3,621 research outputs found

    NCBO Ontology Recommender 2.0: An Enhanced Approach for Biomedical Ontology Recommendation

    Get PDF
    Biomedical researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers to determine which ones to reuse for their specific needs. To overcome this problem, in 2010 the National Center for Biomedical Ontology (NCBO) released the Ontology Recommender, which is a service that receives a biomedical text corpus or a list of keywords and suggests ontologies appropriate for referencing the indicated terms. We developed a new version of the NCBO Ontology Recommender. Called Ontology Recommender 2.0, it uses a new recommendation approach that evaluates the relevance of an ontology to biomedical text data according to four criteria: (1) the extent to which the ontology covers the input data; (2) the acceptance of the ontology in the biomedical community; (3) the level of detail of the ontology classes that cover the input data; and (4) the specialization of the ontology to the domain of the input data. Our evaluation shows that the enhanced recommender provides higher quality suggestions than the original approach, providing better coverage of the input data, more detailed information about their concepts, increased specialization for the domain of the input data, and greater acceptance and use in the community. In addition, it provides users with more explanatory information, along with suggestions of not only individual ontologies but also groups of ontologies. It also can be customized to fit the needs of different scenarios. Ontology Recommender 2.0 combines the strengths of its predecessor with a range of adjustments and new features that improve its reliability and usefulness. Ontology Recommender 2.0 recommends over 500 biomedical ontologies from the NCBO BioPortal platform, where it is openly available.Comment: 29 pages, 8 figures, 11 table

    A text-mining system for extracting metabolic reactions from full-text articles

    Get PDF
    Background: Increasingly biological text mining research is focusing on the extraction of complex relationships relevant to the construction and curation of biological networks and pathways. However, one important category of pathway—metabolic pathways—has been largely neglected. Here we present a relatively simple method for extracting metabolic reaction information from free text that scores different permutations of assigned entities (enzymes and metabolites) within a given sentence based on the presence and location of stemmed keywords. This method extends an approach that has proved effective in the context of the extraction of protein–protein interactions. Results: When evaluated on a set of manually-curated metabolic pathways using standard performance criteria, our method performs surprisingly well. Precision and recall rates are comparable to those previously achieved for the well-known protein-protein interaction extraction task. Conclusions: We conclude that automated metabolic pathway construction is more tractable than has often been assumed, and that (as in the case of protein–protein interaction extraction) relatively simple text-mining approaches can prove surprisingly effective. It is hoped that these results will provide an impetus to further research and act as a useful benchmark for judging the performance of more sophisticated methods that are yet to be developed

    The biomedical abbreviation recognition and resolution (BARR) track: Benchmarking, evaluation and importance of abbreviation recognition systems applied to Spanish biomedical abstracts

    Get PDF
    Healthcare professionals are generating a substantial volume of clinical data in narrative form. As healthcare providers are confronted with serious time constraints, they frequently use telegraphic phrases, domain-specific abbreviations and shorthand notes. Efficient clinical text processing tools need to cope with the recognition and resolution of abbreviations, a task that has been extensively studied for English documents. Despite the outstanding number of clinical documents written worldwide in Spanish, only a marginal amount of studies has been published on this subject. In clinical texts, as opposed to the medical literature, abbreviations are generally used without their definitions or expanded forms. The aim of the first Biomedical Abbreviation Recognition and Resolution (BARR) track, posed at the IberEval 2017 evaluation campaign, was to assess and promote the development of systems for generating a sense inventory of medical abbreviations. The BARR track required the detection of mentions of abbreviations or short forms and their corresponding long forms or definitions from Spanish medical abstracts. For this track, the organizers provided the BARR medical document collection, the BARR corpus of manually annotated abstracts labelled by domain experts and the BARR-Markyt evaluation platform. A total of 7 teams submitted 25 runs for the two BARR subtasks: (a) the identification of mentions of abbreviations and their definitions and (b) the correct detection of short form-long form pairs. Here we describe the BARR track setting, the obtained results and the methodologies used by participating systems. The BARR task summary, corpus, resources and evaluation tool for testing systems beyond this campaign are available at: http://temu.inab.org .We acknowledge the Encomienda MINETAD-CNIO/OTG Sanidad Plan TL and Open-Minted (654021) H2020 project for funding.Postprint (published version

