752 research outputs found

    A neural model of border-ownership from kinetic occlusion

    Full text link
    Camouflaged animals that have very similar textures to their surroundings are difficult to detect when stationary. However, when an animal moves, humans readily see a figure at a different depth than the background. How do humans perceive a figure breaking camouflage, even though the texture of the figure and its background may be statistically identical in luminance? We present a model that demonstrates how the primate visual system performs figure–ground segregation in extreme cases of breaking camouflage based on motion alone. Border-ownership signals develop as an emergent property in model V2 units whose receptive fields are nearby kinetically defined borders that separate the figure and background. Model simulations support border-ownership as a general mechanism by which the visual system performs figure–ground segregation, despite whether figure–ground boundaries are defined by luminance or motion contrast. The gradient of motion- and luminance-related border-ownership signals explains the perceived depth ordering of the foreground and background surfaces. Our model predicts that V2 neurons, which are sensitive to kinetic edges, are selective to border-ownership (magnocellular B cells). A distinct population of model V2 neurons is selective to border-ownership in figures defined by luminance contrast (parvocellular B cells). B cells in model V2 receive feedback from neurons in V4 and MT with larger receptive fields to bias border-ownership signals toward the figure. We predict that neurons in V4 and MT sensitive to kinetically defined figures play a crucial role in determining whether the foreground surface accretes, deletes, or produces a shearing motion with respect to the background.This work was supported in part by CELEST (NSF SBE-0354378 and OMA-0835976), the Office of Naval Research (ONR N00014-11-1-0535) and Air Force Office of Scientific Research (AFOSR FA9550-12-1-0436). (NSF SBE-0354378 - CELEST; OMA-0835976 - CELEST; ONR N00014-11-1-0535 - Office of Naval Research; AFOSR FA9550-12-1-0436 - Air Force Office of Scientific Research)Published versio

    Computing motion in the primate's visual system

    Get PDF
    Computing motion on the basis of the time-varying image intensity is a difficult problem for both artificial and biological vision systems. We will show how one well-known gradient-based computer algorithm for estimating visual motion can be implemented within the primate's visual system. This relaxation algorithm computes the optical flow field by minimizing a variational functional of a form commonly encountered in early vision, and is performed in two steps. In the first stage, local motion is computed, while in the second stage spatial integration occurs. Neurons in the second stage represent the optical flow field via a population-coding scheme, such that the vector sum of all neurons at each location codes for the direction and magnitude of the velocity at that location. The resulting network maps onto the magnocellular pathway of the primate visual system, in particular onto cells in the primary visual cortex (V1) as well as onto cells in the middle temporal area (MT). Our algorithm mimics a number of psychophysical phenomena and illusions (perception of coherent plaids, motion capture, motion coherence) as well as electrophysiological recordings. Thus, a single unifying principle ‘the final optical flow should be as smooth as possible’ (except at isolated motion discontinuities) explains a large number of phenomena and links single-cell behavior with perception and computational theory

    Neural Dynamics of Motion Perception: Direction Fields, Apertures, and Resonant Grouping

    Full text link
    A neural network model of global motion segmentation by visual cortex is described. Called the Motion Boundary Contour System (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyse how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The Motion BCS describes how preprocessing of motion signals by a Motion Oriented Contrast Filter (MOC Filter) is joined to long-range cooperative grouping mechanisms in a Motion Cooperative-Competitive Loop (MOCC Loop) to control phenomena such as motion capture. The Motion BCS is computed in parallel with the Static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the Motion BCS and the Static BCS, specialized to process movement directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1 --> MT and V1 --> V2 --> MT are made, notably the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the Motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions-of-contrast. Interactions of model simple cells, complex cells, hypercomplex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.Air Force Office of Scientific Research (90-0175); Defense Advanced Research Projects Agency (90-0083); Office of Naval Research (N00014-91-J-4100

