

Discrete Spider Monkey Optimization for

Traveling Salesman Problem

M. A. H. Akhand1, Safial Islam Ayon1, S. A. Shahriyar1, N. Siddique2 and H. Adeli3

1 Dept. of CSE, Khulna University of Engineering & Technology, Khulna, Bangladesh
2School of Computing, Engineering and Intelligent Systems, Ulster University, United Kingdom

3The Ohio State University, USA

Abstract— Meta-heuristic algorithms inspired by biological species have become very popular

in recent years. Collective intelligence of various social insects such as ants, bees, wasps,

termites, birds, fish, has been investigated to develop a number of meta-heuristic algorithms in

the general domain of swarm intelligence (SI). The developed SI algorithms are found effective

in solving different optimization tasks. Traveling Salesman Problem (TSP) is the combinatorial

optimization problem where a salesman starting from a home city travels all the other cities

and returns to home city in the shortest possible path. TSP is a popular problem due to the fact

that the instances of TSP can be applied to solve real-world problems, implication of which

turns TSP into a standard test bench for performance evaluation of new algorithms. Spider

Monkey Optimization (SMO) is a recent addition to SI algorithms based on the social behavior

of spider monkeys. SMO implicitly adopts grouping and regrouping for the interactions to

improve solutions; such multi-population approach is the motivation of this study to develop

an effective method for TSP. This paper presents an effective variant of SMO to solve TSP

called discrete SMO (DSMO). In DSMO, every spider monkey represents a TSP solution

where Swap Sequence (SS) and Swap Operator (SO) based operations are employed, which

enables interaction among monkeys in obtaining the optimal TSP solution. The SOs are

generated using the experience of a specific spider monkey as well as the experience of other

members (local leader, global leader, or a randomly selected spider monkey) of the group. The

performance and effectiveness of the proposed method have been verified on a large set of

TSP instances and the outcomes are compared to other well-known methods. Experimental

results demonstrate the effectiveness of the proposed DSMO for solving TSP.

Index Terms— Traveling Salesman Problem, Swap Sequence, Swap Operator, Partial

Search, Spider Monkey Optimization

1. INTRODUCTION

Meta-heuristic algorithms inspired by biological species have become very popular in the

recent years. Bio-inspired algorithms are based on behaviours of some animals, insect societies

and movement of organisms. Evolutionary algorithms are the early methods in 1960s inspired

by biological evolution which has found wide spread applications in almost all branches of

science and engineering [1]–[3]. In the last few decades, collective intelligence of various social

insects such as ants, bees, wasps, termites, birds, fish, has been investigated towards the

development of a number of meta-heuristic algorithms in the domain of swarm intelligence (SI)

[4]–[7].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/340488291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SI-based meta-heuristic algorithms became known with the advent of Particle Swarm

Optimization (PSO) and Ant colony optimization (ACO) in the 1990s. PSO [8] is based on the

social behaviour of birds flocking and fish schooling. Due to its simplicity, PSO has been

successfully applied to many optimisation problems with modified and hybrid variants of PSO

[9]–[12]. Ants are social insects and live in colonies. Inspiration of ACO [13], [14] is based on

the foraging behaviour of ant colonies and it has been well-studied for different applications.

Due to the enormous success of PSO and ACO, researchers explored swarm behaviours of other

biological species for developing new algorithms. Among them are bee colony optimization

[15][16] based on the foraging behaviour of bees and waggle dance communicating food source

to the colony[17], firefly algorithm[18] based on the short and rhythmic flashing used for

signalling to attract each other, glowworms swarm optimization [19] simulating the movement

of the glowworms based on the distance between them and the luminescent quantity, and bat

algorithm [20] based on echolocation behaviour of bats. Flower pollination algorithm[21], [22]

based on biological evolution of pollination of the flowers, bacterial colony foraging [23][24]

based on biomimicry of foraging bacteria, and salp swarm algorithm [25] enthused from salp

navigating and foraging behaviour in oceans are inspirations from the microscopic organisms.

Recently, living in groups and hunting behaviours of animals have been used to develop clever

SI-based optimization techniques such as grey wolf optimization [26], group search optimizer

[27], and spider monkey optimization [28]. Moreover, hybridization of strategies from two or

more individual methods is also a new way of developing new meta-heuristic algorithm [29].

The SI-based algorithms are found effective in solving optimization tasks. These algorithms

are grouped into two categories: numerical and combinatorial. In numerical optimization, an

algorithm searches in a defined functional space to find optimal numerical values of different

parameters of a function. In contrast, finding optimal combination of different discrete events

satisfying different constraints is the task of combinatorial optimization. Traveling salesman

problem (TSP) is the most studied combinatorial optimization problem due to its significant

implications to various real-world applications such as scheduling, vehicle routing, placement

of goods in warehouse, facility layout design in factory, and printed circuit design [30]. From

optimization point of view, TSP is to find the shortest tour for a salesman travelling all cities

and returning home city without visiting a city twice. ACO is one of the earliest SI-based meta-

heuristic algorithms applied to TSP. Various numerical optimization problems are also verified

on TSP with variations and/or modifications with success [31]–[33]. Interest has grown in the

recent years for developing new algorithms and approaches to TSP considering it as a general

test bench.

Among the existing SI methods, spider monkey optimization (SMO) has some considerable

features over the others, which merit investigation for developing new optimization method for

TSP. Spider monkeys search for food in a group under a leadership and share their information

with each other [34], [35]. The group divides into subgroups when spider monkeys fail to find

any food. The subgroups also have individual leaders and set for searching food in different

directions. At some stage, all the subgroups are combined into one large main group. The social

behaviour of spider monkeys is an example of a Fission-Fusion Social Structure [36] where

group members benefit from living together and sharing information. Inspired by this social

behaviour of spider monkeys, Bansal et al. [28] proposed the SMO algorithm for numerical

optimization. The subgrouping phenomenon is the distinct feature of SMO to show good

performance for numerical problem and such approach might be well suited for TSP. Although

SMO conceived basic features of spider monkeys for numerical optimization, it is completely

different and more difficult to adapt for discrete optimization problems like TSP. The proposed

discrete version of SMO in this study can accomplish the challenges of applying SMO to TSP

by introducing a number of new operators to SMO.

In the proposed discrete SMO (DSMO), every spider monkey represents a TSP solution; and

Swap Sequence (SS) and Swap Operator (SO)-based operations are considered for interaction

among monkeys to find the optimal TSP solution. An SS is a group of SOs. Each contains a

pair of indexes on the TSP tour. A new tour is generated transforming a TSP tour by swapping

cities indicated by SOs of an SS. The SS generation to update a monkey for an improved

solution is the key feature of the method and SS of a particular spider monkey is generated with

interaction with other members of the group. In the case of updating a solution of spider monkey

with generated SS, a Partial Search (PS) technique is deployed to achieve the best outcome with

full or partial SS. The proposed method has been tested on a suite of benchmark TSPs and is

proved to outperform other well-known metaheuristic methods applied to TSP.

The rest of the paper is organized as follows. Section 2 describes the standard SMO algorithm

and its features. Section 3 provides the description of the proposed DSMO algorithm for TSP.

Section 4 presents the experimental results of the proposed DSMO and compares the

performance with other contemporary metaheuristic algorithms. Finally, Section 5 presents

some concluding remarks out of this study.

2. REVIEW OF SPIDER MONKEY OPTIMIZATION (SMO)

SMO [28] is an SI algorithm for numerical optimization based on the social behavior of

spider monkeys. Spider monkey is a South American species of monkey which lives in a large

group and shows intelligence in social behavior and foraging [34], [35]. Spider monkeys search

for food in a group (under a group leader) and subgroups (under subgroup leaders). They

foraging for food starts with a single group and is divided into subgroups to spread the search

into different directions for exploring the region better. A subgroup leader may divide the group

again if failed to find food source [36]. When the number of groups reaches a maximum number,

the main group leader combines all the subgroups into a main large group and then splits again

into some subgroups. The process of fission and fusion is repeated until the swarm of spider

monkeys ends up with a good food source. The searching mechanism is employed in SMO for

numeral optimization. Like other SI algorithms, each monkey of SMO is a position in a multi-

dimensional search space that represents a solution of the problem at hand. SMO starts with a

population of random initial positions of the monkeys in the swarm. The positions are updated

in every iteration through interactions among the monkeys. The best position of all the monkeys

is called the Global Leader. The best solution for each group is called the Local Leader of that

group.

There are six phases in SMO namely Local-Leader phase, Global-Leader phase, Local-

Leader-Learning phase, Global-Leader-Learning phase, Local-Leader-Decision phase and

Global-Leader-Decision phase. Each phase has its own and unique purpose [37] which is

described in Algorithm 1 in five steps. Local-Leader phase is responsible for producing a newly

updated position for every spider monkey in the group (Step 3.a). In the Global-Leader phase,

first a probability is calculated (Step 3.b), then the positions of all the spider monkeys are

updated (Step 3.c). If the new position is better than the previous position, the position is

updated to the new position otherwise it retains the current position. Local Leaders and Global

Leader are selected in the Local-Leader-Learning phase and Global-Leader-Learning phase

respectively (Step 3.d). In the Local-Leader-Decision phase and Global-Leader-Decision

phase, the Local-Leaders initialize all the members of the groups again (Step 3.e) and the

Global-Leader takes the decision to divide the group into subgroups or combine (i.e. fuse) all

the groups into one group (Step 3.f).

SMO follows self-organization as well as division of labour properties for finding swarming

activities of the animals. It demonstrates positive feedback mechanisms of self-organization

because a spider monkey updates its position using Local Leader, Global Leader, and self-

experience. When the Global Leader divides the group into subgroups, it represents the

division of labour property observed in many species [36]. SMO considers two important

control parameters: Global-Leader-Limit and Local-Leader-Limit, which help Local Leader

and Global Leader to make the right decision. Finally, the Global Leader will provide the final

outcome (i.e. solution) of SMO.

