999 research outputs found

    On-going frontal alpha rhythms are dominant in passive state and desynchronize in active state in adult gray mouse lemurs

    Get PDF
    The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8-12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7-9 Hz) during passive state. During active state, there was a reduction in alpha power density (8-12 Hz) and an increase of power density at slow frequencies (1-4 Hz). Relative EMG activity was related to EEG power density at 2-4 Hz (positive correlation) and at 8-12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology

    Functional and Structural Magnetic Resonance Imaging of Humans and Macaques

    Get PDF
    Magnetic resonance imaging (MRI) is a technique which finds use in the neurosciences both as an anatomical and functional localization tool. The traditional uses of MRI for structural analysis, such as are commonly found in medicine, can be adapted to serve in place of histological studies for identifying areas of interest in the cortex. Functional MRI (fMRI) is a rapidly developing tangent of MRI which can be used alone or in tandem with classical electrophysiological experiments to investigate neural activity. Although developed intensely for clinical and scientific studies in human subjects, MRI and fMRI have been used increasingly in the non-human primate. This document contains work exemplifying the use of fMRI in both species and methods for pre- and post-surgical anatomical MRI in the non-human primate. Serving as a solid foundation for learning the principles of block-design fMRI, a classic visual illusion, the motion aftereffect, is studied in the human by means of a hemifield visual stimulus using conventional blood oxygen level dependent (BOLD) fMRI. Primary response and levels of motion aftereffect are analyzed in visual cortex, areas pMT and pMST. A novel use of iron oxide nanoparticles as an intravascular contrast agent in the non-human primate is investigated as a method of boosting fMRI contrast, yielding an ultimate gain in contrast-to-noise at the expense of temporal resolution. While anatomical imaging served as a necessary tool for the localization of functional response in the human, further novel techniques were investigated in the non-human primate. A technique for MRI-guided implantation of multiple electrode arrays is considered, to aid the localization of sites of interest in the cortex. The use of MRI as a replacement for histological preparations for purposes of reconstructing electrode penetration sites is documented. These studies exist to aid in bridging the gap between human and non-human MRI and fMRI. Further application of these principles could be extended to the eventual placement of intracortical recording devices in the human, to benefit a patient population needing devices such as a neural prosthesis

    Impact of Acute Ethanol Injections on Medial Prefrontal Cortex Neural Activity

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The medial prefrontal cortex (mPFC) is a cortical brain region involved in the evaluation and selection of motivationally relevant outcomes. mPFC-mediated cognitive functions are impaired following acute alcohol exposure. In rodent models, ethanol (EtOH) doses as low as 0.75 g/kg yield deficits in cognitive functions. These deficits following acute EtOH are thought to be mediated, at least in part, by decreases in mPFC firing rates. However, these data have been generated exclusively in anesthetized rodents. To eliminate the potentially confounding role of anesthesia on EtOH modulated mPFC activity, the present study investigated the effects of acute EtOH injections on mPFC neural activity in awake-behaving rodents. We utilized three groups: the first group received 2 saline injections during the recording. The second group received a saline injection followed 30 minutes later by a 1.0 g/kg EtOH injection. The last group received a saline injection followed 30 minutes later by a 2.0 g/kg EtOH injection. One week following the awake-behaving recording, an anesthetized recording was performed using one dose of saline followed 30 minutes later by one dose of 1.0 g/kg EtOH in order to replicate previous studies. Firing rates were normalized to a baseline period that occurred 5 minutes prior to each injection. A 5-minute time period 30 minutes following the injection was used to compare across groups. There were no significant differences across the awake-behaving saline-saline group, indicating no major effect on mPFC neural activity as a result of repeated injections. There was a significant main effect across treatment & behavioral groups in the saline-EtOH 1.0 g/kg group with reductions in the EtOH & Sleep condition. In the saline-EtOH 2.0 g/kg, mPFC neural activity was only reduced in lowered states of vigilance. This suggests that EtOH only causes gross changes on neural activity when the animal is not active and behaving. Ultimately this means that EtOH’s impact on decision making is not due to gross changes in mPFC neural activity and future work should investigate its mechanism

    Contributions and complexities from the use of in-vivo animal models to improve understanding of human neuroimaging signals.

