23 research outputs found

    Different B cell subpopulations show distinct patterns in their IgH repertoire metrics

    Full text link
    Several human B cell subpopulations are recognised in the peripheral blood, which play distinct roles in the humoral immune response. These cells undergo developmental and maturational changes involving VDJ recombination, somatic hypermutation and class switch recombination, altogether shaping their immunoglobulin heavy chain (IgH) repertoire. Here, we sequenced the IgH repertoire of naïve, marginal zone, switched and plasma cells from 10 healthy adults along with matched unsorted and in silico separated CD19+ bulk B cells. Using advanced bioinformatic analysis and machine learning, we show that sorted B cell subpopulations are characterised by distinct repertoire characteristics on both the individual sequence and the repertoire level. Sorted subpopulations shared similar repertoire characteristics with their corresponding in silico separated subsets. Furthermore, certain IgH repertoire characteristics correlated with the position of the constant region on the IgH locus. Overall, this study provides unprecedented insight over mechanisms of B cell repertoire control in peripherally circulating B cell subpopulations. Keywords: B cells; diagnostics; human; immunoglobulin; immunology; inflammation; machine learning; prediction; repertoire

    B-Cell Reconstitution After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis

    Full text link
    Background and objectives: Autologous hematopoietic stem cell transplantation (aHSCT) is increasingly used to treat aggressive forms of multiple sclerosis (MS). This procedure is believed to result in an immune reset and restoration of a self-tolerant immune system. Immune reconstitution has been extensively studied for T cells, but only to a limited extent for B cells. As increasing evidence suggests an important role of B cells in MS pathogenesis, we sought here to better understand reconstitution and the extent of renewal of the B-cell system after aHSCT in MS. Methods: Using longitudinal multidimensional flow cytometry and immunoglobulin heavy chain (IgH) repertoire sequencing following aHSCT with BCNU + Etoposide + Ara-C + Melphalan anti-thymocyte globulin, we analyzed the B-cell compartment in a cohort of 20 patients with MS in defined intervals before and up to 1 year after aHSCT and compared these findings with data from healthy controls. Results: Total B-cell numbers recovered within 3 months and increased above normal levels 1 year after transplantation, successively shifting from a predominantly transitional to a naive immune phenotype. Memory subpopulations recovered slowly and remained below normal levels with reduced repertoire diversity 1 year after transplantation. Isotype subclass analysis revealed a proportional shift toward IgG1-expressing cells and a reduction in IgG2 cells. Mutation analysis of IgH sequences showed that highly mutated memory B cells and plasma cells may transiently survive conditioning while the analysis of sequence cluster overlap, variable (IGHV) and joining (IGHJ) gene usage and repertoire diversity suggested a renewal of the late posttransplant repertoire. In patients with early cytomegalovirus reactivation, reconstitution of naive and memory B cells was delayed. Discussion: Our detailed characterization of B-cell reconstitution after aHSCT in MS indicates a reduced reactivation potential of memory B cells up to 1 year after transplantation, which may leave patients susceptible to infection, but may also be an important aspect of its mechanism of action

    Characterisation of the immune repertoire of a humanised transgenic mouse through immunophenotyping and high-throughput sequencing

    Full text link
    Immunoglobulin loci-transgenic animals are widely used in antibody discovery and increasingly in vaccine response modelling. In this study, we phenotypically characterised B-cell populations from the Intelliselect® Transgenic mouse (Kymouse) demonstrating full B-cell development competence. Comparison of the naïve B-cell receptor (BCR) repertoires of Kymice BCRs, naïve human, and murine BCR repertoires revealed key differences in germline gene usage and junctional diversification. These differences result in Kymice having CDRH3 length and diversity intermediate between mice and humans. To compare the structural space explored by CDRH3s in each species' repertoire, we used computational structure prediction to show that Kymouse naïve BCR repertoires are more human-like than mouse-like in their predicted distribution of CDRH3 shape. Our combined sequence and structural analysis indicates that the naïve Kymouse BCR repertoire is diverse with key similarities to human repertoires, while immunophenotyping confirms that selected naïve B-cells are able to go through complete development

    Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires

    Full text link
    The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity in order to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic and (iv) machine learning methods applied to dissect, quantify and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology towards coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.Comment: 27 pages, 2 figure