SMO has found a good number of applications in different domains, especially real valued

optimization tasks, within a short period of time [38]. It has been applied to automatic

generation of control [39], designing electromagnetic antenna arrays [40], rule mining for

Algorithm 1: SMO Algorithm

Step 1: Initialization

Step 2: Select Local Leader and Global Leader

Step 3: For each Spider Monkey

a. Generate new position // Local-Leader phase

b. Calculate the probability // Global-Leader phase

c. Update position again based on the probability

d. Select new Local Leader and Global Leader

e. Redirect all the members of the group if Local Leader is not updating for a specific time.

f. Splits the group into subgroups or combine all the groups into one group if Global

Leader is not updating for a specific time.

Step 4: Goto Step 3 if termination condition is not met

Step 5: Return the Global Leader as the final solution

diabetes classifications [41], designing optimal fuzzy rule-base for a Tagaki-Sugeno-Kang

(TSK) fuzzy control system [42], improving quality and diversity of particles and distributing

them in particle filters to provide a robust object tracking framework [43], CDMA multiuser

detection [44], optical power flow, pattern synthesis of sparse linear array and antenna arrays

[45], numerical classification [46], optimizing frequency in microgrid [47], economic dispatch

problem [48], optimizing models of multi-reservoir system [49], and energy efficient

clustering for WSNs [50].

A number of studies on modified SMO for optimization problems in diverse domains have

also been reported in the literature. Some of the SMO algorithms are modified to solve global

optimization problems [51], to improve the local search capability of algorithm (i.e.,

exploitation of the search space) capability of algorithm [52], [53] and proposed fitness-based

position update strategy for the spider monkeys [54], modified ageist SMO incorporating age

of the monkeys that further divides the groups of monkeys into subgroups according to the age

based on different levels of ability [55], binary SMO [45], modified SMO for constraint

continuous optimization [37], and modified SMO incorporating Nelder–Mead method to

enhance local search [51].

Grouping method makes full use of the population information generated in optimization

procedure and the regrouping strategy is equivalent to the resumption of evolutionary

process[56][57][58]. Algorithms adapting grouping and regrouping mechanisms are found

effective for different numerical optimizations [22], [59], [60]. In this line, SMO implicitly

adopts grouping and regrouping for the interactions to improve solutions; such multi-

population approach might be effective for discrete optimization (e.g., TSP). All the

applications of SMO mentioned in the previous section are floating-point numeral optimization

where mathematical operations (e.g., additional, subtraction, multiplication and division) are

easy to implement for interaction within elements and individuals in SMO. On the other hand,

solving discrete-type optimization tasks such as TSP inherits its own difficulties. Operators of

standard SMO simply cannot be implemented for TSP or similar problems. New operators

have to be designed or SMO has to be modified for new applications. Therefore, the main

motivation of this study is to devise a mechanism such that discrete problems like TSP can be

solved using SMO and hence this paper proposes a discrete SMO for TSP.

3. DISCRETE SPIDER MONKEY OPTIMIZATION (DSMO) FOR TSP

This section expounds the proposed DSMO and its application to TSP. In DSMO, every

spider monkey represents a TSP solution; and Swap Sequence and Swap Operators based

operations are developed for interaction among monkeys to find an optimal TSP solution. In

this section, the operators are explained in detail first and then the DSMO method is presented

for TSP employing the operators in the sequel.

3.1 Traveling Salesman Problem (TSP) and Its Importance

The problem was formulated in the nineteenth century but became known as TSP and a

benchmark problem for combinatorial optimization problem in the 1950s and 1960s [61]. The

TSP can be formulated as an undirected weighted graph denoted as 𝐺 = (𝑉, 𝐸), where V is the

set of cities (or nodes), and E is the path between cities. In TSP, a graph of N cities (i.e., a map)

is given. The salesman is required to visit every city only once starting from an initial city and

returning to the starting city. For a given graph with N cities, there are 2/)!1(−N possible

solutions. Formally, if there are N cities, the TSP searches for a permutation 𝜋: {0, ⋯ , 𝑁 −

1} → {0, ⋯ , 𝑁 − 1} using a cost matrix 𝐶 = [𝑐𝑖𝑗], where 𝑐𝑖𝑗 is the cost of travel between city

i and j, with the goal of minimizing the total path length:

𝑓(𝜋, 𝑐) = ∑ 𝑐𝜋(𝑖), 𝜋(𝑖+1)
𝑁−1
𝑖=0 , (1)

where 𝜋(𝑖) is the city at 𝑖𝑡ℎ location in the tour. The goal of the TSP is to find a tour with the

minimum total path length.

Real-world problems such as scheduling [62]–[66], routing [67], [68], printed circuit board

design [12], electrical and telecommunication networks can be formulated as an instance of the

TSP. TSP demonstrates all the features of combinatorial optimization problem and proved to

be one of the NP-hard problems having exponential time complexity [69]. Therefore, TSP is

being used by the research community of combinatorial optimization [61]. TSP is also

considered as a test benchmark for performance verification of new metaheuristic algorithms

for optimization.

Nature-inspired computing [70], [71] and metaheuristic algorithms are well studied for

solving TSP. Genetic Algorithm (GA) is among the first of its kind applied to TSP in 1985 by

Grefenstette et al. [72] and later on in the 1990s by a number of other researchers [73], [74]. In

these applications, TSP is represented as a permutation problem where the crossover operation

is straightforward and the mutation operation is carried out as a swap operation. Simulated

annealing (SA) [75] has been applied to TSP as early as mid-1980s [76], [77]. Geng et al. [78]

applied an adaptive SA to TSP. Electromagnetism optimization (EMO) algorithm [79] has been

applied to TSP [80] demonstrating competitive performance. Gravitational Search Algorithm

(GSA) [81], [82] has been applied to benchmark instances of TSP [83] where TSP is formulated

as a permutation problem. Various other numerical optimization methods are also applied to

TSP such as integer programming and dynamic programming [84], [85].

 The interest grew among researchers in developing new SI algorithms based on insect’s

social behavior in solving TSP [86]. Ant Colony Optimization (ACO) has provided reasonable

and quality solutions for TSP [14], [87]–[89]. A number of Particle Swarm Optimization (PSO)-

based methods have been applied to TSP with success [90]–[92]. Artificial Bee Colony (ABC)

was also applied to TSP by a number of researchers with considerable success [32], [93].

3.2 Swap Sequence and Swap Operator in TSP

Swap Sequence based operations are common in different prominent methods for solving

TSP. A Swap Sequence (SS) having several Swap Operators (SOs) is considered to transform

a TSP solution into a new solution [91], [92]. A TSP solution is a sequence of cities to be

visited and an SO is a pair of position indexes which imply two cities to be interchanged (i.e.,

swapped) in the TSP solution. Assume the solution of a TSP of four cities in a sequence as

𝑇 = (4 − 1 − 3 − 2); and the modified solution 𝑆′ applying an SO defined by 𝑆𝑂(1,3) is

𝑇′ = (𝟒 − 1 − 𝟑 − 2) + 𝑆𝑂(1,3) = (𝟑 − 1 − 𝟒 − 2),

here ‘+’ is not an arithmetic addition operation rather application of 𝑆𝑂 operation onto the

solution. Swap Operator is an important factor to update TSP solution in this study and its

operation is comparable to mutation operator used in GA.

An SS [91], [92] is a set of single or more 𝑆𝑂𝑠 that is applicable to a specific TSP solution

in a sequence expressed by:

𝑆𝑆 = (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, ⋯ , 𝑆𝑂𝑛), (2)

where 𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, ⋯ , 𝑆𝑂𝑛 are 𝑆𝑂𝑠. Finally, SS implication on a tour T1 produces a new tour

T2. The implication is formulated as:

𝑇2 = 𝑇1 + 𝑆𝑆

𝑇2 = 𝑇1 + (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, ⋯ , 𝑆𝑂𝑛)

𝑇2 = [(((𝑇1 + 𝑆𝑂1) + 𝑆𝑂2) + 𝑆𝑂3) + ⋯) + 𝑆𝑂𝑛] (3)

The implication order of SOs in the SS is maintained as the implication of the same SOs in

different orders on a solution may yield different new solutions. Another interpretation of swap

sequence is the difference between two TSP solutions where SS may be calculated rearranging

Eq. (3) as Eq. (4).

𝑆𝑆 = 𝑇2 − 𝑇1 = (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, ⋯ , 𝑆𝑂𝑛) (4)

Here ‘-’ is not an arithmetic subtraction operation rather it means the required SOs in the SS

to transform T1 into T2. Suppose two solutions are T1 = (1 – 2 – 3 – 4 – 5) and T2 = (2 – 3 – 1 –

5 – 4) then the SS = SO (1,2), SO (2,3), SO (4,5).

Moreover, the operator is considered to merge several SSs into a new SS. Suppose SS1 =

{SO (1,3), SO (4,3)} and SS2 = {SO (3,1), SO (5,2)}. The new Swap Sequence 𝑆𝑆′ merging

SS1 and SS2 will contain the SOs of both SSs.

𝑆𝑆′ = SS1 SS2

 = {SO (1,3), SO (4,3)} {SO (3,1), SO (5,2)}

 = SO (1,3), SO (4,3), SO (3,1), SO (5,2) (5)

It is also to be noted that same result may be obtained using various SSs on a TSP solution.

Among all these SSs, the SS which holds the minimum SOs is termed as the Basic Swap

Sequence (BSS). Suppose two SSs are: SS1 = {SO (3,2), SO (2,3), SO (1,4), SO (3,5), SO (4,5)}

and SS2 = {SO (1,4), SO (3,5), SO (5,4)}, which are applied to T1 = (5-1-2-3-4) independently,

yielding the outcome T2 = (3-1-4-2-5). Consequently, SS2 is the BSS which also is found

employing T2 – T1 using Eq. (4).

Recently, Partial Search (PS) based SS operations are found efficient in solving TSP [31],

[33]. Since each and every SO implication gives individual TSP solutions, PS technique

considers each one as tentative tour and returns the best one as the outcome. Suppose a

solution is T = (1 – 3 – 2 – 5 – 4) and SS = {SO (2,3), SO (1,2), SO (4,5)}. Using the three

SOs, the three tentative tours (T1, T2 and T3) and their corresponding TSP costs will be as

follows:

Applying SS Tentative TSP Tours TSP Tour Cost

T + SO (2,3) => T1 = (1 – 2 – 3 – 5 – 4) Cost1= f(T1)

T1 + SO (1,2) => T2 = (2 – 1 – 3 – 5 – 4) Cost2 = f(T2)

T2 + SO (4,5) => T3 = (2 – 1 – 3 – 4 – 5) Cost3 = f(T3)

All three tentative tours are feasible TSP solutions and an intermediate tentative solution can

be better than the last one. Thus, PS returns the solution having the lowest TSP cost [90]. In

this study PS technique is considered to achieve the best outcome with full or partial SS while

updating a solution of spider monkey with generated SS.

