
Gene Regulatory Network Evolution Through

Augmenting Topologies

Sylvain Cussat-Blanc, Kyle Harrington, Jordan Pollack

To cite this version:

Sylvain Cussat-Blanc, Kyle Harrington, Jordan Pollack. Gene Regulatory Network Evo-
lution Through Augmenting Topologies. IEEE Transactions on Evolutionary Computa-
tion, Institute of Electrical and Electronics Engineers, 2015, 19 (n 6), pp.PP. 823-837.
<10.1109/TEVC.2015.2396199>. <hal-01332272>

HAL Id: hal-01332272

https://hal.archives-ouvertes.fr/hal-01332272

Submitted on 15 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01332272

To link to this article : DOI:10.1109/TEVC.2015.2396199
Official URL: http://dx.doi.org/10.1109/TEVC.2015.2396199

To cite this version : Cussat-Blanc, Sylvain and Harrington, Kyle and
Pollack, Jordan Gene Regulatory Network Evolution Through Augmenting
Topologies. (2015) IEEE Transaction on Evolutionary Computation, 19
(n° 6). PP. 823-837. ISSN 1089-778X

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15414

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Gene Regulatory Network Evolution Through

Augmenting Topologies
Sylvain Cussat-Blanc, Kyle Harrington, and Jordan Pollack

Abstract—Artificial gene regulatory networks (GRNs) are bio-
logically inspired dynamical systems used to control various kinds
of agents, from the cells in developmental models to embodied
robot swarms. Most recent work uses a genetic algorithm (GA)
or an evolution strategy in order to optimize the network for
a specific task. However, the empirical performances of these
algorithms are unsatisfactory. This paper presents an algorithm
that primarily exploits a network distance metric, which allows
genetic similarity to be used for speciation and variation of
GRNs. This algorithm, inspired by the successful neuroevolution
of augmenting topologies algorithm’s use in evolving neural net-
works and compositional pattern-producing networks, is based
on a specific initialization method, a crossover operator based
on gene alignment, and speciation based upon GRN structures.
We demonstrate the effectiveness of this new algorithm by com-
paring our approach both to a standard GA and to evolutionary
programming on four different experiments from three distinct
problem domains, where the proposed algorithm excels on all
experiments.

Index Terms—Evolution, gene regulatory networks (GRNs),
genetic algorithm (GA), speciation.

I. INTRODUCTION

A
RTIFICIAL gene regulatory networks (GRNs) are a class

of biologically inspired algorithms. In living systems,

GRNs are used within the cell to control DNA transcrip-

tion and, correspondingly, the phenotypic gene expression.

Although the inner workings of the cell are governed by a

large collection of complex machines, simplified models of

cells as entities with protein sensors and actuators both exhibit

complex behavior and offer insights into natural systems [1].

These protein sensors represent receptor molecules localized

to the cellular membrane, which transduce external activity

into excitatory and/or inhibitory regulatory signals. Cells use

external signals collected from protein sensors localized on the

membrane to activate or inhibit the transcription of the genes.

A schematic of the artificial GRN model of gene regulation is

shown in Fig. 1.

Computational models of GRNs were first introduced in

1960s [2] as random Boolean networks. Early studies of

Manuscript received October 14, 2013; revised May 23, 2014 and
November 12, 2014; accepted January 2, 2015. Date of publication January 23,
2015; date of current version November 25, 2015. This work was supported
by the National Science Foundation under Grant 0757452.

S. Cussat-Blanc is with University of Toulouse, Toulouse 31042, France
(e-mail: sylvain.cussat-blanc@ut-capitole.fr).

K. Harrington and J. Pollack are with DEMO Laboratory, Department of
Computer Science, Brandeis University, Waltham, MA 02454 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2015.2396199

Fig. 1. Functioning of a GRN.

GRNs were focused on understanding the complexity and

behavior of random networks. Since the late 1990s, there

has been a resurgence of interest in GRNs as the applica-

tion of evolutionary algorithms has revealed their power as

a problem-solving tool. Now, GRNs are becoming ubiquitous

models in artificial life and robotics. GRNs are the basis of

a number of developmental models [3]–[5], as controllers of

virtual and real robots [6]–[10], and neuromodulators of learn-

ing behavior [11], [12]. Other related methods of encoding

reaction networks are commonly applied to similar problem

domains [13]–[15].

Most current research on the evolution of arti-

ficial GRNs [16]–[19] employ a standard genetic

algorithm (GA) [20]–[22] or mutation-based evolution

to discover and optimize networks. The evolutionary algo-

rithm is often inefficient and many generations are necessary

to converge to a near optimal solution. Other evolutionary

algorithms have also been used to evolve GRNs such as

CMA-ES [7], [9], but they experience similar issues. In

this paper, we propose an algorithm for the evolution of

GRNs that is loosely based upon the successful neuroevo-

lution of augmenting topologies (NEATs) algorithm [23].

Specifically, we initialize with a bias for smaller genotypes,

incorporate a speciation mechanism for the maintenance of

diversity, and introduce a gene alignment-based crossover

operator. In this paper, we present the GRN evolution by

augmenting topology (GRNEAT) algorithm for the evolution

of GRNs.

This paper is organized as follows. First, we present a

discussion of the state-of-the-art in GRNs and our GRN imple-

mentation. Then, Section III introduces our adaptation of

the NEAT algorithm to specifically evolve GRNs. It subse-

quently presents the initialization process of the algorithm, the

subdivision of the population into species, and the aligning

crossover. Section IV introduces four experiments to com-

pare this approach to both a standard GA and evolutionary

programming [(EP) evolution with mutation only] [24]. We

demonstrate that this method excels on three distinct problem

domains: 1) signal processing; 2) classification; and 3) robot

navigation. We conclude with a discussion of extensions of

the evolution by augmenting topology algorithm to alternative

genetic representations and considerations for future work.

II. GRN MODELS

Research on the evolution of bio-inspired artificial regu-

lation network models began to appear in the late 1990s.

In 1999, Reil [25] was one of the first to present a biolog-

ically plausible model. He defined his GRN as a vector of

numbers. The vector length is not defined in advance. Each

gene starts with the particular sequence 0101, which repre-

sents a “promoter.” This kind of structure is present in living

systems in which the TATA1 box plays the part of a promoter

in real DNA [26]. Reil uses a graph visualization to observe

gene activation and inhibition over time with randomly gen-

erated networks. Several classes of patterns can be generated,

such as gene activation cascades, chaotic dynamics, and the

settling into point or cyclic attractors. Reil also points out that

after random genome mutations, the system can recover to the

same pattern after a period of oscillation.

In 2003, Banzhaf [27] formulated an artificial regulation

network model heavily inspired by real gene regulation. In

his work, the genome is composed of multiple 32-bit integers

encoded as bit strings. Each gene in the genome starts with

a promoter coded by the sequence “XYZ01010101” where

XYZ is any bit sequence. The combination “01010101” occurs

with a 2−8 probability, that is to say about 0.39%. The gene

coded after the 32-bit promoter has a fixed size of five inte-

gers (160 bits). The first two integers code for two regulatory

kinetic components of protein production, activation, and inhi-

bition. In this model, all aspects of DNA transcription (for

example, mRNA production) are ignored in favor of focusing

on the mechanism of gene regulation. This model can produce

a wide distribution of protein dynamics over time.

From these seminal models, many researchers have devel-

oped their own artificial regulation networks for spe-

cific problems. In a particularly comprehensive example,

Bongard and Pfeifer [28] used a model close to Reil’s model to

develop a modular robot. This robot has a neural network that

controls each module (rotations, elongation, etc.). The genetic

expression of the GRN allows the activation or the inhibition

of 23 predefined phenotypic transformations such as module

size growth, split a module in two, parameter modifications,

neural network topology, etc.

The French flag problem is also a common benchmark for

this kind of regulatory network. Introduced by Wolpert [29]

at the end of the 1960s, this problem consists of developing a

French flag with its three colors (blue, white, and red) starting

from a single cell in the center. Lindenmayer [30] uses the

problem to show the capacities of his L-systems to generate

user-defined shapes. Miller [31] also solves it with Cartesian

1T = Thymine and A = Adenine.

genetic programming (GP), adding at the same time the prop-

erty of self-repair in his system. Bowers [32] finally used

this problem to test his embryonic developmental model. The

French flag problem is also a common benchmark for evo-devo

models based on GRNs [3], [17], [33].

