gestures in human-
robot interaction consists of an initial analysis of the use-case scenario, development of human
and robot gesture vocabularies for the particular scenario, and development of gesture recognition
algorithms. Types of gestures present in the obtained human gesture vocabulary naturally affect
the development of the gesture recognition algorithm. For example, one of the characteristics might

98



6.3. GESTURE RECOGNITION AND INTERNAL MODELS 99

be which body parts are included during gesturing, or what kind of arm gestures are present (e.g.,
iconic or deictic). A museum guide robot might need to focus on pointing gestures when people are
inquiring, while a dance tutor robot might require recognition of dynamic, whole-body gestures,
as well as analysis of static dance poses.

This aim is addressed in chapter 4, which defined gestures and gesture vocabularies and pre-
sented an approach for development of human and robot gesture vocabularies. To verify the
proposed approach, two experiments were conducted, in order to obtain both kinds of gesture
vocabularies. Successful development of both gesture vocabularies displayed the effectiveness of
the presented methods. This scenario is based on interaction between customers and waiters in
a restaurant or a bar. Regarding robot gesture vocabulary, arm gestures were designed for a hu-
manoid robot Nao based on gestures observed in human gesture vocabulary and real, interpersonal
interactions in bars and restaurants. It was shown that most

The selected use-case scenario was a robot waiter scenario, based on interaction between a
customer and a waiter occurring in a typical restaurant scenario. Actions were identified, based on
observations of real-life interpersonal interaction between a customer and a waiter . Actions can
be seen as customer-side, when they are initiated by a customer, and waiter-side, when they are
initiated by a waiter.

Gestures for each of the customer-side actions were obtained through a user survey, where
participants were presented with an action and asked to produce a gesture they associated with
that action. Most of the identified actions identified as a part of human gesture vocabulary resulted
in either one or two gestures, having a joint agreement level higher than 50%, meaning that more
than half of the participant associated and gestured one or two gestures for one action.

Gestures for waiter-side actions were designed, based on gestures common in interpersonal
interaction, and based on the gestures observed in the human gesture vocabulary, if an analogous
customer-side action exists. These gestures were then presented in a user survey to participants,
who were asked to rate the displayed gestures. Statistical analysis of the data was performed to
see which gestures are consistently being highly rated, if such gestures existed. For majority of
actions, there were gestures which were rated as fitting to their respective actions.

However, the results of the experiment on robot gesture vocabularies led to a question of whether
robot gestures can be improved in cases where they were not rated high enough. A follow-up exper-
iment was devised based on interactive genetic algorithms. The goal of the experiment was improve
a robot gesture or a set of gestures for a chosen action through the use of evolutionary methods.
In particular, an improved gesture would be that, which a participant or a group of participants
would consistently rank the evolved gestures as better, compared to the initial gesture or gestures.
An initial population of gestures, consisting of designed gestures, random modifications of those
gestures and randomly generated gestures, was set and a random subset of those was presented to
a human rater in parallel. The rater assigned fitness values to the presented gestures, according to
rater’s perception of how fitting the gestures were to the selected action. The fitness values served
to assign probability to the gestures to be selected for reproduction, where offspring should ideally
be better fitting gestures. The results of the experiment displayed that this iterative procedure
can be well suited to produce improved gestures. This was shown with a post-evolutionary step,
where the rater was asked to rate best rated gestures from the first and from the last generation.

6.3 Gesture Recognition and Internal Models

Second main aim of the thesis was that of development of a reliable and robust gesture recognition.
Following the work on gesture vocabularies, chapter 5 introduced a framework for gesture recog-
nition and disambiguation. This chapter consists of two main topics – a procedure for recognition
of trained gestures together with a theoretical foundation for gesture disambiguation procedure,
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and learning the relation of gestures and their meanings through internal models. A recogni-
tion algorithm was developed, based on dynamic time warping. This method performed non-linear
alignment of two time sequences in order to reduce any time-induced differences in those sequences.
The aligned sequences were compared using a distance function to measure their dissimilarity. A
pre-processing pipeline was designed to further increase the robustness of the recognition, through
elimination of some features of the gesture trajectories, resulting in what was called “abstract tra-
jectories”. The results showed satisfying recognition rate of selected gesture classes. An example
scenario was presented in section 5.6, in which a person could control a robot through gestures.

Section 5.7 handles the second main topic of the chapter. This section presented two experi-
ments how can the relation between a gesture and its associated meaning be learned. In particular,
the first experiment presented an approach for issuing a rotate command to the robot by pointing
left or right. In this case, the command was not explicitly programmed, but it was rather the
learning approach that was programmed. Through this, the robot was able to learn how much
it needs to rotate when issued a pointing gesture to the left or to the right. This was based on
the prior self-exploration, where the robot was observing the displacement of a hand of the person
standing in front of it while it was rotating around. The second experiment also employed pointing
gestures, but in this case, they were used for navigating a robot to a particular location in front
of the robot. Testing of the learning showed that it is possible to learn the relation between a
particular arm position, representing a pointing to a particular location in the environment and
the command that needs to be issued in order to move to that location.