3.3 DSMO Approach to Solve TSP

The proposed DSMO method consists of multiple steps; among them the significant steps

are: selection of Local Leaders and Global Leader, update of individual spider monkeys based

on both types of leaders, updating the Local Leaders and Global Leader and decision phase of

Local Leaders and Global Leader. Moreover, similar to other SI methods, initialization and

termination steps are available in the proposed method. In the initialization step, a population

of spider monkeys are defined with random tours; divide them into group(s); and select Local

Leaders and a Global Leader. In every iteration, significant DSMO steps are followed and

termination criteria is checked. The steps of DSMO are explained briefly in the following

subsections.

1) Initialization

In the beginning, a population of N spider monkeys (SMs) is initialized with random TSP

tours and fitness of those are measured. The population may be divided into n groups and the

Local Leaders (LLs) of individual groups are selected based on the fitness. Among the LLs,

the best one is chosen as the Global Leader (GL). DSMO starts with a single group having all

the SMs. In such a case, LL and GL both are the same SM. There are four control parameters

which are initialized at this stage: the Maximum number of Groups (MG) to be allowed,

perturbation rate (pr), Local Leader Limit (LLL), Global Leader Limit (GLL). On the other

hand, different counters are also initialized in this step which are Local Leader Limit Count

and Global Leader Limit Count.

2) Update of Individual SMs

In this step, each SM updates or changes its solution based on its current involvement, LL

involvement and the involvement of randomly selected another member of that group. Eqs. (6)

– (8) are used to update a SM if its selected under probability of pr.

SSi = U (0,1)*(LLk – SMi) U (0,1)*(RSMr – SMi) (6)

BSSi = Cal_BasicSS (SSi) (7)

SMnewi = SMi + BSSi (8)

In Eq. (6), LLk is the Local Leader in kth group, SMi is the ith SM, RSMr is another randomly

selected SM within the group (i.e., r ≠ i). At first, it calculates the SS between LLk and SMi;

and select a portion using random U (0,1) for implication (say SS1). Similarly, it calculates SS

between RSMr and SMi; and select a portion for implication (say SS2). U (0,1) is a random

number uniformly distributed over [0,1]. Then those two SSs are merged into one SS; i.e.,

SSi=SS1 SS2. Eq. (7) is used to optimize SSi through Cal_BasicSS function; the outcome is

the basic swap sequence BSSi. The BSSi is applied to SMi using Eq. (8) with PS manner

explained in the previous section and get new solution SMnewi. The SMi is updated with

SMnewi if the new one is found better than the existing one. This procedure will continue for

all the members of the kth group.

After update individual SMs considering interaction within group they are again interacting

with GL and another randomly selected member of the group. In this case, an SM takes the

decision based on the value of probability if the SM will update or not. It ensures that the SM

will partake a great opportunity to make itself better than the present solution. The probability

for ith SM is calculated according to Eq. (9).

𝑝𝑟𝑜𝑏(𝑖) = 0.9 ∗
𝑚𝑖𝑛_𝑐𝑜𝑠𝑡

𝑐𝑜𝑠𝑡(𝑖)
+ 0.1 (9)

Here cost(i) is the tour cost of ith SM and min_cost is the minimum tour cost by the best SM

of that group. The equation evaluates the probability by dividing the minimum cost found so

far with the cost of each SM to generate a ratio below 1. The SMs are updated in this step using

Eqs. (10) – (12).

SSi = U(0,1)*(GL – SMi) U(0,1)*(RSMr – SMi) (10)

BSSi = Cal_BasicSS (SSi) (11)

SMnewi = SMi + BSSi (12)

Here, Eq. (10) calculates the SS between GL and SMi, and SS of randomly selected RSMr and

SMi. Eq. (11) is used to optimize SSi that yields BSSi; Finally, BSSi is applied to SMi using Eq.

(12) similar to Eq. (8); and SMnewi is obtained. If the tour cost is less than the older one, then

the current solution SMi is replaced with the new solution SMnewi. Otherwise, the current

solution is retained.

The way of individual SMs update in two different steps considering LL and GL,

respectively, are the main steps in the proposed DSMO method. However, steps have similar

operations. Eqs. (6)-(8) considered LL of the same group and a randomly selected solution

while Eqs. (10)-(12) considered GL and a randomly selected solution. The procedure of

updating an SM based on the LL is demonstrated in Fig. 1 for better understanding. In the

figure, C1, C2, …, Cx are the index of a tour in solutions of operating spider monkey (SM),

Local Leader (LL) and randomly selected another spider monkey (RSM). The SS generation

using the experience of SM and LL is denoted by SSLL = (LL – SM); similarly, SS generation

using SM and RSM is denoted by SSRSM = (RSM – SM). Using U(0,1), a random portion of SSLL

is selected, i.e., SSSLL = {U(0,1) * SSLL}. A portion is also selected from SSRSM, i.e., SSSRSM =

{U(0,1) * SSRSM}. SSSLL and SSSRSM are merged together to SSM = SSSLL SSSRSM. Then

Cal_BasicSS() is applied to find BSSM. The blue circle and the green circle indicate the SOs

Figure 1. Demonstration of updating a Spider Monkey (SM) interacting with Local Leader (LL) and

Random Spider Monkey (RSM).

generated by the LL and RSM, respectively. Lastly, apply SOs of BSSM into the solution one

after another and select the best solution (SMnew) among the tours from different for successive

implications of SOs. The demonstration is shown in Fig. 1 is also applicable to update

procedure of SM based on Global Leader considering GL (i.e., global best solution) instead of

LL.

3) Update of LLs and GL

The Local Leaders (LLs) and Global Leader (GL) are updated in this step. For each group,

the best SM having minimum tour cost is identified and is considered as the new Local Leader

if it is better than the existing group leader; otherwise, the Local Leader is unchanged. If the

Local Leader is not modified, the value of Local Leader Limit Count is increased by 1.

After the update of Local Leaders, the best LL (bLL) is identified and compared with the

GL; update GL if bLL is better than the existing GL; otherwise, the Global Leader remains

unchanged. Furthermore, Global Leader Limit Count is increased by 1 if the cost of GL is not

modified.

4) Decision Phase of LL and GL

In the fourth step, if the LL is not updated for a certain period of time, Local Leader

initializes all the group's members again and the GL takes the decision to divide the group into

subgroups or join all the groups into one group.

Local Leader is supposed to update in each iteration to find a better solution. If it is not

updated for Local Leader Limit times, all SMs of that group are updated either by randomly

generated tour or interacting with the GL and LL using Eq. (13).

SMnewi = SMi + U(0,1)*(GL – SMi) + U(0,1) * (SMi – LLk) (13)

Here, GL is the Global Leader and LLk is the Local Leader of the kth group. Following the Eq.

(13), SMi moves forward to the Global Leader and detaches from the Local Leader.

After checking all the Local Leaders limit counter, the Global Leader limit counter is

checked. If the Global Leader fails to update for Global Leader Limit times, the Global Leader

forms new groups from the existing groups by successively dividing them until MG is reached.

Each time GL divides the group, a new LL is selected. The Global Leader can choose to

combine the total population into a single group if MG groups are already formed and no more

groups are allowed.

5) Termination and Outcome

At the end of each iteration, termination or stopping criteria of the DSMO is checked. The

stopping criteria can be the number of iterations, fitness threshold etc. If the termination

criterion is met, the TSP solution of the Global Leader is considered as the outcome of the

proposed DSMO approach.

3.4 DSMO Algorithm

The proposed DSMO algorithm for solving TSP is shown in Algorithm 2. Detailed

description of the algorithm is not given as the step wise operations are described already. The

notations and inputs of the proposed algorithm are listed at the beginning. Like other

population-based algorithms, it initializes the TSP solutions randomly. At first, it selects the

Local Leader LLk of every kth group and GL (Step 1). The main operations are performed in

Step 2. At each iteration step, solutions monkeys are updated based on Local Leader and Global

Leader in deferent steps. Algorithm 2.1 is used to update individual monkeys’ solution SMi

based on Local Leader (LLk) and Global Leader (GL). Local Leaders and Global Leader will

Algorithm 2: DSMO for Solving TSP

Input: List of Cities and their cost matrix

I - Total Number of Iterations

MG - Allowed Maximum Group
pr - Perturbation Rate

LLL - Local Leader Limit

GLL - Global Leader Limit

N - Total Number of Spider Monkeys

Output: An optimal solution of TSP

Variables:

t - Iteration Counter

g - Current Number of Groups

SM - Population of Spider Monkey

SMi - ith Spider Monkey
LLk - Local Leader of kth Group

LLnew - Updated Local Leader

LL - List of Local Leaders

GL - Global Leader

SS - Swap Sequence of Spider Monkey

BSS - Basic Swap Sequence of Spider Monkey

SMnew - Updated Spider Monkey

prob(i) - Probability of ith Spider Monkey

LLLk - Local Leader Limit Counter of kth Group

bLL - best Local Leader

GLLc - Global Leader Limit Counter

Step 1: Initialization

1. t ← 1

2. create N spider moneys and append them to SM

3. Assign each SMi in SM with a random solution

4. g ← 1 // Initially Consider all SM into one group

5. Select Local Leader and Global Leader // Both leaders are same due to single group

Step 2: Main Operation
1. while t ≠ I do

2. Call Algorithm 2.1 //Update of Spider Monkeys
3. Call Algorithm 2.2 //Update of Local Leaders and Global Leader
4. Call Algorithm 2.3 //Decision Phase of Local Leader and Global Leader
5. t ← t + 1

 end while

Step 3: Return GL as the result

be updated if the newly generated solution is better than the current solution using Algorithm

2.2. Algorithm 2.3 is for decision phase of Local Leader and Global Leader where LLk will

initialize all the SMi if the LLk is not updated for a predetermined period of time and GL will

split the population into some small sets or combine all the groups into one single set if the GL

is not updating over a specific period of time. The iteration will continue until the termination

