39 research outputs found

    Robust multi-objective optimization of safety barriers performance parameters for NaTech scenarios risk assessment and management

    Get PDF
    Safety barriers are to be designed to bring the largest benefit in terms of accidental scenarios consequences mitigation at the most reasonable cost. In this paper, we formulate the problem of the identification of the optimal performance parameters of the barriers that can at the same time allow for the consequences mitigation of Natural Technological (NaTech) accidental scenarios at reasonable cost as a Multi-Objective Optimization (MOO) problem. The MOO is solved for a case study of literature, consisting in a chemical facility composed by three tanks filled with flammable substances and equipped with six safety barriers (active, passive and procedural), exposed to NaTech scenarios triggered by either severe floods or earthquakes. The performance of the barriers is evaluated by a phenomenological dynamic model that mimics the realistic response of the system. The uncertainty of the relevant parameters of the model (i.e., the response time of active and procedural barriers and the effectiveness of the barriers) is accounted for in the optimization, to provide robust solutions. Results for this case study suggest that the NaTech risk is optimally managed by improving the performances of four-out-of-six barriers (three active and one passive). Practical guidelines are provided to retrofit the safety barriers design

    An Upgraded Sine Cosine Algorithm for Tower Crane Selection and Layout Problem

    Get PDF
    Tower crane is the core construction facility in the high-rise building construction sites. Proper selection and location of construction tower cranes not only can affect the expenses but also it can have impact on the material handling process of building construction. Tower crane selection and layout problem (TCSLP) is a type of construction site layout problem, which is considered as an NP-hard problem. In consequence, researchers have extensively used metaheuristics for their solution. The Sine Cosine Algorithm (SCA) is a newly developed metaheuristic which performs well for TCSLP, however, efficient use of this algorithm requires additional considerations. For this purpose, the present paper studies an upgraded sine cosine algorithm (USCA) that employs a harmony search based operator to improve the exploration and deal with variable constraints simultaneously and uses an archive to save the best solutions. Subsequently, the upgraded sine cosine algorithm is employed to optimize the locations to find the best tower crane layout. Several benchmark functions are studied to evaluate the performance of the USCA. A comparative study indicates that the USCA performs quite well in comparison to other recently developed metaheuristic algorithms

    A NOVEL DISCRETE RAT SWARM OPTIMIZATION ALGORITHM FOR THE QUADRATIC ASSIGNMENT PROBLEM

    Get PDF
    The quadratic assignment problem (QAP) is an NP-hard problem with a wide range of applications in many real-world applications. This study introduces a discrete rat swarm optimizer (DRSO)algorithm for the first time as a solution to the QAP and demonstrates its effectiveness in terms of solution quality and computational efficiency. To address the combinatorial nature of the QAP, a mapping strategy is introduced to convert real values into discrete values, and mathematical operators are redefined to make then suitable for combinatorial problems. Additionally, a solution quality improvement strategy based on local search heuristics such as 2-opt and 3-opt is proposed. Simulations with test instances from the QAPLIB test library validate the effectiveness of the DRSO algorithm, and statistical analysis using the Wilcoxon parametric test confirms its performance. Comparative analysis with other algorithms demonstrates the superior performance of DRSO in terms of solution quality, convergence speed, and deviation from the best-known values, making it a promising approach for solving the QAP

    Cross-entropy boosted CRO-SL for optimal power flow in smart grids

    Get PDF
    Optimal power flow (OPF) is a complex, highly nonlinear, NP-hard optimization problem, in which the goal is to determine the optimal operational parameters of a power-related system (in many cases a type of smart or micro grid) which guarantee an economic and effective power dispatch. In recent years, a number of approaches based on metaheuristics algorithms have been proposed to solve OPF problems. In this paper, we propose the use of the Cross-Entropy (CE) method as a first step depth search operator to assist population-based evolutionary methods in the framework of an OPF problem. Specifically, a new variant of the Coral Reefs Optimization with Substrate Layers algorithm boosted with CE method (CE+CRO-SL) is presented in this work. We have adopted the IEEE 57-Bus System as a test scenario which, by default, has seven thermal generators for power production for the grid. We have modified this system by replacing three thermal generators with renewable source generators, in order to consider a smart grid approach with renewable energy production. The performance of CE+CRO-SL in this particular case study scenario has been compared with that of well-known techniques such as population’s methods CMA-ES and EPSO (both boosted with CE). The results obtained indicate that CE+CRO-SL showed a superior performance than the alternative techniques in terms of efficiency and accuracy. This is justified by its greater exploration capacity, since it has internally operations coming from different heuristics, thus surpassing the performance of classic methods. Moreover, in a projection analysis, the CE+CRO-SL provides a profit of millions of dollars per month in all cases tested considering the modified version of the IEEE 57-Bus smart grid system

