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Abstract

TEXT MINING FOR DRUG DISCOVERY
Dimitrios Piliouras
A thesis submitted to the University of Manchester
for the degree of Master of Philosophy (MPhil), 2014

Over the last several decades, medical and biological research has risen to extraor-
dinary levels, opening vast windows into the mechanisms underlying health and dis-
ease in living organisms. Integrating this knowledge into a unified framework to en-
hance our understanding and decision-making is a significant challenge for the research
community. Efficient drug discovery and development requires methods for bridging
pre-clinical data with patient data, as well as effective literature-mining, in order to es-
timate both efficacy and safety outcomes for new molecules and treatment approaches.
Text mining is often regarded as an antidote to this exponential growth of biomedical
publications.

In this thesis text-mining and natural-language-processing techniques and tools,
aiming to assist with various computational aspects of drug-discovery, are presented.
In particular, methods useful for modelling of pharmaco-kinetic parameters, a process
by which, the pharmaceutical effects of a drug can be simulated using mathematical
models, are pursued. In order to fully realise the potential of such modelling, there is
a tremendous need for databases of verified pharmaco-kinetic/dynamic properties of
drugs. To that end, a context-free-grammar, capable of capturing such parameters, and
their potential modifications, is proposed. The fully deterministic nature of a context
free grammar can be side-stepped by embedding a lexical analyser which is able to
plug-in external components for specialised sub-tasks (i.e., named entity recognition).
The feasibility of this approach is evaluated against a gold-standard corpus, where it is

shown to be both effective and efficient, with predictive accuracy touching 90%.
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Chapter 1

Introduction

1.1 Historical perspective

The field of text-mining (TM) is a relatively new discipline sprung out of the knowl-
edge discovery in databases (KDD) and data mining (DM) communities. As it tends to
happen when a discipline is born, it borrows techniques and approaches from similar
but more grounded fields, before establishing its own identity (similarly to the first cars
being shaped like horse carts or the first films looking like theatre plays).

Acording to Alessandro Zanasi [217], the first time he encountered the term “text
mining” (TM) was when it was spoken by Charles Huot in 1994, during the IBM-
ECAM (European Centre for Applied Mathematics) workshop in Paris, albeit whether
it was used in the same sense as today (that is, in the context of applications such as
information extraction or document classification), is unclear. A couple of years later,
Ronen Feldman and colleagues offered the first contributions to the field that can be
called TM with more certainty [62, 63, 61], previously refereed to as ‘knowledge dis-
covery in text’ (KDT). The word ‘mining’ was introduced not long after, in the context
of KDT, followed by the coinage of the name “text-mining”, an obvious variation of
the name “data-mining”. This term quickly became the accepted name for the new
discipline which opened new avenues of research and notable sub-fields, such as web
text-mining (1998) and biomedical TM (1998). TM attracted researchers from vari-
ous fields, including the KDD and DM communities, several fields of natural language
processing (NLP), automatic knowledge acquisition, information retrieval (IR), and
information extraction (IE), to name but a few.

Marti A. Hearst was one of the first to summarise the state of this embryonic dis-

cipline in 1999 [78]. In an effort to position its scope with respect to other disciplines



CHAPTER 1. INTRODUCTION 9

such as data mining and computational linguistics, Hearst stressed that the defining
quality of TM lies in its intrinsic aim to discover novel information, contrary to fields
such as information retrieval and data mining. Realising this view, makes it easy to
understand why TM is eternally indebted to literature-based discovery, a field sparked
by Don Swanson with his seminal paper in 1986, “Undiscovered public knowledge”
[184].

Literature based discovery was intended to be a systematic search for disparate
pieces of knowledge that could be combined together to form a novel discovery. Orig-
inally, this was primarily a non-automated process. In fact, Swanson recalled that his
insight was largely driven by a purely coincidental finding of two unrelated articles
that could be combined to answer a question that neither of these two articles could

answer individually.

1.2 Biomedical Text-Mining

Biomedicine is one of the disciplines where scientific publications are the main ve-
hicle to disseminate information in. The very first attempts at mining the biomedical
literature date back to 1998. As explained earlier, the label “text mining” may have
consumed some areas that formerly went by a different name, such as knowledge ac-
quisition and IE. Since TM builds on previous informatics and computational work
on semantic analysis, dictionary creation, knowledge acquisition, classification, etc,
its application to the biomedical domain is a natural extension. Particularly given the
existing opportunities: explosion of literature (both in size and electronic availabil-
ity); the gradual shift to electronic medical records; the ongoing work on annotated re-
sources; and the increasing need for integration between disparate information sources.
The primary engine that has fuelled this growth, is of course the internet. Even though
computers and electronic communications long pre-date the internet, it is the internet
that has solidified change, simply because it has dramatically lowered the cost of infor-
mation access and exchange, but also brought to the social forefront the challenges and
opportunities of biomedical electronic information (e.g., the Health Insurance Porta-
bility and Accountability Act of 1996; the Open Access movement).

Biomedical TM holds the promise of, and in some cases delivers a reduction in
cost and an acceleration of discovery, providing timely access to required facts and
explicit or implicit associations between them. Due to the specific goals of biomedical

TM, biologists and clinicians are better positioned to define useful TM tasks. Cohen
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and Hunter [53] note that the most fruitful approaches to biomedical TM will combine
the efforts and leverage the abilities of both biologists and computational linguists.
Biologists and clinicians will take advantage of their ability to focus on specific tasks
and experience in using the unparalleled publicly available domain-specific knowledge
sources, whereas TM specialists will focus on providing system components, design
and evaluation methods.

The state of biomedical TM is reviewed relatively regularly. Certain recent sur-
veys [220, 219], special journal issues [91, 47], and books [25] in this area indicate
that general-purpose text and data mining tools are not well-suited for the biomedi-
cal domain, due to its highly specialised nature, which therefore demands for highly
specialised approaches of mining.

The sheer size of the entirety of the texts relevant to biology and medicine dictates
a step-wise approach to biomedical TM. Typically, the goal of the first step is to reduce
the set of text documents to be mined. This reduction is most commonly achieved us-
ing domain-specific information retrieval (IR) approaches, as described in Information
Retrieval: A Health and Biomedical Perspective [80]. Alternatively, documents can be
selected using clustering and classification techniques [110, 175, 38].

The biomedical community has been making extensive use of TM technologies in
recent decades. Enormous progress has been made in developing tools and methods,
and the TM community has witnessed some exciting developments. In addition, the
rapid increase in the publication-rate in general (as reflected in the growth of the con-
tents of PubMed/MEDLINE), the advent of high-throughput assays, which commonly
produce lists of genes much larger than were seen in previous experimental methods,
and the surprising surge of interest by clinicians in using electronic medical record
(EMR) systems to improve the quality of care through decision support and evidence-
based medicine, have energised the work in biomedical TM (BioNLP) of both clin-
ical and literature text, to extraordinary levels. Another contributor to the growth of
BioNLP has been the availability of a wide range of resources suitable for analysis
or tools for assisting in such analyses. These include no-cost textual sources such as
PubMed/MEDLINE and PubMedCentral; a large variety of corpora'; ontologies and
other lexical semantic resources, such as the Gene Ontology, UMLS and the Semantic
Network; databases such as Entrez Gene, DrugBank and DIP; and ‘off-the-shelf” NLP
pipelines and workflows for IE (UIMA, CTakes etc).

'http://compbio.ucdenver.edu/ccp/corpora/obtaining. shtml
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1.3 Text mining for pharmacology

1.3.1 Motivation

In recent decades, the Food and Drug Administration (FDA) has increased its require-
ments for drug testing. Today, a new drug requires an average of 15 years and close
to a billion dollars spent in research and development, before it reaches consumers
[60]. Unfortunately, and in spite of millions of dollars spent on preclinical testing,
much of that expense is lost on drugs that never make it to the market. It is estimated
that only one in 10 drugs that enter clinical testing receives eventual FDA approval
[102]. Alarmingly, for drugs in phase III that have shown evidence of effectiveness in
phase II, the failure rate has increased to 50% [124]. The billions of dollars invested
in basic biomedical research and clinical development of new medical products are
yielding fewer and fewer innovative products. A long, expensive development process
has become a major impediment and is a disincentive for new product development,
according to the FDA’s “Critical Path Initiative” report [74]. The report concluded that
the major contributor to the inefficiency in development was the absence of innovative
new methods for preclinical and clinical testing of drugs, quoting that “developers are
often forced to use the tools and techniques of the last century to evaluate this centu-
rys advances”. In multiple follow up publications, clinical researchers, experimental/-
computational biologists and biostatisticians from both academia and industry started
to debate the challenges and opportunities of the pharmacokinetic-pharmacodynamic
(PK/PD) model based approach in drug development [46, 49, 113].

1.3.2 Pharmaco-(kinetic/dynamic) modelling

Pharmacokinetics/pharmacodynamics describe the mathematics of absorption, distri-
bution, metabolism and excretion of drugs in the body. PK/PD modelling simulates the
pharmaceutical effects of a drug using mathematical equations by integrating both of
its pharmaco-kinetical and pharmaco-dynamical properties. Nowadays, drug discov-
ery is considered impossible without sophisticated modelling and computation, which
can substantially reduce the cost of drug development by constructing effective simula-
tions, identifying therapeutic strategies and making novel predictions. To that end, this
thesis focuses on text mining techniques to assist PK modelling. In order to fulfil the
PK modelling potential in drug development, there is an enormous need for databases

of PK parameters. For example, to specify the first human dose of a new compound,
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one needs its corresponding in-vitro and in-vivo PK parameters based on animal stud-
ies. However, current pharmacology databases provide little PK data. DiDB is an
ongoing project which manually accumulates published PK data for each drug. Drug-
Bank [211] is a comprehensive pharmacology database which has rich annotations on
the structure, mechanism, pathway and targets of drugs, but offers very sparse PK data.
Though currently most PK databases still rely on manual curation to collect accurate
data, this is inefficient to both, keep up with the exponentially growing scientific pub-
lications, and also to handle the large amount of varying information needs of users.
In fact, one study argued that it will take years, perhaps even decades, for biomedical
database construction, if we just rely on manual curation [31]. Meanwhile, computer-
aided curation has been proven to be effective in maintaining the MEDLINE database.
Therefore we investigate text mining as an alternative solution to manual curation for
PK parameter data collection which targets to efficiently handle large scale of infor-

mation and automatically extract good quality PK data.



Chapter 2

Related work

2.1 Resources for Biomedical Text Mining

As the name implies, biomedical TM is primarily concerned with biomedical textual
data. Given the inherent importance of such data, it is worth introducing certain well
established and widely used biomedical text collections, and this section attempts to do
so. For most tasks, any degree of structure is better than no structure, and therefore it is
easy to imagine why annotated corpora, are often more useful than the original raw text
alone. As publicly available annotated texts continue to grow, the need for compatible
annotation formats, guidelines and standards, which this section also touches upon, has
been greater than ever [179]. The technical infrastructure that makes biomedical TM
possible, including widely-used tools and frameworks as well as important lexical and

knowledge-based repositories, are described towards the end of the section.

2.1.1 Corpora

The relationship of biomedical TM with one specific resource, namely the MEDLINE
database, is particularly intimate and is hard to imagine how it could be any differ-
ent, as it contains more than 20 million bibliographic references to journal articles
in the life sciences (with a clear focus on biomedicine), from as far back as 1946
[179]. Perhaps more importantly, it exposes several ways of obtaining records such
as abstracts and citations. For TM purposes, MEDLINE records can be downloaded
using the Entrez Programming Utilities [140]. Alternatively, certain subsets of MED-
LINE citations have been used in community wide evaluations and will exist in their
archives [179]. Examples of such collections would be, the historic OHSUMED [169]

13
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set containing all MEDLINE citations in 270 medical journals published between 1987
and 1991, but also a more recent set of TREC Genomics Track data [170] containing
ten years of citations (1994-2003). While these collections span over a pre-specified
amount of time, there do exist other, more task-oriented, collections. For instance,
the GENIA corpus [15] contains just under 2,000 MEDLINE abstracts which were
retrieved using 3 simple MeSH terms: “human”, “blood cells” and “transcription fac-
tors”. Even though, 2,000 may not sound much at first, the GENIA corpus can be
considered the most thoroughly annotated collection of MEDLINE abstracts, as it in-
cludes annotations for part-of-speech, syntax, coreference, biomedical concepts and
events, cellular localisation, disease-gene associations and pathways [179]. Moreover,
together with five full-text articles and a collection of radiology reports, form the ba-
sis for the BioScope corpus [206]. The earlier BioCreAtlve collections [84, 109, 28]
and the PennBiolE corpus [119, 118], which contains 1100 abstracts for cytochrome
P-450 enzymes and 1157 oncology abstracts, are also examples of topically-annotated
subsets of MEDLINE abstracts. More recently, NaCTeM released the ‘“Metabolite and
Enzyme Corpus” which aims to serve as the gold-standard for metabolite and enzyme
named entity recognition, in the context of metabolic pathways. Finally, the Collabo-
rative Annotation of a Large Biomedical Corpus (CALBC) initiative has proposed the
creation of a broadly scoped and diversely annotated corpus (about 1,000,000 Med-
line immunology-related abstracts) by automatically integrating the annotations from
different named entity recognition systems. This “silver” corpus has recently become
available to the public [160].

No matter how informative and undoubtedly useful for TM MEDLINE abstracts
may be, they typically do not contain all the details present in full-text articles [179].
Some information (e.g., the exact experimental settings or the discussion of the results)
is almost exclusively contained in the main body of an article. The potential of a qual-
itative increase in the amount of useful information available for mining, gave rise to
several full-text collections [179]. For example, the aforementioned TREC Genomics
Track dataset contains about 160,000 full-text articles from about 49 genomics-related
journals, directly obtained from the Highwire Press [5] electronic distribution of the
journals. Similarly, patients’ clinical case descriptions have been the target of full-text
annotations in the ImageCLEF evaluations [137, 138]. The Colorado Richly Annotated
Full Text Corpus (CRAFT) [3] is another significant contribution to the ever growing
body of semantically and syntactically annotated full text collections available to TM

researchers. Finally, the largest publicly available source of original (non-annotated),
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full-text articles is the Open Access subset of PubMed Central (PMC) [12].

Due to the growing interest in clinical TM and bio-surveillance, recent years have
witnessed the rise of several clinical-text collections too [179]. Examples of these
include the Pittsburgh collection of clinical reports [14], the Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC II) database [115], and, of course, the annotated
12b2 collections [202, 203, 204]. Social media and the web (i.e, Facebook, Twitter
and various health-related blogs and community web-sites) have played the role of a
corpus in several recent studies, however, the availability of such collections, or lack

thereof, is not clear [179].

2.1.2 Lexical Repositories

Developing lexicons (dictionaries) is, by no means, a modern approach nor a sophisti-
cated one. However, in cases where it is feasible, there exist major opportunities to be
gained from doing so. The linguistic value of lexicons has been known for centuries
to people studying natural language. After all, a dictionary of a given language, along
with its respective grammar, can act as documentation for that language ‘version’ (lan-
guages evolve over time). There is not a single person on the planet that has never
seen or has never benefited from using a dictionary when trying to learn or understand
a foreign language. Of course, trying to document an entire human language’s vo-
cabulary, which is constantly evolving, falls outside the realms of feasibility. There
do exist however, smaller domains, where more restrained (controlled) terminology is
used. Biology and medicine related disciplines are good examples of these. In such
cases, specialised lexicons are considered a precious resource for NLP.

A fairly general, and famous lexical resource is WordNet [127]. WordNet which
is available free of charge, was developed at Princeton University and is essentially
a database which aims to serve as a resource for NLP and IE applications. Each un-
derlying concept in WordNet, is linked to a set of synonyms (synsets). For example,
the concept of ‘malignant neoplastic disease’ (cancer) is linked with lymphoma, car-
cinoma, sarcoma, leukemia or leukaemia etc.. As of version 3.1, WordNet contains
more than 117,650 synsets, but it has been used only in a few medicine-related projects
, due to its rather modest coverage of the domain. Easy integration of WordNet into
applications is possible via application programming interfaces (APIs) that have been
developed for all major programming languages.

A more medically oriented lexical resource is the Specialist Lexicon (SL) from
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the UMLS project described in the next section. This provides the lexical informa-
tion needed for processing raw text, not only in the biomedical domain [40]. It is in
fact, a general English lexicon, which includes many biomedical terms. For each term,
the lexicon maintains an entry which documents syntactic (POS, allowable comple-
mentation patterns), morphological (base-form, inflectional variants) and orthographic
(spelling variations) information (see 2.1). Contrary to WordNet, the SL does not in-
clude any synonyms or semantic relations between terms, however such information is
present in a separate UMLS component - the MetaThesaurus. The SL is distributed as
part of the UMLS and can also be integrated and queried via APIs for Java and XML.
It is also included as an open-source resource in the Specialist NLP Tools [13].

While the UMLS SL, often in conjunction with WordNet, provides a reasonable
coverage of the general biomedical language, it does not cover in detail specialised
sub-domains like chemical entities, proteins and genes. For these sub-domains, sepa-
rate, even more specialised resources exist, which can be combined with the general
aforementioned ones for optimal results. Examples of publicly available specialised
lexical resources for genes, proteins, chemicals and drugs (approved and experimen-
tal) can be found in figure 2.2.

Being relatively up to date and freely accessible, DrugBank proved an invaluable
resource for this dissertation. It was used not only as a dictionary of drugs, but also as

the ground-truth for evolving an NER model using genetic-programming (see Chapter
3).

Figure 2.1: Example SL entry for “hemoglobin” with explanations

base = hemoglobin — (base form)

spelling_variant = haemoglobin — (an extra ‘a’)

entry = E0031208 — (unique identifier)

cat = noun — (POS-tag)

variants = uncount — (only singular)

variants = reg — (regular plural: hemoglobins, haemoglobins)
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Figure 2.2: Publicly available lexical resources for genes, proteins, chemicals and
drugs

Domain Resource URL
Genes & Proteins  Genew http://www.gene.ucl.ac.uk/cgi-bin/nomenclature/searchgenes.pl
Entrez Gene http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
UniProt http://www.uniprot.org/
Chemicals PubChem http://pubchem.ncbi.nlm.nih.gov/
SureChem https://www.surechem.com/
ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/
ChEBI http://www.ebi.ac.uk/chebi/
CheMBL https://www.ebi.ac.uk/chembl/
Drugs DrugBank http://www.drugbank.ca/
DiDB http://www.druginteractioninfo.org/
RxNorm http://www.nlm.nih.gov/research/umls/rxnorm/
N.D.C. http://www.fda.gov/Drugs/InformationOnDrugs/ucml29662.htm
Enzymes BRENDA http://www.brenda-enzymes.org/

2.1.3 Knowledge Repositories

The biomedical domain includes a rather rich set of knowledge sources for supporting
TM applications. Arguably, the most comprehensive resource is the Unified Medical
Language System (UMLS) [120]. Fundamentally, the UMLS is a compilation of con-
trolled vocabularies, actively maintained by NLM. Apart from bringing together over
100 dictionaries, terminologies and ontologies, it also comes with a semantic network
that represents relations between these entries and a dictionary that contains lexico-
graphic information, mainly about biomedical terms but also common English words
[179]. Specialised resources for biomedical TM are also maintained by organisations
such as the British National Centre for Text-Mining (NaCTeM) [6] and the European
Bioinformatics Institute (EBI) [4]. In addition to these broad-coverage resources, there
also exist more fine-grained knowledge sources focused on spealised sub-domains of
biomedicine. For example, the Pharmacogenomics Knowledge Base [11] is a collec-
tion of scientific publications annotated with primary genotype and phenotype data,
gene variants and gene-drug-disease relationships, which can be freely acquired and
used in the context of academic research [179]. Similarly, the Pharmacokinetics (PK)
ontology [213] covers certain PK drug-drug interactions (DDI), whereas, the Neuro-
science Information Framework [7], comes with an ontology covering brain anatomy,
cells, organisms, diseases, techniques and other aspects of neuroscience. With respect
to (bio)chemistry, the SABIO-RK [212] database contains information about biochem-

ical reactions, their kinetic rate equations with parameters and experimental conditions.
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Finally, three different research groups at the university of Cambridge, collaborated on
project SciBorg [56]. At the heart of the SciBorg project lies a formal language which
captures some aspects of the meaning of natural language in a way that allows con-
tributions from different sources to be combined. The combined systems can be used
to extract knowledge from text for later machine use, or to give human browsers in-
formation about the structure of texts and their interconnections. By leveraging this
language, they were able to develop a robust IE architecture and subsequently applied
it to chemistry texts. The result was a knowledge management system for chemists ca-
pable of performing complex chemical searches such as “search for papers describing
synthesis of Troegers base which dont involve anilines”, in an expressive query-like
language. For instance, the aforementioned (rather difficult) semantic search translates

to the simple query shown below:

X : Goal(X,h),h : synthesis,
result(h,< TB >),Source(h,y) & NOT (aniline(y))

Ultimately, the best knowledge source for a given TM task will be determined by
the nature of the problem at hand. For example, recognising instances of relevant
entities is a pre-requisite for literature-based mining (i.e. for relations between genes,
diseases and drugs) [179]. Knowing the terms’ corresponding semantic types in the
UMLS can be a significant aid. Alternatively, individual knowledge sources, such as
the Gene Ontology (GO) [30], SNOMED Clinical Terms [181] or the FDA Approved
Drug Products with Therapeutic Equivalence Evaluations (Orange Book) [9], can be
brought together to form a mega-resource. The resources mentioned in this section
are extensively used for performing various biomedical TM tasks, and in certain cases
form the basis for deriving ‘meta-resources’ for a specific task [179]. For instance,
Rinaldi et al. [164] define several entity types required for mining the literature for
protein interactions (protein/gene names, chemical compounds, cell lines, etc.), which
are then used to automatically aggregate terms extracted from curated resources (i.e.
UMLS) into an impressive list of more than 2,300,000 terms.
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2.1.4 Infrastructure
Tools

The variety and purpose of the tools supporting biomedical TM mirrors the variety and
purpose of the knowledge sources described previously [179]. Over the years, high-
quality tools, not only for low-level pre-processing tasks such as sentence-segmentation,
tokenisation, stemming and POS-tagging, but also for higher level extraction tasks
such as named-entity-recognition (NER), relation extraction, sentiment analysis and
co-reference resolution, have been developed by various groups. This section focuses
on the most commonly used tools for identifying named entities (NEs) and relations
and the platforms that allow building TM workflows.