Algorithm 2.1: Update of Spider Monkeys based on Local Leader and Global Leader

Input: SM, SMi, LLk,, LL, GL
1. for each kth group do

2. for all SMi in kth group do

3. If U (0,1) >= pr then

4. Calculate SS using Eq. (6)

5. Calculate BSS using Eq. (7)

6. Apply BSS into SMi to calculate SMnew using Eq. (8)

7. If fitness (SMnew) > fitness (SMi) then

8. SMi ← SMnew

9. end if
10. end if

11. end for

12. end for

12. for each kth group do

13. for all SMi in kth group do

14. Calculate prob(i) using Eq. (9)

15. If U (0,1) <= prob(i) then

16. Calculate SS using Eq. (10)

17. Calculate BSS using Eq. (11)

18. Apply BSS into SMi to calculate SMnew using Eq. (12)

19. If fitness (SMnew) > fitness (SMi) then

20. SMi ← SMnew

21. end if
22. end if

23. end for

24. end for

Algorithm 2.2: Update Phase of Local Leader and Global Leader

Input: SM, SMi, LLk,, LL, GL, LLL, GLL
1. for each kth group do

2. for all SMi in kth group do

3. Calculate the fitness of SMi

4. end for

5. LLnew ← maximum (SMi) //select the highest fitness among all the spider monkeys in kth group

6. If fitness (LLnew) > fitness (LLk) then

7. LLk ← LLnew

8. LLLk ← 0

9. else
10. LLLk ← LLLk +1

11. end if

12. LL ← LLk

13. end for

14. bLL ← maximum (LL) //select the best Local Leaders heaving highest fitness among all Local Leaders

15. If fitness (bLL) > fitness (GL) then

16. GL ← bLL

17. GLLc ← 0

18. else

19. GLLc ← GLLc +1

20. end if

criterion (i.e., total iterations) is met. Finally, TSP tour in GL is considered as the outcome of

DSMO (Step 3).

3.5 Significance of Proposed DSMO

DSMO follows self-organization as well as division of labour properties for finding clever

operations for TSP. Proposed DSMO introduces SO and SS based interactions to update

individual TSP tours represent by spider monkeys. In the method, a spider monkey updates its

solution using subgroup leader (called Local Leader), the main group leader (called Global

Leader), and self-experience. When the Global Leader divides the groups into subgroups, it

implies the divisions of labour property. Due to multiple sources consideration of SOs

calculation, diverse solutions are brought in at different iterations and hence easy to find a

better solution of a TSP problem.

DSMO has a distinct structure quite different from the existing SI methods including ACO

and Velocity Tentative PSO (VTPSO). DSMO updates an SM in two different stages. In the

first stage, each and every SM is updated interacting with Local Leader and randomly selected

another SM following Eqs. (6)-(8). In the second stage, each and every SM is updated

interacting with the Global Leader and randomly selected another SM following Eqs. (10)-

(12). On the other hand, VTPSO as well as PSO update a particle in a single stage interacting

with the global best and personal best solution [90], [92]. In contrast, solutions are updated

based on the pheromone on the paths in ACO that is different from other SI methods.

Therefore, multiple interaction stages might be beneficial to improve solutions with respect to

other existing methods.

Algorithm 2.3: Decision Phase of Local Leader and Global Leader

Input: g, SMi, LLk,, LLL, GLL, LLLk, GLLk
1. for each kth group do

2. If LLLk > LLL

3. LLLk ← 0

4. for all SMi in kth group do

5. If U (0,1) >= pr then

6. Initialize SMi randomly

7. else

8. Initialize SMi using Eq. (13)

9. end if

10. end for

11. end if

12. end for

13. If GLLc > GLL
14. GLLc ← 0

15. If g < MG then

16. Divide the spider monkeys into g + 1 number of groups.

17. else

18. Disband all the groups and Form a single group.

19. g ← 1

20. end if

21. end if

4. EXPERIMENTAL STUDIES

The effectiveness of the proposed DSMO is assessed by applying to benchmark TSPs. The

outcomes of DSMO are also compared with the well-known metaheuristic algorithms applied

to TSP which are ACO[87], VTPSO[33] and Artificial Bee Colony with SS (ABCSS)[32].

ACO is one of the first SI algorithms applied to TSP and had been well-studied for TSP [87].

In ACO, each ant maintains a tabu list of unvisited cities and calculates transition probability

of cities individually; moves to one of the cities; and the process continue until completion of

the tour visiting all the cities. Pheromone update is also computational procedure at the end of

each iteration after all the ants completed the tours. Each element (e.g., particle, bee or

monkey) in VTPSO, ABCSS and the proposed DSMO, always contains a complete feasible

solution and interacts with others elements following distinctive operations to improve the

solution. The common property of the three methods is the use of Swap Sequence (SS) in their

operations. VTPSO is the PSO based method for TSP which transformed PSO operations for

TSP with SS including Partial Search (PS), single node adjusted and block node adjusted [90].

ABCSS is the most recent TSP algorithm with Artificial Bee Colony with SS operation[25]. It

uses SS based rules in employed bee and onlooker bee phases, and uses K-opt operation in

scout bee phase and final outcome stage. On the other hand, proposed DSMO considered SS

based PS related operations like VTPSO in its different steps considering Local Leader and

Global Leader.

Following subsections provide description on the benchmark instances and experimental

settings; experimental analysis on selected instances, and finally, experimental results of the

proposed method on benchmark instances comparing with other methods.

4.1 Benchmark TSP Data and Experimental Setup

As a test bench, a suite of 45 benchmark TSP instances are chosen from TSPLIB [94], the

well-known benchmark repository for TSPs. The size of the selected instances varies from 14

to 493 cities which makes them diverse test beds. A numeric value with an instance indicates

the number of cities in the instance. Like st70 and rat99 have 70 and 99 cities, respectively. In

the dataset, coordinates of individual cities are given for a particular instance which need to

process to use any system. The cost matrix is prepared using coordinates of cities which is then

used to calculate the tour cost. A tour cost of a TSP solution is the sum of the cost distances of

individual links considered in the tour. Tour cost is considered as the fitness value in TSP by

any optimization method where the minimum of the tour cost is assumed as good.

The parameters of DSMO are maximum number of groups (MG); Local Leader Limit (LLL)

and Global Leader Limit (GLL); and perturbation rate (pr). In the experiment, MG is set to 5;

both LLL and GLL are varied 50 to 100; pr is initialized with 0.1. In ACO, parameter values

for alpha and beta are 1 and 3, respectively. The parameters of ABCSS are considered as

suggested in the paper or found better than those; upper limit of a food source counter and

maximum trail of K-opt were set to 5 and 10, respectively. These parameters values are not

optimal though but are chosen for simplicity enabling fairness in comparison.

The methods ACO, VTPSO and proposed DSMO are implemented on Visual C++ of Visual

Studio 2017 on Windows 10 OS environment. Tests have been led on a desktop computer (HP

ProDesk 490 G2 MT, Intel(R) Core (TM) i7-4790M CPU @ 3.60 GHz, RAM 8 GB).

4.2 Experimental Analyses

Proposed DSMO is a novel population-based SI method; therefore, like other SI methods,

population size M (i.e. the number of monkeys in population) and total iteration are the two

most important parameters towards good outcome. In this section, the effects of population

size and maximum iteration on DSMO are investigated on three selected instances which are

berlin52, rat99 and gr137. The selected instances are different in size and are studied many

existing studies. ACO and VTPSO are also included in the analyses for better understanding

of DSMO compared to the algorithms.

1) Performance Improvement and Time Requirement with Iteration

This section represents the comparative performance analysis and required training time

among ACO, VTPSO, ABCSS, and DSMO while training up to a certain iteration. For a fair

comparison, the population sized was fixed at 100 for all four methods. Fig. 2 demonstrates

the tour costs of ACO, VTPSO, ABCSS and DSMO for sample runs up to 150 iteration on

berlin52, rat99 and gr137 instances.

It is observed from Fig. 2 that all the method showed large tour costs for any instance at the

beginning of the training (i.e., in first iteration) and improved with iteration. However, ABCSS

show very high tour cost with respect to ACO, VTPSO and DSMO; and performance gradually

improved with iteration. As an example, for berlin52 after first iteration, tour cost of ABCSS

is 23062.41; whereas, the tour costs at that point for ACO, VTPSO and DSMO are 8207.61,

12197.49 and 10133.75, respectively. For the same instance, the tours cost for ACO, VTPSO,

ABCSS and VTPSO are 8093.35, 7977.08. 8222.05 and 8238.60, respectively. The shape of

achieved tour costs curves by the methods for rat99 and gr137 instances are also similar. It is

notable for all three instances that ACO and VTPSO showed invariant performance after

several iterations (e.g., after 50 iteration for berlin52) whereas ABCSS and DSMO is shown

to improve with respect iteration up to 150 iteration. This indicates first convergence of ACO

and VTPSO but better outcomes by ABCSS and DSMO with large number of iterations. The

scenario replies the effectiveness of employed heuristics used in ABCSS and DSMO.

The proposed DMSO and other investigated methods (i.e., ACO, VTPSO and ABCSS) are

population-based bio-inspired algorithms where the computational time of a method depends

on the iterations as well as the population size. The computational complexity of a particular

method depends on its deployed operators. The time requirement over the iterations for ACO,

VTPSO, ABCSS and DSMO are measured for the results presented in Fig. 2 and are found

similar for all the three instances that increases linearly with iterations but have different rates

for different algorithms.

 Figure 3 demonstrates the time requirement with iterations for gr137 instance as a sample

case. According to the figure, ACO is computationally extensive and ABCSS is the most

efficient. In ACO, calculation of transition probability for unvisited cities by each ant and

Figure 2. Tour cost improvement with iteration.

8000

9000

10000

11000

12000

13000

14000

0 30 60 90 120 150

T
o
u
r

C
o
st

Iteration

ACO VTPSO

ABCSS DSMO

berlin52

500

2000

3500

5000

6500

0 30 60 90 120 150

T
o
u
r

C
o
st

Iteration

ACO VTPSO

ABCSS DSMO
rat99

500

1500

2500

3500

4500

5500

0 30 60 90 120 150

T
o
u
r

C
o
st

Iteration

ACO VTPSO

ABCSS DSMO
gr137

recalculation again after moving to a city until tour completion incur large computational cost.

