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Abstract. A phylogeny is the evolutionary history of a group of organisms; systematists (and other
biologists) attempt to reconstruct this history from various forms of data about contemporary organisms.
Phylogeny reconstruction is a crucial step in the understanding of evolution as well as an important tool
in biological, pharmaceutical, and medical research. Phylogeny reconstruction from molecular data is
very difficult: almost all optimization models give rise to NP-hard (and thus computationally intractable)
problems. Yet approximations must be of very high quality in order to avoid outright biological nonsense.
Thus many biologists have been willing to run farms of processors for many months in order to analyze
just one dataset. High-performance algorithm engineering offers a battery of tools that can reduce,
sometimes spectacularly, the running time of existing phylogenetic algorithms, as well as help designers
produce better algorithms. We present an overview of algorithm engineering techniques, illustrating them
with an application to the “breakpoint analysis” method of Sankoff et al., which resulted in the GRAPPA
software suite. GRAPPA demonstrated a speedup in running time by over eight orders of magnitude over
the original implementation on a variety of real and simulated datasets. We show how these algorithmic
engineering techniques are directly applicable to a large variety of challenging combinatorial problems
in computational biology.

Keywords: high-performance computing, computational genomics, phylogeny reconstruction, break-
point analysis, genome rearrangement, sorting by reversals

1. Algorithm engineering

The term “algorithm engineering” was first used with specificity in 1997, with
the organization of the first Workshop on Algorithm Engineering (WAE 97). Since
then, this workshop has taken place every summer in Europe and a parallel one
started in the US in 1999, the Workshop on Algorithm Engineering and Exper-
iments (ALENEX99), which has taken place every winter, colocated with the
ACM/SIAM Symposium on Discrete Algorithms (SODA). Algorithm engineering
refers to the process required to transform a pencil-and-paper algorithm into a
robust, efficient, well tested, and easily usable implementation. Thus it encom-
passes a number of topics, from modelling cache behavior to principles of good
software engineering; its main focus, however, is experimentation. In that sense, it
may be viewed as a recent outgrowth of Experimental Algorithmics, which is specifi-
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Figure 1. Two phylogenies: some plants of the Campanulaceae family (left) and some Herpes viruses
affecting humans (right).

of biology and medicine (as well as linguistics). Scientists are of course interested
in phylogenies for the usual reasons of scientific curiosity. An understanding of
evolutionary mechanisms and relationships is at the heart of modern pharmaceu-
tical research for drug discovery, is helping researchers understand (and defend
against) rapidly mutating viruses such as HIV, is the basis for the design of genet-
ically enhanced organisms, etc. In developing such an understanding, the recon-
struction of phylogenies is a crucial tool, as it allows one to test new models of
evolution.

Bader et al. [4] give many examples of commercial uses of phylogeny reconstruc-
tion. They state that simple identification via phylogenetic classification of organ-
isms has, to date, yielded more patent filings than any other use of phylogeny in
industry. Other uses have included vaccine development for porcine populations
[18] and drawing population boundaries in the continuing study of HIV dynam-
ics [15]; antibacterial and herbicide development through the phylogenetic distribu-
tion of biochemical pathways (glyphosate, better known as Roundup™, Rodeo™,
and Pondmaster™, was the first herbicide specifically targeted at a pathway, because
that pathway is not present in mammals [17]); and prediction of ligands for groups
of receptors (especially the G protein coupled receptors or GPCRs), including
Neuromedin U, a potent neuropeptide that causes contraction of smooth mus-
cle [42], and a prediction of both the ligand and the pharmacology of a novel
GPCR for histamine [46].

3. Computational phylogenetics

Phylogenies have been reconstructed “by hand” for over a century by systematists,
using morphological characters and basic principles of genetic inheritance. With the
advent of molecular data, however, it has become necessary to develop algorithms
to reconstruct phylogenies from the large amount of data made available through



102 MORET ET AL.

DNA sequencing, amino-acid and protein characterization, gene-expression data,
and whole-genome descriptions. Until recently, most of the research focused on the
development of methods for phylogeny reconstruction from DNA sequences (which
can be regarded as strings on a 4-character alphabet), using a model of evolution
based mostly on nucleotide substitution. Because amino-acids, the building blocks of
life, are coded by substrings of four nucleotides known as codons, the same methods
were naturally extended to sequences of codons (which can be regarded as strings
on an alphabet of 20 characters—in spite of the 64 possible codes, only 20 amino-
acids are encoded, with many codes representing the same amino-acid). Proteins,
which are built from amino-acids, are the natural next level, but are proving difficult
to characterize in evolutionary terms.