    Get PDF
    Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in-vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anaesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologues within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges

    Fluorescence Imaging of Cortical Calcium Dynamics: A Tool for Visualizing Mouse Brain Functions, Connections, and Networks

    Get PDF
    Hemodynamic-based markers of cortical activity (e.g. functional magnetic resonance imaging (fMRI) and optical intrinsic signal imaging) are an indirect and relatively slow report of neural activity driven by electrical and metabolic activity through neurovascular coupling, which presents significant limiting factors in deducing underlying brain network dynamics. As application of resting state functional connectivity (FC) measures is extended further into topics such as brain development, aging, and disease, the importance of understanding the fundamental basis for FC will grow. In this dissertation, we extend functional analysis from hemodynamic- to calcium-based imaging. Transgenic mice expressing a fluorescent calcium indicator (GCaMP6) driven by the Thy1 promoter in glutamatergic neurons were imaged transcranially in both anesthetized (using ketaminze/xylazine) and awake states. Sequential LED illumination (λ=470, 530, 590, 625nm) enabled concurrent imaging of both GCaMP6 fluorescence emission (corrected for hemoglobin absorption) and hemodynamics. EEG measurements of the global cortical field potential were also simultaneously acquired. First, we validated the ability of our system to capture GCaMP6 fluorescence emission and hemodynamics by implementing an electrical somatosensory stimulation paradigm. The neural origins of the GCaMP6 fluorescent signal were further confirmed by histology and by comparing the spectral content of imaged GCaMP6 activity to concurrently-acquired EEG. We then constructed seed-based FC and coherence network maps for low (0.009-0.08Hz) and high, delta-band (0.4-4.0Hz) frequency bands using GCaMP6 and hemodynamic contrasts. Homotopic GCaMP6 FC maps using delta-band data in the anesthetized states show a striking correlated and anti-correlated structure along the anterior to posterior axis. We next used whole-brain delay analysis to characterize this correlative feature. This structure is potentially explained by the observed propagation of delta-band activity from frontal somatomotor regions to visuoparietal areas, likely corresponding to propagating delta waves associated with slow wave sleep. During wakefulness, this spatio-temporal structure is largely absent, and a more complex and detailed FC structure is observed. Collectively, functional neuroimaging of calcium dynamics in mice provides evidence that spatiotemporal coherence in cortical activity is not exclusive to hemodynamics and exists over a larger range of frequencies than hemoglobin-based contrasts. Concurrent calcium and hemodynamic imaging enables direct temporal and functional comparison of spontaneous calcium and hemoglobin activity, effectively spanning neurovascular coupling and functional hyperemia. The combined calcium/hemoglobin imaging technique described here will enable the dissociation of changes in ionic and hemodynamic functional structure and provide a framework for subsequent studies of sleep disorders and neurological disease

    Refinements to rodent head fixation and fluid/food control for neuroscience

    Get PDF
    The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs

    Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role

    Get PDF
    The lateral geniculate nucleus (LGN) has often been treated in the past as a linear filter that adds little to retinal processing of visual inputs. Here we review anatomical, neurophysiological, brain imaging, and modeling studies that have in recent years built up a much more complex view of LGN . These include effects related to nonlinear dendritic processing, cortical feedback, synchrony and oscillations across LGN populations, as well as involvement of LGN in higher level cognitive processing. Although recent studies have provided valuable insights into early visual processing including the role of LGN, a unified model of LGN responses to real-world objects has not yet been developed. In the light of recent data, we suggest that the role of LGN deserves more careful consideration in developing models of high-level visual processing

    Oxygen Polarography in the Awake Macaque: Bridging BOLD fMRI and Electrophysiology