According to [179], “the single most widely used tool for NER which is based upon
the UMLS is MetaMap [29]”. Simply put, MetaMap is an application that is able to
identify UMLS Metathesaurus concepts in free text. It also features the ability to detect
author-defined acronyms/abbreviations, to browse the Metathesaurus for concepts even
remotely related to input text, to detect the use of negation clues, word sense disam-
biguation (WSD) and various other technical and algorithmic features. Because of its
high configurability and the fact that it relies on the entire UMLS Metathesaurus, it is
not easy to determine the best configuration for a given task [179]. However, exploring
the options using the interactive MetaMap website aids with such choices. MetaMap,
which was provided as a service until recently, is now open source and available for
download.

Examples of off-the-shelf, statistical tools used exclusively for biological NER are
ABNER [174], BANNER [114], LingPipe [22] and Gimli [44]. Both ABNER and
BANNER are based on conditional random fields (CRFs) and rely on a large array of
features. Unlike ABNER, BANNER was trained on the BioCreative 2 GM data and
avoids semantic features, but it does make use of syntactic ones. Both systems exploit
domain-specific language characteristics such as capitalisation, word shapes, prefixes,
suffixes and Greek letters. Gimli is a relatively new and open-source biomedical entity
recogniser which includes an extended set of implemented and user-selectable ortho-
graphic, morphological, linguistic-based, conjunctions and dictionary-based features.
It also provides a simple and fast method to combine predictions from separate models.

Relation extraction methods are useful in discovering protein-protein interactions,
and gene-binding conditions. Lexical patterns such as “Protein X binds with Protein

Y’ are often found in biomedical texts where the protein names are entities which are
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held together by the “bind” relation. Such protein-protein interactions are very useful
for applications like drug discovery. Nevertheless, tools for relation extraction are not
yet as mature or as readily accessible as NER tools [179]. A relatively recent compar-
ison [89] for available tools for identifying biomedical relations (AkanePPI, Whatizit,
and OpenDMAP) to a simple, regular expression-based approach and found that the
simple approach performed surprisingly well. The authors conclude that high recall
(touching 90%) is achievable for extracting gene-protein relations when the available
tools are combined. Tools aimed exclusively at relation extraction include the propri-
etary AlchemyAPI [1] and the open-source jSRE [198] Java library.

Platforms

Apart from specialised tools like the ones described above, TM researchers also have
access to certain more generic NLP toolkits/platforms developed by various academic
and open-source communities. These platfroms tend to offer an assortment of utili-
ties, not necessarily focused to a specific task, but towards supporting step-wise NLP.
Examples of well-established, open-source NLP platforms written in Java, include the
openNLP [27] project (Apache Software Foundation), the stanford NLP [200] (Stanford
University) and GATE [199] (Sheffield University). The NLTK [8] software package
is the predominant toolkit preferred by users of the Python programming language.
All these platforms offer a wide variety of text processing libraries to support building
programs that work with human language data, such as sentence-detectors, tokenisers,
stemmers, deep/shallow parsers, entity-recognisers, classifiers etc. NLTK in particu-
lar, has acquired licences and provides easy-to-use interfaces to over 50 corpora (i.e.
Brown corpus [67]) and lexical resources (i.e. WordNet).

A recent trend in tool development and use is the linkage of distinct components
from the various aforementioned frameworks to form standalone processing pipelines.
Two examples of such platforms offering pipeline/workflow capabilities are the afore-
mentioned “Generalized Architecture for Text Engineering” (GATE) framework and
the “Unstructured Information Management Architecture” (UIMA) [65], originally de-
veloped by IBM and currently maintained in collaboration with the Apache software
foundation. UIMA is, to date, the only industry standard for unstructured content ana-
lytics and therefore, has gained significant popularity amongst text-miners the past few
years. Many research groups are continuously adapting their tools to function within
the UIMA framework, thus enabling direct interaction with tools provided by other

groups around the world. Two great examples are the Argo [158] and U-Compare [90]
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platforms by NaCTeM. Argo is a web-based collaborative environment for the devel-
opment of text-processing workflows. It comes with many useful features out of which
however, its ability to create, not only serial, but also graph-like data flows (multiple
branching/merging), set it apart from other similar tools. U-Compare on the other
hand, is an integrated NLP system implemented as a standalone Java application. It
comes with a friendly graphical user interface which provides drag-and drop facilities
for rapidly creating (serial) workflows. Evaluation facilities are also built in. External
UIMA components can easily be imported for use in the system, and complete work-
flows can be serialised for use by other U-Compare users. More recently, U-Compare
was extended to automatically convert standalone work-flows into web services [105].
The resulting web services can be registered on a central server and made publicly
available.

The biomedical TM resources presented in this section represent a snapshot of the
entirety of resources developed over the years. Moreover, due to its very nature, the
information and tools presented are likely to become out-dated sooner than the rest of
the material in this chapter. In order to keep up with the rather rapid growth of research
in the area, there have been attempts by many researchers to actively maintain web-
sites and forums where links to useful resources (e.g., BioNLP [2]) and discussion can
be found [179]. The U.S. Department of Veterans Affairs and NLM have gone one
step further in order to relieve individual researchers from such a time-consuming task
and provide registry of biomedical text mining tools, known as ORBIT [10], which is

maintained collectively by the global research community [179].

2.2 Information Retrieval

Information Retrieval (IR), as the name implies, is concerned with appropriate posi-
tioning within the vast literature space. To put it differently, what does one have to do,
in order to bring the relevant literature closer to reach? Nowadays, the search-engine
experience is so pervasive and familiar to all, that it completely dominates most as-
pects of IR in almost all scientific disciplines and in fact, it is often the case that we
forget that IR is only the first step. Realising that we live in an era of information
abundance, we can perhaps consider IR (in the classical text-mining context of finding
documents that correspond to an information need with the aid of indexes) a solved
problem. Therefore, it makes sense to focus mainly on activities subsequent to IR, that

are concerned with extracting facts of interest and analysing them to infer others.
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2.3 Information Extraction

As one might expect, being able to identify explicitly stated facts in text, has always
been a target for all kinds of TM systems. Information extraction (IE) can be defined
succinctly, as the process by which structured facts are, in some automatic fashion,
captured from unstructured or semi-structured text [179]. Typically, in the biomedical
domain that unstructured text is drawn from the published literature, but in some cases,
clinical narratives from electronic health records or other systems that manage clinical
information, can be very useful as well [179]. Despite the fact that, information from
these sources could serve as the input to information retrieval (IR) systems, IE is often
performed as an initial processing step for other, more advanced TM applications. As-
pects of IE include Named Entity Recognition (NER), Co-reference Resolution (CR),
Sentiment Analysis (SA) and Relation Extraction (RE), all of which, are all covered in
detail in follow up sections.

Community-wide evaluations focusing specifically on TM within biomedicine, have
been a major driver in rapidly transforming IE technologies [179]. Some examples
of recent evaluation forums include BioCreAtivE [84, 109], BioNLP [97, 155], i2b2
[202, 203, 204, 205], INLPBA [98], and LLL [143] shared tasks. The strong interest,
as reflected by participation levels in such community-wide evaluation efforts, high-
lights the ever growing volume of unstructured text available in electronic form these
days.

There are three aspects of IE which are particularly relevant when it comes to
mining free text (not necessarily biomedical). Naturally, NER which is the task ded-
icated to the identification and classification of entities into distinct, predefined cate-
gories, comes first. The categories are, of course, defined according to the domain in
question. In biomedicine, the names of drugs, proteins, genes and diseases, are most
commonly sought. Normalisation of the extracted entities to a canonical, unambigu-
ous representation via ontologies and/or dictionaries, and potentially, further classified
into semantic categories, is often a desired step [179]. The second sub-task of IE
relevant to mining free text is relation extraction, which aims to detect binary relation-
ships amongst the named-entities captured previously. Again, in biomedicine these
would typically be gene-disease relationships, protein-protein interactions, drug-drug
interactions and clinial problem-treatment relationships. Finally, the third major sub-
task, event-extraction, seeks to identify highly complex and often recursive relations
amongst the extracted entities. Events are characterised by a main predicate (a verb)

and typically, there exist arguments and/or participants to that predicate. Events highly
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relevant to the biomedical domain include, for example, gene expression/regulation,
protein-binding and pharmaco-kinetic (PK) drug modification.

Despite aiming to extract different types of information, the underlying methods
and techniques used in all the aformentioned sub-tasks are rather similar. These include
machine learning (ML), statistical analysis and other well grounded NLP techniques.

Challenges and approaches to the sub-tasks of biomedical IE are discussed next.

2.3.1 Named Entity Recognition

According to [179], “biomedical NER refers to the task of automatically identifying oc-
currences of, biologically or medically relevant, terms in unstructured scientific text”.
As previously mentioned, gene/protein/drug names and medical conditions/treatments
constitute the entity types that are of utmost importance to researchers [117]. NER is,
by no means, a single task, despite being often discussed as such. There are at least,
3 steps that make up the core process. Firstly, the exact substring boundaries of the
entity in question need to be determined. Secondly, the entity needs to be assigned a
semantic type. That is, it must be associated with one of the semantic classes avail-
able. Thirdly, the canonical/preferred representation of the concept the entity names
needs to be selected. This could vary a simple stemmed token or synonym, to a unique
identifier in some remote database where more information can be found. This last
sub-task is called entity-normalisation and seeks to compensate for potential lexical
and orthographic variations. Given the fact that this is one the most challenging tasks,
it will be discussed further in the context of describing the many challenges involved
in biomedical NER.

The reasons that make NER particularly challenging for biomedical text are many-
fold. On one hand, the extremely dynamic nature of of scientific discovery these days
makes it a moving target. Particularly in biomedicine, the landscape of semantically
relevant entities is rapidly growing and shifting as new scientific discoveries and con-
tributions are published [216]. On the other hand, there is a very large amount of
synonyms. In bio-medicine, it is not uncommon for the same concept to be expressed
using distant lexical clues. Reusing the example from Simpson et al. [179], the words
“heart attack™ and “myocardial infarction” refer to the same medical condition so an
NER system should be able to recognise these terms as instances of the same concept,
despite having been expressed quite differently. The more synonyms, for a particu-
lar concept, are in use, the harder it becomes to combine knowledge from multiple

sources without access to some comprehensive synonymy resource such as the UMLS
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Metathesaurus or the Gene Ontology. Even with access to such resources, some syn-
onymy relationships may be overlooked as these resources are highly unlikely to be
100% complete at any given point in time [179]. Finally, the multitude of acronyms
and abbreviated terms in the biomedical literature makes it difficult to automatically
map these terms to the concepts they refer to [179]. More often than not, successful
acronym and abbreviation resolution greatly depends on the context in which the terms
appear since, as explained previously, the same term can refer to more than one con-
cepts. Reusing another example from Simpson et.al [179], the abbreviation RA can re-
fer to “right atrium”, “rheumatoid arthritis”, “refractory anemia”, “renal artery” or one
of several other concepts [149]. To address the challenges associated with acronyms,
abbreviations and synonymy, most NER systems will perform, to some extent, entity
normalisation [179].

As hinted earlier and as described by Simpson et.al [179]: “Entity normalisation
refers to the process of linking entity occurrences to a somewhat, more canonical name.
Although a challenging task in its own right, entity normalisation can help resolve
issues resulting from synonymous terms and ambiguous acronyms/abbreviations, by
associating these entities with unique and unambiguous representations. Sometimes,
there may not be community-wide agreement on the preferred name for a given en-
tity. In such cases, the goal of entity normalisation is to map the entity to a unique
identifier of a concept in some terminology resource. In general, entity normalisation
relies on the existence of such terminology resources, though these may be incomplete.
Since normalisation is such an important component of many NER systems, it is often
an implied processing step after identifying entity boundaries and assigning them to
a category. Nonetheless, the entity normalisation sub-task can be evaluated indepen-
dently, as indicated recent BioCreAtivE shared task evaluations [82, 135]”

For NER systems that analyse large amounts of biomedical text, it is important to
consider the performance that can be expected of the methods being deployed [179].
Typically, the performance of NER systems is measured in terms of the standard IR
metrics - precision, recall and F-Score. However, certain issues make these measure-
ments difficult to reliably obtain and compare [179].

One obvious issue is the lack of large, high-quality annotated corpora to serve as
the gold-standard on which to evaluate the performance of NER systems. Ideally,
the gold-standard training data must be large enough to allow the projection of ex-
perimental results to potentially, even larger text collections [179]. In addition, high

inter-annotator agreement and expert-level judgement are highly desirable properties.
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However, it should be noted that, the larger the dataset the less important, annotation
errors and/or disagreements, become. That is to say, that a sufficiently large corpus will
most likely compensate for certain annotation errors but not vice versa. Interestingly
enough, Uzuner et al. [205] demonstrated that errors in the annotated gold-standard for
a recent i2b2 shared task evaluation could not have affected the relative performance
of competing NER systems, by more than .05%.

Another issue to consider when evaluating NER systems is how the boundaries
of an identified entity are defined. Following a strict evaluation scheme translates to
exactly matching both the left and right boundaries of an extracted entity with those
of the annotations, whereas a loose evaluation scheme only requires that the extracted
entity boundaries overlap those of the annotation [117]. It has been shown [148],
perhaps not surprisingly, that choosing between a strict or loose evaluation scheme can
have an impact on the relative performance of NER systems.

Recent community-wide evaluations are a testament to how good NER systems
generally are. For instance, looking back at the first [216] and second [180] BioCre-
Atlve gene mention recognition tasks, we can see the best performing systems achiev-
ing F-scores of 83% and 87%. Similarly, the best candidates in the 12b2 concept ex-
traction task [205] and the JNLPBA bio-entity recognition task [98], scored 85% and
73% respectively.

For instance, the best performing systems achieved F-scores of 83% and 87% for
the first [216] and second [180] BioCreAtlve gene mention recognition tasks, 85% for
the 12b2 concept extraction task [205], and 73% for the JNLPBA bio-entity recogni-
tion task [98]. Although NER systems may be tuned for a particular IE task, their
underlying methods and approaches can be broadly grouped in 3 distinct categories -
dictionary-based, rule-based and statistical-based [179].

Dictionary-based methods, being one of the most basic and intuitive approaches,
rely on comprehensive lists of terms in order to identify entities of a particular seman-
tic type [179]. From an architectural and technical standpoint, this approach is very
straight forward. Systems relying on lexical resources identity entities by simply at-
tempting to locate the candidate token within those resources. If it can be found, the
classifier responds positively - otherwise negatively. When deployed as stand-alone
methods, dictionary-based approaches tend to exhibit reasonably high precision [179],
but they often suffer from poor recall, mainly due to phenomena which cause morpho-
logical variance (i.e. spelling mistakes or variants) [197], but also due to the very na-

ture of exact string matching. However, low precision can also stem from homonymy
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[83]. For example, there exist gene names and abbreviations thereof (i.e. “an”, “by”,
and “can”) that are spelt exactly the same as certain common English words [111].
To that end, some form of ’soft’ string matching is commonly deployed to improve
the precision and recall of dictionary-based systems. Certain studies are so concerned
with spelling variants, that go as far as firstly generating spelling variants for the all the
terms in a some resource, and augmenting the underlying dictionaries with these ad-
ditional terms [194, 195]. The augmented resource can then be used for regular, exact
string matching but with greater confidence. Alternatively, algorithms such as BLAST
[23, 24] can be used in order to perform approximate string matching [112]. In spite of
these improvements, dictionary-based methods are most often used in conjunction with
more advanced NER approaches, especially in the face of data-sparsity, where having
access to a “safety-net” NER model can deliver a significant performance boost [151].

Another approach to NER is to describe the compositional patterns of biomedi-
cal NEs and their surrounding context using lexical rules [179]. Examples of systems
which make use of rule-based approaches include the EMPathlIE [86] and PASTA [72],
which are able to identify not only protein structures, but also, enzyme interactions by
using context-free grammars (CFGs). Orthographic and lexical properties have also
been the target of carefully crafted rules geared towards recognising protein [70] and
chemical [139] names. These simpler methods can be improved by further consider-
ation of contextual information [85] and the outcome of syntactic analysis for deter-
mining entity boundaries [68]. However, despite achieving better performance than
dictionary-based approaches in most cases, the hand-crafted generation of the required
rules is an expensive and time-consuming process. Moreover, since the rules are usu-
ally very specific (in order to achieve high precision), they are almost impossible to
extend over other entity classes [179].

These days, possibly due to the seemingly unlimited access to computing power,
more and more NER approaches tend to rely on statistical methods instead of, or at
least combined with, dictionaries and/or rules [179]. Unlike the previously described
approaches, statistical methods rely on some form of predictive modelling in order to
identify entities. This is typically achieved by utilising ML algorithms. While su-
pervised ML approaches require observations, typically captured in large bodies of
annotated corpora, in order to be trained, recent work has investigated the potential
for automatic generation of NER training data through the use of bootstrapping and
other semi-supervised techniques [207, 136, 201]. Common statistical methods used

for NER can be grouped as either 1:1 classification or sequence-labelling approaches.
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The difference between these groups is subtle and particularly in NER, it translates to
extracting features only from the token currently examined (1:1 classification), rather
than consulting previous tokens as well (sequence-labelling). This ultimately means
that 1:1 classification will overlook contextual information. For example, a 1:1 NER
classifier would typically include only lexical and morphological features, whereas a
sequence-labelling classifier would additionally include features targeted at the N pre-
vious tokens.

