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ABSTRACT OF THE DISSERTATION 

Fluorescence Imaging of Cortical Calcium Dynamics: A Tool for Visualizing Mouse Brain 

Functions, Connections, and Networks 

by 

Patrick William Wright 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2016 

Professors Joseph Culver, Ph.D & Beau Ances, MD, Ph.D, Co-Chairs 

 

Hemodynamic-based markers of cortical activity (e.g. functional magnetic resonance imaging 

(fMRI) and optical intrinsic signal imaging) are an indirect and relatively slow report of neural 

activity driven by electrical and metabolic activity through neurovascular coupling, which presents 

significant limiting factors in deducing underlying brain network dynamics. As application of 

resting state functional connectivity (FC) measures is extended further into topics such as brain 

development, aging, and disease, the importance of understanding the fundamental basis for FC 

will grow.  

In this dissertation, we extend functional analysis from hemodynamic- to calcium-based imaging. 

Transgenic mice expressing a fluorescent calcium indicator (GCaMP6) driven by the Thy1 

promoter in glutamatergic neurons were imaged transcranially in both anesthetized (using 

ketaminze/xylazine) and awake states. Sequential LED illumination (λ=470, 530, 590, 625nm) 

enabled concurrent imaging of both GCaMP6 fluorescence emission (corrected for hemoglobin 

absorption) and hemodynamics. EEG measurements of the global cortical field potential were also 

simultaneously acquired. First, we validated the ability of our system to capture GCaMP6 
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fluorescence emission and hemodynamics by implementing an electrical somatosensory 

stimulation paradigm. The neural origins of the GCaMP6 fluorescent signal were further 

confirmed by histology and by comparing the spectral content of imaged GCaMP6 activity to 

concurrently-acquired EEG. We then constructed seed-based FC and coherence network maps for 

low (0.009-0.08Hz) and high, delta-band (0.4-4.0Hz) frequency bands using GCaMP6 and 

hemodynamic contrasts. Homotopic GCaMP6 FC maps using delta-band data in the anesthetized 

states show a striking correlated and anti-correlated structure along the anterior to posterior axis. 

We next used whole-brain delay analysis to characterize this correlative feature. This structure is 

potentially explained by the observed propagation of delta-band activity from frontal somatomotor 

regions to visuoparietal areas, likely corresponding to propagating delta waves associated with 

slow wave sleep. During wakefulness, this spatio-temporal structure is largely absent, and a more 

complex and detailed FC structure is observed.  

Collectively, functional neuroimaging of calcium dynamics in mice provides evidence that 

spatiotemporal coherence in cortical activity is not exclusive to hemodynamics and exists over a 

larger range of frequencies than hemoglobin-based contrasts. Concurrent calcium and 

hemodynamic imaging enables direct temporal and functional comparison of spontaneous calcium 

and hemoglobin activity, effectively spanning neurovascular coupling and functional hyperemia. 

The combined calcium/hemoglobin imaging technique described here will enable the dissociation 

of changes in ionic and hemodynamic functional structure and provide a framework for subsequent 

studies of sleep disorders and neurological disease. 
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Chapter 1: Introduction 
1.1. Overview 

Functional magnetic resonance imaging (fMRI) has been instrumental in unlocking the functional 

architecture of the brain and is used routinely to map the patterns of resting-state functional 

connectivity (RSFC) brain networks in humans [1]. However, compared to neural activity, 

hemodynamic measures of brain activity are relatively indirect and slow (<0.5 Hz), as they are a 

direct result of an intricate series of events initiated by synaptic activity, known as neurovascular 

coupling (NVC). Recently developed optical approaches for mapping RSFC in anesthetized mice, 

including optical intrinsic signal imaging (fcOIS), also have similar limitations [1, 2]. The fcOIS 

technique relies on differential changes in hemoglobin concentration in a manner analogous to 

blood-oxygen-level (BOLD) fcMRI. Similar to human fcMRI, mouse fcOIS provides a sensitive 

assay for several neurological diseases, including ischemic stroke [3] and Alzheimer’s disease [4, 

5] using functional connectivity. However, the extent of temporal and spatial information to be 

learned from this hemodynamic-based signal is limited. Compared to neural activity, 

hemodynamic measures of brain activity are relatively indirect and slow (<0.5 Hz). At infraslow 

frequencies (<0.1 Hz), hemodynamic signals are a reasonable report of neural activity [6-10]. 