    The Role of Early Recurrence in Improving Visual Representations

    Get PDF
    This dissertation proposes a computational model of early vision with recurrence, termed as early recurrence. The idea is motivated from the research of the primate vision. Specifically, the proposed model relies on the following four observations. 1) The primate visual system includes two main visual pathways: the dorsal pathway and the ventral pathway; 2) The two pathways respond to different visual features; 3) The neurons of the dorsal pathway conduct visual information faster than that of the neurons of the ventral pathway; 4) There are lower-level feedback connections from the dorsal pathway to the ventral pathway. As such, the primate visual system may implement a recurrent mechanism to improve visual representations of the ventral pathway. Our work starts from a comprehensive review of the literature, based on which a conceptualization of early recurrence is proposed. Early recurrence manifests itself as a form of surround suppression. We propose that early recurrence is capable of refining the ventral processing using results of the dorsal processing. Our work further defines a set of computational components to formalize early recurrence. Although we do not intend to model the true nature of biology, to verify that the proposed computation is biologically consistent, we have applied the model to simulate a neurophysiological experiment of a bar-and-checkerboard and a psychological experiment involving a moving contour illusion. Simulation results indicated that the proposed computation behaviourally reproduces the original observations. The ultimate goal of this work is to investigate whether the proposal is capable of improving computer vision applications. To do this, we have applied the model to a variety of applications, including visual saliency and contour detection. Based on comparisons against the state-of-the-art, we conclude that the proposed model of early recurrence sheds light on a generally applicable yet lightweight approach to boost real-life application performance

    Nägemistaju automaatsete protsesside eksperimentaalne uurimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneVäitekiri keskendub nägemistaju protsesside eksperimentaalsele uurimisele, mis on suuremal või vähemal määral automaatsed. Uurimistöös on kasutatud erinevaid eksperimentaalseid katseparadigmasid ja katsestiimuleid ning nii käitumuslikke- kui ka ajukuvamismeetodeid. Esimesed kolm empiirilist uurimust käsitlevad liikumisinformatsiooni töötlust, mis on evolutsiooni käigus kujunenud üheks olulisemaks baasprotsessiks nägemistajus. Esmalt huvitas meid, kuidas avastatakse liikuva objekti suunamuutusi, kui samal ajal toimub ka taustal liikumine (Uurimus I). Nägemistaju uurijad on pikka aega arvanud, et liikumist arvutatakse alati mõne välise objekti või tausta suhtes. Meie uurimistulemused ei kinnitanud taolise suhtelise liikumise printsiibi paikapidavust ning toetavad pigem seisukohta, et eesmärkobjekti liikumisinformatsiooni töötlus on automaatne protsess, mis tuvastab silma põhjas toimuvaid nihkeid, ja taustal toimuv seda eriti ei mõjuta. Teise uurimuse tulemused (Uurimus II) näitasid, et nägemissüsteem töötleb väga edukalt ka seda liikumisinformatsiooni, millele vaatleja teadlikult tähelepanu ei pööra. See tähendab, et samal ajal, kui inimene on mõne tähelepanu hõlmava tegevusega ametis, suudab tema aju taustal toimuvaid sündmusi automaatselt registreerida. Igapäevaselt on inimese nägemisväljas alati palju erinevaid objekte, millel on erinevad omadused, mistõttu järgmiseks huvitas meid (Uurimus III), kuidas ühe tunnuse (antud juhul värvimuutuse) töötlemist mõjutab mõne teise tunnusega toimuv (antud juhul liikumiskiiruse) muutus. Näitasime, et objekti liikumine parandas sama objekti värvimuutuse avastamist, mis viitab, et nende kahe omaduse töötlemine ajus ei ole päris eraldiseisev protsess. Samuti tähendab taoline tulemus, et hoolimata ühele tunnusele keskendumisest ei suuda inimene ignoreerida teist tähelepanu tõmbavat tunnust (liikumine), mis viitab taas kord automaatsetele töötlusprotsessidele. Neljas uurimus keskendus emotsionaalsete näoväljenduste töötlusele, kuna need kannavad keskkonnas hakkamasaamiseks vajalikke sotsiaalseid signaale, mistõttu on alust arvata, et nende töötlus on kujunenud suuresti automaatseks protsessiks. Näitasime, et emotsiooni väljendavaid nägusid avastati kiiremini ja kergemini kui neutraalse ilmega nägusid ning et vihane nägu tõmbas rohkem tähelepanu kui rõõmus (Uurimus IV). Väitekirja viimane osa puudutab visuaalset lahknevusnegatiivsust (ingl Visual Mismatch Negativity ehk vMMN), mis näitab aju võimet avastada automaatselt erinevusi enda loodud mudelist ümbritseva keskkonna kohta. Selle automaatse erinevuse avastamise mehhanismi uurimisse andsid oma panuse nii Uurimus II kui Uurimus IV, mis mõlemad pakuvad välja tõendusi vMMN tekkimise kohta eri tingimustel ja katseparadigmades ning ka vajalikke metodoloogilisi täiendusi. Uurimus V on esimene kogu siiani ilmunud temaatilist teadustööd hõlmav ülevaateartikkel ja metaanalüüs visuaalsest lahknevusnegatiivsusest psühhiaatriliste ja neuroloogiliste haiguste korral, mis panustab oluliselt visuaalse lahknevusnegatiivsuse valdkonna arengusse.The research presented and discussed in the thesis is an experimental exploration of processes in visual perception, which all display a considerable amount of automaticity. These processes are targeted from different angles using different experimental paradigms and stimuli, and by measuring both behavioural and brain responses. In the first three empirical studies, the focus is on motion detection that is regarded one of the most basic processes shaped by evolution. Study I investigated how motion information of an object is processed in the presence of background motion. Although it is widely believed that no motion can be perceived without establishing a frame of reference with other objects or motion on the background, our results found no support for relative motion principle. This finding speaks in favour of a simple and automatic process of detecting motion, which is largely insensitive to the surrounding context. Study II shows that the visual system is built to automatically process motion information that is outside of our attentional focus. This means that even if we are concentrating on some task, our brain constantly monitors the surrounding environment. Study III addressed the question of what happens when multiple stimulus qualities (motion and colour) are present and varied, which is the everyday reality of our visual input. We showed that velocity facilitated the detection of colour changes, which suggests that processing motion and colour is not entirely isolated. These results also indicate that it is hard to ignore motion information, and processing it is rather automatically initiated. The fourth empirical study focusses on another example of visual input that is processed in a rather automatic way and carries high survival value – emotional expressions. In Study IV, participants detected emotional facial expressions faster and more easily compared with neutral facial expressions, with a tendency towards more automatic attention to angry faces. In addition, we investigated the emergence of visual mismatch negativity (vMMN) that is one of the most objective and efficient methods for analysing automatic processes in the brain. Study II and Study IV proposed several methodological gains for registering this automatic change-detection mechanism. Study V is an important contribution to the vMMN research field as it is the first comprehensive review and meta-analysis of the vMMN studies in psychiatric and neurological disorders