Classification-based approaches transform the NER task into a classification prob-
lem, which is applicable to individual words or groups thereof [179] (depending on
the classification scheme adopted). Common classifiers deployed for biomedical NER
include Support Vector Machine (SVM) [94, 128, 185, 214] and Naive Bayes [142]
models. While it is not impossible to classify multi-word names, the BIO tagging
scheme [159], which dictates that individual tokens are classified as being either at the
beginning (B) of an entity, inside (I) the boundaries of an entity, or outside (O) the
boundaries of an entity, has proven rather popular amongst researchers [179]. How-
ever, in the presence of overlapping entity boundaries, this tagging scheme is not ex-
pressive enough to describe the notion of a hierarchy, and therefore, several researchers
have looked into the issue of recognising nested NEs [73, 21].

The overall performance of classification-based approaches is, in no small part,
dependent on the choice of features used during training, and many authors have ex-
plored various feature combinations/permutations. For instance, two studies [94] [128]
consider morpho-syntactic properties of NEs whereas Takeuchi and Collier [185] use
orthographic and head-noun features. Yamamoto et al. [214] explore a mix-and-match
approach with a variety of features including boundary, morpho-lexical, and syntac-
tic properties as well as a binary dictionary feature (indicating existence of the word
in dictionary). Given how severely affected by the choice of features, classification-
based approaches can be, automatic feature selection is an interesting and important
consideration [179]. A systematic evaluation of common features and discussion of
their influence on the resulting predictive power of classification-based NER systems,
can be found in [76].

As mentioned earlier, sequence-labelling systems consider sequences of words in-
stead of individual words or phrases. They too, are trained on tagged corpora but aim
to predict the mostly likely tags for an observed sequence of tokens. A common sta-
tistical framework used, not only for NER, but also for POS-tagging, is the Hidden
Markov Model (HMM) [55, 176, 134, 101]. However, it needs to be noted that, in
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principle, HMMs assume conditional independence between features, whereas, dis-
criminative models like Maximum-Entropy (MaxEnt), do not. In sequence tagging
tasks, special-purpose features, that incorporate domain specific knowledge, can be
designed. Useful sequence tagging features, such as capitalisation, POS-tag or appo-
sition, are often non-independent. To that end, McCallum et al. [123] proposed the
maximum-entropy Markov Model (MEMM), which assumes that the unknown values
to be learnt are somehow connected in a Markov chain rather than being conditionally
independent of each other. As an alternative, but closely related, to HMMs, MEMMs
replace the transition and observation functions with a single function P = (s|s'0) that
provides the probability of the current state given the previous state and the current
observation. In this model, as in most applications of HMMs, the observations are
given - reflecting the fact that we do not actually care about their probability, only the
probability of the state sequence (and hence label sequence) they induce [123]. In con-
trast to HMMs, in which the current observation only depends on the current state, the
current observation in a MEMM may also depend on the previous, or in fact, the N
previous states. It can then be helpful to think of the observations as being associated
with the state-transitions rather than with states themselves. Due to the increased free-
dom in choosing features to represent observations, MEMM-based methods have been
very common and successful in NER tasks [66, 57]. That said, Conditional Random
Fields (CRFs) are often shown to exhibit superior performance in biomedical NER
[145, 173]. A Conditional Random Field (CRF) is an undirected graph whose nodes
correspond to X UY, where Y is a set of target variables and X is a (disjoint) set of
observed variables. The graph is parametrised with a set of factors ¢;(Dy), ... , ¢, (D)
, In the same way as a regular Markov network (which they are descendants of), but
instead of encoding the distribution P(X,Y), the conditional distribution P(Y|X) is en-
coded instead. In order to have this kind of parametrisation correspond naturally to
a conditional distribution, we want to avoid maintaining a probabilistic model over X
and therefore, CRFs exclude candidates that involve only variables in X [104]. This is
one of the main strengths of CRFs as it allows us incorporate into the model a rich set
of observed variables whose dependencies may be complex or poorly understood. It
also allows us to include continuous variables whose distribution may not be a simple
parametric form, which in turn, allows the use of domain-specific knowledge in order

to construct highly informative features without worrying about modelling their joint
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distribution [104]. A CRF will encode a conditional distribution as follows:

P(Y|X) = ZL)QP(Y,X)
B(Y.X) = ﬁw»
Z(X)=Y P(Y,X) 2.1)

2 variables in H (non-chordal Markov network) are connected by an (undirected) edge
whenever they appear together in the scope of some factor [104].

CRFs seem to consistently outperform MaxEnt and HMM approaches for most TM
taks [16, 121], at least with regards to accuracy. Generally speaking, conditioning the
target on what was observed (CRFs & MaxEnt) provides benefits over generative mod-
elling approaches (HMMs) where the entire joint distribution of X needs to be encoded
[104]. Similarly with MaxEnt, a CRF will make no assumptions about the data (con-
trary to the independence assumption made by HMMs). To phrase it differently, both
put emphasis on what was actually observed during training. On the other hand, their
most prominent difference is how they encode the conditional distribution. We already
saw that a CRF is globally conditioned on some observation X. The same is true for
MaxEnt, only this time, the conditioning is not global - the model makes a decision
for each state independently of the other states [88]. With this in mind, we could say
that a CRF is essentially a MaxEnt model over the entire sequence [121]. Thinking of
it this way, also helps us understand why CRFs are more expensive to compute than
MaxEnt. While MaxEnt will find the parameter values that maximise the conditional
likelihood of each class separately (local maximum), a CRF will find the values that
maximise the conditional likelihood of all classes (global maximum).

The intuition behind MaxEnt is to build a distribution by periodically adding fea-
tures that only pick out a subset of the observations. The total distribution is then
constrained by those features to match the empirical distribution observed in the train-
ing set. Finally, the most uniform distribution which accords with the constraints, is
chosen [123]. At first glance, this may seem perverse but the principle is conceptu-
ally very simple. We need to model everything that is known (observed) but assume
nothing about that which is unknown (not-observed). Therefore, a MaxEnt model will
not assume anything it has never encountered before, thus, will never go beyond the

training data. A MaxEnt model will encode a conditional distribution as follows:
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1
P(Y|X) = ZCXPZWifi
l

Z=) P(Y|X) (2.2)
C

(fi denotes feature i and w; its weight)

(Z is just a normalisation factor to make the probabilities sum to 1)

By looking at how MaxEnt encodes the conditional probability between 2 vari-
ables, it becomes apparent why MaxEnt belongs to the family of exponential (also
known as log-linear) classifiers.

Many approaches are not restricted to a single method for performing NER but
rather rely on multiple techniques and various resources [179]. These hybrid ap-
proaches have been shown to be quite effective in combining dictionary or rule-based
approaches with statistical methods [151]. To demonstrate the advantages of hybrid
approaches, Abacha et al. [17] performed a comparison of common rule-based and
statistical approaches to medical NER, and concluded that hybrid approaches utilising
both ML and domain-specific knowledge exhibit superior performance [179]. Numer-
ous hybrid biomedical NER systems have been developed over the years. For example,
Sasaki et al. [171] follow a dictionary-based approach to protein-NER, in parallel with
POS-tagging. A CRF-based statistical approach is then utilised to reduce the number
of false positives and negatives in the resulting tagged sequence. Other methods at-
tempt to create meta-learners from multiple statistical models [179]. A good example
of this is demonstrated by Zhou et al. [218], who identify protein and gene names by
deploying a meta-learner derived from two HMMs (trained on distinct corpora), whose
outputs are combined with an SVM. Similarly, a meta-learner for protein-NER is de-
rived from three SVMs (trained on different corpora and feature sets), whose outputs
are then combined with a fourth one, in [126]. Finally, Piliouras et al. [151] merge
predictions originating from DrugBank, a MaxEnt model and genetically evolved lex-
ical patterns, in order to overcome the issue of data-sparsity. Cai and Cheng [43] also
propose consulting several ML classifiers for improved generalisation and stability in

the system.
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2.3.2 Relation Extraction

NER is only the beginning for most real-world IE tasks in biomedicine. The next step
involves determining associations between the captured NEs. The association can only
be concerned with only 2 entities, in which case it is called a ‘binary association’, or
in fact more, which is rather common in biomedicine. These complex associations
are discussed later in Section 2.3.3. Simpson et al. [179] define relation extraction to
be the task of identifying occurrences of certain types of relationships between pairs
of NEs. Perhaps more importantly, it is emphasised in [179] that, “although common
entity classes (e.g., genes or drugs) are generally quite specific, the types of identified
relationships may be broad, including any type of biomedical association, or they may
be specific, for example, by characterizing only gene regulatory associations”.

IE tasks have centred around a variety of biomedical relations. In the current ge-
nomic era, genes, proteins and their pairwise interactions have been the prime suspects
of most of the surrounding work [179]. In addition, protein-protein interactions (PPIs)
have been extensively researched in biomedical IE, as they form the basis of our under-
standing of bio-processes [179]. Other interesting research targets interactions between
proteins and point mutations [116], proteins and their binding sites [45], genes and
diseases [51] and genes and phenotypic context [122]. Considering the ever-growing
prominence of electronic health record systems in medicine [205], researchers work-
ing within the clinical domain have focused more on relationships between patients’
conditions and the corresponding tests and/or treatments [179].

Biomedical relation extraction faces many of the same challenges as NER, includ-
ing of course, the construction of extensive, high quality annotated corpora for training
and evaluation purposes. Additionally, Simpson et al. [179] make it clear that, “when
compared with the annotation of NEs, the annotation of relations is considerably more
complex due to the fact that these are generally expressed as discontinuous spans of
text and the types of relations considered are usually application-specific [26]. More-
over, since there is often little consensus regarding how to best annotate certain types
of relations, the resulting resources are largely incompatible, and, as a consequence,
the quality of the methods relying on these resources is difficult to evaluate. For exam-
ple, Pyysalo et al. [153] performed a comparative analysis of five PPI corpora and
discovered that the performance of state-of-the-art PPI extraction systems, varied on
average by 19 percentage points and by as much as 30 percentage points on the eval-
uated corpora. Participation in community-wide evaluations that are dedicated to the

relation extraction task is of utmost importance for obtaining annotated corpora”.
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Relation extraction tasks have been a component of several recent evaluation tasks.
The LLL genic interaction challenge [143], the BioCreAtlve PPI extraction task [108],
and the i2b2 relation extraction task [205] are good examples. The LLL challenge
aimed to extract protein and gene relationships from MEDLINE abstracts with the
best-performing system reporting an F-score of 54%. The BioCreAtlve task had a
wider scope and consisted of four subtasks, all related to PPI extraction. These chal-
lenges included the classification of PubMed abstracts as relevant or irrelevant for PPI
annotation, the identification of binary PPIs from full-text articles, the extraction of
protein interaction methods, and the retrieval of the text where the association occurs.
The best-performing system reported an F-score of just under 35% for extracting bi-
nary PPI relations. Finally, within the clinical domain, the 12b2 relation extraction
challenge aimed at capturing medical problem-treatment, problem-test, and problem-
problem relationships in clinical notes [179]. In particular, participants were given
tasks, such as, to determine whether two co-occurring problem and treatment con-
cepts were related and if so, to capture clues of improvement or worsening of patients’
condition after treatment. The best performing system on this challenge achieved an
F-score of 74%. Simpson et al. [179] point out that, “much like the forums dedicated
to evaluating the NER task, community-wide evaluations like these have undoubtedly
played an instrumental role in the development and evolution of relation extraction
approaches and resources”.

Relation extraction approaches have become more and more sophisticated over
time. Their evolution gradually shifted from simple techniques such as co-occurrence
statistics, to complex methods utilising syntactic analysis and dependency parsing
[179]. Popular approaches to the relation extraction task are described next.

Collecting co-occurrence statistics, that is, how often terms appear close together,
can be considered the simplest method for inferring whether two NEs are related or
not. Higher frequency of co-occurrence typically translates to greater chances of some
relation existing between them. Of course, co-occurrence alone says nothing about the
actual type, or the direction of the relation [179]. Nonetheless however, the importance
of other properties should not be underestimated. For instance, co-occurrence statistics
often provide useful hints as to how strong (or weak) some relation might be, and
that is very useful in its own right [179]. The study by Chen et al. [48], presents a
perfect example of such analysis. They were able to compute how strongly certain
drugs are related to certain diseases, simply by analysing the co-occurrence statistics

of these entities as witnessed in clinical records and small parts of the literature. It is
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not unusual for systems that rely solely on co-occurrence, to exhibit high recall and
low precision [179].

Other methods typically involve the acquisition of extraction rules and/or context-
free-grammars (CFGs) [186, 150]. Rule-based methods aim to capture the inherent
linguistic patterns underlying certain relation types. High precision and low recall
(the opposite of co-occurrence approaches) is to be expected from such systems [179].
Much like NER, the task of crafting the rules can be mitigated to domain experts [208],
or they can be derived automatically from annotated corpora using ML [77]. As usual,
both options come with their own set of requirements and trade-offs. More concretely,
outsourcing the task to a domain expert will most likely deliver optimal results, but is
bound to be expensive and of course, requires that such an expert, not only exist in
the first place, but is also able and willing to undertake the task. Much in the same
way, attempting to analyse large amounts of annotated corpora using ML algorithms
requires that such corpora exist or that it is somehow easy to construct, and that their
licence allows such access and usage.

Relations involving biomedical entities have been the target of many statistical ap-
proaches [179]. A supervised machine learning system, trained on shallow features
extracted from oncology reports, which is able to detect and extract various clinical
relationships in patient narratives, is presented by Roberts et al. [168]. On the same
domain, Rink et al. [167] uncovered relations between medical conditions, treatments
and tests mentioned in electronic medical records using a system that combines su-
pervised ML and lexical, syntactic, and semantic context features. Similarly, relations
between diseases and treatments from PubMed abstracts, but also between genes and
diseases in the human GeneRIF database, were targeted by CRFs in [41]. Finally,
much like in NER, hybrid methods are becoming ever more popular. For instance,
such an approach is presented in [32], where the authors make use of hand-crafted pat-
terns developed by domain experts in conjunction with SVM classification to identify
relations occurring between diseases and treatments in biomedical publications.

Exploiting syntactic information has recently received a lot of attention by relation
extraction researchers [179]. In particular, the idea that relation extraction can be per-
formed on the output of dependency parsers has been widely explored. For example,
Fundel et al. [71] extracted abstracts from MEDLINE and used them to produce depen-
dency trees. Three simple relation extraction rules were subsequently applied to the re-

sulting syntactic structures in order to identify gene and protein associations. Similarly,
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a combination of syntactic patterns obtained from dependency parses, were used by Ri-
naldi et al. [165], in order to be able to make the literature act like a database which
can be queried for interactions between proteins and genes. Miyao et al. [132] demon-
strated that MEDLINE abstracts can be annotated with predicate-argument structures
through the use of deep parsing. Relational concepts are then uncovered by structurally
matching the semantic annotations. In later work, Miyao et al. [133] presented a com-
prehensive overview of various parsers and their output representations. An evaluation
regarding their ability to boost accuracy was also performed (in the context of a PPI
extraction system) [179].

Given that the availability of large corpora containing relational annotations is con-
stantly growing, many approaches these days tend to prefer ML algorithms to extract
useful information from syntactic structures instead of applying hand-crafted rules
[179]. In fact, kernel-based ML research, has produced kernels capable of measur-
ing the similarity between syntactic parse trees or graphs [179]. A good example of
an approach which utilises such kernels is given by Airola et al. [18], who describe an
all-paths graph kernel for computing the similarity between dependency graphs. The
kernel function is then used in training a “least-squares” SVM, which in turn, identi-
fies PPIs. On a similar note, four genic relation extraction kernels based on the shortest
syntactic dependency path between two NEs, are suggested by Kim et al. [100]. Lastly,
Miwa et al. [130] propose a framework for combining the output of multiple kernels
with that of syntactic parsers, for PPI recognition.

Syntactic analysis is often complemented by shallow semantic parsing, which con-
sists of the detection of semantic arguments associated with the predicate of a sentence
and their subsequent classification into ‘roles’. For instance, given the sentence “Alice
sold the car to Bob” the task would be to recognize the verb “to sell” as representing
the predicate, “Alice” as representing the seller (agent), “the car” as representing the
goods (theme), and finally, “Bob” as representing the recipient. A semantic represen-
tation of this kind is at a higher-level of abstraction than a syntax tree. This means that
even though the syntactic form may change (i.e. active to passive voice), the semantic
roles involved will stay the same. Such a role-labelling system (BIOSMILE) was de-
veloped by Tsai et al. [191]. Internally, it uses a MaxEnt model to extract biomedical
relations from a portion of the GENIA corpus. As discussed next, the semantic role
labelling of biomedical NEs has enabled the extraction of many complex associations

and interactions [179].
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2.3.3 Event Mining

The last six to seven years, the focus of modern biomedical IE has shifted from iden-
tifying binary relations towards the significantly more difficult and ambitious task of
extracting complex, and often, nested events. Events are typically characterised by
verbs, potentially nominalised [179]. For example, given the sentence “glnAP2 may
be activated by NifA”, the verb “activated” specifies the event, and glnAP2, NifA spec-
ify the arguments to that event. Contrary to the the case of simple binary relations, an
event and its arguments are tagged with both concept labels and semantic roles [179].
In the example given above, the verb activated indicates an event of type “positive-
regulation”, whose arguments are expected to be a protein (NifA) (acting as the cause)
and a gene (gIlnAP2) (acting as the theme) [26]. Another important differentiation is
that events are fully composable, and thus, can be nested, with one event functioning as
a participant to some other. Such a composition can appear even if the sentence is short
and structurally simple. For example, in the sentence “RFLAT-1 activates RANTES
gene expression” two events are encountered [26]. One of them is indicated by the
nominalised verb expression whose theme is RANTES (a gene), and the other one is
indicated by the verb activates whose cause is RFLAT-1 (a protein) and whose theme
is the gene expression event itself. Consequently, event representations are capable
of expressing many different types of interactions with an arbitrary number of entities
and events related by an assortment of thematic roles [179].

Since, both the syntactic and semantic structure of a sentence needs to be anal-
ysed, certain semantic processing and deep-parsing techniques have proven extremely
useful for effective event-mining (EM) [179]. Given that, events can be effectively rep-
resented by predicate-argument relationships [210], one can imagine why dependency-
parsing in particular, can be an invaluable aid for EM. Despite the overall complexity
of the task, EM can be applied to many aspects of biomedical research. According to
Simpson et al. [179], the annotation of biological pathways and the enhancement of
existing databases are examples of tasks increasingly being targeted by EM systems.

Similarly with NER and relation-extraction, the growing interest in EM these days
has been driven, in no small part, by the availability of corpora containing the anno-
tations necessary for the training and evaluation of statistical EM approaches. The
Biolnfer corpus [154] was the first publicly available corpus to incorporate such an-
notations, in the general biomedical domain. Not long after, other event-annotated
corpora followed suit, including the GENIA Event Corpus [100] and the Gene Regula-
tion Event Corpus (GREC) [189]. Interestingly, the GENIA corpus remains one of the
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most widely used resources in biomedical TM. In fact, the data-sets for early BioNLP
shared tasks on EM [97, 99] were prepared based on GENIA [179].

The first community-wide evaluation of EM methods was the BioNLP shared task
of 2009 [97]. Its main challenge was to identify events related to protein biology
abstracts contained in MEDLINE. The actual event types that were targeted included
gene expression, transcription, localisation, binding and regulation. The binding event
type was significantly more demanding than the rest, as it required the detection of an
arbitrary number of arguments. By the same token, events of type regulation, were
notably complex since they allow other events to act as their cause or theme (nesting)
[179]. The best-performing system reported an F-score of 52% on the primary task. On
the next BioNLP shared task of 2011 [99], the evaluation from the previous meeting
was reiterated, but also augmented by including further tasks targeting events in other
biological sub-domains. A decent improvement in the community was witnessed on
the the subtask directly comparable with that of the first meeting, as an F-score of 57%
was reported by the best-performing system. Systems submitted at the BioNLP shared
task meetings utilised an array of techniques including ML, Markov-Logic networks,
and of course, dependency-graphs [179]. Approaches to biomedical EM are described
next.

Most EM systems follow a step-wise approach that divides the task into a sequence
of three distinct phases [179]. Typically, the first phase is concerned with predicting
a candidate set of event triggers. Trigger words are often the verbs (or nominalised
version thereof) that indicate a particular event type (e.g. “binds”, “activates”, “in-
hibits”). Determining whether any recognised NEs or trigger words are manifestations
of event arguments, comes next. The final stage in the process focuses around attach-
ing arguments to event triggers according to constraints on the type, and sometimes the
number of, arguments allowed by a particular event type. In addition, certain state-of-
the-art EM systems augment this process by adding an extra step which usually targets
negation or speculation cues [141] (i.e. EventMine [131]).