Recently, another type of data has been made available through the characteri-
zation of entire genomes: gene content and gene order data. For some organisms,
such as human, mouse, fruit fly, and several plants and lower-order organisms, as
well as for a large collection of organelles (mitochondria, the animal cells” “energy
factories,” and chloroplasts, the plant cells’ “photosynthesis factories”), we have a
fairly complete description of the entire genome, gene by gene. Because plausi-
ble mechanisms of evolution include genome rearrangement, gene duplication, and
gene loss, and because evolution at this level (the “genome level”) is much slower
than evolution driven by mutations in the nucleotide base pairs (the “gene level”)
and so may enable us to recover deep evolutionary relationships, there has been
considerable interest in the phylogeny community in the development of algorithms
for reconstructing phylogenies based on gene-order or gene-content data. Appro-
priate tools for analyzing such data may help resolve some difficult phylogenetic
reconstruction problems; indeed, this new source of data has been embraced by
many biologists in their phylogenetic work [32, 33, 36].

There is no doubt that, as our understanding of evolution improves, new types
of data will be collected and will need to be analyzed in phylogeny reconstruc-
tion. Because the applications of phylogeny reconstruction are growing steadily and
because pharmaceutical companies find it cost-effective to run large computations
rather than hire more bench researchers, the use of high-performance comput-
ing will continue to increase. Research groups at pharmaceutical companies are
already running phylogenetic computations on small dedicated clusters for well over
a year [37]. Computational phylogenetics thus pose a special challenge to algorithm
engineering [30], especially in the area of high-performance computing [25].

4. Optimization criteria

To date, almost every model of evolution proposed for modelling phylogenies gives
rise to NP-hard optimization problems. Three main lines of work have evolved:
more or less ad hoc heuristics (a natural consequence of the NP-hardness of the
problems) that run quickly, but offer limited or no quality guarantees and may not
even have a well defined optimization criterion, such as the popular neighbor-joining
heuristic [38]; optimization problems based on a parsimony criterion, which seeks
the phylogeny with the least total amount of change needed to explain modern data
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(a modern version of Occam’s razor); and optimization problems based on a max-
imum likelihood criterion, which seeks the phylogeny that is the most likely (under
some suitable statistical model) to have given rise to the modern data. Ad hoc
heuristics are fast and often rival the optimization methods in terms of accuracy;
parsimony-based methods may take exponential time, but, at least for DNA data,
can often be run to completion on datasets of moderate size; while methods based
on maximum-likelihood are very slow (the point estimation problem alone appears
intractable) and so restricted to very small instances, but appear capable of outper-
forming the others in terms of the quality of solutions. In the case of gene-order
data, however, only parsimony criteria have been proposed so far: we do not yet
have detailed enough models (or ways to estimate their parameters) for using a
maximum-likelihood approach.

A difficult question is how to estimate the actual (as opposed to the minimal or
edit) evolutionary distance: when a large number of evolutionary events have taken
place on a single tree edge, the resulting string or genome may be identical to one
obtained from the same parent through a much shorter sequence of events. Recov-
ering the edit distance is a well defined computational objective (although doing
so may require developing new theories and algorithms [5]), but recovering the
true evolutionary distance requires specific evolutionary models (and thus may lack
robustness) and can only be done on a statistical basis—usually by computing, then
correcting the edit distance. Yet many studies have shown that the use of corrected
distances yields significant improvements over the use of edit distances, in terms of
both accuracy and speed. In particular, speed improves because corrected distances
alter the optimization landscape by sharpening differences and thus improve the
efficiency of bounding techniques. Figuring how to obtain a robust estimate of the
true evolutionary distance from the edit distance remains an active area of research
with gene-order data [29, 43, 44].

5. Our running example: Breakpoint phylogeny

Some organisms have a single chromosome or contain single-chromosome
organelles (mitochondria or chloroplasts), the evolution of which is mostly inde-
pendent of the evolution of the nuclear genome. Given a particular strand from a
single chromosome (whether linear or circular), we can infer the ordering of the
genes along with the directionality of the genes, thus representing each chromo-
some by an ordering of oriented genes. The evolutionary process that operates on
the chromosome may include inversions and transpositions, which change the order
in which genes occur in the genome as well as their orientation. Other events,
such as insertions, deletions, or duplications, change the number of times and the
positions in which a gene occurs.

