research

Reconstructing phylogeny from RNA secondary structure via simulated evolution

Abstract

DNA sequences of genes encoding functional RNA molecules (e.g., ribosomal RNAs) are commonly used in phylogenetics (i.e. to infer evolutionary history). Trees derived from ribosomal RNA (rRNA) sequences, however, are inconsistent with other molecular data in investigations of deep branches in the tree of life. Since much of te functional constraints on the gene products (i.e. RNA molecules) relate to three-dimensional structure, rather than their actual sequences, accumulated mutations in the gene sequences may obscure phylogenetic signal over very large evolutionary time-scales. Variation in structure, however, may be suitable for phylogenetic inference even under extreme sequence divergence. To evaluate qualitatively the manner in which structural evolution relates to sequence change, we simulated the evolution of RNA sequences under various constraints on structural change

    Similar works

    Full text

    thumbnail-image

    Available Versions