The aforementioned high-level architecture is a common approach to the EM task,
as witnessed by the majority of participating systems on the BioNLP EM challenges.
For instance, the the best-performing system on the BioNLP 09 EM task, described in
[37], used an extensive set of features to train separate multi-class SVMs for detecting
event triggers and arguments. In particular, features derived from dependency graphs
were heavily relied on. The system then used a set of hand-crafted rules to tag recog-

nised events with their corresponding arguments. In later work, the authors combined
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this approach with the BANNER NER system, in order to perform EM on an untagged
subset of citations from PubMed [36]. An EM approach similar to that of Bjorne et al.,
is given by Miwa et al. [129]. However, instead of relying on manually derived rules
for attaching event participants to triggers, an improvement is demonstrated, stem-
ming from the use of a ML classifier with additional features, tailored specifically for
this step. On the other hand, Buyko et al. [42] construct a dictionary of common
event triggers. Event participants are then recognised by an ensemble of feature and
kernel-based classifiers. Similarly, Kilicoglu et al. [96] also use a dictionary-based ap-
proach to identify triggers, but instead of relying on ML, they manually develop rules
and heuristics based on syntactic dependency paths to detect participants. Finally, a
pattern-based approach is presented by Cohen et al. [54]. Their method relies on the
ontology-driven OpenDMAP system [87] in order to define the types of entities and
events, as well as the potential constraints surrounding their respective arguments.

More recently, joint prediction approaches have been explored [179]. These pri-
marily seek to address the issue of errors flowing downstream, which most of the
above approaches allow. For example, by decoupling the event-trigger and argument-
detection tasks, a system will most likely fail to extract an event, unless it detects
the trigger first. A method which jointly predicts events and arguments, is proposed in
[152]. Their system, being a Markov-logic based one, predicts, for each word, whether
it is a trigger, and for each syntactic dependency edge, whether it is an argument path
towards an event theme/cause [179]. Following this work, a small set of joint predic-
tion models is argued to be computationally simpler than previous work [162] and lead
to better EM performance, by Riedel and McCallum [163].

2.3.4 Numerical expressions

Numerical expressions are a common phenomenon in both text and speech, and of
special importance to all areas of science. Nonetheless, they also present special chal-
lenges to NLP applications. According to Habash et al. [75], the challenges behind

identifying numerical expressions include:

e an infinite set of possible expressions

e multiple script formats (e.g., digits, multi-token sequences or a mix of both)

Of course, not all NLP applications have the same needs and/or aims. For example,

in machine translation numerical expressions are typically subject to normalisation,
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such that converting them to the desired target language is straight forward [75]. On
the other hand, in speech recognition the model could have been trained on digit-free
samples. Similarly, applications aiming to convert text to speech, will have to do sev-
eral layers of transformations in order to go from a written numerical expression to a
spoken word. In IE, it is important to be able to associate these numerical expressions
with the entities they refer to and also, with surrounding modifiers, in order to enable
semantic inference. Therefore, to be able to process such expressions in realistic con-
texts, methods to determine the exact expression span and to convert its content into
a normalised, digit-based form are needed. Being able to generate digits from some
normalised form can also be useful but is a significantly easier task [75].

According to Habash et al.[75], the majority of work on number identification has
focused on out-of-context conversions from word to digit (and vice versa), and even
though work on this front has been carried out for many languages, it remains exclu-
sively rule-based. Examples include English [161], Swedish [178], Finnish [92] and
Arabic [19, 58]. Especially impressive is the ‘Numeral Translator’ [39], which is able
to translate numerical expressions to over 80 languages. However, on top of being out-
of-context, these approaches are not by any means perfect. That is, they often fail to
handle even small variations of input formats, perhaps because the authors have cho-
sen to keep their rule-set small. Reusing the example from [75], “the aforementioned
Numeral Translator can translate ‘forty-seven thousand three’ into ‘47003°, but can-
not parse ‘forty-seven thousand and three’ or ‘forty seven thousand three’ (omitted
hyphen), which are common variations” .

Apart from general numerical expressions, existing research has also targeted highly
specialised categories such as, temporal and monetary expressions (quantifying time
and money respectively). Temporal expressions are particularly interesting for the
biomedical and clinical domains, as they usually denote key aspects of certain param-
eters, treatments and/or symptoms. Despite the specificity difference between the two
categories, the methods utilised for identifying, extracting and normalising numerical
expressions remain similar across both. For example, Kovacevic et al. [106] describe
a system which combines rule-based with ML approaches that rely on morphological,
lexical, syntactic, semantic, and domain-specific features. The ML module of their
system uses CRF models trained for event extraction, while recognition and normali-

sation of temporal expressions, are handled by manually crafted rules.
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Technically speaking, raw integers can be extracted effectively and efficiently with
regular-expressions. More complex numbers such as arbitrary decimals and compos-
ite expressions that combine alpha-numeric characters (e.g., 8,15 mg/h) need to be
decomposed to their constituents and handled separately. Regular expressions do al-
low for internal grouping but are very error-prone when scaled and, more importantly,
they do not compose. As a consequence, on the programming level, taking a com-
posite expression apart can only be expressed as a monolithic transformation (A —
7). We pursue the idea of viewing the same decomposition as a set of discrete trans-
formations derived from composing functions (A — B — C — .... Z). As it will be
explained in Chapter 4, this has a couple of interesting properties. In short, since the
decomposition is lifted a level higher than regular-expressions, we can mix and match
components (functions) such that each constituent is handled by whichever component
is more appropriate. For example, when identifying drug prescriptions with regular-
expressions, one will probably try grouping the drug-name and the dose separately
within the same regular-expression. Ideally, we would like to be able to express that
the drug-prescription-recogniser is a composition of the drug-recogniser and the dose-
recogniser, but there is no way to do that with regular-expressions. Moreover, the dose
itself can be considered a composite entity as it typically includes some numerical
value, some unit of measure and some interval. It quickly becomes apparent that a
pure regular-expression based solution will quickly become extremely fragile for any
sufficiently complex pattern. On the contrary, viewing the transformation in discrete
steps allows for heterogeneous models to be combined. Regular expressions can still
be used wherever appropriate. In the example presented here, we could use a dic-
tionary as the drug-recogniser, a regular-expression to capture all expressions involv-
ing numbers, which are then passed to a statistical model that gives the final answer
(dose-recogniser). The models live inside functions which, when composed, give the

drug-prescription-recogniser.

Pharmaco-kinetic parameters

As hinted earlier, modern drug development relies heavily on PK modelling. Generally
speaking, once a drug has entered the body, its PK parameters are constantly subject
to change. Such modifications can occur due to a variety of reasons, and are in turn
likely to cause further, possibly undesired, alterations in the drug’s course through the
body. Consequently, one may experience from minor unwanted symptoms to severe

injuries, and even death, depending on the extent of the modification. Therefore, it
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follows that having a clear picture of what can or cannot alter the PK parameters of
a particular molecule is invaluable information for a drug developer and in fact, for
anyone involved in the drug production — prescription — consumption pipeline.

To our knowledge, mining for PK parameters has only been reported by one other
research group so far. However, there have been studies addressing general kinetics
parameter mining issues. Ordinary differential equations (ODESs) used for general bio-
logical kinetic system (i.e. enzyme kinetics) modelling are quite similar to those used
in drug modelling. Therefore, strategies for kinetics parameter mining can have high
relevance to drug PK parameter mining. One study [192] presented a tool (KIND)
for kinetics parameter extraction. As part of its NER phase, labels describing type,
value and annotation span were POS-tagged and used for feature detection. Subse-
quently, the tagged entities were then matched against a collection of lexical rules,
specifically tailored for identifying and extracting these parameters and their related
annotations. The authors report decent performance in both classifying relevant sen-
tences, and kinetic parameter extraction ([P = 76% - R = 87%] and [P = 75% - R =
90%] respectively). Another, rather similar, TM algorithm [79] for chemical and bio-
logical kinetics data relies on dictionary-NER prior to a rule-based assocication of the
recognised terms. The dictionaries are manually developed by experts. This method
was tested against PubMed abstracts, where manual verification of the results showed
recall values between 51% and 84%, and precision values ranging from 55% to 96%,
depending on the category explored (organism, enzyme or ligand) [209].

The one study that truly focuses on extracting PK numerical parameters and their
potential modification is that of Zhiping et al. [209] and his subsequent thesis, which
describes their sequential mining strategy. Firstly, an entity template library was built
in order to retrieve PK relevant articles (IR phase). A set of tagging and extraction rules
were then deployed on the retrieved abstracts, to identify, and subsequently extract,
PK data (IE phase). Moreover, in order to estimate the PK parameter population-
average mean and between-study variance, the author(s) developed a linear mixed
meta-analysis model and an expectation-maximisation (E-M) algorithm to describe
the probability distributions of PK parameters. Finally, a cross-validation scheme was
adopted to clear out false-positive mining results. Using this approach to mine PK
data for the drug midazolam, an 88% precision rate and 92% recall rate are reported,
balancing to an F-score of 90%. It appears to outperform an SVM based mining ap-
proach, which led to an F-score of 68.1%. According to the author(s), repeating the

experiment on seven additional drugs leads to similar performance.
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Another recent study concerned with extracting and classifying, not necessarily
PK, but numerical expressions in general, is that of Narisawa et al. [93]. Their work
mainly focuses on novel methods for modelling numerical common sense: “the ability
to infer whether a given number (e.g., three billion) is large, small, or normal for a
given context (e.g., number of people facing a water shortage)”. Two approaches for
acquiring numerical common sense are explored. According to the authors [93], “both
approaches start with extracting numerical expressions and their surrounding context
from the Web. Context is defined to be the verb and its arguments that appear around
a numerical expression. The first approach estimates the distribution of numbers co-
occurring within a particular context and examines whether a given value is large,
small, or normal, based on the distribution. The second one utilises textual patterns
with which speakers explicitly expresses their judgement about the value of a numeri-
cal expression. Both approaches were shown to be effective for numerical expression
extraction and reasoning”.

In order to extract and aggregate numerical expressions in various documents, they
mapped the numerical expressions to richer semantic representations and extracted
their context. It is argued that “the semantic representation of a numerical expression
consists of three fields: the value or range of the real number(s), the unit (a string)
and optional modifiers” [93]. During normalisation, spelling variants (e.g., kilometre
and km) were captured and auxiliary units were transformed into their corresponding,
predefined canonical units (e.g., 2 tons and 2,000 kg becomes 2,000,000 grams). In
addition, certain accompanying modifiers such as ‘over’, ‘about’, or ‘more than’, affect
the value accordingly.

Since most PK modifications are quantifiable and usually expressed in literature in
the context of some comparison or condition, the aforementioned work of Narisawa et
al. has high relevance for extracting PK numerical parameters. In particular, certain
aspects of extracting and normalising numerical expressions were adopted and suc-
cessfully applied for extracting reported numerical drug properties (e.g., dosage), in
this thesis (see Chapter 4).



Chapter 3

Dealing with data sparsity in drug
NER

3.1 Introduction

As explained in the previous chapter, NER is the task of identifying members of various
semantic classes, such as persons, mountains and vehicles in raw text. In biomedicine,
NER is mainly concerned with the following classes: proteins, genes, diseases, drugs,
organs, DNA sequences, RNA sequences, but possibly others too [52]. Drugs (as phar-
maceutical products) are special types of chemical substances with high relevance for
biomedical research and in particular, PK/PD modelling. An overview of approaches
to NER was also given in the previous chapter. For example, a simplistic and rather
naive approach to NER is to directly match textual expressions found in a relevant
lexical repository against raw text. However, recall that, even though this technique
can sometimes work well, more often it suffers certain serious limitations. Firstly, its
accuracy heavily depends on the completeness of the dictionary. However, as terminol-
ogy is constantly evolving, especially in bio-related disciplines, producing a complete
lexical repository is far from feasible. Secondly, direct string matching completely
overlooks ambiguity and variability issues [25]. Ambiguous dictionary entries refer to
multiple semantic types, and therefore contextual information needs to be considered
for disambiguation. Typically, statistical learning models are deployed to address these

iSsues.
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In such approaches the entire task of NER is formalised as a classification problem
in which an input expression is either classified as an entity or not. Supervised learn-
ing methods are reported to achieve superior performance than unsupervised ones, but
previously annotated data are essential for training [25]. Human annotated data, also
known as gold-standard data, guarantee best results in exchange for the cost and man-
ual effort of experts. For this reason, manually annotated corpora for NER are often of
limited size and for a particular domain.

In this Chapter, we present a method for improving drug NER performance in cases
where either very limited or no gold-standard training data is available. Our method
includes of a voting system able to combine predictions from a number of recognisers.
Moreover, genetic-programming (GP) was used in order to evolve string-similarity
patterns based on common suffixes of single-token drug names occurring in DrugBank
[211]. In succession, these patterns are used to compile regular expressions in order to
generalise dictionary entries in an effort to increase coverage and tagging accuracy.

We compare the performance of several ‘standard’” NER approaches against ours
on a single gold-standard testing-corpus (PK corpus [213]). Even in the worst-case
scenario, where no gold data is available, our best combination of non-gold models
exhibits classification performance comparable with that of the gold model. Having
access to robust drug NER models is extremely useful for higher level extraction tasks
that totally depend on recognising these entities, such as mining for drug-drug interac-
tions (DDIs) or in fact, PK parameters, which is the long-term goal of this thesis.

The rest of this paper is organised as follows: section 3.2 summarises previous
work on ways of dealing with data sparsity in general NER (a detailed overview of
bio-NER approaches is provided in Chapter 2). Section 3.3 describes the dictionaries
and data used in our experiments, as well as the experimental methodology followed.
Section 3.4 discusses the experiments and their results, followed by ‘Discussion’ and

‘Conclusions & Future work’(Sections 3.5 and 3.6 respectively).

3.2 Related Work

Usually data sparsity in NER is dealt with by generating data semi-automatically or
fully automatically. However, the resulting data is of lower quality than gold-standard
annotations. Since supervised learners are based on annotation statistics, existing re-
search has mainly focused on quick automatic generation of good quality of training

data. Towards the same ultimate goal, our approach aims to overcome the restrictions
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of data sparsity or unavailability in the biomedical domain. In the next 3 paragraphs
we present recent advances in the area of automatic generation of data, whereas, in
the last paragraph of this section we focus on techniques tailored to deal with existing,
limited amounts of data.

Usami et al. [201] describe an approach for automatically acquiring large amounts
of training data from a lexical database and raw text that relies on reference information
and coordination analysis. Similarly, Vlachos and Gasperin [207] obtain noisy training
data by using a few manually annotated abstracts from FlyBase (www. flybase.org).
Their approach uses a bootstrapping method and context-based classifiers to increase
the number of NE mentions in the original noisy training data. Even though they report
high performance, their method requires some minimum curated seed data. Similarly,
Thomas et al. [187] demonstrated the potential of distant learning in constructing a
fully automated relation extraction process. They produced two distantly labelled cor-
pora for protein-protein & DDI extraction, with knowledge found in databases such as
IntAct [95] for genes and DrugBank [211] for drugs. Active learning (AL) is another
framework that can be used for reducing the amount of human effort required to create
a training corpus [59, 188]. In AL, the most informative samples are chosen from a big
pool of human annotations by a Maximum Likelihood model in an iterative and inter-
active manner. It has been shown that active learning can often drastically reduce the
amount of training data necessary to achieve the same level of performance compared
to pure random sampling [190].

A related approach, “accelerated annotation”, is presented in [196]. Similarly to
AL, this framework allows one to produce named entity (NE) annotations for a given
corpus at reduced cost. However, unlike AL, it aims to annotate all occurrences of the
target NEs, thus minimising the sampling bias, which is inevitable in AL approaches.
Despite the similarities between the two frameworks, their goals are different. While
AL aims to optimise the performance of the corresponding tagger, accelerated annota-
tion aims to construct an unbiased NE annotated corpus.

On a rather larger scale, the Collaborative Annotation of a Large Biomedical Cor-
pus (CALBC) initiative [160] is a European Support Action concerned with the au-
tomatic generation of a very large, community-wide shared corpus annotated with a
wide range of biomedical entities. Generating such a corpus requires that annotations
from different automatic annotation systems are integrated and harmonised.

Even though there is great value in generating quality training data automatically

or semi-automatically, other researchers have focused on making the most of existing
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annotations. Tsuruoka et al. [193] used logistic regression to learn a string similarity
measure from a dictionary, useful for soft string matching. In contrast, our approach
learns string patterns. Kolarik ef al. [103] utilised NLP techniques to extract drug-
related term candidates from textual expressions found in DrugBank. They automat-
ically augmented these resources with novel descriptions of pharmacological effects
of drugs by applying these lexico-semantic patterns to MEDLINE abstracts. Similar
methods have also been applied to tasks as recognising drug-disease interactions [48]
and interactions between compounds and drug-metabolising enzymes [64]. Hettne et
al. [81] describe a rule-based approach, primarily intended for term filtering and dis-
ambiguation. It helps to identify names of drugs and small molecules by incorporating
several dictionaries such as the UMLS, MeSH, ChEBI, DrugBank, KEGG, HMDB
and ChemIDplus. They report an overall performance of 67% precision and 40% re-
call of their combined dictionary on the Fraunhofer corpus. An earlier experimental
system, EDGAR [166], extracts both genes and drugs as well as relationships between
them by combining several databases with statistical NLP methods. Unfortunately, no
evaluation results are reported. In the clinical domain, Sanova et al. [172] released the
clinical Text Analysis and Knowledge Extraction System (cTAKES), as open-source
software. Their system, which builds on top of other popular open-source projects
such as UIMA and openNLP, was designed for information extraction from electronic
medical records (EMR). They report 71.5% F-score for their NER component when
tested against their private gold-standard test set. Sasaki e al. [171] followed a bi-level
dictionary-based statistical approach. Firstly, protein name candidates are located us-
ing a dictionary. Strings are mapped to parts of speech (POS), where the POS tag-set
is augmented with a special tag for proteins. In succession, sequential labelling applies
to reduce false positives and false negatives in the POS/PROTEIN tagging results. The
model can be expanded by manually adding NE entries to the dictionary, not by re-
training. An F-score of 73.78% is reported on protein NER against the JINLPBA-2004
shared task test set, which contains 404 MEDLINE abstracts.

3.3 Data and Methods

The proposed method requires at least two key resources: a comprehensive lexical
repository, such as a dictionary or lexicon, and large amounts of raw text in the same
domain. A small gold-standard corpus can enhance NER performance if available.

Our method could potentially be applied to recognise any type of biomedical named
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entities. Significant progress has already been made in recognising genes and proteins

and so we focused on identifying entities of type drug.

3.3.1 Data

DrugBank

As our dictionary, we chose to use DrugBank [211] because it is relatively up-to-
date and it provides a mapping between drug-names and common synonyms. Drug-
Bank currently contains more than 6,700 entries including 1447 FDA-approved small
molecule drugs, 131 FDA-approved bio-tech (protein/peptide) drugs, 85 nutraceuti-
cals and 5080 experimental drugs. We pre-processed the dictionary by normalising
and mapping all official drug terms to their synonyms.

PharmacoKinetic Corpus

The PharmacoKinetic Corpus [213] is manually annotated and consists of 240 MED-
LINE abstracts annotated and labelled on the basis of MESH terms relevant to Phar-
macokinetics such as drug names, enzyme names and pharmacokinetic parameters,
e.g. clearance. Half of the corpus is intended for training (invivo/invitro-train) and
half for testing (invivo/invitro-test). It is freely available at: rweb.compbio.iupui.
edu/corpus/. As a pre-processing step, all annotations concerning entities other than

drugs were removed, since this study is concerned with detecting drugs only.