A natural optimization problem for phylogeny reconstruction from this type of
data is to reconstruct the most parsimonious tree, i.c., the evolutionary tree with
the minimum number of permitted evolutionary events. For any choice of permitted
events, such a problem is computationally very intensive (known or conjectured to
be NP-hard); worse, to date, no automated tools exist for solving such problems.
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Another approach is first to estimate leaf-to-leaf distances (based upon some met-
ric) between all genomes and then to use a standard distance-based heuristic such
as neighbor-joining [38] to construct the tree. Such approaches are quite fast and
may prove valuable in reconstructing the underlying tree, but cannot recover the
ancestral gene orders.

Blanchette et al. [7] developed an approach, which they called breakpoint phy-
logeny, for the special case in which the genomes all have the same set of genes, and
each gene appears once. This special case is of interest to biologists, who hypoth-
esize that gene-order rearrangements (which can only affect gene order, but not
gene content) are the main evolutionary mechanism for a range of genomes or
chromosomes (chloroplast, mitochondria, human X chromosome, etc.). Simulation
studies we conducted suggested that this approach works well for certain datasets
(i.e., it obtains trees that are close to the model tree), but that the implementation
developed by Sankoff and Blanchette, the BPAnalysis software [40], is too slow to
be used on anything other than small datasets with a few genes [11, 12].

6. Breakpoint analysis: Details

When each genome has the same set of genes and each gene appears exactly once,
a genome can be described by an ordering (circular or linear) of these genes, each
gene given with an orientation that is either positive (g;) or negative (—g;). Given
two genomes G and G’ on the same set of genes, a breakpoint in G is defined as
an ordered pair of genes, (g;, §;), such that g; and g; appear consecutively in that
order in G, but neither (g;, g;) nor (—g;, —g;) appears consecutively in that order
in G’. The breakpoint distance between two genomes is the number of breakpoints
between that pair of genomes. The breakpoint score of a tree in which each node is
labelled by a signed ordering of genes is then the sum of the breakpoint distances
along the edges of the tree.

Given three genomes, we define their median to be a fourth genome that min-
imizes the sum of the breakpoint distances between it and the other three. The
Median Problem for Breakpoints (MPB) is to construct such a median and is NP-hard
[34]. Sankoff and Blanchette developed a reduction from MPB to the Travelling
Salesman Problem (TSP), perhaps the most studied of all optimization problems
[19]. Their reduction produces an undirected instance of the TSP from the instance
of MPB by the standard technique of representing each gene by a pair of cities con-
nected by an edge that must be included in any solution. Figure 2 illustrates the
reduction.

BPAnalysis (see Figure 3) is the method developed by Blanchette and Sankoff
to solve the breakpoint phylogeny. Within a framework that enumerates all trees,
it uses an iterative heuristic to label the internal nodes with signed gene orders.
This procedure is computationally very intensive. The outer loop enumerates all
(2n — 5)!! leaf-labelled trees on n leaves, an exponentially large value (the double
factorial is a factorial with a step of 2, so we have (2n—5)!!=(2n-5)-2n—-17)-
-« - 3). The inner loop runs an unknown number of iterations (until convergence),
with each iteration solving an instance of the TSP (with a number of cities equal to
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Figure 2. The reduction from MPB to TSP proposed by Sankoff and Blanchette. From left to right: the
three permutations, the resulting TSP instance, and an optimal solution with its resulting permutation.
The adjacency AB becomes an edge between A and —B; the cost of that edge is the number of genomes
that do not include the adjacency AB.

twice the number of genes) at each internal node. The computational complexity of
the entire algorithm is thus exponential in each of the number of genomes and the
number of genes, with significant coefficients. The procedure nevertheless remains
a heuristic: even though all trees are examined and each MPB problem solved
exactly, the tree-labeling phase does not ensure optimality unless the tree has only
three leaves.