GRNs are now used to control multiple kinds of agents.

They are used to control the cells of developmental

models [3]–[5] or virtual agents [6]–[8], [10]. Two kinds of

encoding exist in these works: GRN can be encoded with a

bitstring as presented previously in Banzhaf’s model [27] or

with a more abstract model based on a network of proteins.

However, a standard GA is often used to evolve this encod-

ing, regardless to its structure. In this paper, we argue that a

GA specially designed to optimize GRNs will both reduce the

computational effort and improve the quality of the solution,

by increasing evolvability. Although a number of researchers

have differing definitions of evolvability, we use Kirschner and

Gerhart’s definition [34], where evolvability means the capac-

ity to generate heritable phenotypic properties by reducing the

potential lethality of variations, and/or reducing the number of

reproductive events required to reach a novel trait. Our under-

lying hypothesis is that the proposed algorithm can improve

evolution and evolvability of GRNs similarly to how the NEAT

algorithm improves neural network evolution.

A. Our Model

Our GRN model describes an interaction network of

abstract proteins. We have based our regulatory network

on Cussat-Blanc et al.’s [5] version of Banzhaf’s GRN

model [27]. The Banzhaf model [27] extends GA-based matrix

methods in [35] by introducing transcriptional regulation. In

the GA-based matrix method, a matrix of production rates

encode the kinetic contributions of each protein to each other

protein. While this representation of a GRN is quite powerful,

it does not account for the evolvability of the representation

underlying transcriptional regulation. Transcriptional regula-

tion provides an indirect mechanism for the enhancement and

inhibition of the kinetic contributions of our abstracted pro-

teins. In the Banzhaf model [27],the kinetics of transcriptional

regulation is rate-controlled by the differential of two binary

strings. The Cussat-Blanc model reduces this transcriptional

interaction to a purely numerical interaction, which simplifies

the evolution by eliminating complications from noncoding

data and improves the model computational performances.

We show that when our GRN model, an evolvable repre-

sentation of the interactions of abstract proteins, is encoded

into a problem domain it can be evolutionarily optimized to

discover problem solutions. We first describe how our GRN

interfaces with arbitrary problem domains before detailing the

GRN model itself.

We consider problems where a desirable solution maps a set

of inputs, I, onto a set of outputs, O. While I and O are not

confined to particular domains and ranges, in this discussion,

we assume both sets only contain elements in Q+
[0,1]. However,

there must be a surjective input mapping

i ∈ I, ∃ f : f (i) = Q+
[0,1] (1)

where I is the domain of dependence and f is a function that

maps values from the domain of dependence onto the rationals

from 0 to 1, Q+
[0,1]. There must also be a surjective output

mapping

o ∈ O, ∃g : g
(

Q+
[0,1]

)

= o (2)

where O is the domain of effect and g is a function that maps

values from the natural numbers onto the domain of effect. The

choice of the range [0, 1] is a matter of mathematical conve-

nience, and the constraint to the positive values is a matter of

physical plausibility. A task/problem is presented to a GRN

by the mapping of input values onto protein concentrations

[here, expressed with the function f (i)]. Similarly, solutions

are retrieved by mapping protein concentrations onto output

values. Using this approach, Nicolau et al. [7] applied an evo-

lution strategy to evolve a GRN for control of a pole-balancing

cart. Though Nicolau’s experiment behaved consistently, the

evolvability of the GRN has been a limitation.

We adapt the encoding of the regulatory network and its

dynamics. In our model, a GRN is defined as a set of proteins.

Each protein has the following properties.

1) The protein tag is encoded as an integer between 0 and p.

The upper bound, p, of the domain can be tuned to

control the precision of the GRN.

2) The enhancer tag coded as an integer between 0 and p.

The enhancer tag is used to calculate the enhancing

matching factor between two proteins.

3) The inhibitor tag coded as an integer between 0 and p.

The inhibitor tag is used to calculate the inhibiting

matching factor between two proteins.

4) The type determines if the protein is an input protein,

the concentration of which is given by the environment

of the GRN and which regulates other proteins but is not

regulated, an output protein, the concentration of which

is used as output of the network and which is regulated

but does not regulate other proteins, or a regulatory pro-

tein, an internal protein that regulates and is regulated

by other proteins.

The dynamics of the GRN are computed by using protein

tag affinity to determine kinetic rates. These rates control the

productivity of the pairwise interactions between the abstracted

proteins. The affinity of a protein, a, for another protein, b,

is given by the enhancing factor, u+
ab, and the inhibiting

factor, u−
ab,

u+
ab = p −

∣

∣t+a − t∗b

∣

∣; u−
ab = p −

∣

∣t−a − t∗b

∣

∣ (3)

where t∗x is the protein tag, t+x is the enhancer tag, and t−x is

the inhibiting tag of protein x.

The GRNs kinetics are computed as a pairwise comparison

of the enhancing and the inhibiting matching factors of all pro-

teins and the source protein’s concentration. For each protein i

in the network, both the total enhancement and inhibition are

given by

gi =
1

N

N
∑

j=1

cje
βu+

ij −u+
max; hi =

1

N

N
∑

j=1

cje
βu−

ij −u−
max (4)

where gi is the total enhancing factor for a protein i, hi

is the total inhibiting factor for protein i, N is the num-

ber of protein species in the network, cj is the concentration

of protein j, u+
max is the overall maximum enhancing factor,

u−
max is the overall maximum inhibiting factor, and β is a con-

trol parameter which we will shortly describe in greater detail.

The change in concentration of protein i is given by

dci

dt
=

δ(gi − hi)

8
(5)

where 8 is a normalization factor to ensure the sum total

of all output and regulatory protein concentrations is unity.

β and δ are two constants that influence the reaction rates of

the regulatory network. β affects the affinity distances between

the proteins: the higher β, the more the proteins can affect

each other. δ affects the level of production of the protein in

the differential equation. The lower δ, the more slowly a gene

responds to regulation. Higher values cause the proteins to

respond more rapidly to regulation.

III. EVOLVING GRNS BY AUGMENTING TOPOLOGY

The focus of this paper is an algorithm that facilitates

the evolution of GRNs. Given the many parallels between

the current state of GRN research and the first neural net-

works renaissance, we draw inspiration from one of the most

successful applications of evolutionary computation to neural

networks, the NEAT algorithm [23]. A key contribution of

the NEAT algorithm is its solution to the problem of genetic

crossover for neural networks. The integrative nature of neu-

ral networks can cause small changes in weights and structure

to have a significant influence on overall network behavior.

For this reason, the splicing of two arbitrarily chosen neural

networks will generally not produce a network with behavior

similar to either of the two choices. Given this phenomena,

early algorithms for neuroevolution [36] focused on evolving

networks via mutation instead of recombination. In this paper,

we focus on three key elements of the NEAT algorithm.

1) The initialization of the algorithm—as opposed to ini-

tializing with individuals randomly sampled from the

complete distribution, only small networks are used

in the initial population so as to allow for a more

progressive complexification.

2) The speciation protects newly appeared solutions by

giving them some time to optimize their structures

before competing with the whole population.

3) The alignment crossover with the use of a historical

marker to protect ancestral genes during a crossover

operation between two genomes.

In this paper, we apply these elements to the evolution of

GRNs. Of course, they must be adapted to the evolution of

the GRN structure. The adaptations of each of these elements

are described in the next subsections.

A. Initialization of the Evolution

Instead of initializing the population with GRNs of random

sizes and protein structures, the population is inoculated with

small GRNs. According to our GRN model, the population

is initialized as follows. The genome first contains one input

protein per sensor in the problem and one output protein per

actuator in the problem. When created, the input proteins are

linked to a given sensor and the output proteins are linked

to a given actuator. The parameters (protein tag, enhancing

tag, and inhibiting tag) of these proteins are randomly gener-

ated. One random regulatory protein is added to the network

in order to create the minimal structure required by the GRN.

In order to create viable species, each genome is duplicated

two times the minimum species size. The duplication is made

by mutating one protein of the first genome. This insures both

similarity between GRNs in the initial species, and minimal

initial genome sizes. Moreover, maintaining a minimal species

size is crucial for reproduction via crossover: always crossing

the same genomes might be counter-productive in terms of

diversity because the offspring generated by such crossovers

will have very similar genetic material. Therefore, we think it

is important to have species with enough individuals to pro-

duce diverse offspring. Having too small species could lead to

premature extinction.