Raw text

Nowadays, acquiring large amounts of raw text is not a difficult task, even for very
specialised domains. Public electronic repositories of open-access articles exist for
most scientific domains and usually can be queried via RESTful web services. In
biomedicine, for example, UK PubMed Central (Europe PMC, www . europepmc.org/)
is an article database which extends the functionality of the original PubMed Cen-
tral (PMC, www.ncbi.nlm.nih.gov/pmc/) repository. For the purposes of this study
we used a small subset of the entire UKPMC database which includes more than
2,000,000 papers. The sample we used was created by Mihaild and Navarro [125],
totalling 360 pharmacology and cell-biology related articles. As a pre-processing step,
the corpus was sentence-splitted and tokenised. Part-of-speech (POS) tagging was
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omitted from the process since we did not plan to use the POS tags as features during

training.

3.3.2 Methodology

In this section we describe our NER classifier. To classify labels of tokens, we used
Maximum-Entropy (MaxEnt) modelling, also known as multinomial logistic regression
[34], which tries to maximise the conditional likelihood of classes by assuming that
the best model parameters are the ones for which each feature’s predicted expectation
matches its empirical expectation. In other words, MaxEnt tries to maximize entropy
while conforming to the probability distribution drawn by the training set. As a Max-
Ent implementation, we used MAXENT.SF, which is part of the Apache openNLP
project. The features used in the classifier modelled by MaxEnt are listed below. For

each token we calculate:
- the current and +2 tokens
- character n-grams: +2 tokens

- sentence: binary feature indicating if the token appears at start or end of a sen-

tence.
- token-type! of the current and +2 tokens

- previous map: a binary feature indicating if the current token was previously

seen as a NE.
- prefix
- suffix
- dictionary: binary feature indicating if the token exists in the dictionary

We acquired evaluation statistics for several ‘standard” NER approaches in order
to establish a baseline. A simple voting-system was developed which is able to ag-
gregate predictions from several NER systems, after hypothesising that the combined

output from several NER systems will improve over the results of single classifiers that

Token types:
- INITIAL-CAPITAL-LETTER - CONTAINS-DIGIT
-  ALL-LOWERCASE-LETTER - CONTAINS-SLASH
- ALL-LETTERS - CONTAINS-HYPHEN
- ALL-DIGITS - CONTAINS-LETTERS

- CONTAINS-PERIOD - CONTAINS-UPPERCASE
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were deployed as standalone. Our voting algorithm assumes that DrugBank makes no
false-positive predictions. This assumption is not true, if DrugBank includes non-drug
entities but, since dictionaries are produced manually, we consider them ideal. Am-
biguous NEs might also affect the validity of this assumption. We observed very little
such ambiguities in our dictionary, thus, we accept the hypothesis to hold in the domain
of drug NEs. Algorithm 1 summarises the voting system.

At a second experimental stage, we de-constructed the dictionary into 2 distinct
models: (a) a model trained on text solely annotated by the dictionary, and (b) an
evolved set of string-patterns that attempts to accurately cover common suffixes of
single-token drug names.

For evaluation, we used the standard Information-Retrieval (IR) metrics: Precision
(P), Recall (R) & F-Score (F) [156].

Algorithm 1 Aggregation of predictions

ListL — [ ]
for all SENTENCES : TEXT do
Map M — {: prediction : confidence}
for all TOKENS : sentence do
if dictionary exists then
if dictionary.predict(t) — POSITIVE then
PUT M {prediction 1.0}
else
for all M : MODELS do
if M .predict(t) — POSITIVE then
STORE { prediction confidence}
end if
end for
PUT M {prediction max-confidence}
end if
end if
end for
DROP overlapping /intersecting spans*
ADDLM
end for
return L
* Rules for dropping spans:
- Identical/Intersecting: first span is kept
- Contained: Contained spans are dropped
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Classifier | P | R | F

Dictionary 99.7% | 78.5% | 87.8%
Dictionary + synonyms 93.4% | 78.9% | 85.6%
MaxEnt(g!) 98.3% | 84.5% | 91.0%
Perceptron(g) 97.5% | 72.0% | 82.8%
MaxEnt(g) + Dictionary 99.1% | 88.4% | 93.4%
Perceptron(g) + Dictionary || 97.6% | 84.3% | 90.4%

Table 3.1: Results of baseline classifiers, trained on gold-standard data

3.4 Experiments

3.4.1 Baselines

Firstly, we tested how the dictionary performs, with and without including synonymes.
Secondly, we trained two NE recognisers, namely a MaxEnt and a perceptron clas-
sifier, on half the PK corpus (invivo/invitro-train) and tested them on the other half
(invivo/invitro-test). Finally, we used our prediction aggregation algorithm to com-
bine predictions originating from the dictionary, with predictions originating from the
classifiers.

Table 3.1 presents the results from our baseline experiments. It is worth noting that
the pure dictionary-based approach is not 100% precise as our voting system assumes.
Careful error analysis revealed that there are at least two entities, i.e. “nitric oxide”
and “tranylcypromine” that have not been tagged in the gold-standard corpus. Con-
sequently, the evaluator marks them as false-positives while in fact, they are perfectly
correct predictions. Another interesting observation is that including synonyms causes
precision to degrade. Synonyms in DrugBank often include acronyms, which have not
been tagged appropriately in the test corpus. As before, the evaluator classifies them
as false-positives.

In general, we can see that both the dictionary and the classifiers exhibit very high
precision and good recall, whereas combining the two has a minimal positive effect
on overall performance. The perceptron classifier, despite training significantly faster,
consistently showed inferior performance compared to MaxEnt.

Our baseline experiments show that, despite acquiring state-of-the-art precision,
there is still space for improvement with regards to recall. High precision indicates

that the model extracts some very informative features while training, whereas not so

lg — gold



CHAPTER 3. DEALING WITH DATA SPARSITY IN DRUG NER 50

high recall essentially reflects lack of enough training data. Ideally, we would need
more gold-standard annotations, however, as discussed previously, this is not always

feasible.

3.4.2 Combining heterogeneous models

Attempting to improve recall, we trained separate models purely on silver data, i.e. data
annotated by direct string-matching dictionary entries. Annotation coverage ultimately
depends on how up-to-date the dictionary is. DrugBank is a good candidate for this
task, as it is a comprehensive dictionary of drugs and also freely available. The 360
full papers mentioned in Section 3.3.1 were annotated and partitioned into 30 collec-
tions, each one containing 12 items. This was done in an effort to incrementally check
whether the addition of silver annotations has any positive or negative effects on the
classifier’s performance. We found that we had to include all 30 partitions in order to
witness any kind of improvement.

The MaxEnt classifier trained on silver annotation data achieves marginally higher
precision and significantly lower recall than the same classifier trained on gold-standard
data. This is expected, since the silver annotations reflect the contents of the dictionary,
only. Trained on a mixture of gold and silver data, the MaxEnt classifier achieves 0.5%
lower precision and 0.3% higher recall than its equivalent trained on gold-standard
data.

Including the dictionary boosts the recall of the MaxEnt classifier trained on a
mixture of gold-standard and silver annotation data by 1.3% in comparison with its
baseline equivalent. The last 2 rows of Table 3.2 show that all statistics were slightly
boosted just by utilising these extra, easy to produce silver annotations.

In all our experiments so far, the best achieved recall is 89.7%, far less than pre-
cision, thus, we focus on improving it. Careful examination of false-negatives reveals
that most of them are either acronyms (e.g. HMR1766), long chemical descriptions
(e.g. Sbeta-cholestane-3alpha,7alpha,12alpha-triol) or terms whose lexical morphol-
ogy is particularly different than the usual morphology of drugs (e.g. grapefruit juice).
We attempted to capture acronyms by employing a state-of-the-art acronym disam-
biguator, AcroMine [146], however did not disambiguate any of the acronyms in ques-

tion, listed below:

- ANF - PO4 - HMRI1766 - MDZ I’-OH
- E3174 - RPR 106541 - MDZ 4-OH
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Classifier | P | R | F

MaxEnt(s") 98.7% | 47.1% | 63.7%
MaxEnt(s) + Dictionary 99.2% | 78.5% | 87.6%
Perceptron(s) 98.3% | 76.9% | 86.3%
Perceptron(s) + Dictionary 99.3% | 78.5% | 87.7%
MaxEnt(g+s) 97.8% | 84.8% | 91.0%
MaxEnt(g+s) + Dictionary 98.6% | 89.7% | 93.9%
Perceptron(g+s) 97.2% | 79.1% | 87.2%
Perceptron(g+s + Dictionary || 98.0% | 85.1% | 91.1%

Table 3.2: Results of classifiers trained on gold-standard and silver annotation data

Determining the frequency threshold value for including features when training a
probabilistic classifier, i.e. the number of times a feature must be encountered so as to
be considered, is particularly difficult, especially in presence of data sparsity. This fre-
quency threshold value controls the compromise between precision and recall. For our
experiments we set this threshold at 5. Experimenting with lower values detrimentally
affects precision. As discussed, a number of false-negatives were missed due to their
morphology which is different than the usual morphology of drugs. These two facts,
suggest that probably some informative features did not qualify due to the frequency

threshold value.

3.4.3 Evolving string-similarity patterns

In this section we pursue improving recall by learning string similarity patterns based
on dictionary knowledge. Exploring ways to restore the predictive power the model
could have if more training data were available, we develop a mechanism to deal with
these easy, yet elusive false-negative cases, discussed in the previous section. We
attempt to genetically evolve string patterns that can then be used as regular expressions
to capture drug names that are not present in the dictionary.

Following the work of Tsuruoka et al. [193], we also use a form of regression in
order to learn common string patterns of drug names. More specifically, we used GP,
also known as “symbolic regression”, a technique deeply rooted in the basic principles
of Darwinian evolution which allows the evolution of programs at the symbolic level
[107]. GP is used in this task as a global optimisation algorithm. The pseudo-random
sampling inherent in GP means that no hard guarantees about the final outcome can be

made. However, the randomness also enables a good coverage of the fitness landscape

Is — silver
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and therefore avoids falling into local optima, which is essential to solve our prob-
lem. Furthermore, the self-driven nature of evolution is robust as it makes little to no
assumptions about the fitness landscape, thus mitigating any bias during the learning
stage, which enables it to produce meaningful solutions where other global optimi-
sation algorithms can falter [107]. The whole notion of evolution, as put forward by
Charles Darwin, is based on sexual reproduction (crossover), random mutation and nat-
ural selection, hence, learning by means of evolution is a good fit for our use-case as
it offers the attractive possibility of finding decent solutions with no prior knowledge.
We only need to define a fitness function (a measure for judging how fit a candidate
is), a function-set (the functions available to the GP system) and a terminal-set (the
constants available to the GP system). The functions and terminals are essentially, the
primitives with which a program in GP is built. Loosely speaking, terminals provide
a value to the system and functions process a value already in the system. Typically,
a GP system that deals with numerical calculations will need, at least, the four basic
arithmetic operations as function-set (+, -, *, /) and the numbers [0-9] for terminal-set
(‘0’ can in fact be quite dangerous, as it has the power to cancel out entire branches
of the tree, but that is outside the scope of this paper). In our case, since we are deal-
ing with strings, it makes sense to use the characters [a-z] for terminals and several
string-manipulating functions (e.g. “split”, “join” ,“concat”) for our function set. In
addition, we included some terminals (characters) that are needed in order to build
meaningful regular expressions, such as: | \*+ ? () [ ].

Each ‘organism’ in the genetic population is a little program. When executed, the
program produces a string which is assigned a score according to the fitness function.
For this purpose, all the single-word terms were extracted from DrugBank and were
used as ‘test-data’ within the fitness function, which simply returns the proportion of
matches as a measure of fitness. In case the string produced is not even a valid regular-
expression, the candidate receives negative score and will most likely be disregarded
in the next generation. For instance, a candidate who matches 50/6,700 terms in Drug-
Bank is obviously fitter than some other one who matched only 10/6,700 terms, who
in turn, is fitter than someone whose string could not even be compiled. Unfortu-
nately, GP did not achieve anything less than 100% error when trying to match entire
tokens, and so we limited the testing scope to the last 4, 5 or 6 characters of each to-
ken. This decision was made after observing that word-endings tend to be more similar

than word-beginnings in drug names, mainly for conformance with the United States
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Adopted Name (USAN) stem grouping !, but possibly for marketing reasons as well.
This had a major positive effect on the population in most executions, which confirmed
our suspicions.

After 200 experiments with 80 generations per experiment and 10,000 individu-
als per generation, the 30 best evolved individuals were selected. Each individual is
a function which builds a string that represents a potentially common suffix, in the
form of a regex pattern. The pattern produced by the best individual managed to match
130 terms (7.3%) in the test-set! At first glance, this looks impressive, however, it
is worth remembering that the evolutionary process performed evaluation using a list
of singletons and not actual sentences. As a consequence, these patterns will most
likely introduce false-positives if applied directly on real text, thus, decreasing preci-
sion. As a final step, we aim to keep the best of the best patterns only, i.e. the least
likely to introduce false-positives. Thankfully, this can be done in various ways. Since
the number of patterns is small, the cost of manual checking by a domain expert is
limited. Even non-experts could probably accomplish this checking task. Or the prob-
lem can be tackled algorithmically. In fact, the latter is how we approached it. We
calculated all possible combinations of sets of 5 string patterns and fired a long eval-
uation process where each combination was evaluated only for false-positives on 10
randomly selected paragraphs from the original training set (PK corpus). After two
days of evaluations we acquired 5 sets of patterns (25 in total) which achieved the least
false-positives. These 25 patterns were reduced to 11 unique ones after removing du-
plicates and those that would clearly introduce false-positives, the most representative
of those being: “m?ine” (fluvoxamine vs examine). Finally, we augmented these 11
patterns by wrapping them with the following string:

\b+ (\d?\, ?2\d’ 2\-?) ?\wt<pattern>+\b

The strings \b+ and +\b at the start and end of the pattern respectively, fire only
when the token matches the GP-pattern and is a whole word, whereas, the string
(\d?\, 2\d’ ?\-?) ?\w+ specifies optional triggers mainly for matching hydroxylated
compounds (e.g. if it matches ‘midazolam’, it should also match ‘4-hydroxymidazolam’,
‘4,5-hydroxymidazolam’ and ‘4,5’-hydroxymidazolam”).

Manually augmenting the patterns returned from the GP training as described above,
can be considered a heuristic, albeit a rather minimalistic one. It is common knowl-

edge in biochemistry that all organic compounds go through a process called oxidative

'http://www.ama-assn.org/ama/pub/physician-resources/medical-science/
united-states—adopted-names—-council/generic-drug-naming-explained.page?
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Evolved patterns | Augmented patterns

54

| Matches | Example

a(z|st|p)ine? \b+(\d?\,2\d’?\-?)?\ w+a(z|st|p)ine?+\b 130 nevirapine
(i|u)dine? \b+(\d?\,2\d’2\-?)?\ w+(i|u)dine2+\b 72 | lepirudin
azo(1|n)e? \b+(\d?\,2\d’?\-?)?\w+azo(l|n)e? +\b 62 fluconazole
tamine? \b+(\d?\,2\d’?\-?)?\ w+tamine?+\b 44 dobutamine
zepam \b+(\d?\,2\d’?\-?)?\ w+zepam+\b 17 bromazepam
zolam \b+(\d?\,2\d’?\-?)?\ w+zolam+\b 13 haloxazolam
(y|u)lline? \b+(\d?\,2\d’?\-?)?\ w+(y|w)lline?+\b 12 enprofylline
artane? \b+(\d?\,2\d’?\-?)?\ w+artane?+\b 11 eprosartan
retine? \b+(\d?\,2\d’?\-?)?\ w+retine?+\b 10 hesperetin
navir \b+(\d?\,2\d’?\-?)?\ w+navir+\b 9 saquinavir
ocaine \b+(\d?\,2\d’?\-?)?\ w+ocaine+\b 9 benzocaine

Table 3.3: Evolved and augmented patterns

degradation when they come in contact with air. Hydroxylation is the first step in
that process and converts lipophilic compounds into water-soluble (hydrophilic) prod-
ucts that are more readily excreted. We observe many mentions of such compounds in
pharmacology papers, and therefore we attempt to capture them with this simple regex.

The GP paradigm parallels nature in that it is a never-ending process. Theoretically
speaking, GP can produce ‘organisms’ of arbitrary complexity with minimal human
intervention. In practise however, and particularly when evolving code, arbitrary com-
plexity is rarely desired because it is very easy for the model to over-fit, start deviating
substantially from a good solution approximation, or simply become unreadable. Two
simple and widely used techniques of addressing this are a) stop the evolution process
when a number of iterations (generations) has been reached and b) control complex-
ity by limiting how deep the tree can get. We did both. Organisms were not allowed
to grow above a certain depth (10) unless they achieve extraordinary performance (>
35%) which did not occur.

The patterns were evolved assuming that they will be tested on single word terms.
This was achieved by simply not including the space character in the terminal set thus,
making it impossible for a pattern to include it.
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The best-evolved ‘oragnism’

str
a interpose rest ?
P ‘
| wrap str

3.4.4 Evaluation of evolved patterns

We evaluated the ‘fittest’ of patterns as a separate classification model which, how-
ever, enjoys privileges similar to the dictionary during aggregation. This means that
positive predictions of the pattern model are assigned a probability of 100%. Table
3.4 shows the results obtained. As a first observation, classifier ensembles trained both
on gold-standard and silver annotation data do not perform better than classifier en-
sembles trained on gold-standard data, only. Combining the dictionary and the pattern
model compensates for the lack of a lower-quality model both for the MaxEnt and the
perceptron classifier. Comparing tables 3.1, 3.2 and 3.4 demonstrates how we gradu-
ally moved from the recall range 84% - 88% to 89% - 93%, while keeping precision
above 96% - 97%. In fact, since there are some verified annotation inconsistencies in
the test corpus, reported precision is slightly lower than the precision on an consistent
test-set. More specifically, some terms, such as 3-hydroxyquinidine, cycloguanil and

4-hydroxyomeprazole, have not been appropriately tagged as drugs.

Classifier | P | R | F

MaxEnt(g)+Dictionary+Patterns 97.3% | 93% | 95.1%
MaxEnt(g+s)+Dictionary+Patterns 973% | 93% | 95.1%
Perceptron(g)+Dictionary+Patterns 95.8% | 88.9% | 92.3%
Perceptron(g+s)+Dictionary+Patterns | 96% | 88.8% | 92.3%

Table 3.4: Evaluation results of ensembles that contain the pattern classifier
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Classifier | P | R | F
MaxEnt(s)+Dictionary+Patterns 97.4% | 85.4% | 91.0%
Perceptron(s)+Dictionary+Patterns || 97.3% | 85.1% | 90.8%

Table 3.5: Results of classifiers that did not use gold-standard data

3.4.5 Ignoring gold-standard data

In our experiments so far, we assumed that at least some gold-standard data is avail-
able for training. However this might not always be the case. In this section, we
are concerned with “How much worse would results be, in the absence of a gold-
standard training set?” This is an important question because, as discussed earlier,
gold-standard annotations are time consuming and costly. Ignoring expensive anno-
tations, we experiment with classifiers trained on the easy-to-produce automatically
generated annotations, the dictionary and the pattern model. The same gold-standard
corpus was used for testing. The results obtained are shown in Table 3.5.

Comparing these results with the ones from our baseline experiments, presented
in Table 3.1, shows that the MaxEnt classifier trained solely on silver annotation data,
combined with the dictionary and the pattern model achieves similar performance to
the MaxEnt classifier trained on gold-standard data. This result is encouraging, since
it suggests that access to gold-standard data is not always a requirement for high per-

formance drug-NER.

3.5 Discussion

Using a lexical database to annotate named entities in raw text is not a new concept. In
fact, since lexical databases are manually annotated, annotating sentences for named
entities from scratch certainly contains some level of effort duplication. We attempted
to automate the annotation process by utilising such resources. Unfortunately, our re-
sults show that using the dictionary as a direct annotator of NEs achieves top precision
but limited recall. Classifiers trained on gold-standard annotations achieved compara-
ble precision but much higher recall.

For these reasons, we attempted to experiment with methods to pre-process Drug-
Bank before using it as a NE annotator. To increase recall we generalised dictionary
entries into regular expression patterns. We were expecting that the patterns would
be able to capture named entities that were not listed in the dictionary but share com-

mon morphological characteristics, such as suffixes or prefixes, with some dictionary
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entries.

