3,013 research outputs found

    Accurate reconstruction of insertion-deletion histories by statistical phylogenetics

    Get PDF
    The Multiple Sequence Alignment (MSA) is a computational abstraction that represents a partial summary either of indel history, or of structural similarity. Taking the former view (indel history), it is possible to use formal automata theory to generalize the phylogenetic likelihood framework for finite substitution models (Dayhoff's probability matrices and Felsenstein's pruning algorithm) to arbitrary-length sequences. In this paper, we report results of a simulation-based benchmark of several methods for reconstruction of indel history. The methods tested include a relatively new algorithm for statistical marginalization of MSAs that sums over a stochastically-sampled ensemble of the most probable evolutionary histories. For mammalian evolutionary parameters on several different trees, the single most likely history sampled by our algorithm appears less biased than histories reconstructed by other MSA methods. The algorithm can also be used for alignment-free inference, where the MSA is explicitly summed out of the analysis. As an illustration of our method, we discuss reconstruction of the evolutionary histories of human protein-coding genes.Comment: 28 pages, 15 figures. arXiv admin note: text overlap with arXiv:1103.434

    Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires

    Full text link
    The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity in order to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic and (iv) machine learning methods applied to dissect, quantify and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology towards coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.Comment: 27 pages, 2 figure

    Probabilistic Graphical Model Representation in Phylogenetics

    Get PDF
    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (1) reproducibility of an analysis, (2) model development and (3) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and non-specialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis-Hastings or Gibbs sampling of the posterior distribution

    An Introduction to Programming for Bioscientists: A Python-based Primer

    Full text link
    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a 'variable', the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.Comment: 65 pages total, including 45 pages text, 3 figures, 4 tables, numerous exercises, and 19 pages of Supporting Information; currently in press at PLOS Computational Biolog

    DM-PhyClus: A Bayesian phylogenetic algorithm for infectious disease transmission cluster inference

    Full text link
    Background. Conventional phylogenetic clustering approaches rely on arbitrary cutpoints applied a posteriori to phylogenetic estimates. Although in practice, Bayesian and bootstrap-based clustering tend to lead to similar estimates, they often produce conflicting measures of confidence in clusters. The current study proposes a new Bayesian phylogenetic clustering algorithm, which we refer to as DM-PhyClus, that identifies sets of sequences resulting from quick transmission chains, thus yielding easily-interpretable clusters, without using any ad hoc distance or confidence requirement. Results. Simulations reveal that DM-PhyClus can outperform conventional clustering methods, as well as the Gap procedure, a pure distance-based algorithm, in terms of mean cluster recovery. We apply DM-PhyClus to a sample of real HIV-1 sequences, producing a set of clusters whose inference is in line with the conclusions of a previous thorough analysis. Conclusions. DM-PhyClus, by eliminating the need for cutpoints and producing sensible inference for cluster configurations, can facilitate transmission cluster detection. Future efforts to reduce incidence of infectious diseases, like HIV-1, will need reliable estimates of transmission clusters. It follows that algorithms like DM-PhyClus could serve to better inform public health strategies

    Reconstructing phylogeny from RNA secondary structure via simulated evolution

    No full text
    DNA sequences of genes encoding functional RNA molecules (e.g., ribosomal RNAs) are commonly used in phylogenetics (i.e. to infer evolutionary history). Trees derived from ribosomal RNA (rRNA) sequences, however, are inconsistent with other molecular data in investigations of deep branches in the tree of life. Since much of te functional constraints on the gene products (i.e. RNA molecules) relate to three-dimensional structure, rather than their actual sequences, accumulated mutations in the gene sequences may obscure phylogenetic signal over very large evolutionary time-scales. Variation in structure, however, may be suitable for phylogenetic inference even under extreme sequence divergence. To evaluate qualitatively the manner in which structural evolution relates to sequence change, we simulated the evolution of RNA sequences under various constraints on structural change

    Consistency and convergence rate of phylogenetic inference via regularization

    Full text link
    It is common in phylogenetics to have some, perhaps partial, information about the overall evolutionary tree of a group of organisms and wish to find an evolutionary tree of a specific gene for those organisms. There may not be enough information in the gene sequences alone to accurately reconstruct the correct "gene tree." Although the gene tree may deviate from the "species tree" due to a variety of genetic processes, in the absence of evidence to the contrary it is parsimonious to assume that they agree. A common statistical approach in these situations is to develop a likelihood penalty to incorporate such additional information. Recent studies using simulation and empirical data suggest that a likelihood penalty quantifying concordance with a species tree can significantly improve the accuracy of gene tree reconstruction compared to using sequence data alone. However, the consistency of such an approach has not yet been established, nor have convergence rates been bounded. Because phylogenetics is a non-standard inference problem, the standard theory does not apply. In this paper, we propose a penalized maximum likelihood estimator for gene tree reconstruction, where the penalty is the square of the Billera-Holmes-Vogtmann geodesic distance from the gene tree to the species tree. We prove that this method is consistent, and derive its convergence rate for estimating the discrete gene tree structure and continuous edge lengths (representing the amount of evolution that has occurred on that branch) simultaneously. We find that the regularized estimator is "adaptive fast converging," meaning that it can reconstruct all edges of length greater than any given threshold from gene sequences of polynomial length. Our method does not require the species tree to be known exactly; in fact, our asymptotic theory holds for any such guide tree.Comment: 34 pages, 5 figures. To appear on The Annals of Statistic

    Using Avida to test the effects of natural selection on phylogenetic reconstruction methods

    Get PDF
    Phylogenetic trees group organisms by their ancestral relationships. There are a number of distinct algorithms used to reconstruct these trees from molecular sequence data, but different methods sometimes give conflicting results. Since there are few precisely known phylogenies, simulations are typically used to test the quality of reconstruction algorithms. These simulations randomly evolve strings of symbols to produce a tree, and then the algorithms are run with the tree leaves as inputs. Here we use Avida to test two widely used reconstruction methods, which gives us the chance to observe the effect of natural selection on tree reconstruction. We find that if the organisms undergo natural selection between branch points, the methods will be successful even on very large time scales. However, these algorithms often falter when selection is absent

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics
    • …
    corecore