Pheromone update is also part of computation cost; therefore, computational time of ACO is

high. SS based velocity operation and node adjustment are the main computational burden in

VTPSO. Proposed DSMO performed VTPSO like operations on each element in two different

steps considering Local Leader and Global Leader and have computation burden of other tasks

such as subgrouping; hence, computational time of DSMO is larger than VTPSO. ABCSS used

K-opt heuristic based operation (in scout bee phase and final stage) in addition to SS based

different rules deployment in employed bee and onlooker bee phases; the operations of ABCSS

seem efficient compared to the operations of DSMO.

2) Impact of Population Size Variation

The proposed DMSO and other considered methods (i.e., ACO, VTPSO and ABCSS) are

population-based bio-inspired algorithms and this section compares the efficiency of the

methods for varying population size. The population size considered for ACO, VTPSO and

ABCSS from 10 to 500. In contrary, the population size started in DSMO from 20 to manage

MG as 5. For fair comparison, fixed 500 iterations were considered for all three methods.

Figure 4 presents the tour cost for different population size on berlin52, rat99 and gr137

instances. The presented results are the average of 10 individual runs. Standard Deviation (SD)

values of individual results are shown as vertical line bars on the average value. It is noticeable

from the figure that ABCSS performed very badly at small population size (e.g., 10, 20) and

improved with increasing the population size. For rat99 and gr137, which are relatively large

instances, ABCSS showed worst outcomes for low population size and showed competitive

performance with VTPSO and DSMO for population size 100 and onward. Meanwhile, ACO

is shown an almost unchanged performance for a specific instance. In ACO, each ant starts

from a city and initially pheromone values are equal in all the path; therefore, ants larger than

Figure 3. Required time with iteration.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 30 60 90 120 150

T
im

e
(S

ec
)

Iteration

ACO VTPSO

ABCSS DSMO gr137

total city contains several duplicate paths and failed to improve solution at all. On the other

hand, due to pheromone-based heuristic, ACO is shown more contestant results over different

runs; therefore, SD values of ACO are comparatively very low with respect to the values of

VTPSO, ABCSS and DSMO.

Figure 4. Impact of population size on tour cost.

7500

7700

7900

8100

8300

0 100 200 300 400 500

T
o
u
r

C
o
st

Population Size

ACO VTPSO

ABCSS DSMO
berlin52

1250

1300

1350

1400

1450

1500

0 100 200 300 400 500

T
o
u
r

C
o
st

Population Size

ACO VTPSO

ABCSS DSMO

rat99

700

750

800

850

900

950

0 100 200 300 400 500

T
o
u
r

C
o
st

Population Size

ACO VTPSO

ABCSS DSMO
gr137

It looks interesting from the figure that DSMO is the best in general for any population size

for all three instances. As an example, for the gr137 instance ACO, VTPSO, ABCSS and

DSMO showed tout costs of 925.05, 782.03, 1034.01 and 763.03, respectively when the

population size was 20. The tour costs became 923.57, 774.07, 809.83 and 737.44 for

population size increased to 100. VTPSO and ABCSS achieved the best tour costs of 756.96

and 748.69, respectively at population size of 500. On the other hand, the achieved best tour

cost of DSMO is better than VTPSO / ABCSS; the achieved value is 724.46 at population size

300. Comparing the results of all the instances, proposed DSMO has shown better results in

different population sizes outperforming other the methods.

4.3 Experimental Results and Performance Comparison

The experimental results of the proposed DSMO in solving the suite of 45 benchmark TSPs

are compared with ACO, VTPSO and ABCSS. For the fairness in comparison, the population

size was kept between 100 and 300 since the outcomes did not change significantly for larger

population size. On the other hand, the iteration was fixed at 500 for ACO, VTPSO and DSMO

as termination criteria; for ABCSS the iteration was varied up to 1000. The best outcome for

different population sizes (i.e., 100, 200 and 300) for a particular instance by a method is

considered in the comparison.

 Table I compares the performance of ACO, VTPSO, ABCSS and DSMO on 20 different

runs for each TSP instance. For a better evaluation, SD values of 20 runs are placed with

average value for a particular instance. Since the best solution having the minimum tour cost

from different runs may use as the outcome, minimum tour cost from different runs are also

included in performance evaluation and placed in the table. For both average and minimum

tour costs, the best value (i.e., smallest cost) among the three methods was shown in bold-face

type and the worst value (i.e., biggest cost) was indicated by underlined face type. Average on

all the instances and best/worst count are shown at the bottom of the table. It indicates how

many instances a method gave the best/worst result. A pairwise summary Victory-Draw-

Defeat from Table I for all the methods are also presented in Table II for the pairwise algorithm

comparison.

On the basis of average tour cost in Table I for all the instances, DSMO is the best and

ABCSS is the worst among the four methods. The average tour cost of DSMO was 24342.29

for all 45 instances. The accomplished average tour costs of ACO, VTPSO and ABCSS were

26310.95, 24682.71 and 29452.21, respectively. In the Best/Worst count for individual

instances, DSMO showed the best results for 20 cases out of 45 instances; and remaining 25

cases it showed competitive results and did not showed the worst for any one. ABCSS showed

the best average tour costs for 17 cases outperforming ACO (best for no one) and VTPSO (the

best for only two cases). It is observable that for which ABCSS showed best results are small

in size (and less than 150) and other small sized instances ABCSS outperformed or competitive

to other methods. ACO, on the other hand, is found worst for small sized instance except gr17;

all four methods showed the same tour cost of 2332.58 for the instance. In general, VTPSO,

ABCSS and DSMO showed competitive performance for small sized instances; the methods

showed the same performance (e.g., burma14, gr21, fri26) for several small sized instances.

TABLE I. PERFORMANCE COMPARISON AMONG ACO, VTPSO AND DSMO TO SOLVE BENCHMARK TSPS.

SL
TSP

Instance

Average Tour Cost (Standard Deviation) Minimum Tour Cost

ACO VTPSO ABCSS DSMO ACO VTPSO ABCSS DSMO

1 burma14 31.21 (0) 30.87 (0) 30.87 (0) 30.87 (0) 31.21 30.87 30.87 30.87

2 ulysses16 77.13 (0) 73.99 (0) 74 (0) 73.99 (0) 77.13 73.99 73.99 73.99

3 gr17 2332.58 (0) 2332.58 (0) 2332.58 (0) 2332.58 (0) 2332.58 2332.58 2332.58 2332.58

4 gr21 2953.46 (2.67) 2672.27 (0) 2672.27 (0) 2672.27 (0) 2949.81 2672.27 2672.27 2672.27

5 ulysses22 86.71 (0.45) 75.33 (0.06) 75.37 (0.18) 75.4 (0.02) 84.78 75.31 75.31 75.31

6 gr24 1267.13 (0) 1249.78 (0) 1260.81 (17.48) 1249.78 (0) 1267.13 1249.82 1249.82 1249.82

7 fri26 646.48 (0) 635.58 (0) 635.58 (0) 635.58 (0) 646.48 635.58 635.58 635.58

8 bayg29 9964.78 (0) 9078 (17.61) 9107.63 (43.25) 9074.15 (0) 9964.78 9074.15 9074.15 9074.15

9 hk48 12733 (78.99) 11376 (281.4) 11283.3 (144.19) 11296 (215.76) 12699.86 11104.67 11104.67 11104.67

10 eil51 504.97 (1.86) 439.87 (5.65) 437.01 (4.98) 436.96 (4.73) 499.92 429.51 428.98 428.86

11 berlin52 8078.82 (49.05) 7728 (161.8) 7807.86 (177.55) 7633.6 (85.4) 7870.45 7544.37 7544.37 7544.37

12 st70 749.19 (8.28) 711.5 (14.57) 690.5 (5.35) 702.64 (15.04) 734.19 682.57 682.57 677.11

13 eil76 598.99 (8.22) 569.1 (9.12) 561.48 (7.21) 572.7 (7.56) 581.42 559.25 550.24 558.68

14 pr76 127181.5 (172.01) 112549.2 (1420) 109758.57 (850.64) 111299.3 (2050.48) 127025.9 109586.1 108879.7 108159.4

15 gr96 588.92 (7.93) 537.92 (11.89) 523.31 (8.93) 530.45 (7.29) 563.77 515.27 512.2 518.38

16 rat99 1369.2 (0.85) 1325.8 (34.83) 1265.93 (13.54) 1291.93 (21.07) 1366.3 1256.25 1242.32 1225.56

17 kroa100 24659.09 (66.87) 22400.48 (529.13) 21878.83 (455.63) 22024.27 (508.89) 24504.9 21307.44 21299 21298.21

18 kroB100 24937 (284.08) 23236.43 (522.63) 22707.96 (259.83) 23022.37 (277.32) 24664.13 22475.67 22229.71 22308

19 rd100 9406.56 (91.14) 8502.73 (167.7) 8207.8 (172.52) 8377.76 (209.4) 9120.92 8094.75 7944.32 8041.3

20 eil101 732.86 (7.48) 679.14 (13.29) 662.63 (7.13) 674.4 (10.97) 715.35 653.16 646.05 648.66

21 lin105 15785.33 (421.1 15684.64 (610.38) 14766.55 (263.01) 15114 (500.76) 15364.58 14581.58 14406.12 14383

22 pr107 46535 (129.95) 45287.9 (1207.52) 44927.27 (319.03) 45666.99 (1300.43) 46317.71 44436.25 44525.68 44385.86

23 pr124 65145.25 (0) 63939.97 (1739.4) 59772.68 (516.56) 62443.49 (1644.93) 65145.25 61076.73 59030.74 60285.21

24 pr136 110946.3 (322.83) 102945.7 (1688.2) 101795.57 (1916.45) 102872 (2855.28) 110872.2 99247.01 97853.91 97538.68

25 gr137 927.44 (9.99) 765.21 (22.25) 738.5 (14.44) 736.67 (15.61) 896.07 714.18 713.91 709.48

26 kroA150 31170.42 (365.45) 28262.98 (455.95) 27971.36 (554.5) 28354.09 (524.91) 30546.06 27232.1 26981.98 27591.44