    Biologically-inspired robust motion segmentation using mutual information

    Get PDF
    This paper presents a neuroscience inspired information theoretic approach to motion segmentation. Robust motion segmentation represents a fundamental first stage in many surveillance tasks. As an alternative to widely adopted individual segmentation approaches, which are challenged in different ways by imagery exhibiting a wide range of environmental variation and irrelevant motion, this paper presents a new biologically-inspired approach which computes the multivariate mutual information between multiple complementary motion segmentation outputs. Performance evaluation across a range of datasets and against competing segmentation methods demonstrates robust performance

    A Neural Model of First-order and Second-order Motion Perception and Magnocellular Dynamics

    Full text link
    A neural model of motion perception simulates psychophysical data. concerning first-order and second-order motion stimuli, including the reversal of perceived motion direction with distance from the stimulus (I display), and data about directional judgments as a function of relative spatial phase or spatial and temporal frequency. Many other second-order motion percepts that have been ascribed to a second non-Fourier processing stream can also be explained in the model by interactions between ON and OFF cells within a single, neurobiologically interpreted magnocellular processing stream. Yet other percepts may be traced to interactions between form and motion processing streams, rather than to processing within multiple motion processing strea.ms. The model hereby explains why monkeys with lesions of the parvocellular layers, but not the magnocellular layers, of the lateral geniculate nucleus (LGN) are capable of detecting the correct direction of second-order motion, why most cells in area MT are sensitive to both first-order and second-order motion, and why after APB injection selectively blocks retinal ON bipolar cells, cortical cells are sensitive only to the motion of a moving bright bar's trailing edge. Magnoccllular LGN cells show relatively transient responses while parvoccllular LGN cells show relatively sustained responses. Correspondingly, the model bases its directional estimates on the outputs of model ON and OFF transient cells that are organized in opponent circuits wherein antagonistic rebounds occur in response to stimmulus offset. Center-surround interactions convert these ON and OFF outpr1ts into responses of lightening and darkening cells that are sensitive both to direct inputs and to rebound responses in their receptive field centers and surrounds. The total pattern of activity increments and decrements is used by subsequent processing stages (spatially short-range filters, competitive interactions, spatially long-range filters, and directional grouping cells) to dntermine the perceived direction of motion