B. Speciation

While speciation is subject to ongoing research in evolu-

tionary biology [37], [38], here, we use the term to mean

clusters of similar genotypes in a GA. Even this topic has been

explored to a great degree under a number of names, in partic-

ular niching [39], [40]. We draw upon Stanley’s observation

that speciation can be an effective mechanism for maintaining

diversity within populations of graph-based individuals [23].

In the NEAT algorithm, speciation is made possible by the

use of historical marker annotations for each gene. The his-

torical marker is used to track the divergence of genes,

and also to calculate the distance between genomes. Genetic

distance is used to cluster individuals into species. While

historical markers were an essential component in allowing

the meaningful speciation of evolving neural networks, the

tags which determine the affinity between genes offer a nat-

ural measure of genetic distance. Moreover, this measure has

the advantage of directly working on the network structure

instead of the network nodes’ lineage (edges are not directly

subject to evolution in a GRN since they are not encoded

in the genome), which might improve alignment during

crossing over.

1) Genetic Distance: The distance between two GRNs is

calculated as an accumulation of distances between proteins

in both networks. The distance between two proteins A and B

is given by

Dprot(A, B) =
a
∣

∣t∗A − idB

∣

∣ + b
∣

∣t+A − t+B

∣

∣ + c
∣

∣t−A − t−B

∣

∣

p
(6)

where t∗x is the tag, t+x is the enhancer tag, t−x is the inhib-

iter tag of protein x, and p is the precision of the GRN

(see Section II-A). a, b, and c are constants that weight each

part of the protein properties. The sum of these constants must

be equal to 1. In this paper, they are set up to a = 0.75 and

b = c = 0.125. These values have been chosen by the means

of a parameter survey.

To calculate the global distance between two genomes,

the distance between the matching input and output proteins

(the inputs linked to the same sensor and the output linked

to the same actuator) are summed. Then, for each regula-

tory protein R1
i of the first genome, the global genome’s

distance is augmented with the minimum distance of R1
i to all

the regulatory protein of second genome (with replacement).

The dynamics coefficients β and δ are also taken into account

when computing the genetic distance. The distance between

both coefficients is divided by the maximum possible dis-

tance and contributes additively. Finally, the genome distance

is normalized by dividing it by the larger number of proteins of

both genomes augmented by the number of coefficients taken

into account in the distance calculation. The distance between

two genomes can be formalized as

D(G1, G2) =
Din + Dout + Dreg + Dβ + Dδ

max(N1, N2) + 2

Din =

#in
∑

x=0

Dprot(I1(x), I2(x))

Dout =

#out
∑

x=0

Dprot(O1(x), O2(x))

Dreg =
∑

Ri∈G1

min
Rj∈G2

Dprot

(

Ri, Rj

)

Dβ =
|β1 − β2|

βmax − βmin

Dδ =
|δ1 − δ2|

δmax − δmin
(7)

where

Gi genome;

Ni number of proteins contained in

the genome Gi;

Ii(x) [respectively, Gi’s input (respectively, output)

Oi(x)] protein linked to the sensor

(respectively, actuator) x;

#in (respectively, #out) number of input (respectively,

output) proteins;

R∗ regulatory protein in a genome;

βi and δi dynamics coefficient of Gi;

βmin, βmax, δmin, and δmax bounds of the variation inter-

vals of the dynamics coefficient

β and δ;

max(N1, N2) + 2 number of genes the distance is

computed: the number of pro-

teins of the biggest network

plus two dynamics coefficients

(β and δ).

2) Organization of Species: With this distance function,

the population can be organized into species. A genome G

is classified as a member of species s in which the distance

D(G, G
rep
s) of the genome to a representative genome is the

lowest and only if this distance is lower than a speciation

threshold σs given to each species s. In order to reduce the

number of parameters, the user must set up before using

the algorithm, this threshold is automatically tuned accord-

ing to the average size of all species: if the species size is

less than the average species size, the speciation threshold

of the species is incremented by 0.01; if the species size is

greater than the average, the speciation threshold is decre-

mented by 0.01. Every speciation threshold is bounded by the

interval [0.03, 0.5]. The representative genome is a genome

randomly selected in the previous generation. This method is

less expensive than comparing the distance of the genome with

all the species genomes and has been shown to give positive

results [23]. When a new species is created, the first individ-

ual that creates the species serves as the representative for the

current generation.

This method insures a subdivision of the entire population

into species that have comparable structure. Then, the genomes

are evaluated and compete within each species. The number

of offspring that each species generates is adjusted according

to the performance of the species. Every genome is evalu-

ated with the general fitness function of the problem. Fitness

sharing [20], [41] is then applied by dividing the fitness of

each genome by the number of members of its species: the

bigger the species, the stronger the fitness penalty should be

because the species has more search power.

The number of offspring o(s) of a species s is then given by

o(s) =

∑

Gi∈s f ′(Gi)
∑

t∈S

∑

Gj∈t f ′
(

Gj

) (8)

where S is the set of the existing species, Gx is a genome, and

f ′(Gx) is the adjusted fitness of the genome Gx.

Reproduction is then standard within each species. The

offspring are created by first copying the best genome of

each species (elistism). For each species, the global crossover

and mutation rates give the number of offspring to generate

with each variation method based on the number of offspring

allowed by species. In the case where the sum of both rates

are lower than one, the remaining offspring are selected and

added to the species without variation. The selection operator

used in this paper is a standard three-player tournament.

Once the offspring are generated, they are organized into

species with the procedure detailed previously. When a species

is too small (under a given minimum size), this species and

its genomes are deleted and as many genomes are randomly

created by mutation in the other species to prevent the popula-

tion size from changing abruptly. When expanding the number

of members of a species, mutation, and rejection sampling

are used in order to maximize the probability of generating a

compatible genome. The aim is to produce new genome struc-

turally close to the one existing in this species in order to keep

a certain consistency within the species. The parent genome is

selected by a tournament and a candidate is created by mutat-

ing this parent. However, if the candidate does not fit into the

species, then the candidate is rejected and a new genome is

generated by mutation until it fits the speciation requirements.

C. Reproduction Operators

Genetic variation of GRNs is accomplished with three stan-

dard mutation operators and a new crossover operator based

on genetic alignment of protein tags. This section presents the

reproduction operators.

1) Mutation Operators: When a mutation has to be applied

to a genome, one of the three following mutation operators can

be used.

a) Mutate a Protein: Randomly modify one of the tags

of a protein. Both the tag and the protein are selected

randomly from the genome.

b) Add a Protein: Generate a new random regulatory

protein (its protein tag, its enhancer tag and its inhib-

iter tag are generated randomly) and add it to the

genome.

Fig. 2. Aligning crossover tries to align the protein before crossing the
genomes. The input and output proteins are aligned according to the sensors
and actuators they are linked to. The regulatory proteins are aligned by the
mean of the distance between the proteins.

c) Delete a Protein: Remove one randomly selected reg-

ulatory protein from the genome. This operator can

be applied only if there is more than one regulatory

protein in the genome. If not, one of the two other

operators is applied.

When a mutation must be applied in the evolutionary pro-

cess, one of these three operators is selected. Independent

of the global mutation rate of the algorithm, each mutation

operator has a specific selection probability that can be param-

eterized. After a parameter survey, we found that a probability

of 0.5 for adding a protein and 0.25 for the two other operators

is the best compromise for slowly increasing the GRN size and

maintaining a sufficient level of exploration. Furthermore, the

genome size is unbounded since the aim of the algorithm is

to explore the GRNs search space starting from minimal net-

works and slowly increasing the network size iteration after

iteration.

2) Crossover Operator: In the standard evolution of a

GRN, one-point crossover is commonly used to cross two

genomes. One-point crossover of two parent GRNs is very

similar to the crossover of binary string genomes. First, a point,

P, is randomly chosen on the genome of the smaller parent.

Then, genetic material from one parent up to P and genetic

material from the other parent from P onward are joined to

create a child genome. In this paper, we have designed a new

crossover operator inspired by the gene aligning crossover

operator utilized in the NEAT algorithm. A schematic of the

crossover operator is shown in Fig. 2.