6.4 Future Work

Due to the diverse topics covered in the thesis, this section will cover particular research directions
in separate subsections.

6.4.1 Attentional Models

Interesting future directions would be to explore different approaches for dynamic weight assign-
ment for different filters. It could be also useful to extend the system to include more filters on the
Nao robot (e.g. for audio localization), as well as to port the approach to other robot platforms. It
would be interesting to see how these attentional models would rate on other, non-humanoid plat-
forms. Additionally, the presented full interaction behavior, consisting of exploration, interaction
and interaction avoidance, can be applied to more complex scenarios, and it should be explored
further. Providing giving visual and auditory feedback to the participant is of extreme importance
for increasing the intuitiveness of the interaction and the user satisfaction, and this should be
included in the future.

Another interesting research question could ask what is the proper movements speed a robot
might exhibit in order to be perceived as not dangerous or with good reaction times.

6.4.2 Gesture Vocabularies

Overall, general remarks from the participants indicate further morphological requirements. The
robot should be equipped with sound feedback, as well as arms which have rotatable wrist and
movable fingers.

To test the human understanding of gestures in the robot gesture vocabulary, an experiment
should be performed where participants would be asked to pair a selection of few gestures from
this set with a selection of few actions. The expected outcome is that they would correctly match
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the gestures with actions and this would prove that the chosen gestures can be clearly understood
(e.g., a gesture for one action would not be recognized as a gesture for some other action).

Steels (1998) introduced the concept of language games – a method for evolution of a common
language vocabulary between two agents. In more recent time, Steels and Spranger (2012) provides
an overview of the additional games, such as action games and description games. A game consists
of a population of individual agents, a context and a communicative purpose.

Similarly, in Schulz et al. (2006) an approach for evolution of spatial language is described. In
this work two robots are exploring the locations and sharing between themselves the information of
where these locations are and which words they are using as names of these locations. The names
are randomly created from primitive syllables. The results show that two agents are capable of
evolving a spatial language that can be learned and used for describing spatial information.

Following the same line of thought, an interesting approach to development of the gesture
vocabularies are gesture games, in which a gesture vocabulary would be evolved between partic-
ipants. This approach is highly relevant for a theoretical explanation of how could a common
gesture vocabulary in a culture evolve.

In this case, a robot and a human teacher, or two robots, would watch each other performing
random movements, which they use to describe a shared concept (i.e., an object of joint attention).
These movements are randomly generated from movement primitives, such as raising a hand,
followed by mutual agreement on the correspondence between a generated gesture and the shared
concept.

6.4.3 Gesture Recognition and Internal Models
The approach to gesture recognition here is robust to variations in environment and persons.
However, it does not tackle the question of context in which the gesture is performed, such as the
current interaction context, or the referent object of the gesture.

Another focus should be on extending the framework to include the recognition of static ges-
tures, as well as to include recognition of hand poses. Furthermore, as outlined in Figure 5.2,
additional features could be explored, such as information about the gestural plane, as some of the
3D gestures are performed in a 2D plane, as indicated by Berman and Stern (2012).

Regarding the use of internal models for robot guidance, there is an issue of sensitivity to the
relative position of a person towards a robot. This issue could be approached by inclusion of
additional training features, such as the current location of the person relative to the robot.
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Questionnaires

The appendix lists all questionnaires, as well as consent forms used in the experiments.

