557 research outputs found

    Gene Regulatory Network Evolution Through Augmenting Topologies

    Get PDF
    International audienceArtificial gene regulatory networks (GRNs) are biologically inspired dynamical systems used to control various kinds of agents, from the cells in developmental models to embodied robot swarms. Most recent work uses a genetic algorithm (GA) or an evolution strategy in order to optimize the network for a specific task. However, the empirical performances of these algorithms are unsatisfactory. This paper presents an algorithm that primarily exploits a network distance metric, which allows genetic similarity to be used for speciation and variation of GRNs. This algorithm, inspired by the successful neuroevolution of augmenting topologies algorithm's use in evolving neural networks and compositional pattern-producing networks, is based on a specific initialization method, a crossover operator based on gene alignment, and speciation based upon GRN structures. We demonstrate the effectiveness of this new algorithm by comparing our approach both to a standard GA and to evolutionary programming on four different experiments from three distinct problem domains, where the proposed algorithm excels on all experiments

    Neuroevolution: from architectures to learning

    Get PDF
    Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm have to be addressed. Evolutionary search methods can provide an automatic solution to these problems. New insights in both neuroscience and evolutionary biology have led to the development of increasingly powerful neuroevolution techniques over the last decade. This paper gives an overview of the most prominent methods for evolving ANNs with a special focus on recent advances in the synthesis of learning architecture

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    The Emergence of Canalization and Evolvability in an Open-Ended, Interactive Evolutionary System

    Full text link
    Natural evolution has produced a tremendous diversity of functional organisms. Many believe an essential component of this process was the evolution of evolvability, whereby evolution speeds up its ability to innovate by generating a more adaptive pool of offspring. One hypothesized mechanism for evolvability is developmental canalization, wherein certain dimensions of variation become more likely to be traversed and others are prevented from being explored (e.g. offspring tend to have similarly sized legs, and mutations affect the length of both legs, not each leg individually). While ubiquitous in nature, canalization almost never evolves in computational simulations of evolution. Not only does that deprive us of in silico models in which to study the evolution of evolvability, but it also raises the question of which conditions give rise to this form of evolvability. Answering this question would shed light on why such evolvability emerged naturally and could accelerate engineering efforts to harness evolution to solve important engineering challenges. In this paper we reveal a unique system in which canalization did emerge in computational evolution. We document that genomes entrench certain dimensions of variation that were frequently explored during their evolutionary history. The genetic representation of these organisms also evolved to be highly modular and hierarchical, and we show that these organizational properties correlate with increased fitness. Interestingly, the type of computational evolutionary experiment that produced this evolvability was very different from traditional digital evolution in that there was no objective, suggesting that open-ended, divergent evolutionary processes may be necessary for the evolution of evolvability.Comment: SI can be found at: http://www.evolvingai.org/files/SI_0.zi

    Neuroevolution and complexifying genetic architectures for memory and control tasks

    Get PDF
    The way genes are interpreted biases an artificial evolutionary system towards some phenotypes. When evolving artificial neural networks, methods using direct encoding have genes representing neurons and synapses, while methods employing artificial ontogeny interpret genomes as recipes for the construction of phenotypes. Here, a neuroevolution system (neuroevolution with ontogeny or NEON) is presented that can emulate a well-known neuroevolution method using direct encoding (neuroevolution of augmenting topologies or NEAT), and therefore, can solve the same kinds of tasks. Performance on challenging control and memory benchmark tasks is reported. However, the encoding used by NEON is indirect, and it is shown how characteristics of artificial ontogeny can be introduced incrementally in different phases of evolutionary search
    • 

    corecore