Each type of protein is processed separately. Both the input

and the output proteins are treated with the same method. One

of each input (or output) protein linked to a sensor (or an

actuator) is randomly selected from one of the parents. The

regulatory proteins are then aligned before being crossed: first,

the regulatory proteins of each parent are randomly shuffled

(in order to avoid historical biases). Then, for each regula-

tory protein p1i from the first parent, the closest regulatory

TABLE I
PARAMETERS OF THE EVOLUTIONARY ALGORITHMS

protein p2j not yet aligned is selected from the second parent.

If the distance dprot(p
1
i , p2j) is lower than a given alignment

threshold σa, both proteins are aligned. An aligned protein

cannot be aligned anymore. Once alignment of all proteins has

been attempted, one protein of each aligned pair is randomly

selected and added to the offspring. The remaining unaligned

proteins from a single parent are then added to the offspring.

The source parent is selected with a probability based on the

quantity of proteins the offspring inherited from each parent

P(P1) =
NP1

NP1
+ NP2

; P(P2) =
NP2

NP1
+ NP2

(9)

where P(Pi) and P(P2) are the respective probabilities of

selecting proteins from the first and second parent and NPi

is the number of proteins inherited by the offspring from a

given parent. This ensures that no crucial genetic material is

deleted during the crossover and that the added material best

fit to the aligned material. Finally, the dynamics coefficient are

also crossed. One of the β and the δ coefficients are randomly

selected from the parent genomes and used in the offspring

genome.

IV. EXPERIMENTS

We have implemented this algorithm in Java. It

is available on github at the following address:

https://github.com/scussatb/GRNEAT. With this imple-

mentation, we have evaluated the GRNEAT evolutionary

algorithm on four different problems. The first two are

signal processing experiments inspired by [19]. They consists

of doubling an input frequency and generating a low-pass

frequency filter. The third is the intertwined spirals in which

the GRN has to classify 194 2-D points into two intertwined

spirals. The last experiment is more complex, the coverage

control problem (CCP), which involves an agent controlled by

a GRN that has to cover a 2-D environment with obstacles,

much like a robotic vacuum cleaner.

In these experiments, GRNEAT is compared to a standard

GA and EP, where only mutation is used. These methods are

the most common techniques used in the GRN community to

evolve the networks. In order to evaluate the impact of each

component of GRNEAT, three more comparison are made.

1) GA with aligning crossover instead of the one-point

crossover.

2) GA with one-point crossover plus GRNEAT speciation’s

method.

3) EP with GRNEAT speciation’s method.

Table I summarizes the parameters that used these three

algorithms. These parameters have been found to be the best

for each algorithm via a parameter sampling survey.2 The

results presented in the experiment are averaged over mul-

tiple runs (varying depending on the experiment). During

each run, an identical random seed is used for all three

algorithms.

In all the following experiments, each GRN is initially sta-

bilized for 25 steps with zero concentration on all its input

proteins. This mechanism is used to avoid the chaotic stabi-

lization period of the GRN: since all the protein concentrations

are initialized with the same value (1 over the number of

proteins), the GRN needs some step to stabilize the concen-

trations. Once stabilized, the input concentrations are updated

according to the problem. These inputs are detailed in the

following problem descriptions.

A. Doubling Input Frequency

1) Problem Description: In this experiment, the target solu-

tion is a GRN which doubles the frequency of a sine curve

provided as input. The input is described by

in(t) =
1

2
sin

(

2π t

p
−

π

2

)

+
1

2
(10)

where in(t) is the input provided to the GRN at timestep t and

p is the (constant) period of the sinusoidal curve.

After the warm up of the GRN, the input concentration

is updated with the input sinusoidal value and the GRN is

run for one step. The output protein concentration is recorded

and used to evaluate the GRN. This last step is repeated as

many times as required by the experiment’s duration (num-

ber of timesteps). The GRN is trained for 1000 timesteps

on two different input periods: p = 250 and p = 1000.

In these cases, the target output signals that the GRN must

generate is the sine functions of periods p = 125 and

p = 500. A constant zero-function is added to the training

set. Joachimczak and Wróbel [19] noted that this zero func-

tion helps by ensuring that an output signal is only generated

when an input signal is present. The fitnesses of each training

signal are summed in order to obtain the GRN fitness.

The error of a signal is the difference between the output

signal generated by the GRN ot and the desired signal dt at

2EP population size might appear high for a mutation-based evolution
but parameter sampling shows that smaller population sizes lead to early
convergence to local optimum, probably due to lack of diversity.

Fig. 3. Comparison of the GRN evolutions on the doubling frequency prob-
lem. The averaged best fitness (plus standard deviation) is represented. Here,
the lower the fitness, the better is the minimization of the error.

each timestep t. This error is weighted by the desired sig-

nal: when a signal must be generated, it is crucial that the

GRN effectively produce an output. Finally, the summed error

is weighted by the number of observed events Eo during the

GRNs evaluation and the number of awaited events Ed. An

event is defined by the fact that the output signal is crossing

the 0.5 value (ascending or descending). This helps the evo-

lution to promote oscillating GRNs and therefore reduces the

computational effort required to converge to good solutions.

The fitness can be formalized as

1

1 + |Eo − Ed|/Ed

#steps
∑

t=0

|ot − dt|(1 + dt). (11)

2) Evolution: Fig. 3 compares the best fitness of both

evolutionary algorithms averaged over 26 runs. GRNEAT con-

verges faster toward better solutions than the standard GA,

but GRNEAT is a slow starter. A paired student t-test shows

GRNEAT is significantly better than GA with a confidence

interval of 95% (t-value = −9.64 and p-value < 10−5).

However, recall that, while the GA is initialized with 500

totally random genomes, each random genome of GRNEAT is

duplicated multiple times in order to generate species of min-

imum size. Furthermore, the genomes generated by GRNEAT

are initially smaller. This suggests that the initial exploration

of the search space by GRNEAT may not be optimal. Yet, this

initialization effect is corrected after 70 generations, beyond

which the average best fitness of GRNEAT is always better

than the average best fitness of the GA.

In comparison to EP, GRNEAT has similar performance but

with a lower standard deviation. This suggests that GRNEAT

is more likely to converge to a better solution than EP, which

is more likely to get stuck in a local optimum. A student’s

t-test shows that GRNEAT is almost significantly better than

EP with a t-value of −1.93 and a p-value of 0.065.

Fig. 4 compares the median size of the best GRNs gen-

erated by the three approaches. GRNEAT is initialized with

small networks and redundancy within species, which explains

its slow start on the convergence curves. However, the algo-

rithm slowly increases the size while optimizing the network

Fig. 4. Comparison of the median GRN sizes trained with GRNEAT (in red),
GA (in green), and EP (in blue) and GRNEAT components (dashed and
dotted lines) on the doubling frequency problem.

Fig. 5. Comparison of the median GRNs trained with GRNEAT (in red),
with a GA (in green), and with EP (in blue) on a multiple frequencies of the
doubling frequency problem.

performance. As a matter of fact, the final solutions generated

by GRNEAT contain fewer proteins than the ones generated

by EP. This shows the capacity of the algorithm to complex-

ify the network structure up to the best size. However, the

large standard deviation of network sizes on this simple prob-

lem prevent a statistically significant conclusion regarding the

difference in network sizes on this problem.

When comparing the influence of each component of

GRNEAT (see dashed and dotted lines on Figs. 3 and 4), it

can be noticed that GRNEAT and GA with aligning crossover

produce very comparable results in term of fitness. However,

when comparing the sizes of the GRNs generated by both

approaches, we can notice that all the GRNs generated by

method with speciation are smaller than the one generated by

algorithm without speciation. This component clearly helps the

algorithm to cluster comparable genomes and therefore cross

networks with comparable structures and keeps the size from

increasing excessively.

3) Generalization: To verify that GRNEAT generates

GRNs that have comparable generalization properties to the

ones generated by a standard GA and EP, all the best

genomes generated with both approaches have been run on

eleven other input periods. The median fitness error per sim-

ulation step is presented on Fig. 5: the lower the error,

TABLE II
INPUT AND TARGET SIGNALS USED FOR TRAINING

LOW-PASS FILTER GRNS

the better the GRN. Each bar of the histogram presents the

median error value per simulation step of the 26 best GRNs

generated by GRNEAT (in red), GA (in green), and EP

(in blue). Twelve different period values of the sinusoid input

function have been tested. The GRNs evolved with GRNEAT

give better result on generalization than GA and EP. Actually,

the difference between these three algorithms on nontraining

cases is comparable to the difference on the training set. This

suggests that GRNEAT may have equivalent generalization

properties to the GA and the EP. The obtained outputs of the

best GRNs generated by GRNEAT, GA, and EP are presented

in Supplementary material 1.