Obtaining such patterns automatically, that are accurate, is hard. We feel that our
list of patterns is neither perfect nor complete. Perhaps a pharmacologist cooperating
with a regular-expression expert can find more or better ones (more general) in a frac-
tion of the time it took us. Even though this sounds tempting, we are trying to move as
far away as possible from spoon-feeding knowledge humans already possess into our
models. At this point, we leave that path to those not committed to such experimental
restrictions to explore. In the future, and perhaps as part of a practical application, it
would be very interesting to compare our automated method with expert-driven regular
expressions.

Throughout the whole experiment, we relied heavily on our prediction-aggregation
algorithm. This, again, is not perfect. It makes several assumptions about the world
that may not hold in a different context. Moreover, as the algorithm gives a strong em-
phasis on the deterministic models, the precision of each such model had to be ensured.
Precision dropped from 100% on the test-set and the 20 random paragraphs from the
training-set, to 98% on the testing-set, mainly due to the annotation inconsistencies
mentioned in Sections 3.4.1 and 3.4.4, meaning the only true false-positives were a
couple of mentions of “pyridine”. Despite being far from perfect, this algorithm lies
at the heart of this study and enabled us to de-construct the dictionary in pieces. From
the dictionary we managed to extract common word-ending patterns. The dictionary
was also used as an annotator for an entire corpus. It was the dictionary that gave us
the synonyms which, despite having contributed very little, are generally very useful
information to have. This deconstruction was entirely facilitated by this algorithm that
was able to use the pieces as separate models. These types of “voting-systems” are
becoming increasingly popular mainly for increased performance but also for overall
stability of the resulting classifier [33, 20, 215, 35, 177].

It also has to be noted that both sets of gold-standard data are of roughly the same
size. Contrasting this with other similar NER experiments, we find that the testing-
set is usually a lot smaller than the training-set regardless of the evaluation scheme
(holdout or cross-validation). This is due to the fact that the problem of data-sparsity is
pervasive across the entire text-mining & NLP discipline (with regards to probabilistic
training). In practice, this means that there is rarely enough training data, thus splitting
it in two equally-sized pieces will most likely not lead to satisfying statistics. We
decided from the start to leave the data as is, in order for the experiments to be as

easily reproducible as possible.
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Our results demonstrate that, even though availability of gold-standard data is cer-
tainly helpful, it is not a strict requirement with regards to drug-NER. Drugs often
share several morphological characteristics which reduces the contextual information
that is needed in order to make informed predictions. Nonetheless, it remains to be
seen whether our combination of heterogeneous models will hold on to its performance

when tested against a larger corpus.

3.6 Conclusions & Future work

This study mainly focuses on achieving high performance drug-NER with very limited
or no manual annotations. We achieved this by merging predictions from several het-
erogeneous models including, models trained on gold-data, models trained on silver-
data, DrugBank and finally, the evolved regex patterns. We have shown that, state-of-
the-art performance in drug-NER is within reach, even in presence of data sparsity. Our
experiments also show that combining heterogeneous models can achieve similar or
comparable classification performance with that of our best performing model trained
on gold-standard annotations. We have shown that in the pharmacology domain, static
knowledge resources such as dictionaries actually contain more information than is
immediately apparent and therefore can be utilised in other, non-static contexts (i.e. to
devise high-precision regex patterns). Including synonyms in the dictionary or disam-
biguating acronyms did not improve results in this study mainly due to certain design
decisions that surround the PK corpus. More specifically, none of the tagged acronyms
were identified by AcroMine, whereas most of the identified synonyms have simply
not been tagged appropriately in the test-set. Generally speaking however, we would
expect a significant performance boost from applying these methods.

We plan to extend this work in the future. First of all, we plan to take advantage
of all the annotations in the PK corpus. Having a good story for both drugs but also,
drug-targets is essential for the task of identifying relationships and interactions be-
tween the two. We are also very interested to see if we can improve on, or find more of
such accurate regex-patterns in order to enrich our ‘safety-net’ model. Finally, we feel
that our prediction-aggregation algorithm gives too much emphasis on the determin-
istic models (dictionary or regex). Revisiting the algorithm is inevitable. We would
like a somewhat more sophisticated policy for assigning probability to the predictions
originating from the static models. Assigning 100% probability, as we currently do,

will, most likely, not be acceptable in other domains.
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Despite the aforementioned limitations and future plans, the models and algorithms
produced have been shown to be robust and are thus, ready to contribute towards the
greater goal of recognising PK parameters. How these models will be integrated in

that future solution is unclear at this point.



Chapter 4

Extraction of PK interactions

4.1 Introduction

As advances into disease pathology and molecular function continue to generate ever
growing amounts of data describing small molecules’ interactions, there exists an im-
portant need to capture and store these relationships in structured formats, in order to
enable sophisticated computational analysis. Even though there do exist efforts that
create repositories of such information in computer-friendly form, populating these
sources is typically a slow and expensive process, as domain experts must manually
interpret and extract interaction relationships from a large body of the current literature.
Automating the extraction of interactions from unstructured text, would significantly
augment the content of these repositories and provide means for managing the expo-
nential growth of the literature.

As discussed in Chapters 1 and 2, PK/PD modelling forms, in no small part, the
basis for modern drug research and development. Using models, meaningful PK pa-
rameters may be defined which can be used to find relationships between the drug
kinetic profile and the physiological process which drives its absorption, distribution
and elimination. For instance, compartmental models allow us to easily define the
clearance which depends on the drug elimination process, or the volume of distri-
bution which depends on the drug distribution in the tissues. Models provide also
an easy way to get an estimate of drug absorption after extra-vascular administration
(bio-availability).

In this chapter, we describe a system for extracting PK interactions from unstruc-
tured text. By constructing a context free grammar (CFG), within which, we embed a

lexical analyser, we show that efficient parsers can be constructed for extracting these,
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highly domain-specific, relationships and interactions from free text, with high rates
of accuracy. Contrary to other published, usually statistical, techniques, the choice of
a CFG takes away many of the complexities of NLP, by focusing on domain specific
structure as opposed to analysing the semantics of a given language [186]. Addition-
ally, by embedding a lexical analyser which can arbitrarily transform or tag tokens, we
provide a level of abstraction for adding new rules, possibly for extracting other types

of biological relationships beyond PK interactions.

4.2 Background

Various techniques for recognising relevant names have been proposed and discussed
in Section 2.3.1. For instance, the use of standardised dictionaries containing the names
and synonyms of relevant entities could be a simple but effective way for recognising
these entities in free form text. However, this technique remains limited as certain
names, or variations thereof, not present in the dictionaries produce large amounts of
false negatives. Some researchers have addressed the issue of many false negatives by
performing approximate string matching rather than strict matching, by using unique
database identifiers mapped to a set of names, by using hand-crafted ‘templates’ and
of course, by using probabilistic ML algorithms.

Similarly to the problem of NER, there has been a range of varying techniques
published for extracting relationships from scientific literature. These are discussed in
Section 2.3.2. Again, in the last decade, techniques which revolve around ML have
dominated the research space with very few exceptions.

Despite being the trend of the decade in many disciplines, supervised ML models
and their overall performance is typically depicted by the quality and size of the data
sets used to train them. We showed in the previous chapter that, at least in NER and
in some cases, lower-quality data can be generated quickly, and that practically gold
performance can be achieved by combining several less powerful models. The methods
we presented should not be interpreted as overcoming the need for data but rather as
overcoming the need for large amounts of gold data. If anything, the entirety of that

study is a tribute to how important training data and knowledge repositories are.
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4.3 System & Methods

4.3.1 Overview

In this section, we describe an alternative method for extracting interactions from nat-
ural language, which despite not relying on ML, achieves high rates of accuracy by
embedding a lexical analyser in a CFG. The CFG itself is designed specifically for
parsing PK DDIs (pharmacokinetic drug-drug interactions) and was constructed by
examining a small number (20) of artificial sentences such as the ones listed next:

e DRU Gy increases the PKy of DRU G 2-fold.
e Co-administration of DRU G( with DRU G decreased the PKj by 50%.

e PKyof DRUG is MODy reduced when co-administered with DRU G| DOSE].

We aim to show that CFGs can be viewed as an easily extensible platform for ex-
tracting interactions and are powerful enough to describe most free language structure,
while restricted enough to facilitate efficient parsing. Our method for extracting PK

interactions from unstructured texts can be decoupled into three separate parts:

1. aset of NER models responsible for recognising drug and PK-property names

2. a set of functions (lexical analyser) that rely on the aforementioned models, re-

sponsible for tokenising and tagging relevant terms

3. a parser constructed around a CFG responsible for interpreting the collection of

tokens and output parse-trees based on the rules of the grammar

The system was designed and built using the Clojure! programming language, and
utilised the InstaParse” compiler to generate the parser. Clojure, a language hosted
on the JVM, was chosen because of its interoperability potential with other JVM lan-

guages, but also because of its functional underpinnings.

4.3.2 NER Models

For an in-depth description of the NER models used for recognising drug-names, refer
to Chapter 3. Recognising PK properties is a much simpler task, as the terms describing
them are well defined and limited in number (10-12). Therefore, the problem can be

easily tackled with a minimal set of regular-expressions.

Ihttp://clojure.org/
2https://github.com/Engelberg/instaparse
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4.3.3 Lexical Analyser

The lexical analyser is a component designed to accept distinct sentences as input. It
then uses a pluggable tokeniser, to parse the sentence and produce a stream of tokens.
In addition, it injects certain invisible tags in the grammar. These tags refer to specific
predicates previously defined. Predicates are single argument functions that return a
boolean value (true/false). This indirection allows the CFG to delegate to external
functions at runtime, which in turn allows for the CFG to embed a mix of heteroge-
neous techniques (e.g. probabilistic for drug-NER, deterministic for PK-NER). Even
though the lexical analyser and parser are separate component processes, they do com-
municate via these special invisible tags, enabling other external third-party tools to be

easily integrated or swapped in.

4.3.4 Context-free Grammar & parser

The parser was developed using a set of grammar production rules allowing for the
detection of PK interactions. As mentioned earlier, the production rules were derived
by manually analysing a small number of artificial sentences. The use of CFGs for
validating structure in natural language was first proposed almost 60 years ago by
Chomsky [50], according to whom, a CFG for representing production rules has the

following key components:

1. A set of tokens T, known as terminal symbols
2. A set of non-terminals N disjoint from 7'

3. A set of productions P of the form a — b, where a € N and b is a sequence of

one or more symbols from NUT

4. The start symbol S where S € N.

Therefore, the language generated by a CFG can be enumerated by repeatedly ap-
plying production rules, starting with the start symbol S, and replacing non-terminals
with their associated production rules until all non-terminals have been exhausted.

In order to extract PK interactions from unstructured text we developed the gram-
mar illustrated in Figure 4.1 using EBNF (Extended Backus-Naur Form). Table 4.1
shows the injected tags, their corresponding functions and the basis for the current

implementation. All the pre-injected tags appearing on the right side of the grammar



CHAPTER 4. EXTRACTION OF PK INTERACTIONS 64

Analyser tags H Corresponding functions Current implementation
NER_PK PK recogniser Deterministic (regex)
NER_DR drug recogniser Probabilistic (MaxEnt)
WORD tokeniser Probabilistic (Perceptron)
DIGIT digit recogniser Deterministic (regex)
NUMC numbers expressed in alphabetic chars Deterministic (regex)
CYPX CYP recogniser Deterministic (regex)
INT integer recogniser Deterministic (regex)
PUNCT punctuation recogniser Deterministic (regex)
PAREN parentheses recogniser Deterministic (regex)
ACTION interaction recogniser Deterministic (regex)
SQBR square brackets recogniser Deterministic (regex)
PREPO preposition recogniser Deterministic (regex)
NEGATOR negation clue recogniser Deterministic (regex)
ABBRX abbreviation recogniser Deterministic (regex)
BEX verb ‘to be’ recogniser Deterministic (regex)
VING ‘...ing’" ending verbs recogniser Deterministic (regex)
ADVERB ‘...ly’ ending adverbs recogniser Deterministic (regex)
REPEAT ‘once’, ‘twice’, ‘thrice’ recogniser Deterministic (regex)
PERCENT percent recogniser Deterministic (regex)
ADMIN administration recogniser Deterministic (regex)

Table 4.1: Analyser tags and their associated external functionality

are surrounded with “>>" to denote their indirect nature. As one would expect, since
these tags are ‘invisible’, they do not appear on the left side of the grammar.
Generally speaking, parsing methods fall into one of the two categories, top-down
and bottom-up. In top-down approaches, also widely known as recursive descent, con-
struction starts at the root node and progresses downstream towards the leaves, while
in bottom-up approaches, construction starts at the leaves and progresses upstream to-
wards the root. The parser generated by InstaParse is a top-down one which, however,
allows the use of left recursion by utilising state-of-the-art techniques described by

Frost et al. [69] (our grammar is not left-recursive but it is good to know that it can be).

4.3.5 Examples

In order to help the reader visualise and understand the parse tree generated by the
parser, we provide 2 examples in 2 different visual formats. The following 2 represen-

tative sentences were used.
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S = PHRASE+ END
PHRASE = (DDIPK / DDI / COADMIN / ENCLOSED ) | TOKEN ( TOKEN >>PUNCT>>?)*
DDIPK = OBJECT? PK (BE | TO)? OBJECT? EFF?

DDI = PRECIPITANT MECH OBJECT PK | PRECIPITANT MECH ’'in’

EFF = MAYBE? BE? (SIGN | FOLD)? MECH (ADV | FOLD)? (PRECIPITANT | PK)?

TOKEN = ((PRECIPITANT / OBJECT / DRUG) | DOSE | ROUTE | NUM | PK | PERCENTAGE
XFOLD | XFACTOR | CYP | ABBR | MECH | SIGN | GROUP | TO | ENCLOSED )
/ >>WORD>>

INC-DEC = ('increase’ | ’'decrease’) / >>ACTION>>

FOLD = (NUM ‘-’ ('and’ | ',’)? )+ 'fold’

COADMIN = >>ADMIN>> PRECIPITANT | >>ADMIN>> TO? DRUG (PRECIPITANT | ’'and’)

GROUP = ’'placebo’ | ("healthy’ | 'normal’) 'adult’? ('male’ | 'female’)?
("volunteers’ | ’'subjects’)

XFOLD = FOLD EFF?

XFACTOR = BY ' factors’ (TO | >>VING>>? 'between’) (NUM ("and” NUM) *)

ROUTE = >>ROUTEX>>

BY = 'by’

UNIT = 'mg’” | 'g’ | ('microgram’ 's’?) | 'mcg’

VOLUME = 'ml’ | 'mL’

DOSE = (NUM '-'? NUM?) UNIT INTERVAL?

ABBR = >>ABBRX>>

INTERVAL = >>REPEAT>> (ADV | 'a’ TIME) | (NUM | >>NUMC>>) 'times’ ("per’ T

("/" | 'a") (TIME | VOLUME) | ABBR
TIME = 'hour’ | ’'day’ | 'week’

PERCENTAGE = NUM ('$%’ | >>PERCENT>>)
ENCLOSED = >>PAREN>> | >>SQBR>>

NUM = >>DIGIT>>

CYP = >>CYPX>>

ADV = >>ADVERB>>

PRECIPITANT = (BY | ’'with’ | ’as’) DRUG / ('presence’ | #'dos(es?|ing)’
"addition’ | >>ADMIN>> ’'of’ DRUG / DRUG (’treatment’ |
"therapy’ | 'administration’ | ’'causes’ | EFF) / ’'when’ DRUG

PARENDOSE = ' (* DOSE (’for’ ©NUM TIME ’'s’)? ')’

DRUGDOSE = PRECIPITANT PARENDOSE

2DRUG = DRUGDOSE 'administered’? 'with’ ’'a single’? DRUGDOSE

OBJECT = TO 'either’? DRUG '\\’s’? / DRUG PK BE / DRUG ’'metabolism’
DRUG = ROUTE? >>NER_DR>> "hydrochloride’? ("up to’? DOSE) ?

PK = MECH? 'the’? 'mean’? (OBJECT | DRUG)? >>NER_PK>> OBJECT?

MECH MAYBE? BE? >>ACTION>> ((FOLD | (BY? ((NUM 'x’) | PERCENTAGE) | OBJECT
SIGN ADV | NEG

MAYBE = 'can’ | 'may’

NEG = >>NEGATOR>>

BE = >>BEX>>

END = 7.7

Figure 4.1: The CFG production rules
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1. The pharmacokinetics of oral conivaptan (20 - 40 mg/day) were unchanged with

coadministration of either captopril 25 mg or furosemide up to 80 mg/day.

2. Exposure to didanosine is significantly increased when coadministered with teno-
fovir disoproxil fumarate [Table 5 and see Clinical Pharmacokinetics (12.3, Ta-
bles 9 and 10)].

Figure 4.2 shows the raw nested data-structure, whereas Figures 4.4 and 4.3 depict

the trees of sentence 1 & 2 respectively, in a more traditional way.

4.4 Evaluation scheme

In order to test our approach, we used the PK DDI corpus!. This is a new corpus of
sections from FDA-approved drug package inserts (PIs) that have been manually an-
notated for PK drug-drug interactions by a pharmacist and a drug information expert.
The two annotators reached consensus on 592 PK DDIs, 3,351 active ingredient men-
tions, 234 drug product mentions, and 201 metabolite mentions present in over 200 PI
sections extracted from 64 drug PIs. The corpus is provided to the non-profit research
community under a Creative Commons licence.

Not every single sentence in this corpus is PK relevant. In fact, the majority of them
are not. There would practically be no benefit from deploying our system on irrelevant
sentences, so we manually reduced the corpus into a set of 342 ‘gold’ sentences, which
do include PK interactions, and therefore are relevant to this study. Once the relevant
sentences were collected, the parser derived from the CFG was deployed on them. The
‘gold’ test-set distributed with the aforementioned corpus, comes in a .csv format with
the following columns per interaction:FileName, Precipitant Type, Precipitant, Pre-
cipitant Annotator, Precipitant Span Start-Offset, Precipitant Span End-Offset, Object
Type, Object, Object Annotator, Metabolite active ingredient, Object Span Start-Offset,
Object Span End-Offset, Modality, Interaction phrase-type, Interaction Phrase, Inter-
action Phrase Span Start-Offset and Interaction Phrase Span End-Offset. A subset of
these columns, namely the Precipitant, Object, Modality and Interaction phrase can
directly be extracted from the resulting parse-tree, whereas the Interaction Phase Type
(e.g. qualitative vs quantitative) can be inferred by examining the presence, or ab-
sence, of tags such as XFOLD, XFACTOR and PERCENTAGE. All the rest of the

http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/package-insert-DDI-NLP-corpus.
html
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[:S "furosemide"
[ :PHRASE "up to"
[:TOKEN "The"] [:DOSE [:NUM "80"] [:UNIT "mg"]
[ : TOKEN [:INTERVAL "/" [:TIME "day"1]1]]1]
[:PK [:END "."]]
"pharmacokinetics" = @
[:OBJECT "of" [:S
[:DRUG [:ROUTE "oral"] [ :PHRASE
"conivaptan"]]]] [ :DDIPK
[ : TOKEN [:PK "Exposure"
[ :ENCLOSED [:OBJECT "to"
" [:DRUG [:ROUTE "oral"]
[ :DOSE "didanosine"]]]
[:NUM "20"] [:EFF
n_n [:BE "is"]
[:NUM "40"] [:SIGN [:ADV "significantly"]]
[:UNIT "mg"] [:MECH "increased"]]]]
[:INTERVAL "/" [ :PHRASE
[:TIME "day"]]] [ : COADMIN
"] "when"
[:TOKEN "were"] "coadministered"
[:TOKEN [:SIGN [:NEG "unchanged"]]] [ :PRECIPITANT "with"
[:TOKEN "with"] [ :DRUG "tenofovir"]]]]
[:TOKEN "coadministration"] [ :PHRASE
[:TOKEN [:0BJECT "of" "either" [:TOKEN "disoproxil"]
[:DRUG "captopril"]l]l]] [:TOKEN "fumarate"]
[ :PHRASE [:TOKEN [ : TOKEN
[:DOSE [:NUM "25"] [ :ENCLOSED
[:UNIT "mg"]]11]] "[Table 5 and see
[ :PHRASE Clinical Pharmacokinetics
[:TOKEN "or"] (12.3, Tables 9 and 10)1"]1]
[ : TOKEN [:END "."]]
[ :DRUG

Figure 4.2: Example parse-trees in raw nested format
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columns were disregarded as they relate more to the annotation process, rather than the

interactions themselves.