    Visual Pathways Serving Motion Detection in the Mammalian Brain

    Get PDF
    Motion perception is the process through which one gathers information on the dynamic visual world, in terms of the speed and movement direction of its elements. Motion sensation takes place from the retinal light sensitive elements, through the visual thalamus, the primary and higher visual cortices. In the present review we aim to focus on the extrageniculo-extrastriate cortical and subcortical visual structures of the feline and macaque brain and discuss their functional role in visual motion perception. Special attention is paid to the ascending tectofugal system that may serve for detection of the visual environment during self-motion

    Neural Dynamics of Motion Grouping: From Aperture Ambiguity to Object Speed and Direction

    Full text link
    A neural network model of visual motion perception and speed discrimination is developed to simulate data concerning the conditions under which components of moving stimuli cohere or not into a global direction of motion, as in barberpole and plaid patterns (both Type 1 and Type 2). The model also simulates how the perceived speed of lines moving in a prescribed direction depends upon their orientation, length, duration, and contrast. Motion direction and speed both emerge as part of an interactive motion grouping or segmentation process. The model proposes a solution to the global aperture problem by showing how information from feature tracking points, namely locations from which unambiguous motion directions can be computed, can propagate to ambiguous motion direction points, and capture the motion signals there. The model does this without computing intersections of constraints or parallel Fourier and non-Fourier pathways. Instead, the model uses orientationally-unselective cell responses to activate directionally-tuned transient cells. These transient cells, in turn, activate spatially short-range filters and competitive mechanisms over multiple spatial scales to generate speed-tuned and directionally-tuned cells. Spatially long-range filters and top-down feedback from grouping cells are then used to track motion of featural points and to select and propagate correct motion directions to ambiguous motion points. Top-down grouping can also prime the system to attend a particular motion direction. The model hereby links low-level automatic motion processing with attention-based motion processing. Homologs of model mechanisms have been used in models of other brain systems to simulate data about visual grouping, figure-ground separation, and speech perception. Earlier versions of the model have simulated data about short-range and long-range apparent motion, second-order motion, and the effects of parvocellular and magnocellular LGN lesions on motion perception.Office of Naval Research (N00014-920J-4015, N00014-91-J-4100, N00014-95-1-0657, N00014-95-1-0409, N00014-91-J-0597); Air Force Office of Scientific Research (F4620-92-J-0225, F49620-92-J-0499); National Science Foundation (IRI-90-00530

    Abnormal Brain Connectivity in the Primary Visual Pathway in Human Albinism

    Get PDF
    In albinism, the ipsilateral projection of retinal axons is significantly reduced, and most fibres project contralaterally. The retina and optic chiasm have been proposed as sites for misrouting. The number of lateral geniculate nucleus (LGN) relay neurons has been linked to LGN volume, suggesting a correlation between LGN size and the number of tracts traveling through the optic radiation (OR) to the primary visual cortex (V1). Using diffusion data and both deterministic and probabilistic tractography, we studied differences in OR between albinism and controls. Statistical analyses measured white matter integrity in areas corresponding to the OR, as well as LGN to V1 connectivity. Results revealed reduced white matter integrity and connectivity in the OR region in albinism compared to controls, suggesting altered structural development. Previous reports of smaller LGN and the altered thalamo-cortical connectivity reported here demonstrate the effect of misrouting on structural organization of the visual pathway in albinism
    corecore