B. Low-Pass Frequency Filter

1) Problem Description: In the low-pass frequency filter

experiment, the target GRN behavior is to attenuate all signals

above a certain frequency and ignore lower frequencies. If the

period of the input signal is below a given threshold (here,

equal to a 200 timestep), the output of the GRN should be

zero. For signals above this threshold, the GRN has to repro-

duce the input signal exactly. When two signals are combined

with two different frequencies, if one of them is under the

threshold, the GRN must allow only low frequency signal to

pass. The method for signal processing with a GRN is the same

as the method presented in the previous frequency doubling

experiment.

The GRN is trained on six different input signals that con-

sist of two signals which are completely above the threshold,

two below the threshold, and two which contain both a sig-

nal above and below the low-pass threshold. The zero-signal

function presented in the previous experiment is also added to

the training set. The training signals are detailed in Table II.

The fitness used to evaluate the GRN is exactly the same as

the one presented in (11).

2) Evolution: Fig. 6 presents the results of this experiment.

Both evolutionary algorithms have been run 30 times. The

figure presents the averaged best fitness with each algorithm.

The same convergence observed in the previous problem is

obtained with this problem. GRNEAT starts slower because

of its initialization method but quickly finds better solutions.

Here, 70 iterations are necessary for GRNEAT to find better

solutions. A student’s t-test shows GRNEAT is significantly

better than GA with a t-value of −5.69 and a p-value less

than 10−5.

When comparing GRNEAT to EP, the same observations

that were observed for the GA can be applied. GRNEAT

Fig. 6. Comparison of the GRN evolution on the low-pass frequency filter
problem. The averaged best fitness (plus standard deviation) is represented.
Here, the lower the fitness, the better is the minimization of the error.

Fig. 7. Comparison of the size of the GRNs generated by GRNEAT, GA,
and EP on the low-pass filter problem.

converges to better solutions with a lower standard deviation,

as in the previous experiment, although not to a statistically

significant degree. This again shows the capacity of this algo-

rithm to avoid local optima and to converge to better solutions

in general.

Fig. 7 compares the sizes of the GRNs generated by

GRNEAT, GA, and EP. GRNEAT converges to smaller net-

works than EP with statistical significance (t-value = −3.69

and p-value = 0.001), but not significantly smaller networks

than GA (t-value = −0.61 and p-value = 0.54). However,

recall that GRNEAT has similar performance to EP, and now

we see that GRNEAT produces significantly smaller networks.

Furthermore, while the difference in network size under GA

and GRNEAT is not statistically significant, GRNEAT yields

better performing networks than GA.

When comparing GRNEAT components, the same observa-

tions as in the previous experiment can be pointed out: the

aligning crossover used with a GA leads to the evolution of

some of the best fit networks, yet the resulting networks are

markedly larger. On the other hand, when considering only

EP with speciation, smaller network sizes are maintained, but

Fig. 8. Comparison of the generalization capacities of GRNs trained with
GRNEAT (in red), GA (in green), and EP (in blue) on the low-pass filter
problem. Bars represent the median error.

Fig. 9. Result of the best GRN obtained with GRNEAT, GA, and EP on the
intertwined spirals.

networks do not achieve the same fitness that is reached when

aligning crossover is utilized.

3) Generalization: The GRNs generalization capacities

have also been tested on this problem. Fig. 8 presents the

median generalization score of the 30 genomes obtained with

GRNEAT, GA, and EP after 300 generations. It presents

the error per simulation step on four frequencies under the

period threshold, four over the threshold, and a combination

of the periods the GRNs have to filter. GRNs generated by

GRNEAT still generalize better than those produced by the

GA. GRNEAT-generated GRNs perform comparably to the

ones generated by EP. Some of the curves of the low-pass

frequency filter training and generalization are presented in

Supplementary material 2.

C. Intertwined Spirals

1) Problem Description: The intertwined spiral problem is

a classification problem, where a set of 2-D points organized

as two intertwining spirals must be correctly classified. Each of

the two spirals represents a class. Spirals start from the center

Fig. 10. Comparison of the GRN evolution on the intertwined spirals. The
averaged best fitness (plus standard deviation) is represented. The GRNEAT
algorithm evolves faster the GRN than a standard GA. GRNEAT produces
comparable fitnesses to EP. Here, the lower the fitness, the better is the quantity
of errors made by GRN.

of the space and are offset by a 180◦ rotation. Fig. 9 repre-

sents the training points and their classification provided to the

GRN. This problem is a common benchmark in the genetic

programming [42], [43] and the neural network [44] communi-

ties. To the best of our knowledge, this problem has never been

solved with a GRN. However, Cussat-Blanc and Pollack [45]

introduced the use of GRNs for the generation of images.

The implementation of the fitness function is similar to this

approach to GRN-based image synthesis.

In this problem, the inputs of the GRN are the (x, y) coor-

dinates of each point that must be classified. Two outputs are

used to classify the point into one of the two categories by the

following method: if the first output protein concentration is

greater than the second output protein concentration, the point

is classified in the first category and the opposite concentra-

tion difference classifies a point into the second category. The

GRN is first stabilized during 25 steps before the inputs are

set up. Then, input is provided to the GRN and it is evalu-

ated for 25 more steps before the classification is computed.

The GRN is rerun for the 194 points to be classified. This

50 step evaluation provides the GRN with the computation

and stabilization time necessary for classification.

2) Evolution: The evaluation function for this problem

consists of maximizing the number of well-classified points

from 194 samples that describe two spirals. Fig. 10 shows

the evolution of the GRN with GRNEAT, GA, and EP on

350 iterations. This figure presents the average best fitness

and its standard deviation of 20 runs. Fig. 9 presents the best

classification obtained with GRNEAT along all the 20 runs.

This classification achieved a 72.68% accuracy. While visual

inspection of the generalization pattern in Fig. 9 shows some

chaotic patterning, this also supports the variability of pat-

terns producible by a GRN. Concerning the comparison, the

results are very comparable between GRNEAT and EP. At

the opposite, GRNEAT does significantly better than GA

(t-value = −25.72 and p-value < 10−5). GRNEATs initial-

ization problem is still present on this experiment but is able

to reach EPs performance after 250 generations.

Fig. 11. Comparison between the sizes of the GRNs generated by GRNEAT,
GA, and EP on the intertwined spirals problem.

The main advantage of GRNEAT over EP is again the

capacity to generate smaller-sized GRNs. As presented in

Fig. 11, the GRNs generated by GRNEAT are significantly

smaller than those generated by EP (t-value = 5.50 and

p-value < 10−4). On average, the best GRNs generated by

GRNEAT after 350 generations have 28.8 proteins (σdev =

10.67) whereas GRNs generated by EP have 42.45 proteins

(σdev = 5.03), that is to say EP led to networks 47% larger

than GRNEAT networks.

Concerning GRNEAT components, once again, GA with

aligning crossover produces solutions that compete in term

of fitness with GRNEAT but with larger networks. Speciation

helps again to keep the genome size smaller.

D. Coverage Control

1) Problem Description: Robot coverage problems have a

long standing history in evolutionary computation. One of the

first GP studies was on what has come to be called the “lawn-

mower” problem [46]. The lawnmower problem is an instance

of the CCP in a uniform environment, often with turn-based

navigation and the ability to jump. The use of modular struc-

tures have been shown to facilitate solving the lawnmower

problem in GP [47]. The CCP consists of finding a path that

visits every node at least once. In this paper, our representation

of problems is related to a graph traversal problem, similar to

the classic traveling salesman problem, where robotic agents

are not required to turn and may only move to adjacent nodes.

In this last experiment, the CCP consists of a robot having

to cover a discrete environment. The environment is toroidal

and can contain obstacles. The robot perceives the surround-

ings cells in its Von Neumann neighborhood with a range

of 3. For each cell, the robot knows if the cell has already

been explored. At each timestep, the robot has four possible

actions of movement along the Von Neumann neighborhood

(North, South, East, or West). When the robot explores a previ-

ously unexplored cell, it receives a reward of 1 and otherwise

receives no reward. An illustration of the environment is shown

in Fig. 12. Here, the GRN is used to control the robot. The

GRN has nine inputs proteins that correspond to the following.

1) The summed reward three steps away in the North

direction.