27 kroB150 29922.94 (961.65) 27987.85 (620.72) 27653.49 (509.24) 27576.16 (625.26) 29124.59 26579.73 26760.79 26601.94

28 pr152 79423 (198.43) 76272.37 (1199.9) 76097.48 (904.45) 76526.77 (1663.08) 79153.02 74414.17 74337.62 74243.91

29 u159 47615.78 (242.53) 45441.55 (1178.06) 45234.92 (1212.54) 42598.3 (0) 47514.43 43579.82 42862.51 42598.3

30 rat195 2555.3 (26.41) 2554.1 (47.56) 2579.27 (44.14) 2488.55 (50.48) 2534.83 2452.92 2469.31 2372.89

31 d198 17374 (111.15) 16489.28 (206.79) 16483.73 (162.08) 16270.47 (171.2) 17301.47 16066.44 16270.22 15978.13

32 kroA200 34547.69 (0) 31502.33 (531.41) 31938.81 (656.84) 31828.64 (652.32) 34547.69 30602.81 30701.86 30481.35

33 kroB200 35109.8 (280.51) 31923.15 (553.02) 32208.73 (526.77) 31781.62 (487.39) 34207.79 30767.52 31508.85 30716.5

34 gr202 554.58 (6.19) 513.04 (7.24) 520.13 (6.11) 508.81 (4.08) 545.33 497.02 507.27 501.83

35 tsp225 4544.82 (54.17) 4210.65 (66.44) 4276.92 (72.8) 4162.79 (66.08) 4396.39 4095.01 4140.24 4013.68

36 pr226 90501.47 (0.02) 88031.31 (3461.96) 87400.6 (3482.64) 85935.69 (2105.13) 90501.46 81050.23 82266 83587.98

37 gr229 1915.45 (21.82) 1736.35 (26.19) 1764.79 (22.28) 1730.46 (20.05) 1865.63 1676.46 1713.54 1683.45

38 gil262 2787.01 (31.83) 2631.69 (39.44) 2839.11 (73.01) 2627.87 (42.39) 2730.52 2547.16 2713.75 2543.15

39 pr299 57509.4 (444.01) 53154.34 (1389.36) 67620.95 (2092.63) 51747.99 (863.32) 56700.65 50571.83 64464.76 50579.82

40 lin318 48583.74 (560.27) 46209.53 (773.01) 61902.84 (3824.65) 45460.25 (660.47) 47442.95 44724.38 55744.52 44118.66

41 linhp318 48333.33 (415.2) 46329.87 (948.05) 60853.66 (2306.85) 45730.57 (929.73) 47577.77 44337.02 56834.19 43831.44

42 fl417 13618.22 (209.51) 12980.24 (311.88) 27237.13 (2479.9) 12950.77 (360.99) 13296.85 12376.53 22253.99 12218.98

43 gr431 2374.72 (16.03) 2061.72 (30.34) 3630.03 (201.42) 2042.77 (24.08) 2334.63 2021.95 3284.99 1993.15

44 pr439 127523 (224.55) 119442.2 (2770.58) 244192.44 (21576.5) 116379.2 (2462.82) 127228 112088 206233.14 112105.2

45 d493 39789 (407.83) 38159.18 (603.84) 78968.31 (5776.85) 37861.14 (426.97) 39254 37132.09 68556.68 36844.63

Average 26310.95 24682.71 29452.21 24342.29 26113.35 23671.61 27474.34 23568.14 23568.14

Best/Worst 0/27 2/0 17/16 20/0 0/28 6/0 8/11 20/0 37/0

But ABCSS found inferior to others for large sized instances; rat195 and larger cases (i.e., 16

largest instances), it showed worst tour costs. On the other hand, DSMO showed significantly

better performance for large sized instances; it showed the best tour costs for all the instances

having instance size larger than 200 (i.e., gr202 to d493).

SD value with average achieved tour cost for a particular in Table I reflects the variability

of 20 individual runs by a method in solving an instance. For solving TSP, ACO starts placing

different ants in different cities, its initialization did not differ much among individual runs.

Therefore, the tour costs of ACO in different runs were found consistent showing lower SD

values with respect to other well-known existing methods including VTPSO [90]. For small

instances (where the number of cities is small) like ulysses16, bays29 the tour cost for all 20

individual runs are the same, so the SD of the average tour cost was zero. On the other hand,

VTPSO gives higher variant outcomes among different runs showing the larger SD value. But

it is interesting to observe from the results presented in Table I that the SD value of DSMO is

lower than VTPSO in general. On the other hand, SD values of ABCSS are shown lower values

for small sized instances (for which the method performed well) but the method showed larger

SD values for large sized instances (for which the performed worse). As an example, ACO

achieved an average tour cost of 1369.2 with SD of 0.85 in case of rat99. For the same instance,

VTPSO, ABCSS and DSMO achieved average tour costs of 1325.8 (with SD 34.83), 1265.93

(with SD 13.54) and 1291.93 (with SD 21.07), respectively.

The best result may use the outcome of a method after several runs; therefore, the achieved

minimum tour cost from 20 runs were also compared in Table I. For small sized 12 instances,

VTPSO, ABCSSS and DSMO showed competitive performance and all three methods showed

same tour cost for nine instances whose size below 50 (i.e., burma14 to hk48). For rest 33

instances, best minimum tour cost achievements are distributed as 20, 8, and 6 cases for

DSMO, ABCSS and VTPSO, respectively. ABCSS showed the best minimum tour costs for

small sized instances, i.e., instance size less than 150; DSMO is generally showed the best

minimum tour cost for large sized instances. Again, ACO showed worst minimum tour costs

in 28 small sized instances showing best result for no one. On the other hand, ABCSS showed

worst results for 11 large sized instances; but VTPSO and DSMO did not showed worst for

none of the instance. The results revealed that DSMO is an effective method to TSP.

Table II presents pairwise Victory-Draw-Defeat summary among the methods based on the

results presented in Table I and discussed already. On the basis of average tour costs presented

in Table II(A), ACO was worse than DSMO and VTPSO in all the cases except gr17. For gr17,

all the methods achieved same tour cost of 2332.58 as seen in Table I. ABCSS outperformed

ACO for 35 cases but it was inferior to ACO nine cases. ABCSS outperformed VTPSO in 24

cases whereas it found inferior for other 19 cases. Between DSMO and VTPSO, DSMO was

better than VTPSO for 33 cases and DSMO was inferior to VTPSO six cases only; and the rest

six cases both the methods give the same result. DSMO also found better than ABCSS showing

better for 24 cases; among rest 21 cases ABCSS outperformed for 18 cases and showed same

result of DSMO for three cases. Victory-Draw-Defeat summary on the basis of average

minimum tour costs presented in Table II(B) are found similar to Table II(A) and DMSO is

outperformed individually ACO, VTPSO and ABCSS for 44, 27 and 27 cases, respectively.

Wilcoxon signed ranks test was carried out to decide the importance of variance in results

of DSMO with ACO, VTPSO and ABCSS. It is a nonparametric procedure employed in

hypothesis testing situations, involving a design with two samples to detect significant

differences between two sample means, that is, the behaviour of two algorithms [95]. Table III

shows the test outcomes between DSMO and the rest of algorithms. Equal values are discarded

(EVD) from the test; and then R+ (sum of positive ranks) and R- (sum of negative ranks) are

measured. Test value T is the minimum of positive and negative rank sums and its critical value

(i.e., TCrit.) is collected from the distribution table. Table III shows the R+, R-, and p-values

computed for all the pairwise comparisons relating to DSMO. The values have been computed

according to [95], [96]. As the table states, DSMO shows a significant improvement over ACO

and VTPSO with a level of significance α = 0.001, and over ABCSS with α = 0.2. The

competitive performance of ABCSS with DSMO is logical because it uses different SS based

rules and K-opt operation in different phases. Finally, DSMO is undeniably a good choice to

solve TSP taking into account of the results presented in Table I and significant test

summarized in Table II and Table III.

5. CONCLUSIONS

TSP is one of the popular combinatorial problem and new techniques are being proposed to

solve it. In this paper, a new method namely Discrete Spider Monkey Optimization (DSMO)

is proposed to solve TSP. Standard SMO is a recently developed SI method for function

optimization. DSMO is developed modifying basics of SMO as well as introducing new

TABLE II. PAIRWISE VICTORY-DRAW-DEFEAT SUMMARY OF RESULTS PRESENTED IN TABLE I

(A) SUMMARY ON AVERAGE TOUR COST

Method ACO VTPSO ABCSS DSMO

ACO - 44-1-0 35-1-9 44-1-0

VTPSO - 24-2-19 33-6-6

ABCSS - 24-3-18

(B) SUMMARY ON MINIMUM TOUR COST

Method ACO VTPSO ABCSS DSMO

ACO - 44-1-0 37-1-7 44-1-0

VTPSO - 16-11-18 27-10-8

ABCSS - 27-10-8

TABLE III. WILCOXON SIGEND RANKS TEST OF DSMO W.R.T. ACO, VTPSO AND ABCSS ON BASIS OF AVERAGE TOUR COSTS PRESNETED IN

TABLE I..

Comparison
No of EVD

from test
R+ R- T = Min (R+, R-) TCrit. for (45- EVD) p-value

DSMO versus ACO 1 990 0 0 220 7.6159E-09

DSMO versus VTPSO 6 676 104 104 161 6.57594E-05

DSMO versus ABCSS 3 560 343 343 195 0.174893237

operations to be applicable to TSP. In DSMO, individual spider monkey represents a TSP

solution. In every iteration, the spider monkey tries to update considering the Local Leader and

the Global Leader solutions. Swap Sequence (SS), Swap Operator (SO) and related procedures

are developed and applied to improve TSP solutions of individual monkeys. Grouping spider

monkeys and updating a monkey interacting with group leader (i.e., best within a group) and

Global Leader (i.e., best among all the groups) in two different stages is the significant property

of DSMO. At first, SS with several SOs is measured for a particular monkey and the best

solution is considered for the implication of several or all SOs of the SS. DSMO has been

tested on a large suite of TSPs from benchmark repository and revealed as the best suited

method for solving TSP. Idea of solving TSP in DMSO based on the intelligent behaviour of

spider monkeys has opened a new direction to solve other discrete optimization tasks. Solving

different scheduling and routing problems extending conceiving ideas from DMSO might be

interesting and remained as a future study.