4.5 Results and Discussion

We measure performance using the standard IR evaluation metrics, Precision (P), Re-
call (R) & F-Score (F1). Analysis of the output generated by the system demonstrated
perfect recall and precision rates for recognising drug names (100%). Such NER per-
formance was expected, as the drugs mentioned in this particular corpus are all FDA-
approved compounds, which our NER models have no trouble recognising. With re-
spect to recognising PK interactions, we calculated P = 88.9% and R = 93.1%, which
gives an F-score of 90.9%.

Even though such results cannot be considered state-of-the-art, they show that the
system can perform accurate extraction of PK interaction data when the lexical anal-
yser and parser encounter sentences that match the specified grammar. This includes
complex sentences such as the one depicted in Figure 4.3, where the grammar correctly
identified the observation that tenofovir can positively affect the exposure to didano-
sine. Moreover, the grammar is tuned to identify common negation clues, which in turn
means it can accurately extract observations that dispute potential interactions, such as
those depicted in Figure 4.4, where it was correctly extracted that neither captopril nor
furosemide (at specific doses) can affect the pharmacokinetics of conivaptan.

For the cases in which the system generated false positives and/or negatives, the

root cause was typically due to one of the following reasons:
1. The grammar confused the precipitant for the object (or vice versa)
2. The grammar identified no precipitant and no object

Additionally, our system has further limitations regarding the parsing of very long
and complex sentences that often convey several distinct ideas. Given that the gram-
mar rules were constructed by a non-expert and from a small number of artificial ex-
amples mimicking medical language, there are bound to be cases where the text will
match either too many (false positives) or too little (false negatives) grammar rules. An
example sentence that exhibits structural patterns not modelled by the grammar, and
which demonstrates the problem is the following:

“In a study comparing the disposition of intravenously administered diazepam be-

fore and after 21 days of dosing with either sertraline (50 to 200 mg/day escalating
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dose) or placebo, there was a 32% decrease relative to baseline in diazepam clear-
ance for the sertraline group compared to a 19% decrease relative to baseline for the
placebo group (p < 0.03).”

Unfortunately, the grammar cannot model notions such as relative to baseline and
before and after 21 days of dosing. Since this can be mainly attributed to the medical
inexperience of the author of the rules, it could potentially be addressed by enriching
the grammar rules at a later stage. Nonetheless however, examples like the above
do demonstrate how various unstructured text representations can negatively impact
overall performance. We note that in general, the incidence of false entries we re
minimal as indicated by the the high level of precision and recall rates achieved.

We are currently unaware of any other studies targeting PK interactions which
utilised the PK-DDI corpus, and therefore direct comparison of this work with the
work of others is not feasible. Generally speaking, the use of rule-based methods has
been more or less abandoned by the community, which is now in favour of probabilistic
approaches. Interestingly enough, our hybrid approach performed quite efficiently and
effectively, while making use of limited computing resources and no training corpus.
We therefore conclude that our reported recall and precision rates for extracting PK
interactions from free text shows the potential to be able to mine significantly larger
bodies of biomedical literature in order to populate structured representations for cap-

turing interaction data for further computational analysis.

4.6 Conclusion

Concluding, we have demonstrated that the problem of recognising PK interactions
can be tackled by using a CFG to recognise domain-specific patterns used to describe
them. We have shown that the use of an embedded lexical analyser facilitates the use
of external NER models and functions, which effectively reduce the problem of IE into
one of pattern-matching, that can be solved efficiently by the CFG. This approach can
be classified as simple and lightweight as it reduces a lot of the complexities associated
with NLP. As a bonus, one can expect much better results, if the rules are somehow

reviewed, or even better, constructed by a domain-expert.



Chapter 5

Software & Integration

5.1 Introduction

Nowadays, the TM and NLP community has a assortment of, not only methods and
techniques, but also software tools, to choose from in order to conduct research. Re-
search groups around the world are constantly developing standalone TM tools. How-
ever, despite the availability of numerous methods and techniques for various TM
tasks, combining different tools requires substantial effort, time and expertise. In fact,
itis a common secret amongst text-miners that often, the pre-processing time overhauls
the actual processing time.

Typically, a tool is developed using a certain preferred data representation, pro-
gramming conventions and preferences, as determined by the individual research group
or organisation. In order to build complex text mining applications or pipelines, it is
often required to combine multiple tools, possibly designed by different groups. The
current practice of independent and disconnected tool development poses a hindrance
to tool interoperability and integration. In order to use a new tool or a new dataset,
TM researchers spend a substantial amount of time developing algorithms for process-
ing the new data format. This heterogeneity in data representations slows down the
development of powerful applications, thus leading to inefficiencies in research and
innovation.

As discussed in Chapter 2, there have been some efforts to promote interoperability
among text analytics tools, namely the UIMA and GATE frameworks. Development
of UIMA or GATE compliant solutions requires the entire tool to be (re)written into
framework specific constructs. The complexities and steep learning curve associated

with these frameworks keeps them from being broadly accepted as a development and
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data sharing standard [183]. In addition, none of these two frameworks offer any capa-
bilities for dynamically converting existing code into UIMA/GATE compliant. Con-
sider for instance, the NER component of openNLP. There are really only two ways
of making it an UIMA component. The first way would be to simply amend the ex-
isting source code to obey UIMA’s contract for components. Doing so has several
drawbacks. First and foremost, since the original source file was modified, this re-
quires recompiling the entire openNLP package. Secondly, we would be complecting
openNLP and UIMA semantics within the same source file. Thirdly, every software
developer understands that adding or removing code can, and probably will, introduce
defects. Finally, obeying any of the contacts of UIMA, essentially means that a tran-
sitive dependency to UIMA is introduced as well. The other possibility would be to
simply write a wrapper class, which obeys UIMA’s contract but delegates to the actual
openNLP NER component. This class could then be distributed separately and the
user can decide when to use it and what dependencies to bring in. This is certainly
preferable as it introduces none of the aforementioned problems. However, it does
introduce a brand new one which is most evident in statically-typed languages like
Java, and particularly in situations where there is an existing code base that needs to
be made UIMA/GATE compliant. In such cases, introducing a wrapper usually leads
to significant code re-factoring as the types involved are no longer the same. Depend-
ing on the size and complexity of the project this can have serious counter-productive
consequences. The underlying reason for this limitation has been known to Computer
scientists for decades as the “Expression Problem” [147] (also known as “the exten-
sibility problem”). Several modern languages including Scala, Clojure and Groovy
provide semantics that address this problem quite elegantly. Unfortunately, for main-
stream, typically older, languages such as C++, Java and CSharp, one has to resort to
highly academic research and consequently, to complex/unwieldy data types and rather
unconventional programming patterns.

Another limitation of current tools and frameworks, is the fact that almost none of
them offers any facilities for constructing, not necessarily serial, work-flows. By non-
serial, we mean, potentially multiple branching or merging of component nodes. This
is quite serious as most high-level TM components usually expect input from, and need
to broadcast their result to, multiple other components. Take for instance two of the
most popular chunkers, the ones found in openNLP and stanfordNLP. Both of them,
in their original form (not their UIMA counterparts), expect input from the tokeniser

and the POS-tagger. If we were to draw this, it would be a triangle with 2 nodes
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feeding input to the third. Unfortunately, none of the two aforementioned frameworks
provide any facilities for specifying that topology declaratively. The user is left on his
own, with the only option being to, manually and explicitly, express these relationships
in the code. UIMA, even though it does support multiple branching/merging points
by providing not only multiple views of annotations, but also, annotation destroyers,
the configuration and wiring between these advanced components remains explicit.
Alternatively, the problem can be sidestepped by incrementally building annotations
and passing them all downstream in a single CAS object, in order to simulate graph
semantics. This way, the UIMA equivalent of the chunkers mentioned earlier, can look
into the annotations built so far and choose to utilise the ones from the tokeniser and
POS-tagger. It should be obvious that the serial and incremental nature of this approach
has unfortunate implications, not only when there are multiple components producing
the same types of annotations, but also for parallelism and overall memory footprint,
as the system is forced to hang on to data that is either not needed at all, or will be
needed much later. In order to make this clearer, consider the following analogy:
Assume, for simplicity reasons, that you want to find the standard-deviation of a
collection of numbers - let us call that xs. The approach taken by a typical UIMA

workflow would be reflected in the following pseudo-code:
i. Create an empty result
ii. Count xs and put it result
iii. Retrieve ‘count’ from result, use it to calculate the mean and put it in the result

iv. Retrieve ‘count’ from result, use it to calculate the mean-square and put it in the

result

v. Retrieve ‘mean’ and ‘mean-square’ from result, use them to calculate the variance

and put it in the result

vi. Retrieve ‘variance’ from result and use it to calculate the standard-deviation and

put it in the result

vii. Hand the entire result to the user

It should be easy to spot that data is unnecessarily held on to until the algorithm
finishes. There is no conceptual reason why we could not have disregarded ‘count’
after step 4, or both ‘mean’ and ‘mean-square’ after step 5. Similarly, there is no reason
why steps 3 and 4 could not have been calculated in parallel, as they depend on the
same constant value. With sufficiently large input, the limitations of such an approach

become evident. Of course, in some cases the entire result is needed and thus, there
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is no other option other than storing everything. Our simplistic analogy would reflect
this case if we were asking for all the statistics, instead of just the standard-deviation.

It needs to be emphasised that Argo, does improve on this matter by incorporating
a flexible mechanism for cloning a CAS at each branch in the work-flow. When mul-
tiple analysis engines merge into a single component, Argo merges individual CASes
coming from the different branches into a single CAS that supports multiple views
[157].

5.2 Overview

In this chapter, we present our efforts and contributions with respect to software tools
aimed at helping TM researchers in achieving integration and interoperability. More

specifically, three key areas were identified as ‘lacking’, within the software space:

1. Multiple format annotation of entities using a set of lexical resources. A library
or framework is usually expected to provide support for an annotation tool, and
not the other way around. For instance, it is up to the openNLP team to provide
format support for brat [182], rather than the brat team to provide support for
openNLP. This seems quite odd as it is brat which is the specialised annotation

tool.

2. Flexible and dynamic generation of classes compliant with the various platforms
and frameworks. Because these platforms were developed in a statically typed
language, they all make the same assumption, which is that, a conforming class
must be written before the program actually runs. An existing piece of code
that does the task, cannot be ‘converted’ at runtime. With the advent of more
and more dynamically typed and compiled languages on the JVM, this is be-
coming a bigger and bigger issue. Developers in such languages often end up
writing large amounts of boilerplate code in order to have, even a trivial so-
lution, retrofitted to a particular framework. The exact same symptom can be
observed in other frameworks like apache Hadoop that have nothing to do with
NLP. Much like UIMA and GATE however, the programming model offered is
intrinsically linked with the programming language the system was developed
in. In a sense that is to be expected. Nonetheless however, that model feels
awkward, at best, to developers coming from functional dynamic languages like

Python, Groovy or Clojure.



CHAPTER 5. SOFTWARE & INTEGRATION 76

3. Declarative creation of graph-like work-flows, using a mix-and-match approach.
Ideally, graph work-flows should be defined declaratively, with dependency res-
olution implicitly and efficiently handled by the system. The user should not be
concerned with what order the components will run in or in fact, with any other

internal execution details.

Our open-source contributions towards these three areas, and more, are presented

and discussed next.

5.3 Contributions

5.3.1 PAnnotator
Introduction

PAnnotator stands for “parallel annotator”, and is a high performance, dictionary-
based, annotator for TM and other NLP-related tasks. PAnnotator aims to address the
first problem mentioned in the previous section, which is the fact that TM researchers
often need to annotate the same set of documents using various different representa-
tions. A good example of this would be NER. Typically, an NER researcher will want
to try out various models found in various libraries or frameworks which, as we ex-
plained earlier, are in complete disagreement about how to feed the data in. Therefore,
in the absence of an automated tool that knows how to generate output ready to be
consumed by these libraries, the time that is needed to move between them grows in
linear relation with the number of them. PAnnotator solves this problem, at least in the
NER space, by encoding all the various library expectations, thus freeing the human

from peculiar technicalities.

Features

Most of PAnnotator’s features are oriented around performance and ease of use, given
the fact that annotating large amounts of documents is a CPU-intensive job, and that not
all NLP researchers are expert programmers. Currently, PAnnotator integrates with the
NER modules of openNLP (Java), stanfordNLP-core (Java) & NLTK (Python). These

are all very popular and actively maintained libraries.

e produces annotations compliant with either openNLP, stanfordNLP or NLTK
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e supports a pluggable sentence splitter and tokeniser
e supports logging
e features 2 serial mapping strategies (lazy vs eager)

e features 4 parallel mapping strategies (lazy-parallel, pool-parallel, fork-join &

map-reduce)

e can be accessed programmatically from any JVM-based language, or as a stan-

dalone Java application
e very efficient with good scaling characteristics

e low memory footprint

PAnnotator was relied upon heavily in order to generate training data for the NER
work presented in Chapter 3. Apart from the author himself, there are another 12

confirmed (through correspondance) users of this tool.

Future work

Currently, PAnnotator integrates with the NER modules of openNLP (Java), stanfordNLP-
core (Java) & NLTK (Python). Plans for the future include adding support for the NER
module of GATE and replacing the CLI with a simpler graphical user interface (GUI)

to make it even easier to use.

5.3.2 clojuima

Clojuima was born out the author’s need to combine UIMA with the Clojure pro-
gramming language, and essentially started out as mini Clojure wrapper for UIMA.
However, it was quickly realised that there were greater hindrances to overcome be-
fore even considering wrapping. Strictly speaking, clojuima is not a software tool, but

rather a tutorial and a sample project which demonstrate how to:

e Turn regular Clojure functions into UIMA components, thus leveraging UIMA’s

workflow and evaluation capabilities

e Use UIMA-components as regular functions in your Clojure code, thus leverag-

ing the plethora of available components
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Combining UIMA with Clojure presents quite a unique set of problems. Apart
from highly stateful, UIMA relies heavily on the java.lang.reflect API for instantiating
Classes and is tightly coupled to XML descriptors. Clojure, being a dynamic language,
offers constructs that are able to generate classes that satisfy a particular abstraction,
or even override a particular implementation from a parent class, at runtime. The
need for predefined XML descriptors goes completely against the dynamic nature of
Clojure, and essentially, imposes counter-intuitive work patterns. We strongly believe
that given a function foo that performs some task, there should exist means of turning
that into UIMA compliant, without having to modify or recompile existing code, nor
being distracted by having to write large amounts of XML. Interestingly enough, this
belief is shared by many other programmers/researchers, as indicated by the popularity
of the Apache uimaFIT [144] library.

In a nutshell, uimaFIT provides Java annotations for describing UIMA components
which can be used to directly describe these components in the code. This greatly sim-
plifies refactoring a component definition (e.g. changing a configuration parameter
name). It also makes it possible to generate XML descriptor files as part of the build
cycle rather than being performed manually in parallel with code creation. uimaFIT
also makes it easy to instantiate UIMA components without using XML descriptor
files at all by providing a number of convenience factory methods which allow pro-
grammatic/dynamic instantiation of UIMA components. In order to give the reader a
better understanding of the idiosyncrasies involved with creating and using bare UIMA
components directly, it is worth mentioning that, even though uimaFIT is rather limited
in terms of its functional aims (it only really aims at simplifying programmatic inter-
action with UIMA), the project still managed to reach a notable size (approx. 15,000
LOC), while introducing certain ‘heavy-weight’ dependencies (e.g. Spring) along the
way. Nonetheless, the project is now more or less complete and therefore, Java devel-
opers can indeed enjoy a much simpler and XML-free programmatic experience with
UIMA, via uimaFIT.

While uimaFIT does recover some of the dynamism abandoned by UIMA, by ab-
stracting over XML descriptors, Clojure developers still face a major bottleneck, as the
amount of wiring needed between the two, remains quite significant. This is in part due
to certain limitations in Clojure’s ‘proxy’ construct, but also due to uimaFIT’s heavy
reliance on Java annotations, which are currently difficult to express in Clojure code

(only supported in the ‘deftype’ construct and not in regular functions). For a more
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detailed overview of the technical issues, refer to the project’s GitHub page'.

Features

Being a tutorial, clojuima walks the reader through the following major points:

e the conflicting design principles between Clojure and UIMA
e why Clojure’s built-in proxy and :gen-class constructs are insufficient

e a complete implementation of a proxy-like construct (UIMAProxy.java) tailored
specifically for UIMA components, which sits on top of uimaFIT (written in

pure Java and distributed with the sample project)
e real world examples of how to use the aforementioned construct
e clean separation of application logic from UIMA-specific code

e the beginnings of an idiomatic Clojure wrapper for UUIMA

By the end of the tutorial, the reader should be able to to convert arbitrary Clo-
jure functions into UIMA compliant components, by simply proxying them with the
newly available UIMAProxy. The amount of extra code that is needed is minimal
(two small functions) and is mainly concerned with writing the annotation indices into
the Cas object (Cas-annotator) and retrieving them (Cas-extractor), for which, helper
functions are provided. However, as dictated by the original aims of clojuima, the pro-
cessing function is UIMA agnostic and needs to know nothing about the annotation
function or the extractor function, which are UIMA-specific. This rationale allows for
true separation of general-purpose functions from UIMA-specific ones, but also for
abstracting over certain common UIMA operations. For instance, the following simple
function can be used in the majority of cases, in order to extract the annotations from
the Cas object:

(defn extractor ["JCas c]

(.getDocumentText c))

Similarly, for tasks such as sentence-detection, tokenisation and NER, the follow-

ing function can be used to write the annotation indices to the Cas object:

"https://github.com/jimpil/clojuima
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(defn post-process

"Given a JCas, some annotation result and the original input,
calculate the appropriate indices and inject them into the CAS."

[jc res original-input]

(inject-annotation! jc [Annotation 0 (count original-input)])
(doseq [[_ [b e]] (calculate-indices original-input res)]

(inject-annotation! jc [Annotation b e])) )

Clojuima addresses the second problem, as stated in Section 5.1, and has been
warmly welcomed as a contribution by the uimaFIT team, appearing in the “Language

Z00” section of the project’s wiki page!.

5.3.3 hotel-nlp
Introduction

Hotel-nlp is by far, the most challenging and ambitious software endeavour the author
has ever worked on, and it tries to address the third, and hardest, point as presented in
Section 5.1. That is, being able to declaratively create work-flows that resemble graph
topologies, with potentially multiple branching/merging points.

To our knowledge, there is only one other system offering similar capabilities,
namely the Argo TM workbench [158], previously discussed in Section 2.1.4. In fact,
Argo offers much more than that. In spite of being in beta stages of development, it is
a rather mature web-based, text analytics platform. Argo builds on top of UIMA, as
does U-Compare [90], also discussed in Section 2.1.4.

Being an entirely browser-based solution, Argo makes a significant trade-off, namely,
accessibility over programmability. In other words, Argo cannot be accessed program-
matically, and therefore cannot be considered an API. This may not be an issue for
casual use, but users who require a somewhat finer control over their processes are,
again, left on their own.

In addition, a key goal of hotel-nlp is to enable pluggable support for different un-
derlying NLP library implementations. To fully understand this, consider the following
real world analogous project, taken from a slightly different domain (statistics).