    Get PDF
    Blood oxygen level dependent (BOLD) fMRI is the predominant method for evaluating human brain activity. This technique identifies brain activity by measuring blood oxygen changes associated with neural activity. Although clearly related, the nature of the relationship between BOLD fMRI identified brain activity and electrophysiologically measured neural activity remains unclear. Direct comparison of BOLD fMRI and electrophysiology has been severely limited by the technical challenges of combining the two techniques. Microelectrode electrophysiology in non-human primates is an excellent model for studying neural activity related to high order brain function similar to that commonly studied with BOLD fMRI in humans, i.e. attention, working memory, engagement. This thesis discusses the development of, validation of, and first results obtained using a new multi-site oxygen polarographic recording system in the awake macaques as a surrogate for BOLD fMRI. Oxygen polarography measures tissue oxygen which is coupled to blood oxygen. This tool offers higher resolution than BOLD fMRI and can be more readily combined with electrophysiology. Using this new tool we evaluated local field potential and oxygen responses to an engaging visual stimulus in two distinct brain systems. In area V3, a key region in the visual system and representative of stimulus driven sensory cortex, we show increased tissue oxygen and local field potential power in response to visual stimulus. In area 23 of the posterior cingulate cortex (PCC), a hub of the default-mode network we show decreased oxygen and local field potential in response to the same stimulus. The default-mode network is a set of brain regions identified in humans whose BOLD fMRI activity is higher at rest than during external engagement, arguing that they sub-serve a function that is engaged as the default-mode in humans. Our results provide new evidence of default-mode network activity in the macaque similar to that seen in humans, provide evidence that the BOLD identified default-mode suppression reflects neural suppression and overall support a strong relationship between neural activity and BOLD fMRI. However, we also note that the LFP responses in both regions show substantial nuances that cannot be seen in the oxygen response and suggest response complexity that is invisible with fMRI. Further the nature of the relationship between LFP and oxygen differs between regions. Our multi-site technique also allows us to evaluate inter-regional interaction of ongoing oxygen fluctuations. Inter-regional correlation of BOLD fMRI fluctuations is commonly used as an index of functional connectivity and has provided new insight into behaviorally relevant aspects of the brains organization and its disruption in disease. Here we demonstrate that we can measure the same inter-regional correlation using oxygen polarography. We utilize the increased resolution of our technique to investigate the frequency structure of the signals driving the correlation and find that inter-regional correlation of oxygen fluctuations appears to depend on a rhythmic mechanism operating at ~0.06 Hz

    The Doors of Visual Perception in Mice.

    Get PDF
    A fundamental function of the brain is to generate subjective perceptual experiences, otherwise known as conscious awareness. However, in visual neuroscience, it is unclear why stimuli impacting the retina are only sometimes consciously perceived, other times going unseen (such as when viewing a very faint light at a distance, or during distracted driving). Further, it is uncertain which regions in the brain visual information must be routed to in order to enter conscious awareness. However, previous studies have suggested that variation in behavioral state factors such as attention, arousal, and motor activity can impact neural response dynamics and performance on visual tasks - suggesting a role for behavior state in determining the perceptual fate (conscious or unconscious) of visual stimuli. While most studies regarding neural mechanisms of consciousness are performed in human and non-human primates, the mouse is emerging as a model organism for the study of conscious awareness. This dissertation constitutes an exploration of the use of mice to study the neural correlates of visual perception. The literature review and experiments contained within are guided by three motivating questions: (1) Can the use of mice drive forward theories of consciousness developed in primates? (2) Does behavior state impact the neural response to near-threshold visual stimuli in mice? (3) Where does conscious awareness enter along the visual processing hierarchy? Chapter 2 introduces the mouse as a model organism to study consciousness, chapter 3 describes results from an investigation into the role of locomotion and arousal on neural response thresholds, and chapter 4 summarizes results from a study on the role of the visual thalamus in directing selective visual attention. Amongst other findings, I demonstrate that mice are an ideal model organism for the study of consciousness, that behavior state impacts neural thresholds, and that activity in early visual regions is likely sufficient for conscious perception in mice
    corecore