Fig. 12. Environment for the CCP.

Fig. 13. Comparison of the GRN evolution on the CCP. The averaged
best fitness (plus standard deviation) is represented. The GRNEAT algorithm
evolves faster the GRN than both a standard GA and evolution programming.
Here, the higher the fitness, the better (quantity of cells explored by the robot).
This figure also presents the gain of the aligning crossover operator (dotted
green line) to the GA and the speciation associated to GA (dashed green line)
and to evolution programming (dashed blue line).

2) The summed reward three steps away in the South

direction.

3) The summed reward three steps away in the East

direction.

4) The summed reward three steps away in the West

direction.

5) The number of obstacles in a three-cell range in the

North direction.

6) The number of obstacles in a three-cell range in the

South direction.

7) The number of obstacles in a three-cell range in the East

direction.

8) The number of obstacles in a three-cell range in the West

direction.

9) The current reward obtained by the robot.

In addition to these nine inputs, four output proteins corre-

sponding to the four possible movements are used. The GRN

is used to compute a movement action at every timestep.

Fig. 14. Coverage control generalization results on 100 maps: median fitness of GRNs evolved with GRNEAT (in red), with GA (in green), and with
EP (in blue).

The GRN is evaluated 25 steps (a necessity for the stabiliza-

tion of the GRN in a discrete environment), then the action

that corresponds to the output protein with the largest con-

centration is selected. If this action is valid (i.e., if there are

no obstacles in the way), then the robot moves in the desired

direction. The fitness function is calculated after 1000 simu-

lation steps and the fitness value is the ratio of covered cells

to uncovered cells (excluding obstacles).

2) Evolution: The GRN is trained on three maps with

20 obstacles randomly placed obstacles. Obstacles are placed

such that every remaining square is still accessible by the robot

to avoid situations where a location is completely surrounded

by obstacles. The map size is 10 × 10. For each evolution-

ary run for all evolutionary algorithms tested, the GRNs are

trained with the same three environments. This ensures that

the results are comparable between all methods.

Fig. 13 presents the result of evolution averaged on

24 runs. GRNEAT evolves the GRN faster to better solu-

tions than both GA and EP. The final best averaged fitness

is 0.68 with GRNEAT, 0.35 with GA, and 0.51 with EP.

The environment is covered significantly better by GRNs

optimized with GRNEAT than with networks optimized with

both GA (t-value = −10.19 and p-value < 10−5) and EP

(t-value = −3.69 and p-value = 0.001). Fig. 14 presents the

median score of the GRNs evolved with GRNEAT (in red),

GA (in green), and EP (in blue) on 100 random maps. Here

again, GRNs evolved with GRNEAT present better results on

the generalization tasks than those evolved by both GA and EP.

The gain is comparable to the gain observed on the training

set. Thus, GRNs evolved by GRNEAT seem to maintain the

same performance during generalization as opposed to GRNs

evolved with either GA or EP. Some of the results of both

the training set and the generalization set are presented in

Supplementary material 3.

Fig. 15 presents the average sizes of the GRNs generated by

GRNEAT, GA, and EP. As in the previous two experiments,

GRNEAT produces GRNs of significantly smaller sizes: when

comparing GRNEAT and GA, the paired student t-test gives a

t-value of 2.47 with a p-value equal to 0.02 and when compar-

ing GRNEAT to EP, the t-value is 2.16 with p-value = 0.04.

Therefore, on this problem, GRNEAT converges to both better

Fig. 15. Comparison of the sizes of the GRNs generated by GRNEAT,
GA, and EP. The size of the GRNs generated by a GA with aligning
crossover and GA, and evolution programming speciation are also plotted on
this graph.

solutions in terms of performance, and to smaller, simpler

networks.

When comparing each of GRNEATs components, aligning

crossover again produces GRNs very comparable to GRNEAT

in term of fitness. This time, the size of the networks are

also comparable between both approaches. Speciation still

produces GRNs of smaller sizes but the difference is less

evident. In our opinion, this is due to the smaller size of

GRNs involved in the evolution for this particular problem. It

makes the increase of network size less critical than in other

problems.

3) Phylogenetics: In order to understand the speciation

dynamics of the GRNEAT algorithm, we investigate the struc-

ture of a representative phylogenetic tree. In Fig. 16, we

present a dendrogram from one of the best trials of GRNEAT

on the CCP. The tree was constructed for generation samples

taken every 15 generations. The construction process involves

two steps: 1) computing a distance matrix between all species

in adjacent generations and 2) linking species to their most

similar ancestral species. The distance matrix contains a pair-

wise genetic distances between the respective species of the 11

sampled generations. Pairwise distance was computed as the

Fig. 16. Phylogenetic tree of species evolution in GRNEAT at intervals of ten generations for the first 100 generations.

Fig. 17. Ratio of the species sizes among the evolution of the best trials of
the GRNEAT on the CCP.

average distance of 10 000 randomly selected representatives

from two species. In this case, we have additional information

that is not often incorporated into phylogenetic algorithms,

such as the neighbor-joining method [48], [49], specifically

exact generation numbers. The tree is constructed by creat-

ing an edge to each species in generation 14 from the species

in generation 0 with the smallest genetic distance. This is

repeated for each pair of adjacent generations, creating forward

edges from ancestral generations to the most recent.

We also present a plot of the ratio of species size in Fig. 17.

Let us begin by discussing the species size plots, as they

provide a clear overall picture of GRNEATs behavior. The

population is initialized with a large number of small species,

most of which are extinguished within the first 45 generations.

During this initial period the allocation of species size via the

fitness sharing mechanism is likely one of the mechanisms

dominating the speciation dynamics. We can see a number

of instances in these early generations, where some species

expand and others shrink to extinction. As evolution reaches

generation 50, only six species remain, all with similar sizes.

Upon reaching generation 70, only five species remain, and

this number is sustained for the remainder of the trial.

Now, we return to the corresponding dendrogram. Our nodes

indicate species of a given generation. Nodes are placed in

generational order and edges are unidirectionally forward in

evolutionary time. Note that edges represent genetic similarity,

and do not necessarily correspond to a direct ancestral rela-

tionship. The majority of species from the initial generation

are not similar to subsequent species. We see that species 3 of

the initial generation is likely the source of genetic material

for 30% of the species in generation 14. In fact, this lineage

is one of the most characteristic of the GRNEAT algorithm.

Later in evolution, we can see that some species within this lin-

eage branch but go extinct before the simulation is complete.

However, we can see an increasing specialization occurring

along this lineage. While some species branch and go extinct,

others survive and continue to lead to new species and branch-

ing events. Ultimately two of the remaining three species have

arisen from the lineage of generation 0s species 3, while

the other remaining species have descended along a mini-

mally branching lineage from generation 0s species 5. Within

this tree, we can see the core dynamics of speciation in the

GRNEAT algorithm, such as branching, diversification, and

specialization. Although a complete phylogenetic analysis of

the GRNEAT algorithm would warrant an independent study,

we can see from this example that the phylogenetic trends

can provide information about evolutionary dynamics which

may facilitate an understanding of the relationship between

evolutionary algorithms and fitness landscapes.

V. CONCLUSION

In this paper, we have presented a novel approach to

evolving GRNs. The method employs a number of features

that improve the evolvability of a population of GRNs. The

foremost feature is on an efficient tag-aligning crossover

operator that maintains the network structures. A genetic

distance metric is used to compare GRNs and speciate the

population. The subdivision of the population into species

facilitates diversity and helps the algorithm to keep small-sized

networks. Finally, we inoculate the population with small

genomes as opposed to the most common current practice of

using a uniform distribution of genome sizes. This allows the

algorithm to direct the evolutionary search toward growing the

complexity of networks. The overall algorithm is inspired by

the NEAT algorithm, but instead of requiring artificial his-

torical markers as genetic annotations, we use the existing

regulatory tags of GRNs to measure genetic distance. In this

sense, the GRN representation is a particularly parsimonious

fit for evolution by augmenting topology. We have shown that

tag-aligning crossover is a significant piece of our evolutionary

algorithm, but it is also further improved by speciation. On

the other hand, the initialization method increases the gen-

eral applicability of the algorithm by reducing the necessary

parameter tuning: unlike a genetic algorithm, GRNEAT does

not need any bounds on the maximum network size; network

size is regulated by the algorithm itself.