Within the Java ecosystem, there must exist more than 15 different matrix manip-
ulation frameworks (e.g., jblas, jama, colt, jeigen, ujmp etc), completely foreign to

each other. A user typically, picks one and sticks with it, at least, on a per project

Ihttps://code.google.com/p/uimafit/wiki/Documentation?tm=6
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basis. Unification of two or more of these libraries can only be done on client-side
code and only through wrapping. We already saw that ultimately, this is a limitation of
the programming language, as Java interfaces cannot be extended to concrete classes
without modifying and recompiling them (the expression problem). Other languages
however, do not exhibit this limitation. In such languages, abstractions can be cleanly
extended to foreign concrete types without recompiling them. As a result, abstracting
over all these libraries in a consistent manner could, and should, be lifted away from
the end user, leaving him/her with an idiomatic API that allows for any library-specific
data-type to be plugged in, without worrying about where it came from. Obviously,
that API can then be used by any user of that programming language.

Having understood the above analogy, the reader is invited to visit the actual project'
that addresses what was described in the above analogy. Despite living in different
domains, hotel-nlp and core.matrix share many common goals and implementation

strategies.

Overview

In this Section, we present the prototype for a complementary platform, which aims
at simplifying interoperability and integration between foreign TM components. Even
though this aim may sound very similar to UIMA’s aim, hotel-nlp takes a radically
different approach which enables, not only dynamic creation of compliant classes (via
clojuima), but also, fully programmatic construction of graph work-flows. As a conse-
quence, components can be selected using a mix-and-match approach, across multiple
libraries or platforms, and work-flows can be built completely declaratively and dy-
namically. Contrary to UIMA which simulates graph semantics, a hotel-nlp work-flow
is a true graph data-structure with minimal and implicit dependencies between the
nodes. Revisiting the standard-deviation analogy expressed in Section 5.1, we present
an alternative, more expressive and efficient way of specifying the exact same compu-

tation, below:

{: (fn [xs] (count xs))

im (fn [xs n] (/ (sum identity xs) n))
:m2 (fn [xs n] (/ (sum #(* % %) xs) n))
HAY (fn [m m2] (- m2 (* mm)))

:std* (fn [v] (sqrt v))}

"https://github.com/mikera/core.matrix
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Comparing the two approaches, it becomes evident that the logic has now moved
from a series of statements to a single data-structure, which internally encodes all the
relationships needed. It does this by examining the function parameter names and
matching them with the outer keys of the graph. For example, the function responsible
for calculating the variance (:v), encodes dependencies to some m & m2 variables ex-
pected to be present as keys in the graph itself. The advantages of such a data-structure
are many fold. Firstly, as far as the user is concerned, there is no notion of ordering
as the correct order will be inferred when the graph is compiled. Secondly, each step
depends only on what it absolutely needs and everything else quickly becomes eligi-
ble for garbage-collection. In the above case, since only s#d is starred, nothing else is
needed by the time :v completes, hence memory can be reclaimed. In addition, nothing
stops :m and :m2 to be evaluated in parallel as they need nothing from each other. In
an effort to show a more realistic example, we assemble the openNLP chunking graph,

discussed in Section 5.1, using this model:

SentenceDetectorME
SimpleTokenizer
POSTaggerME

(defgraph opennlp-chunking-graph
:SD  (fn [sentence] (run opennlp-ssplit sentence))
:TOK (fn [

:POS (fn [TOK] (run opennlp-pos TOK))

:CHU (fn [TOK POS] (run opennlp-chunk TOK POS)) )

SD]  (run opennlp-tok SD))

Given that none of the original openNLP classes had to be modified or wrapped in
any way, in order to have them comply with the abstractions behind hotel-nlp, we ar-
gue that this is the simplest, cleanest, and yet most expressive, way to integrate foreign
components and define graph-like relationships between them. The example presented
does not mix-and-match any foreign components but it could have easily done. For
instance, swapping out the openNLP tokeniser for the stanfordNLP one is as easy as
replacing opennlp-tok with stanfordnlp-tok (assuming it has been previously defined).
Similarly, for using the UIMA HMM-Tagger! instead of the openNLP POS-tagger, it
suffices to replace opennlp-pos with uima-hmm-pos. As explained in Section 5.1, the
equivalent process for integrating any library/tool with UIMA or GATE would most

likely involve some sort of wrapping, whereas hotel-nlp can effortlessly extend its

"http://uima.apache.org/downloads/sandbox/hmmTaggerUsersGuide/
hmmTaggerUsersGuide.html
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abstractions over foreign types, thus making it possible to safely add behaviour to any
concrete type without wrapping it. This is enabled by the programming language hotel-
nlp is written in, and therefore can easily be achieved in other modern languages (i.e.
Scala, FSharp). We invite the reader to contemplate the amount of effort, expertise,
and ultimately, glue-code, it takes to achieve similar pieces of functionality in Java, as
witnessed by the openNLP-uima!, UIMA-GATE? and cleartk-stanford-corenlp® inter-
operability layers. Thousands of lines of code, whose sole purpose is to bridge the gap
between UIMA and the corresponding API. hotel-nlp integrates with uimaFIT, and
by consequence with UIMA, using, essentially, a single Java class (via the clojuima
methodology) totalling 83 lines of code. Moreover, hotel-nlp provides Clojure bind-
ings for openNLP, stanfordNLP and GATE in just over 500 lines of code*, without

coercing the original types (i.e. wrapping).

Features

As explained in the previous section, hotel-nlp primarily aims at simplifying interop-
erability and integration between foreign (incompatible) tools. In addition, it aims to
provide a collection of tools and algorithms, useful for a number of less common TM
tasks, but these are, by no means, unique.

At the top level, hotel-nlp provides a set of abstractions® that form the basis for
interoperability between components. The public API exposed by hotel-nlp can be

divided in four distinct packages:

e core: a small collection of convenience macros to assist the user in defining
components and serial/graph work-flows, with the minimum amount of code
possible. Despite being the “tip if the iceberg”, from a user’s perspective, this is

the entry point to hotel-nip.

e externals: the core of the interoperability layer. All the extension points between
external libraries live in this namespace and they can be ‘activated’ on demand.
This means that external dependencies can be loaded selectively by the user. For

instance, there is no reason to activate the extensions for openNLP, which of

"http://opennlp.apache.org/documentation/1.5.3/apidocs/opennlp-uima/
Ihttp://gate.ac.uk/sale/tao/splitch20.html#chap:uima
3http://cleartk.googlecode.com/git/cleartkfstanfordfcorenlp/
“nttps://github.com/jimpil/hotel-nlp/blob/master/src/hotel_nlp/externals/
bindings.clj
Shttps://github.com/jimpil/hotel-nlp/blob/master/src/hotel_nlp/protocols.cl]
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course would require for openNLP to be included in the classpath, unless one
plans to use openNLP components in some ‘alien’ context (e.g. GATE). In fact,
the granularity of extensions can be even finer. One can choose to activate the
extensions points for only a subset of components within a particular library or
framework. Continuing with the previous example, one can go a step further,
and only activate the extension points for all the NER components of openNLP,

but nothing else.

e algorithms: a collection of high performance algorithms including Levenshtein-
Distance (for approximate string matching), N-Grams (for n-gram modelling),
Smith-Waterman (for local sequence alignment), HMM & Viterbi (for finding the
most likely sequence of states), Optics & K-Means (for clustering), and more,
implemented in native Clojure. Some of these algorithm implementations ex-
hibit unique features, typically absent from equivalent implementations in other
languages. For instance, the HMM model found in hotel-nlp can be trained on a
corpus X, or two corpora Y and Z such that Y +Z = X , with exactly the same
resulting model. Similarly, the K-Means algorithm can be deployed in parallel,
something which, at the time of writing, very few and highly academic imple-

mentations achieve.

e tools: a collection of small projects that can also be as standalone. A good
example of this is PAnnotator, previously discussed in Section 5.3.1. Recall
that PAnnotator features a pluggable sentence-splitter and tokeniser. Fully re-
alising this feature, requires that PAnnotator is used in the context of hotel-
nlp, as PAnnotator itself does not define any abstractions. To put it differ-
ently, when using PAnnotator directly, the only thing one can “plug-in” is regu-
lar functions. In contrast, using PAnnotator as a hotel-nlp tool allows for any
openNLP/stanfordNLP/GATE/UIMA-compliant sentence-splitter or tokeniser,
to be “plugged-in”. Other tools include a trainable name generator useful for
capturing linguistic patterns of domain-specific nomenclature and randomly gen-
erating similar sounding ones (i.e. for generating novel drug names)), a wikipedia
crawler/ scrapper, a reasonably fast spell-checker and a parallel brute-force string-
finder (for cracking passwords). Since many of these tools do not relate directly
with the aims behind hotel-nlp, none of the code in this package is implicitly
loaded by hotel-nlp.

e helper: a large collection of helper functions. This package is slightly cluttered
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and not particularly focused, as it includes many disparate pieces of functional-
ity ranging from efficient document-readers (e.g. csv or tsv) to complex string
transformations. In addition, some of the most important data-types reside in

this package.

e app:hotel-nlp’s latest feature is a rudimentary Graphical User Interface (GUI).
Currently, the GUI can still be considered experimental and is only functional
with respect to integrating the various libraries and frameworks. In other words,
a user can perform common tasks like sentence-detection, tokenisation, POS-
tagging, chunking and parsing using any component from any of the aforemen-
tioned libraries. None of the extra tools are present in the GUI. Admittedly, the
GUI is not very useful at this point.

The table below presents a comparison of the aforementioned platforms regarding
their high-level architectural considerations and major features. Even though it quickly
becomes evident that hotel-nlp is nowhere near as mature as the other solutions, it
does provide interoperability hooks for all major libraries and platforms. GATE also
allows, to some degree, the conversion between GATE’s “document-analysers” and
UIMA’s “analysis engines”. It needs to be noted that, much like GATE, hotel-nlp
is primarily intended to support programmatic access and deployment of TM compo-
nents, whereas U-Compare and Argo mainly focus on interactivity via a user-interface,
which is thought to be a more intuitive and easier to grasp, general-audience medium
[158]. Naturally, commonalities between these platforms are bound to exist. Gener-
ally speaking, replacing UIMA or GATE is not one of hotel-nlp’s aspirations. Instead,
hotel-nlp recognises that a plethora of quality components already exist and thus, was
designed and built to be symbiotic with the other platforms and libraries. Admittedly,
such a design consideration is usually overlooked. For example, UIMA-based solu-
tions only care about UIMA-compliant components. GATE on the other hand, as it
was previously mentioned, does provide some rudimentary facilities for converting
GATE components to UIMA ones and vice-versa. Even though this is certainly use-
ful and in line with hotel-nlp’s philosophy, there are several other libraries that GATE
knows nothing about.

As it currently stands, hotel-nlp has several rough edges, and there lies the rea-
son for not having been released yet. Overall, it is a significant code-base in need of
significant care before it can be considered consistent and polished. Nevertheless, we

consider this prototype platform a successful proof-of-concept, with the concept being
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U-Compare GATE hotel-NLP ARGO
Serial work-flows + + +
Graph work-flows
Serialisation
Evaluation
Utilities
API
GUI +
Plugin support +
Audio/Video/Image +
Ontology support -
Interop. layers -
Standalone +
Online -
Remote collaboration - - - +

C 4+ + + O
+ o+ 0o+ +
+ 4+ ++ O+ + + + +

+o+ o+ +++ + + 0O

1
+

Table 5.1: Comparison of NLP platforms:“+” fully supported, “0” partially supported, “-”” not
supported

the fact that in certain programming languages, interoperability and integration can go
both ways (plat form, <— plat form,) and they need not have an impact on the types
involved, thus allowing for a clean separation between platform-specific code and user

code.

Future Work

What the future holds for hotel-nlp is unfortunately, unclear, as it depends on certain
human factors. In an ideal, world where the project could grow at a steady pace, there
are several issues that need to be addressed. These are mostly of technical nature (e.g.
bugs, performance issues, code-organisation) and thus, falls outside the scope of this

thesis.

5.3.4 PKarus

Introduction

Simply put, PKarus can be thought of as the software embodiment of the work pre-
sented in Chapters 3 and 4. The research and experiments discussed in those chapters
produced various models, which are all included in this project. The static NER mod-

els are autonomous and can be used in any openNLP code-base. Similarly, the evolved
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regex patterns can be used as is, in any JVM-based language. Translation to a lan-
guage that runs on different platform (e.g. Python, .NET, Ruby) is a matter of minutes
for someone familiar with both languages. Unfortunately, the situation is quite differ-
ent for the parser generated from the CFG, presented in Chapter 4. Even though the
CFG itself, being a simple string, is fully portable, the same cannot be said for the
resulting parser, as it depends on Clojure-specific constructs and libraries. Users of
JVM-based languages can of course, address this by programming against PKarus and
thereby Clojure, from their own language. This approach is theoretically viable but
interacting with a language from within a different one usually means that the result-
ing code will most likely be somewhat, unidiomatic. A more elegant solution would
be to use PKarus in the context of hotel-nlp which, in order to facilitate the highly
polymorphic behaviour between components, had to be structured around records and
protocols. Protocols in Clojure have similar semantics with Java interfaces, whereas
records are stateless objects that can implement the behaviour specified in protocols.
This alone, makes code structured around protocols immediately usable from Java,

Scala or Groovy, with familiar, to developers of these languages, semantics.

Features

PKarus has limited functionality and it targets highly domain-specific language, namely
pharmacological/biomedical. The top-level API exposed by PKarus is essentially, two

functions. These are summarised below:

e recognise-drugs: As the name implies, this is the function responsible for drug
NER. In its simplest form, this function expects a string as input and utilises
the best combination of models, as presented in Chapter 3, in order to output a
hash-map from drug-names to their corresponding start/end offsets. Overloaded
signatures of this function, that enable a finer control over what models are be-
ing used, are provided for convenience. The state-of-the-art NER performance
demonstrated by our models combined with the programmability of the resulting
data-structure, means that this function can trivially be used to produce dictionar-
ies. All one needs is some means of extracting the keys out of the final hash-map,

something which naturally, any language provides.

e parse-pk: This is the function responsible for generating parse-trees that cap-
ture PK interactions, according to the CFG presented in Chapter 4. Contrary to

“recognise-drugs”, parse-pk currently has no overloaded signatures, and thus,
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there is no way for the user to reach into the lexical-analyser components. There-
fore, a simple string serves as the input and a nested data-structure (the parse-
tree) as the output. It needs to be noted that PKarus does not have any tree-
traversing opinions or capabilities. It is completely up to the user to choose how
to transform or traverse the resulting parse-tree. Finally, this function depends
on “recognise-drugs” for its NER step, which in turn, depends on the presence

of a sentence-splitter and tokeniser.

Much like most of the software mentioned in this Section, PKarus is a rather small
and focused tool. It does two things, and two things only. Nonetheless however, it
performs both tasks quite efficiently and effectively as demonstrated by the results

presented in the corresponding Chapters.

Future Work

Just like PAnnotator, PKarus will benefit greatly from being integrated with hotel-nip.
Doing so would enable a certain degree of polymorphism within the analyser, thus
allowing the user to potentially swap out certain components. Moreover, becoming
a hotel-nlp tool, also means that the functionality can be easily used in the context
of other platforms. For example recall that, clojuima provided a methodology for
turning any function into UIMA compliant (and vice-versa), which hotel-nlp faithfully

implements.

5.3.5 Other

The author was accepted as a contributor to the apache openNLP project on May 2012.
Since then, several extensions, improvements and bug-fixes have been submitted. The
prediction aggregation algorithm mentioned in Chapter 3 and a brand new Dictionary

class with better hashing, are currently being reviewed for inclusion in the 1.6 release.

5.4 Discussion

This chapter presented the author’s software contributions in the wider TM and NLP
discipline. The code for every single project that discussed is on GitHub! and visible

to anyone. Admittedly, the majority of the code, is written in Clojure. However, efforts

Thttps://github.com
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have been made to make these tools accessible not only to Clojure developers, but also
to Java developers as well. In fact, certain tools, such as PAnnotator, were created with
primarily, the non-programmer in mind.

Overall, the tools presented in this chapter contain novel functionality, at least
within the Clojure ecosystem, and in some cases, even in the wider, vast JVM land-
scape. Historically speaking, whenever a new language comes along, enthusiasts
around the world start porting and translating algorithms to that language. With very
few exceptions, doing that was generally, avoided in this thesis. In other words, there
is far more bridging than porting code. The exceptions have mostly to do with licens-
ing issues (not everything is open-source), and the fact that some solutions out there
are simply, unsatisfactory. For example, a good example of an open-source library
that performs well and has been architectured sensibly, would be the Snowball Porter
Stemmer!. There is absolutely no reason for anyone, ever to reimplement this function-
ality on any JVM-based language. The same cannot be said for the, seemingly simple,
N-Grams algorithm. In this case, there is absolutely no reason to even consider de-
pending on some foreign library, as the entirity of N-Grams can be implemented from
scratch, in a single line of Clojure code?. Similarly, the HMM implementation found
in hotel-nlp offers a rather unique feature, which is the ability to build a model incre-
mentally, instead all at once. This could useful for several reasons. In the context of
POS-tagging, for example, it might be the case that the desirable corpus is split in many
pieces or that some pieces are to become available in the future. To our knowledge,
no other HMM implementation lends itself well to such circumstances. Typically, a
model cannot be updated after construction. Therefore, “reinventing the wheel”, in
such cases, can be justified on the grounds of adding useful and novel functionality.

We conclude that, even though most of the resulting artefacts (models and soft-
ware) are primarily tailored for drug-discovery, significant effort has gone into making
them as general and as easily accessible as possible. For the most part, the fact that
these tools are written in a new and unconventional language, can be considered an
implementation detail, which the end-user need not be aware of. Given that, some of
these tools already have users and that they proved indispensable for conducting the
experimental work presented in Chapters 3 and 4, we can only assume that, at least the
motivation and core principles behind them are sound. The actual implementation is

bound to be less than ideal, simply because it is rather difficult for a single maintainer

Ihttp://snowball.tartarus.org/index.php
2https://github.com/jimpil/hotel-nlp/blob/master/src/hotel_nlp/algorithms/
ngrams.clj#L8
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to manage all these projects in parallel to his/her studies. As a consequence, corners

are often being cut, which in turn, can lead to bugs, API inconsistencies, and much

more.



Chapter 6
Conclusion

This thesis summarises the work undergone by the author in the last 18 months of
research. Chapters 3 and 4 have a strong focus around novel methods and techniques
for specific, real-world problems, whereas Chapter 5 is clearly concerned with the
wider infrastructure that supports, and ultimately enables, experimental research in the
field. Taking into account the importance of both aspects and the results presented so
far, we consider the contributions presented worthy of attention, and in some cases,
deserving further pursuit.

The experimental methods discussed are directly applicable to certain computa-
tional aspects of drug-discovery. For instance, despite the growing availability of cor-
pora, data-sparsity is still a major problem for many highly specialised domains and
tasks, such as pharmacology and PK-parameter mining. Chapter 3 suggests approaches
to minimise the impact of this problem when recognising drug names, which in turn,
is a prerequisite for effective relation extraction and event-mining in this area. In fact,
part of the success of the method presented in Chapter 4, can be attributed to the robust
NER models produced previously. Moreover, since Chapter 4 utilised a good propor-
tion of the the infrastructure discussed in Chapter 5, it can be thought of as the work
that ties everything else together.

While at first glance, Chapter 5 may sound overly critical of existing tools and plat-
forms, it needs to be emphasised that the critique has very little to do with the tools
themselves. Platforms and tools were conceived at a specific point in time and realised
in a specific programming language/paradigm. In the absence of time-travelling facil-
ities, there is nothing that can be done about it. Blaming the tools without offering

alternatives, or blindly disregarding them, is by no means, constructive. On the other
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hand, finding ways to cleanly integrate or combine them, while at the same time pro-
tecting the user from unnecessary complexities, we believe adds great value not just to
the TM and NLP communities, but also to the fledgling Clojure ecosystem.

Finally, recall that all the concrete artefacts produced have been made freely avail-
able to anyone who is willing to ask or look for them. In particular, the MaxEnt models
can be retrieved directly from the author, while the various tools and libraries, except
hotel-nlp, can be automatically fetched via standard software project management sys-
tems like Maven (Java), Gradle (Groovy) or Clojars (Clojure). More details can be
found on each project’s GitHub page. Despite the interesting ideas and motivation
behind it, hotel-nlp, in its current state, is neither mature, nor polished enough to be

released to the public.
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