A.1 Perception of Robot Behavior

A.1.1 Questionnaire

1. Name/nickname:

2. Gender: 2 Male 2 Female

3. Age:

4. Nationality:

5. Education: 2 HS 2 RS 2 Abitur 2 FH 2 Uni

6. Do you already have experience in interacting with robots? 2 Yes 2 No

7. If yes, with which robot?

Please rate your impression of the robot on these scales.
Anthropomorphism

8. Fake 2—2—2—2—2 Natural

9. Machinelike 2—2—2—2—2 Humanlike

10. Unconscious 2—2—2—2—2 Conscious

11. Artificial 2—2—2—2—2 Lifelike

12. Moving rigidly 2—2—2—2—2 Moving elegantly

13. Artificial 2—2—2—2—2 Lifelike

Animacy

14. Dead 2—2—2—2—2 Alive

15. Stagnant 2—2—2—2—2 Lively

16. Mechanical 2—2—2—2—2 Organic

17. Artificial 2—2—2—2—2 Lifelike

18. Inert 2—2—2—2—2 Interactive

19. Apathetic 2—2—2—2—2 Responsive
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Likeability

20. Dislike 2—2—2—2—2 Like

21. Unfriendly 2—2—2—2—2 Friendly

22. Unkind 2—2—2—2—2 Kind

23. Unpleasant 2—2—2—2—2 Pleasant

24. Awful 2—2—2—2—2 Nice

Perceived Intelligence

25. Incompetent 2—2—2—2—2 Competent

26. Ignorant 2—2—2—2—2 Knowledgeable

27. Irresponsible 2—2—2—2—2 Responsible

28. Unintelligent 2—2—2—2—2 Intelligent

29. Foolish 2—2—2—2—2 Sensible

Perceived Safety

30. Anxious 2—2—2—2—2 Relaxed

31. Agitated 2—2—2—2—2 Calm

32. Quiescent 2—2—2—2—2 Surprised

User Satisfaction

33. Frustrating 2—2—2—2—2 Exciting

34. Unsatisfying interaction 2—2—2—2—2 Satisfying interaction

35. What did NAO do?

36. What did NAO want?

37. Did NAO want to interact with you?

38. Was NAO successful in what it did?

39. How did NAO communicate?

40. Has NAO recognized or understood something? If yes, what?

41. Is NAO male or female?

42. Which are NAO’s features that let you recognize its gender?

43. How old is NAO?

44. Is NAO too small/big for interacting with it?

45. What do you expect NAO can do in the future?

46. What would have been different if we would have NAO replaced by a human?

Ich bin damit einverstanden, dass meine Antworten in anonymisiert Form veröffentlicht werden.
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A.2 Human Gesture Vocabulary

A.2.1 Consent Form

You are going to participate in an experiment aiming to studying the use of gestures in human-
robot interaction, based on the robot waiter scenario. The goal of the experiment is to create a set
of gestures people use in their everyday interaction with the waiters in cafes or bars. An action,
such as “call the waiter” or “ask for the bill” will be shown on the computer screen. After that, you
will need to do a gesture you would typically do in order to achieve that command. Each action
is represented with a sentence and words in red represent keywords. You can use one gesture to
represent the whole sentence, two gestures, one for each keyword, or a pointing gesture.

A follow-up survey consists of four questions – age, gender, left- or right-handedness and the
frequency of your visits to cafes and bars. You will receive one additional point in the final exam
of the Automation course for your participation. The experiment typically lasts 10-15 minutes.
You are free to stop and leave the experiment at any time, but if you leave before the experiment
is concluded you will not receive the additional point.

Your actions will be recorded with a Microsoft Kinect (video and depth camera that provides
depth information). Upper body (including face and arms) will be recorded with the video camera
and locations of the head, shoulders and hands will be recorded with the depth camera. During the
analysis, all the data will be stored in encrypted form on a location inaccessible from the network
(both university network and the Internet in general). Your name won’t be recorded and your
anonymity will be preserved. Recorded images will be used only for the analysis and will not be
provided or displayed to third persons. Informed consent forms will be stored separately.

For any further questions you can contact Sasa Bodiroza at bodiroza@bgu.ac.il or
bodiroza@informatik.hu-berlin.de.

A.3 Robot Gesture Vocabulary

A.3.1 Consent Form

1. You are going to participate in an experiment aiming to studying the use of gestures in
human-robot interaction, based on the robot waiter scenario. The goal of the experiment is
to create a set of gestures robots can use in their everyday interaction with the customers
in cafes, restaurants or bars. An action, such as “can I suggest you something” or “would
you like another one” will be shown on the computer screen. After each action, you will
watch 2-3 videos of a small humanoid robot, Aldebaran Nao, performing different gestures
associated with the presented action. After that, you will need to rank presented gestures,
based on how strongly you associate each gesture with the presented action.

A follow-up survey consists of four questions – age, gender, left- or right-handedness and
the frequency of your visits to cafes and bars.

You will receive 1 credit in the class for your participation.

The experiment typically lasts 10-15 minutes. You are free to stop and leave the experiment
at any time, but if you leave before the experiment is concluded you will not receive the
class credits.

Your name won’t be recorded and your anonymity will be preserved.
2 I agree

2 I disagree
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A.3.2 Questionnaire
2. Name/nickname:

3. Age:

4. Gender: 2 Male 2 Female

5. How often do you go to cafes or bars?
2 Every day

2 3-4 times per week

2 1-2 times per week

2 1 time every two weeks

2 1 time per month

2 Rarely

2 Never

Following questions were asked for all gesture alternatives, here labeled with n for each of the
actions, here labeled with A.
Action A

6. Overall impression of the gesture alternative n.
Very good 2—2—2—2—2—2—2—2—2—2 Very bad

7. Speed of the gesture alternative n.
Very fast 2—2—2—2—2—2—2—2—2—2 Very slow

8. Precision of the gesture alternative n.
Very good 2—2—2—2—2—2—2—2—2—2 Very bad

In addition, the participants were asked to rank the gesture alternatives of each action (i.e.,
assigning them values from 1 to 3, to indicate the order from the best to the worst).
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