The results obtained with this approach are consistently pos-

itive. Our evolutionary algorithm converges faster and to better

solutions on most problems we have tested. In addition to that

the networks generated by this new algorithm are smaller than

the one generated by usually used methods. Although further

experiments on each of the three key components of GRNEAT

(aligned crossover, speciation, and initialization) may lead to

even greater improvements, we find that the inclusion of these

three features in our algorithm provide a consistent improve-

ment over the current algorithms used to evolve GRNs. Future

research is encouraged to focus on the speciation algorithm

and, in particular, the offspring adjustment method. We also

have introduced some modifications to the speciation process

in comparison to the original speciation method used in NEAT.

First, we used a self-tuning speciation threshold instead of

a global fixed threshold to reduce the number of parameters

the user has to set up when using this algorithm, which was

used in later iterations of the NEAT algorithm. Another mod-

ification concerns the deletion of unviable species: deleting

species can be dangerous because it can lead to the dele-

tion of potentially good solutions but, in our opinion, this

extinction is an important drive of the population dynamics.

This also implies the use of a species extension method in

order to keep the population size constant. In this paper, we

utilize a rejection sampling method when adding new individu-

als to replace deleted species in order to keep the intraspecies

genomes structurally consistent. Currently, species are com-

pared with a standard fitness adjustment mechanism. However,

alternative methods of species management, such as crowding,

have recently been used in particle swarm optimization to eval-

uate the improvement of a species over multiple generations

based on the quantity of genomes that improves their par-

ents fitnesses [50]. Statistical classifications such as k-means

clustering [51] could also improve speciation. The impact of

all these modifications and newly introduced mechanisms must

now be analyzed in detail in order to validate their benefits.

Each of them must be taken separately to evaluate their impact

on the algorithm’s convergence and the population diversity.

Some of them could also be introduced to the NEAT algorithm

for a comparison of their impact on neuroevolution.

Considering multiobjective optimization in addition to these

mechanisms could improve the evolvability of the GRN on

complex problems but, in our opinion, the use of multiple

objectives should be restrained to the problem specifically and

not to the network structure itself in order to keep the evolution

manageable. Actually, this approach has already been suc-

cessfully used in [52]. Objectives such as minimizing the size

of networks can be directly tackled by the genetic operators

(crossover and mutation) as is shown in this paper.

The original NEAT algorithm has been shown to be an

efficient method for the evolution of neural networks in a

number of works [53]–[56]. We have now shown that some

of the key principles of the NEAT algorithm can be used to

evolve GRNs with the GRNEAT algorithm. This result thus

enables a broader use of GRNs for tasks in simulation, con-

trol, and problem-solving than heretofore. This also suggests

that the same mechanisms could be applied to other kinds of

networks (Boolean, Bayesian, etc.) to obtain similar results.

The challenge in designing an algorithm for evolution by aug-

menting topology is the implementation of a metric between

networks that measures the structural differences between net-

works. Once this metric is defined, other mechanisms of the

algorithm will closely resemble those employed by the NEAT

and GRNEAT algorithms.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations

expressed in this paper are those of the authors and do

not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] E. H. Davidson, The Regulatory Genome: Gene Regulatory Networks in

Development and Evolution. Amsterdam, The Netherlands: Academic
Press, 2006.

[2] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” J. Theor. Biol., vol. 22, no. 3, pp. 437–467,
1969.

[3] M. Joachimczak and B. Wróbel, “Evo-devo in silico: A model of a
gene network regulating multicellular development in 3D space with
artificial physics,” in Proc. Alife XI Conf., Winchester, U.K., 2008,
pp. 297–304.

[4] R. Doursat, “Facilitating evolutionary innovation by developmental mod-
ularity and variability,” in Proc. 11th Annu. Conf. Genet. Evol. Comput.,
Montreal, QC, Canada, 2009, pp. 683–690.

[5] S. Cussat-Blanc, J. Pascalie, S. Mazac, H. Luga, and Y. Duthen,
“A synthesis of the cell2organ developmental model,” in Morphogenetic

Engineering. Berlin, Germany: Springer, 2012, pp. 353–381.

[6] J. Ziegler and W. Banzhaf, “Evolving control metabolisms for a robot,”
Artif. Life, vol. 7, no. 2, pp. 171–190, 2001.

[7] M. Nicolau, M. Schoenauer, and W. Banzhaf, “Evolving genes to balance
a pole,” in Proc. 13th Eur. Conf. Genet. Program. (EuroGP), Istanbul,
Turkey, 2010, pp. 196–207.

[8] M. Joachimczak and B. Wróbel, “Evolving gene regulatory networks
for real time control of foraging behaviours,” in Proc. Alife XII Conf.,
Odense, Denmark, 2010, pp. 348–355.

[9] Y. Jin, H. Guo, and Y. Meng, “A hierarchical gene regulatory network
for adaptive multirobot pattern formation,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 42, no. 3, pp. 805–816, Jun. 2012.

[10] S. Cussat-Blanc, S. Sanchez, and Y. Duthen, “Controlling cooperative
and conflicting continuous actions with a gene regulatory network,”
in Proc. IEEE Conf. Comput. Intell. Games (CIG), Granada, Spain, 2012,
pp. 187–194.

[11] L. Benuskova, V. Jain, S. G. Wysoski, and N. K. Kasabov,
“Computational neurogenetic modelling: A pathway to new discoveries
in genetic neuroscience,” Int. J. Neural Syst., vol. 16, no. 3, pp. 215–226,
2006.

[12] K. I. Harrington, E. Awa, S. Cussat-Blanc, and J. Pollack, “Robot
coverage control by evolved neuromodulation,” in Proc. Int. Joint Conf.

Neural Netw. (IJCNN), Dallas, TX, USA, 2013, pp. 1–8.

[13] J. C. Bongard and R. Pfeifer, “Repeated structure and dissociation of
genotypic and phenotypic complexity in artificial ontogeny,” in Proc.

Genet. Evol. Comput. Conf., 2001, pp. 829–836.

[14] K. O. Stanley and R. Miikkulainen, “A taxonomy for artificial
embryogeny,” Artif. Life, vol. 9, no. 2, pp. 93–130, 2003.

[15] F. Roth, H. Siegelmann, and R. Douglas, “The self-construction
and -repair of a foraging organism by explicitly specified development
from a single cell,” Artif. Life, vol. 13, no. 4, pp. 347–368, 2007.

[16] P. J. Bentley, “Evolving beyond perfection: An investigation of the
effects of long-term evolution on fractal gene regulatory networks,”
Biosystems, vol. 76, no. 1, pp. 291–302, 2004.

[17] J. F. Knabe, C. L. Nehaniv, and M. J. Schilstra, “Genetic regulatory
network models of biological clocks: Evolutionary history matters,”
Artif. Life, vol. 14, no. 1, pp. 135–148, 2008.

[18] S. Cussat-Blanc, S. Sanchez, and Y. Duthen, “Simultaneous cooperative
and conflicting behaviors handled by a gene regulatory network,” in
Proc. IEEE Congr. Evol. Comput. (CEC), Brisbane, QLD, Australia,
2012, pp. 1–8.

[19] M. Joachimczak and B. Wróbel, “Processing signals with evolving
artificial gene regulatory networks,” in Proc. Alife XII Conf., Odense,
Denmark, 2010, pp. 203–210.

[20] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI, USA: Univ. Michigan Press, 1975.

[21] S. Forrest, “Genetic algorithms: Principles of natural selection applied
to computation,” Science, vol. 261, no. 5123, pp. 872–878, 1993.

[22] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1996.

[23] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[24] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through

Simulated Evolution. New York, NY, USA: Wiley, 1966.

[25] T. Reil, “Dynamics of gene expression in an artificial genome-
implications for biological and artificial ontogeny,” in Advances in

Artificial Life (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 1999, pp. 457–466.

[26] R. Lifton, M. Goldberg, R. Karp, and D. Hogness, “The organization
of the histone genes in drosophila melanogaster: Functional and evolu-
tionary implications,” in Cold Spring Harbor Symposia on Quantitative

Biology, vol. 42. New York, NY, USA: Cold Spring Harbor Lab. Press,
1978, pp. 1047–1051.

[27] W. Banzhaf, “Artificial regulatory networks and genetic program-
ming,” in Genetic Programming Theory and Practice, R. L. Riolo and
B. Worzel, Eds. New York, NY, USA: Springer, 2003, ch. 4, pp. 43–62.