    Autoimmunity and immunodeficiency associated with monoallelic LIG4 mutations via haploinsufficiency

    Get PDF
    BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVE: We explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type vs. mutant LIG4 were performed in LIG4 knock-out Jurkat T cells and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naïve CD4+^{+} T cells and low TCR-Vα7.2+^{+} T cells, while T/B-cell receptor repertoires showed only mild alterations. Cohort screening identified two other non-related patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSION: We provide evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Bioinformatics tools for studying glycan-protein interactions

    No full text
    Lectin-glycan interactions have important roles in numerous biological processes. They are known to be involved in both normal and pathological reactions. For a deeper understanding of these bindings, the interactive partners, and their functions, databases like Consortium for Functional Glycomics and glycosciences provide access to results of glycan array experiments. An important step for a better comprehension of the results of these experiments is realizing the origin of the glycans present on the glycan arrays, or in other words how are glycan arrays defined. In order to do this, we collected data on the described carbohydrate antigens, or epitopes, from different sources and authors. Data was structured and integrated to give a set of 553 unique known epitopes. We compiled several sources that collect information on epitopes and set to ease access to this information as well as to make it meaningful. For that purpose, we developed Glydin', a visualization tool supporting data exploration. The network is built upon structural similarities of the epitopes that are described by their monosaccharide composition. Each node is an epitope. An edge connects two epitopes when one is the extension of the other by one or more monosaccharides. Glydin' allows the user to search an epitope, see its structure, name and where it was referenced with links to the original sources. This tool thus provides a unified, structured resource of all the known epitopes in literature and is available online at http://glycoproteome.expasy.org/epitopes/. It can be valuable in the analysis of glycan array experiments, for example finding the relationship between different binding partners of a given lectin

    Applicability of T cell receptor repertoire sequencing analysis to unbalanced clinical samples – comparing the T cell receptor repertoire of GATA2 deficient patients and healthy controls

    Full text link
    T cell receptor repertoire sequencing (TCRseq) has become one of the major omic tools to study the immune system in health and disease. Multiple commercial solutions are currently available, greatly facilitating the implementation of this complex method into translational studies. However, the flexibility of these methods to react to suboptimal sample material is still limited. In a clinical research context, limited sample availability and/or unbalanced sample material can negatively impact the feasibility and quality of such analyses. We sequenced the T cell receptor repertoires of three healthy controls and four patients with GATA2 deficiency using a commercially available TCRseq kit and thereby (1) assessed the impact of suboptimal sample quality and (2) implemented a subsampling strategy to react to biased sample input quantity. Applying these strategies, we did not find significant differences in the global T cell receptor repertoire characteristics such as V and J gene usage, CDR3 junction length and repertoire diversity of GATA2-deficient patients compared with healthy control samples. Our results prove the adaptability of this TCRseq protocol to the analysis of unbalanced sample material and provide encouraging evidence for use of this method in future studies despite suboptimal patient samples

    Understanding the glycome: an interactive view of glycosylation from glycocompositions to glycoepitopes

    No full text
    Nowadays, due to the advance of experimental techniques in glycomics, large collections of glycan profiles are regularly published. The rapid growth of available glycan data accentuates the lack of innovative tools for visualizing and exploring large amount of information. Scientists resort to using general-purpose spreadsheet applications to create ad hoc data visualization. Thus, results end up being encoded in publication images and text, while valuable curated data is stored in files as supplementary information. To tackle this problem, we have built an interactive pipeline composed with three tools: Glynsight, EpitopeXtractor and Glydin'. Glycan profile data can be imported in Glynsight, which generates a custom interactive glycan profile. Several profiles can be compared and glycan composition is integrated with structural data stored in databases. Glycan structures of interest can then be sent to EpitopeXtractor to perform a glycoepitope extraction. EpitopeXtractor results can be superimposed on the Glydin' glycoepitope network. The network visualization allows fast detection of clusters of glycoepitopes and discovery of potential new targets. Each of these tools is standalone or can be used in conjunction with the others, depending on the data and the specific interest of the user. All the tools composing this pipeline are part of the Glycomics@ExPASy initiative and are available at https://www.expasy.org/glycomics
    corecore