7. Re-engineering BPAnalysis for speed
7.1.  Profiling

Algorithmic engineering suggests a refinement cycle in which the behavior of the
current implementation is studied in order to identify problem areas which can
include excessive resource consumption or poor results. We used extensive pro-
filing and testing throughout our development cycle, which allowed us to identify
and eliminate a number of such problems. For instance, converting the MPB into
a TSP instance dominates the running time whenever the TSP instances are not
too hard to solve. Thus we lavished much attention on that routine, down to the
level of hand-unrolling loops to avoid modulo computations and allowing reuse of
intermediate expressions; we cut the running time of that routine down by a fac-
tor of at least six—and thereby nearly tripled the speed of the overall code. We

For each tree in turn do
Initially label all internal nodes with gene orders
Repeat
For each internal node v, with neighbors A, B, and C, do
Solve the MPB on A, B, C to yield label m
If relabelling v with m improves the score of T, then do it
until no internal node can be relabelled
Return the tree of lowest score

Figure 3. Sankoff and Blanchette’s high-level algorithm for breakpoint analysis.
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lavished equal attention on distance computations and on the computation of the
lower bound, with similar results. Constant profiling is the key to such an approach,
because the identity of the principal “culprits” in time consumption changes after
each improvement, so that attention must shift to different parts of the code during
the process—including revisiting already improved code for further improvements.
These steps provided a speed-up by over one order of magnitude on the Campan-
ulaceae dataset.

7.2.  Cache awareness

The original BPAnalysis is written in C++ and uses a space-intensive full distance
matrix, as well as many other data structures. It has a significant memory foot-
print (over 60MB when running on the Campanulaceae dataset) and poor locality
(a working set size of about 12MB). Our implementation has a tiny memory foot-
print (1.8MB on the Campanulaceae dataset) and good locality (all of our storage
is in arrays preallocated in the main routine and retained and reused through-
out the computation), which enables it to run almost completely in cache (the
working set size is 600KB). Cache locality can be improved by returning to a
FORTRAN:-style of programming, in which storage is static, in which records (struc-
tures/classes) are avoided in favor of separate arrays, in which simple iterative loops
that traverse an array linearly are preferred over pointer dereferencing, in which
code is replicated to process each array separately, etc. While we cannot measure
exactly how much we gain from this approach, studies of cache-aware algorithms
[1, 13, 21-23, 45] indicate that the gain is likely to be substantial—factors of any-
where from 2 to 40 have been reported. New memory hierarchies show differences
in speed between cache and main memory that reach two orders of magnitude (even
On Uniprocessors).

7.3.  Low-level algorithmic changes

Unless the original implementation is poor (which was not the case with BPAnal-
ysis), profiling and cache-aware programming will rarely provide more than two
orders of magnitude in speed-up. Further gains can often be obtained by low-level
improvement in the algorithmic details. In our phylogenetic software, we made two
such improvements.

The basic algorithm scores every single tree, which is clearly very wasteful; we
used a simple lower bound, computable in linear time, to enable us to eliminate
a tree without scoring it. On the Campanulaceae dataset, this bounding elimi-
nates over 95% of the trees without scoring them, resulting in a five-fold speed-up.
Subsequence refinement of the bound, at the expense of additional computation,
increased the pruning rate to over 99.9% for this dataset, for an additional 50-fold
speed-up.

The TSP solver we wrote is at heart the same basic include/exclude search as in
BPAnalysis, but we took advantage of the nature of the instances created by the



HIGH-PERFORMANCE ALGORITHM ENGINEERING 107

reduction to make the solver much more efficient, resulting in a speed-up by a fac-
tor of 5-10. The principal change is to take advantage of the bounded nature of
certain quantities—a general principle of fundamental importance in algorithmic
engineering. For instance, the only two edge costs that the TSP solver has to con-
sider are 1 and 2: every edge of cost 0 always belongs to any optimal solution, while
edges of cost 3 can be treated as an undifferentiated pool of “completion” edges.

These improvements all spring from a careful examination of exactly what infor-
mation is readily available or easily computable at each stage and from a deliberate
effort to make use of all such information.

8. A high-performance implementation

Our resulting implementation, Genome Rearrangement Analysis through Parsi-
mony and other Phylogenetic Algorithms (GRAPPA), incorporates all of the refine-
ments mentioned above, plus others specifically made to enable the code to run
efficiently in parallel (see [31] for details). Because the basic algorithm enumerates
and (almost) independently scores every tree, it presents obvious (“embarrassing”)
parallelism: we can have each processor handle a subset of the trees, with com-
munication limited to an (optional) broadcast of improved upper bounds. In order
to do so efficiently, we need to impose a linear ordering on the set of all possible
trees and devise a generator that can start at an arbitrary point along this order-
ing. Because the number of trees is so large, an arbitrary tree index would require
unbounded-precision integers, considerably slowing down tree generation. Our solu-
tion was to design a tree generator that starts with tree index k and generates trees
with indices {k + cn | n € N}, where k and ¢ are positive integers, all without using
unbounded-precision arithmetic. Such a generator allows us to sample tree space
(a very useful feature in research) and, more importantly, allows us to use a cluster
of ¢ processors, where processor i, 0 < i < ¢ — 1, generates and scores trees with
indices {i 4+ cn | n € /'}. Each tree is generated in constant time from its predeces-
sor, a crucial aspect of the code, since every single tree must be generated, even if
it is then immediately eliminated through bounding.