[28] J. Bongard and R. Pfeifer, “Evolving complete agents using artifi-
cial ontogeny,” in Morpho-Functional Machines: The New Species

(Designing Embodied Intelligence). Tokyo, Japan: Springer, 2003,
pp. 237–258.

[29] L. Wolpert, “The French flag problem: A contribution to the discus-
sion on pattern development and regulation,” in Towards a Theoretical

Biology, vol. 1. Edinburgh, U.K.: Edinburgh Univ. Press, 1968,
pp. 125–133.

[30] A. Lindenmayer, “Developmental systems without cellular interactions,
their languages and grammars,” J. Theor. Biol., vol. 30, no. 3, p. 455,
1971.

[31] J. Miller, “Evolving developmental programs for adaptation, morphogen-
esis, and self-repair,” in Proc. Eur. Conf. Artif. Life (ECAL), Dortmund,
Germany, 2003, pp. 256–265.

[32] C. Bowers, “Simulating evolution with a computational model
of embryogeny: Obtaining robustness from evolved individuals,”
in Advances in Artificial Life (Lecture Notes in Computer Science),
vol. 3630. Berlin, Germany: Springer, 2005, p. 149.

[33] S. Cussat-Blanc, N. Bredeche, H. Luga, Y. Duthen, and M. Schoenauer,
“Artificial gene regulatory networks and spatial computation: A case
study,” in Proc. Eur. Conf. Artif. Life (ECAL), Paris, France, 2011,
pp. 192–199.

[34] M. Kirschner and J. Gerhart, “Evolvability,” Proc. Nat. Acad. Sci.,
vol. 95, no. 15, pp. 8420–8427, 1998.

[35] S. Ando and H. Iba, “Inference of gene regulatory model by genetic
algorithms,” in Proc. Congr. Evol. Comput., vol. 1. Seoul, Korea, 2001,
pp. 712–719.

[36] P. Angeline, G. Saunders, and J. Pollack, “An evolutionary algorithm
that constructs recurrent neural networks,” IEEE Trans. Neural Netw.,
vol. 5, no. 1, pp. 54–65, Jan. 1994.

[37] C. Darwin, On the Origin of Species. New York, NY, USA:
Modern Library, 1859.

[38] S. Wright, “Breeding structure of populations in relation to speciation,”
Amer. Nat., vol. 74, no. 752, pp. 232–248, 1940.

[39] C. Oei, D. Goldberg, and S. Chang, “Tournament selection, niching,
and the preservation of diversity,” Illinois Genet. Algorithms Lab., Univ.
Illinois, Urbana, IL, USA, Tech. Rep. 91011, 1991.

[40] S. Mahfoud, “Niching methods for genetic algorithms,” Illinois Genet.
Algorithms Lab., Univ. Illinois, Urbana, IL, USA, Tech. Rep. 95001,
1995.

[41] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proc. 2nd Int. Conf. Genet.

Algorithms Appl., 1987, pp. 41–49.
[42] J. R. Koza, “A genetic approach to the truck backer upper problem

and the inter-twined spiral problem,” in Proc. Int. Joint Conf. Neural

Netw. (IJCNN), vol. 4. Baltimore, MD, USA, 1992, pp. 310–318.
[43] H. Juille, J. B. Pollack, L. J. Fogel, P. J. Angeline, and T. Baeck,

“Co-evolving intertwined spirals,” in Proc. 5th Evol. Program., 1996,
pp. 461–467.

[44] K. J. Lang, “Learning to tell two spirals apart,” in Proc. Connection.

Models Summer School, Pittsburgh, PA, USA, 1988, pp. 52–59.
[45] S. Cussat-Blanc and J. Pollack, “Using pictures to visualize the com-

plexity of gene regulatory networks,” in Proc. Alife XIII Conf., East
Lansing, MI, USA, Jul. 2012, pp. 491–498.

[46] D. Dickmanns, J. Schmidhuber, and A. Winklhofer,
“Der genetische algorithmus: Eine implementierung in prolog,”
Fortgeschrittenenpraktikum, Institut f ur Informatik, Technische
Universität München, München, Germany, 1987.

[47] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable

Programs, vol. 1. Cambridge, MA, USA: MIT Press, 1994.
[48] J. A. Studier and K. J. Keppler, “A note on the neighbor-joining algo-

rithm of Saitou and Nei,” Mol. Biol. Evol., vol. 5, no. 6, pp. 729–731,
1988.

[49] N. Saitou and M. Nei, “The neighbor-joining method: A new method
for reconstructing phylogenetic trees,” Mol. Biol. Evol., vol. 4, no. 4,
pp. 406–425, 1987.

[50] M. R. Sierra and C. A. C. Coello, “Improving PSO-based multi-
objective optimization using crowding, mutation and e-dominance,” in
Evol. Multi-Criterion Optim., Guanajuato, Mexico, 2005, pp. 505–519.

[51] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist.

Probab., vol. 1. Berkeley, CA, USA, 1967, pp. 281–297.
[52] H. Guo, Y. Meng, and Y. Jin, “A cellular mechanism for multi-robot

construction via evolutionary multi-objective optimization of a gene
regulatory network,” Biosystems, vol. 98, no. 3, pp. 193–203, 2009.

[53] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevo-
lution in the nero video game,” IEEE Trans. Evol. Comput., vol. 9, no. 6,
pp. 653–668, Dec. 2005.

[54] K. O. Stanley and R. Miikkulainen, “Evolving a roving eye for go,” in
Proc. Genet. Evol. Comput. Conf. (GECCO), Seattle, WA, USA, 2004,
pp. 1226–1238.

[55] J. E. Auerbach and J. C. Bongard, “Dynamic resolution in the co-
evolution of morphology and control,” in Proc. Alife XII Conf., Odense,
Denmark, 2010, pp. 451–458.

[56] E. Haasdijk, A. A. Rusu, and A. Eiben, “HyperNEAT for locomotion
control in modular robots,” in Evolvable Systems: From Biology to

Hardware. Berlin, Germany: Springer, 2010, pp. 169–180.

Sylvain Cussat-Blanc received the Ph.D. degree
from the University of Toulouse, Toulouse, France,
in 2009, specializing in a cell-based developmental
model to produce artificial creatures.

He was a Post-Doctoral Fellow with J. Pollack
in 2011, where he applied his research to evo-
lutionary robotics with the aim to automatically
design the real-modular robots’ morphologies. He
was a Researcher and a Teacher with University
of Toulouse. His research interests include develop-
mental models, gene regulatory networks, evolution-

ary robotics, artificial life, and evolutionary computation in general.
Dr. Cussat-Blanc is a member of the Institute of Research in Computer

Science of Toulouse, Toulouse, which is a research unit of the French National
Center for Research.

Kyle Harrington received the B.A. degree in
artificial life from Hampshire College, Amherst,
MA, USA, and the Ph.D. degree in computer
science from Brandeis University, Waltham, MA,
USA, in 2007 and 2014, respectively.
He was a Visiting Scholar with BINDS

Laboratory, University of Massachusetts–Amherst,
Amherst, from 2010 to 2011, and was a Visiting
Scientist with Janelia Farm Research Campus,
Howard Hughes Medical Institute, Chevy Chase,
MD, USA, in 2014. He is currently a Post-Doctoral

Scientist with the Computational Biology Laboratory, Department of Vascular
Biology, Beth Israel Deaconess Medical Center, Harvard Medical School,
Boston, MA, USA. His research interests include artificial life, evolutionary
and dynamical systems, physical systems, neural and machine learning, and
game theory.

Jordan Pollack received the Ph.D. degree in
computer science from the University of Illinois,
Urbana-Champaign, Urbana, IL, USA, in 1987.
He is a Professor of Computer Science and

Complex Systems, the Chair of Computer Science
Department, and the Director of DEMO Laboratory,
Brandeis University, Waltham, MA, USA. He was
involved with several startup companies, including
Abuzz, Watertown, MA, USA; Affinnova, Waltham,
MA, USA; Nannon Technology, Wayland, MA,
USA; and Thinmail, Sudbury, MA, USA. His

research interests include artificial intelligence, artificial life, neural and evo-
lutionary computing, robotics, complex and dynamic systems, educational
technology, and intellectual property law.
Dr. Pollack was named as one of the Massachusetts Institute of

Technology’s Technology Review “TR 10” in 2001 for his laboratory work
on automatically evolved and manufactured robots.