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley Publishing Company, 1989.

[2] A. E. Eiben and J. Smith, “From evolutionary computation to the evolution of things,” Nature,

vol. 521, no. 7553, pp. 476–482, May 2015.

[3] R. M. Brady, “Optimization strategies gleaned from biological evolution,” Nature, vol. 317, no.

6040, pp. 804–806, Oct. 1985.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for optimization from social insect

behaviour,” Nature, vol. 406, no. 6791, pp. 39–42, Jul. 2000.

[5] K. Luo, “Enhanced grey wolf optimizer with a model for dynamically estimating the location of

the prey,” Appl. Soft Comput. J., vol. 77, pp. 225–235, 2019.

[6] F. B. Ozsoydan and A. Baykasoglu, “A swarm intelligence-based algorithm for the set-union

knapsack problem,” Futur. Gener. Comput. Syst., vol. 93, pp. 560–569, Apr. 2019.

[7] M. S. Rahman Tanveer, M. J. Islam, and M. Akhand, “A Comparative Study on Prominent

Swarm Intelligence Methods for Function Optimization,” Glob. J. Technol. Optim., vol. 07, no.

03, pp. 1–8, 2017.

[8] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 -

International Conference on Neural Networks, 1995, vol. 4, pp. 1942–1948.

[9] H.-C. Tsai and Y.-H. Lin, “Modification of the fish swarm algorithm with particle swarm

optimization formulation and communication behavior,” Appl. Soft Comput., vol. 11, no. 8, pp.

5367–5374, Dec. 2011.

[10] F. Vandenbergh and A. Engelbrecht, “A study of particle swarm optimization particle

trajectories,” Inf. Sci. (Ny)., vol. 176, no. 8, pp. 937–971, Apr. 2006.

[11] S. Imran Hossain, M. A. H. Akhand, M. I. R. Shuvo, N. Siddique, and H. Adeli, “Optimization

of University Course Scheduling Problem using Particle Swarm Optimization with Selective

Search,” Expert Syst. Appl., vol. 127, pp. 9–24, Aug. 2019.

[12] A. Alexandridis, E. Paizis, E. Chondrodima, and M. Stogiannos, “A particle swarm optimization

approach in printed circuit board thermal design,” Integr. Comput. Aided. Eng., vol. 24, no. 2,

pp. 143–155, Mar. 2017.

[13] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating

agents,” IEEE Trans. Syst. Man Cybern. Part B, vol. 26, no. 1, pp. 29–41, 1996.

[14] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the

traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[15] S. Sharma and P. Bhambu, “Artificial Bee Colony Algorithm: A Survey,” Int. J. Comput. Appl.,

vol. 149, no. 4, pp. 11–19, Sep. 2016.

[16] D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Appl.

Math. Comput., vol. 214, no. 1, pp. 108–132, Aug. 2009.

[17] J. Simpson and K. von Frisch, “The Dance Language and Orientation of Bees,” J. Anim. Ecol.,

vol. 38, no. 2, p. 460, Jun. 1969.

[18] X.-S. Yang, “Firefly Algorithms,” in Nature-Inspired Optimization Algorithms, Elsevier, 2014,

pp. 111–127.

[19] K. N. Krishnanand and D. Ghose, “Glowworm swarm optimization for simultaneous capture of

multiple local optima of multimodal functions,” Swarm Intell., vol. 3, no. 2, pp. 87–124, Jun.

2009.

[20] X. S. Yang, “Bat algorithm for multi-objective optimisation,” Int. J. Bio-Inspired Comput., vol.

3, no. 5, p. 267, 2011.

[21] F. B. Ozsoydan and A. Baykasoglu, “Analysing the effects of various switching probability

characteristics in flower pollination algorithm for solving unconstrained function minimization

problems,” Neural Comput. Appl., vol. 2, pp. 1–15, 2018.

[22] M. A. Al-Betar, M. A. Awadallah, I. Abu Doush, A. I. Hammouri, M. Mafarja, and Z. A. A.

Alyasseri, “Island flower pollination algorithm for global optimization,” J. Supercomput., Mar.

2019.

[23] K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE

Control Syst., vol. 22, no. 3, pp. 52–67, Jun. 2002.

[24] H. Chen, B. Niu, L. Ma, W. Su, and Y. Zhu, “Bacterial colony foraging optimization,”

Neurocomputing, vol. 137, pp. 268–284, Aug. 2014.

[25] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, “Salp Swarm

Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol.

114, pp. 163–191, 2017.

[26] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp.

46–61, Mar. 2014.

[27] S. He, Q. H. Wu, and J. R. Saunders, “Group Search Optimizer: An Optimization Algorithm

Inspired by Animal Searching Behavior,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 973–

990, Oct. 2009.

[28] J. C. Bansal, H. Sharma, S. S. Jadon, and M. Clerc, “Spider Monkey Optimization algorithm for

numerical optimization,” Memetic Comput., vol. 6, no. 1, pp. 31–47, Mar. 2014.

[29] F. B. Ozsoydan, “Artificial search agents with cognitive intelligence for binary optimization

problems,” Comput. Ind. Eng., vol. 136, pp. 18–30, Oct. 2019.

[30] R. Matai, S. Singh, and M. Lal, “Traveling Salesman Problem: an Overview of Applications,

Formulations, and Solution Approaches,” in Traveling Salesman Problem, Theory and

Applications, InTech, 2010, pp. 1–24.

[31] M. A. H. Akhand, S. Akter, S. Sazzadur Rahman, and M. M. Hafizur Rahman, “Particle Swarm

Optimization with partial search to solve Traveling Salesman Problem,” in 2012 International

Conference on Computer and Communication Engineering (ICCCE), 2012, pp. 118–121.

[32] I. Khan and M. K. Maiti, “A swap sequence based Artificial Bee Colony algorithm for Traveling

Salesman Problem,” Swarm Evol. Comput., vol. 44, no. November 2016, pp. 428–438, Feb.

2019.

[33] M. A. H. Akhand, S. Akter, M. A. Rashid, and S. B. Yaakob, “Velocity tentative PSO: An

optimal velocity implementation based particle swarm optimization to solve traveling salesman

problem,” IAENG Int. J. Comput. Sci., vol. 42, no. 3, pp. 1–12, 2015.

[34] C. R. Carpenter, “Behavior of Red Spider Monkeys in Panama,” J. Mammal., vol. 16, no. 3, p.

171, Aug. 1935.

[35] R. O. Deaner, C. P. van Schaik, and V. Johnson, “Do Some Taxa Have Better Domain-General

Cognition than others? A Meta-Analysis of Nonhuman Primate Studies,” Evol. Psychol., vol. 4,

no. 1, p. 147470490600400, Jan. 2006.

[36] M. M. Symington, “Fission-fusion social organization inAteles andPan,” Int. J. Primatol., vol.

11, no. 1, pp. 47–61, Feb. 1990.

[37] K. Gupta, K. Deep, and J. C. Bansal, “Spider monkey optimization algorithm for constrained

optimization problems,” Soft Comput., vol. 21, no. 23, pp. 6933–6962, 2017.

[38] V. Agrawal, R. Rastogi, and D. C. Tiwari, “Spider Monkey Optimization: a survey,” Int. J. Syst.

Assur. Eng. Manag., vol. 9, no. 4, pp. 929–941, 2018.

[39] A. Sharma, H. Sharma, A. Bhargava, and N. Sharma, “Power law-based local search in spider

monkey optimisation for lower order system modelling,” Int. J. Syst. Sci., vol. 48, no. 1, pp. 150–

160, Jan. 2017.

[40] A. A. Al-Azza, A. A. Al-Jodah, and F. J. Harackiewicz, “Spider Monkey Optimization: A Novel

Technique for Antenna Optimization,” IEEE Antennas Wirel. Propag. Lett., vol. 15, no. c, pp.

1016–1019, 2016.

[41] R. Cheruku, D. R. Edla, and V. Kuppili, “SM-RuleMiner: Spider monkey based rule miner using

novel fitness function for diabetes classification,” Comput. Biol. Med., vol. 81, pp. 79–92, Feb.

2017.

[42] J. Dhar and S. Arora, “Designing fuzzy rule base using Spider Monkey Optimization Algorithm

in cooperative framework,” Futur. Comput. Informatics J., vol. 2, no. 1, pp. 31–38, 2017.

[43] R. Rohilla, V. Sikri, and R. Kapoor, “Spider monkey optimisation assisted particle filter for

robust object tracking,” IET Comput. Vis., vol. 11, no. 3, pp. 207–219, 2016.

[44] A. Kaur, “Comparison Analysis of CDMA Multiuser Detection using PSO and SMO,” Int. J.

Comput. Appl., vol. 133, no. 2, pp. 47–50, Jan. 2016.

[45] U. Singh, R. Salgotra, and M. Rattan, “A Novel Binary Spider Monkey Optimization Algorithm

for Thinning of Concentric Circular Antenna Arrays,” IETE J. Res., vol. 62, no. 6, pp. 736–744,

2016.

[46] B. Omkar, D. Preet, D. Swarada, and D. Poonam, “Dengue Fever classification using SMO

Optimization Algorithm,” Int. Res. J. Eng. Technol., vol. 4, no. 10, pp. 1683–1686, 2017.

[47] K. Selvam and D. M. V. Kumar, “International journal of renewable energy research IJRER.,”

Int. J. Renew. Energy Res., vol. 7, no. 1, pp. 146–156, 2017.

[48] A. F. Ali, “An Improved Spider Monkey Optimization for Solving a Convex Economic Dispatch

Problem,” in Modeling and Optimization in Science and Technologies, 2017, pp. 425–448.

[49] M. Ehteram, H. Karami, and S. Farzin, “Reducing Irrigation Deficiencies Based Optimizing

Model for Multi-Reservoir Systems Utilizing Spider Monkey Algorithm,” Water Resour.

Manag., vol. 32, no. 7, pp. 2315–2334, May 2018.

[50] N. Mittal, U. Singh, R. Salgotra, and B. S. Sohi, “A boolean spider monkey optimization based

energy efficient clustering approach for WSNs,” Wirel. Networks, vol. 24, no. 6, pp. 2093–2109,

2018.