    A Resource for Detecting Misspellings and Denoising Medical Text Data

    Get PDF
    In this paper we propose a method for collecting a dictionary to deal with noisy medical text documents. The quality of such Italian Emergency Room Reports is so poor that in most cases these can be hardly automatically elaborated; this also holds for other languages (e.g., English), with the notable difference that no Italian dictionary has been proposed to deal with this jargon. In this work we introduce and evaluate a resource designed to fill this gap.In questo lavoro illustriamo un metodo per la costruzione di un dizionario dedicato all’elaborazione di documenti medici, la porzione delle cartelle cliniche annotata nei reparti di pronto soccorso. Questo tipo di documenti ù così rumoroso che in genere le cartelle cliniche difficilmente posono essere direttamente elaborate in maniera automatica. Pur essendo il problema di ripulire questo tipo di documenti un problema rilevante e diffuso, non esisteva un dizionario completo per trattare questo linguaggio settoriale. In questo lavoro proponiamo e valutiamo una risorsa finalizzata a condurre questo tipo di elaborazione sulle cartelle cliniche

    MAG: A Multilingual, Knowledge-base Agnostic and Deterministic Entity Linking Approach

    Full text link
    Entity linking has recently been the subject of a significant body of research. Currently, the best performing approaches rely on trained mono-lingual models. Porting these approaches to other languages is consequently a difficult endeavor as it requires corresponding training data and retraining of the models. We address this drawback by presenting a novel multilingual, knowledge-based agnostic and deterministic approach to entity linking, dubbed MAG. MAG is based on a combination of context-based retrieval on structured knowledge bases and graph algorithms. We evaluate MAG on 23 data sets and in 7 languages. Our results show that the best approach trained on English datasets (PBOH) achieves a micro F-measure that is up to 4 times worse on datasets in other languages. MAG, on the other hand, achieves state-of-the-art performance on English datasets and reaches a micro F-measure that is up to 0.6 higher than that of PBOH on non-English languages.Comment: Accepted in K-CAP 2017: Knowledge Capture Conferenc

    Sequential pattern mining for discovering gene interactions and their contextual information from biomedical texts

    No full text
    International audienceBackgroundDiscovering gene interactions and their characterizations from biological text collections is a crucial issue in bioinformatics. Indeed, text collections are large and it is very difficult for biologists to fully take benefit from this amount of knowledge. Natural Language Processing (NLP) methods have been applied to extract background knowledge from biomedical texts. Some of existing NLP approaches are based on handcrafted rules and thus are time consuming and often devoted to a specific corpus. Machine learning based NLP methods, give good results but generate outcomes that are not really understandable by a user.ResultsWe take advantage of an hybridization of data mining and natural language processing to propose an original symbolic method to automatically produce patterns conveying gene interactions and their characterizations. Therefore, our method not only allows gene interactions but also semantics information on the extracted interactions (e.g., modalities, biological contexts, interaction types) to be detected. Only limited resource is required: the text collection that is used as a training corpus. Our approach gives results comparable to the results given by state-of-the-art methods and is even better for the gene interaction detection in AIMed.ConclusionsExperiments show how our approach enables to discover interactions and their characterizations. To the best of our knowledge, there is few methods that automatically extract the interactions and also associated semantics information. The extracted gene interactions from PubMed are available through a simple web interface at https://bingotexte.greyc.fr/ webcite. The software is available at https://bingo2.greyc.fr/?q=node/22 webcite

    Towards a Protein-Protein Interaction information extraction system: recognizing named entities

    Full text link
    [EN] The majority of biological functions of any living being are related to Protein Protein Interactions (PPI). PPI discoveries are reported in form of research publications whose volume grows day after day. Consequently, automatic PPI information extraction systems are a pressing need for biologists. In this paper we are mainly concerned with the named entity detection module of PPIES (the PPI information extraction system we are implementing) which recognizes twelve entity types relevant in PPI context. It is composed of two sub-modules: a dictionary look-up with extensive normalization and acronym detection, and a Conditional Random Field classifier. The dictionary look-up module has been tested with Interaction Method Task (IMT), and it improves by approximately 10% the current solutions that do not use Machine Learning (ML). The second module has been used to create a classifier using the Joint Workshop on Natural Language Processing in Biomedicine and its Applications (JNLPBA 04) data set. It does not use any external resources, or complex or ad hoc post-processing, and obtains 77.25%, 75.04% and 76.13 for precision, recall, and F1-measure, respectively, improving all previous results obtained for this data set.This work has been funded by MICINN, Spain, as part of the "Juan de la Cierva" Program and the Project DIANA-Applications (TIN2012-38603-C02-01), as well as the by the European Commission as part of the WIQ-EI IRSES Project (Grant No. 269180) within the FP 7 Marie Curie People Framework.Danger Mercaderes, RM.; Pla SantamarĂ­a, F.; Molina Marco, A.; Rosso, P. (2014). Towards a Protein-Protein Interaction information extraction system: recognizing named entities. Knowledge-Based Systems. 57:104-118. https://doi.org/10.1016/j.knosys.2013.12.010S1041185
    • 

    corecore