    Electric Power Conversion and Micro-Grids

    Get PDF
    This edited volume is a collection of reviewed and relevant research chapters offering a comprehensive overview of recent achievements in the field of micro-grids and electric power conversion. The book comprises single chapters authored by various researchers and is edited by a group of experts in such research areas. All chapters are complete in themselves but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on electric power conversion, micro-grids, and their up-to-the-minute technological advances and opens new possible research paths for further novel developments

    Facility layout planning. An extended literature review

    Full text link
    [EN] Facility layout planning (FLP) involves a set of design problems related to the arrangement of the elements that shape industrial production systems in a physical space. The fact that they are considered one of the most important design decisions as part of business operation strategies, and their proven repercussion on production systems' operation costs, efficiency and productivity, mean that this theme has been widely addressed in science. In this context, the present article offers a scientific literature review about FLP from the operations management perspective. The 232 reviewed articles were classified as a large taxonomy based on type of problem, approach and planning stage and characteristics of production facilities by configuring the material handling system and methods to generate and assess layout alternatives. We stress that the generation of layout alternatives was done mainly using mathematical optimisation models, specifically discrete quadratic programming models for similar sized departments, or continuous linear and non-linear mixed integer programming models for different sized departments. Other approaches followed to generate layout alternatives were expert's knowledge and specialised software packages. Generally speaking, the most frequent solution algorithms were metaheuristics.The research leading to these results received funding from the European Union H2020 Program under grant agreement No 958205 `Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)'and from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-101344-B-I00 `Optimisation of zerodefectsproduction technologies enabling supply chains 4.0 (CADS4.0)'Pérez-Gosende, P.; Mula, J.; Díaz-Madroñero Boluda, FM. (2021). Facility layout planning. An extended literature review. International Journal of Production Research. 59(12):3777-3816. https://doi.org/10.1080/00207543.2021.189717637773816591

    An experimental study of a fuzzy adaptive emperor penguin optimizer for global optimization problem

    Get PDF
    Emperor Penguin Optimizer (EPO) is a recently developed population-based meta-heuristic algorithm that simulates the huddling behavior of emperor penguins. Mixed results have been observed on the performance of EPO in solving general optimization problems. Within the EPO, two parameters need to be tuned (namely f and l ) to ensure a good balance between exploration (i.e., roaming unknown locations) and exploitation (i.e., manipulating the current known best). Since the search contour varies depending on the optimization problem, the tuning of f and l is problem-dependent, and there is no one-size-fits-all approach. To alleviate these problems, an adaptive mechanism can be introduced in EPO. This paper proposes a fuzzy adaptive variant of EPO, namely Fuzzy Adaptive Emperor Penguin Optimizer (FAEPO), to solve this problem. As the name suggests, FAEPO can adaptively tune the parameters f and l throughout the search based on three measures (i.e., quality, success rate, and diversity of the current search) via fuzzy decisions. A test suite of twelve optimization benchmark test functions and three global optimization problems (Team Formation Optimization - TFO, Low Autocorrelation Binary Sequence - LABS, and Modified Condition/Decision Coverage - MC/DC test case generation) were solved using the proposed algorithm. The respective solution results of the benchmark meta-heuristic algorithms were compared. The experimental results demonstrate that FAEPO significantly improved the performance of its predecessor (EPO) and gives superior performance against the competing meta-heuristic algorithms, including an improved variant of EPO (IEPO)

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    A review of the application of the simulated annealing algorithm in structural health monitoring (1995-2021)

    Get PDF
    In recent years, many innovative optimization algorithms have been developed. These algorithms have been employed to solve structural damage detection problems as an inverse solution. However, traditional optimization methods such as particle swarm optimization, simulated annealing (SA), and genetic algorithm are constantly employed to detect damages in the structures. This paper reviews the application of SA in different disciplines of structural health monitoring, such as damage detection, finite element model updating, optimal sensor placement, and system identification. The methodologies, objectives, and results of publications conducted between 1995 and 2021 are analyzed. This paper also provides an in-depth discussion of different open questions and research directions in this area
    corecore