[51] P. R. Singh, M. A. Elaziz, and S. Xiong, “Modified Spider Monkey Optimization based on

Nelder–Mead method for global optimization,” Expert Syst. Appl., vol. 110, pp. 264–289, Nov.

2018.

[52] R. K. Sandeep Kumar, Vivek Kumar Sharma, “Self-Adaptive Spider Monkey Optimization

Algorithm for Engineering Optimization Problems,” Int. J. Information, Commun. Comput.

Technol., vol. 2, no. 2, pp. 96–107, 2014.

[53] S. Kumar, V. K. Sharma, and R. Kumari, “Modified Position Update in Spider Monkey

Optimization Algorithm,” Int. J. Emerg. Technol. Comput. Appl. Sci., vol. 7, no. April, pp. 198–

204, 2014.

[54] S. Kumar, R. Kumari, and V. K. Sharma, “Fitness Based Position Update in Spider Monkey

Optimization Algorithm,” Procedia Comput. Sci., vol. 62, pp. 442–449, 2015.

[55] A. Sharma, A. Sharma, B. K. Panigrahi, D. Kiran, and R. Kumar, “Ageist Spider Monkey

Optimization algorithm,” Swarm Evol. Comput., vol. 28, pp. 58–77, 2016.

[56] M. Nagy, Z. Ákos, D. Biro, and T. Vicsek, “Hierarchical group dynamics in pigeon flocks,”

Nature, vol. 464, no. 7290, pp. 890–893, Apr. 2010.

[57] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective leadership and decision-making

in animal groups on the move,” Nature, vol. 433, no. 7025, pp. 513–516, Feb. 2005.

[58] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative Co-Evolution With Differential

Grouping for Large Scale Optimization,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 378–

393, Jun. 2014.

[59] F. B. Ozsoydan and A. Baykasoglu, “A multi-population firefly algorithm for dynamic

optimization problems,” in 2015 IEEE International Conference on Evolving and Adaptive

Intelligent Systems (EAIS), 2015, pp. 1–7.

[60] F. B. Ozsoydan and A. Baykasoğlu, “Quantum firefly swarms for multimodal dynamic

optimization problems,” Expert Syst. Appl., 2019.

[61] A. Schrijver, “On the History of Combinatorial Optimization (Till 1960),” Handbooks in

Operations Research and Management Science. 2005.

[62] S. Ahn, S. Lee, and H. Bahn, “A smart elevator scheduler that considers dynamic changes of

energy cost and user traffic,” Integr. Comput. Aided. Eng., vol. 24, no. 2, pp. 187–202, Mar.

2017.

[63] S. A. Bagloee, M. Sarvi, M. Patriksson, and M. Asadi, “Optimization for Roads’ Construction:

Selection, Prioritization, and Scheduling,” Comput. Civ. Infrastruct. Eng., vol. 33, no. 10, pp.

833–848, Oct. 2018.

[64] M. Alinizzi, S. Chen, S. Labi, and A. Kandil, “A Methodology to Account for One-Way

Infrastructure Interdependency in Preservation Activity Scheduling,” Comput. Civ. Infrastruct.

Eng., vol. 33, no. 11, pp. 905–925, Nov. 2018.

[65] S. Xie, C. Lei, and Y. Ouyang, “A Customized Hybrid Approach to Infrastructure Maintenance

Scheduling in Railroad Networks under Variable Productivities,” Comput. Civ. Infrastruct. Eng.,

vol. 33, no. 10, pp. 815–832, Oct. 2018.

[66] J. D. García-Nieves, J. L. Ponz-Tienda, A. Salcedo-Bernal, and E. Pellicer, “The Multimode

Resource-Constrained Project Scheduling Problem for Repetitive Activities in Construction

Projects,” Comput. Civ. Infrastruct. Eng., vol. 33, no. 8, pp. 655–671, Aug. 2018.

[67] T.-Y. Liao, “On-Line Vehicle Routing Problems for Carbon Emissions Reduction,” Comput. Civ.

Infrastruct. Eng., vol. 32, no. 12, pp. 1047–1063, Dec. 2017.

[68] V. Zverovich, L. Mahdjoubi, P. Boguslawski, and F. Fadli, “Analytic Prioritization of Indoor

Routes for Search and Rescue Operations in Hazardous Environments,” Comput. Civ.

Infrastruct. Eng., vol. 32, no. 9, pp. 727–747, Sep. 2017.

[69] K. L. Hoffman, M. Padberg, and G. Rinaldi, “Traveling Salesman Problem,” in Encyclopedia of

Operations Research and Management Science, Boston, MA: Springer US, 2013, pp. 1573–

1578.

[70] N. Siddique and H. Adeli, “Nature Inspired Computing: An Overview and Some Future

Directions,” Cognit. Comput., vol. 7, no. 6, pp. 706–714, Dec. 2015.

[71] N. H. Siddique and H. Adeli, Nature-Inspired Computing: Physics and Chemistry-Based

Algorithms. CRC Press/Taylor & Francis Group, 2017.

[72] J. Grefenstette, R. Gopal, B. Roamaita, and D. Van Gucht, “Evolutionary Computation and the

Traveling Salesman Problem,” in Evolutionary Computation, IEEE, 2009, pp. 523–540.

[73] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, “Genetic algorithms

for the travelling salesman problem: A review of representations and operators,” Artif. Intell.

Rev., vol. 13, no. 2, pp. 129–170, 1999.

[74] J. Y. Potvin, “Genetic Algorithms for Travelling Salesman Problem,” Ann. Oper. Res., vol. 63,

pp. 339–370, 1996.

[75] N. Siddique and H. Adeli, “Simulated Annealing, Its Variants and Engineering Applications,”

Int. J. Artif. Intell. Tools, vol. 25, no. 06, p. 1630001, Dec. 2016.

[76] P. J. M. V. L. E. H. L. Aarts, J. H. M. Korst, “A Quantitative Analysis of Simulated Annealing

Algorithm: A Case Study for Travelling Salesman problem,” J. Stat. Phys., vol. 50, pp. 189–206,

1988.

[77] V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm,” J. Optim. Theory Appl., vol. 45, no. 1, pp. 41–51, Jan. 1985.

[78] X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, “Solving the traveling salesman problem based

on an adaptive simulated annealing algorithm with greedy search,” Appl. Soft Comput., vol. 11,

no. 4, pp. 3680–3689, Jun. 2011.

[79] N. Siddique and H. Adeli, “Physics-based search and optimization: Inspirations from nature,”

Expert Syst., vol. 33, no. 6, pp. 607–623, Dec. 2016.

[80] N. Javadian, M. Gol Alikhani, and R. Tavakkoli-Moghaddam, “A discrete binary version of the

electromagnetism-like heuristic for solving traveling salesman problem,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2008.

[81] N. Siddique and H. Adeli, “Gravitational Search Algorithm and Its Variants,” Int. J. Pattern

Recognit. Artif. Intell., vol. 30, no. 08, p. 1639001, Sep. 2016.

[82] N. Siddique and H. Adeli, “Applications of Gravitational Search Algorithm in Engineering,” J.

Civ. Eng. Manag., vol. 22, no. 8, pp. 981–990, Nov. 2016.

[83] M. B. Dowlatshahi, H. Nezamabadi-pour, and M. Mashinchi, “A discrete gravitational search

algorithm for solving combinatorial optimization problems,” Inf. Sci. (Ny)., vol. 258, pp. 94–107,

Feb. 2014.

[84] A. Montero, I. Méndez-Díaz, and J. J. Miranda-Bront, “An integer programming approach for

the time-dependent traveling salesman problem with time windows,” Comput. Oper. Res., vol.

88, pp. 280–289, Dec. 2017.

[85] Y. Salii, “Revisiting dynamic programming for precedence-constrained traveling salesman

problem and its time-dependent generalization,” Eur. J. Oper. Res., vol. 272, no. 1, pp. 32–42,

Jan. 2019.

[86] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for optimization from social insect

behaviour,” Nature, vol. 406, no. 6791, pp. 39–42, Jul. 2000.

[87] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling salesman problem,”

Biosystems, vol. 43, no. 2, pp. 73–81, Jul. 1997.

[88] J. B. Escario, J. F. Jimenez, and J. M. Giron-Sierra, “Ant colony extended: Experiments on the

travelling salesman problem,” Expert Syst. Appl., vol. 42, no. 1, pp. 390–410, 2015.

[89] J. Yang, X. Shi, M. Marchese, and Y. Liang, “An ant colony optimization method for generalized

TSP problem,” Prog. Nat. Sci., vol. 18, no. 11, pp. 1417–1422, Nov. 2008.

[90] M. A. H. Akhand, S. Akter, and M. A. Rashid, “Velocity Tentative Particle Swarm Optimization

to solve TSP,” in 2013 International Conference on Electrical Information and Communication

Technology (EICT), 2014, pp. 1–6.

[91] Kang-Ping Wang, Lan Huang, Chun-Guang Zhou, and Wei Pang, “Particle swarm optimization

for traveling salesman problem,” in Proceedings of the 2003 International Conference on

Machine Learning and Cybernetics (IEEE Cat. No.03EX693), 2003, pp. 1583–1585.

[92] J. Zhang and W. Si, “Improved Enhanced Self-Tentative PSO algorithm for TSP,” in 2010 Sixth

International Conference on Natural Computation, 2010, pp. 2638–2641.

[93] V. Pandiri and A. Singh, “A hyper-heuristic based artificial bee colony algorithm for k -

Interconnected multi-depot multi-traveling salesman problem,” Inf. Sci. (Ny)., vol. 463–464, pp.

261–281, Oct. 2018.

[94] “TSPLIB – library of sample symmetric Traveling Salesman Problem instance.,” 1995. [Online].

Available: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/.

[95] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric

statistical tests as a methodology for comparing evolutionary and swarm intelligence

algorithms,” Swarm Evol. Comput., vol. 1, no. 1, pp. 3–18, 2011.

[96] C. Zaiontz, “Wilcoxon Signed-Ranks Test,” Real Statistics Using Excel. [Online]. Available:

http://www.real-statistics.com/non-parametric-tests/wilcoxon-signed-ranks-test/.