We ran GRAPPA on the 512-processor Alliance cluster Los Lobos at the Uni-
versity of New Mexico and obtained a 512-fold speed-up. When combined with
the 2000-fold speedup obtained through algorithm engineering, our run on the
Campanulaceae dataset demonstrated a million-fold speed-up over the original
implementation [2]. Additional improvements in bounding have resulted in an
additional 100-fold speed-up for the serial code, so that our parallel implementa-
tion run on Los Lobos now runs over one hundred million times faster than the
original program. Because of the infrequent interprocessor communication in this
application, the same performance will be observed on an inexpensive Beowulf
cluster.

In addition, we made sure that gains held across a wide variety of platforms and
compilers: we tested our code under Linux, FreeBSD, Solaris, and Windows, using
compilers from GNU, the Portland group, Intel (beta release), Microsoft, and Sun,
and running the resulting code on Pentium- and Sparc-based machines. While the
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gcc compiler produced marginally faster code than the others, the performance we
measured was completely consistent from one platform to the other.

We did not use parallelism to speed up the search for MPB solutions, mostly
because our TSP solver runs fast enough in most realistic cases. However, a shared-
memory implementation of the TSP solver could take advantage of SMP nodes on
a hybrid architecture (cluster of SMPs) and thus provide additional speedup.

9. Impact in computational biology

Computational biology presents numerous complex optimization problems, such as
multiple sequence alignment, phylogeny reconstruction, characterization of gene
expression, structure prediction, etc. In addition, the very large databases used in
computational biology give rise to serious algorithmic engineering problems when
designing query algorithms on these databases. While several programs in use in the
arca (such as BLAST) have already been engineered for performance, most such
efforts have been more or less ad hoc. The emergence of a discipline of algorithm
engineering [28] is bringing us a collection of tools and practices that can be applied
to almost any existing algorithm or software package to speed up its execution, often
by very significant factors. While we illustrated the approach and its potential results
with a specific program in phylogeny reconstruction based on gene order data, we
are now in the process of applying the same to a collection of fundamental methods
(such as branch-and-bound parsimony or maximum-likelihood estimation) as well
as new algorithms.

Of course, even large speed-ups have only limited benefits in theoretical terms
when applied to NP-hard optimization problems: even our one-hundred-million-fold
speed-up with GRAPPA only enables us to move from 9-10 taxa to 14-15 taxa. Yet
the very process of algorithm engineering often uncovers salient characteristics of
the algorithm that were overlooked in a less careful analysis and may thus enable
us to develop much better algorithms. In our case, while we were implementing
the rather complex algorithm of Berman and Hannenhalli for computing the inver-
sion distance between two signed permutations, an algorithm that had not been
implemented before, we came to realize that the algorithm could be simplified as
well as accelerated, deriving in the process the first true linear-time algorithm for
computing these distances [5]. We would not have been tempted to implement this
algorithm in the context of the original program, which was already much too slow
when using the simpler breakpoint distance. Thus faster experimental tools, even
when they prove incapable of scaling to “industrial-size,” nevertheless provide cru-
cial opportunities for exploring and understanding the problem and its solutions.

Thus we see two potential major impacts in computational biology. First, the
much faster implementations, when mature enough, can alter the practice of
research in biology and medicine. For instance pharmaceutical companies spend
large budgets on computing equipment and research personnel to reconstruct phy-
logenies as a vital tool in drug discovery, yet may still have to wait a year or more
for the results of certain computations; reducing the running time of such anal-
yses from 2-3 years down to a day or less would make an enormous difference
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in the pace, and thus cost of drug discovery and development. Secondly, biol-
ogists in research laboratories around the world use software for data analysis,
much of it rife with undocumented heuristics for speeding up the code at the
expense of optimality, yet still slow for their purposes. Software that runs 3 to 4
orders of magnitude faster and still returns optimal solutions (or approximations
with known guarantees) would enable these researchers to test simple scenarios,
compare models, develop intuition on small instances, and perhaps form serious
conjectures about biological mechanisms.
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