research

A Neural Model of First-order and Second-order Motion Perception and Magnocellular Dynamics

Abstract

A neural model of motion perception simulates psychophysical data. concerning first-order and second-order motion stimuli, including the reversal of perceived motion direction with distance from the stimulus (I display), and data about directional judgments as a function of relative spatial phase or spatial and temporal frequency. Many other second-order motion percepts that have been ascribed to a second non-Fourier processing stream can also be explained in the model by interactions between ON and OFF cells within a single, neurobiologically interpreted magnocellular processing stream. Yet other percepts may be traced to interactions between form and motion processing streams, rather than to processing within multiple motion processing strea.ms. The model hereby explains why monkeys with lesions of the parvocellular layers, but not the magnocellular layers, of the lateral geniculate nucleus (LGN) are capable of detecting the correct direction of second-order motion, why most cells in area MT are sensitive to both first-order and second-order motion, and why after APB injection selectively blocks retinal ON bipolar cells, cortical cells are sensitive only to the motion of a moving bright bar's trailing edge. Magnoccllular LGN cells show relatively transient responses while parvoccllular LGN cells show relatively sustained responses. Correspondingly, the model bases its directional estimates on the outputs of model ON and OFF transient cells that are organized in opponent circuits wherein antagonistic rebounds occur in response to stimmulus offset. Center-surround interactions convert these ON and OFF outpr1ts into responses of lightening and darkening cells that are sensitive both to direct inputs and to rebound responses in their receptive field centers and surrounds. The total pattern of activity increments and decrements is used by subsequent processing stages (spatially short-range filters, competitive interactions, spatially long-range filters, and directional grouping cells) to dntermine the perceived direction of motion

    Similar works