Conversely, at higher frequencies, the utility of hemoglobin as a marker of neural activity is 

reduced. As FC becomes increasingly implemented as a tool to study brain development and 

disease, the need for faster and more direct neuroimaging contrasts will grow. 
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1.2. Neurovascular Coupling 

Neurovascular coupling (NVC) is the process relating synaptic transmission and neural activity at 

the synapse to the downstream changes in cerebral blood flow and hemoglobin concentration [11]. 

The cerebral circulatory system must maintain a constant blood flow for the brain to function and 

accommodate regional energy utilization in the brain. The maintenance of this blood flow is 

maintained by the interplay of an autoregulatory component, which ensures that the brain is 

sufficiently supplied with blood even in the presence of sudden changes in arterial pressure, and 

functional hyperaemia, which is the activity-dependent increase in blood flow to regions with 

active neurons and astrocytes. For example, at glutamatergic synapses, following glutamate 

activation at the postsynapse, neurons release nitric oxide and neighboring astrocytes release 

arachidonic acid derivatives that act to either dilate or constrict neighboring vessels. Specifically, 

smooth muscle cells on neighboring arterioles and pericytes of adjacent capillaries can be 

contracted following neural activity, increasing vessel diameter and subsequently, blood flow to 

the area. The intermediate steps between synaptic activity involving transmembrane potential 

changes and these final changes in blood flow include an initial influx of calcium (and thus an 

increase in intracellular calcium concentrations), which in turn drives aerobic energy metabolism 

within mitochondria [11]. This full process is represented graphically in Fig. 1.1.  

 

Fig 1.1. Neurovascular coupling. Cellular and hemodynamic responses to neural activity. 

Following an action potential, there is an increase in aerobic energy metabolism. Due to this 
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increased oxygen consumption, local blood flow and volume changes allow for higher HbO2 

availability. CBF: Cerebral Blood Flow. CMRO2: Cerebral Metabolic Rate of Oxygen. 

 

1.3 Functional Connectivity 

Functional neuroimaging modalities have been increasingly used to elucidate the underlying 

functional connections of the brain. In humans, functional neuroimaging has largely been confined 

to imaging hemodynamic-based signals. This is largely due to the inherent methodological issues 

and invasiveness necessary to image fluorescent or radionuclide signals in vivo. Signals modulated 

by blood flow are endogenous and through NVC, a sufficient proxy for neural activity. One of the 

most promising observed phenomena using human hemodynamic imaging is the occurrence of 

synchronous oscillations of activity in cortical regions that are present in the absence of functional 

task activations, known as functional connectivity (FC). The high correspondence between the 

functional network topography in the correlative structure of these oscillations and functional areas 

revealed through functional task mapping validate the sensitivity of FC to the underlying structure 

of the brain. This is especially useful as a mapping method in patient populations that are unable 

to carry out these functional tasks.  

 

1.3.1 Functional Connectivity Using fMRI 

Currently, in humans, functional MRI (fMRI) has been used to reveal the presence of functional 

connections across brain networks rooted in low frequency (0.008-0.09Hz) oscillations that are 

correlated (and anticorrelated) in time [12]. The blood oxygen level dependent (BOLD) signal 

used in fMRI to observe these oscillations is based on heterogeneities of the MR signal due to the 

paramagnetism of hemoglobin not bound to oxygen (deoxyhemoglobin). The local concentrations 
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of deoxyhemoglobin decrease with neural activity, providing measurable changes in the 

homogeneity in the MR signal [13, 14].  

 

1.3.2 Functional Connectivity Using Optical Modalities 

These signals have also been probed optically using functional near infrared spectroscopy (fNIRS) 

and diffuse optical tomography (DOT) [15-17]. Compared to MRI scanners, DOT systems have 

the advantage of being portable, less expensive, and able to accommodate patient populations that 

are unable to be scanned using MRI (e.g. patients contra-indicated for MRI by having pacemakers). 

DOT has already been used to show FC structure in neonates and Parkinson’s patients with deep 

brain stimulation implants [18, 19]. Intrinsic signal imaging can be implemented by using shorter 

wavelengths (<750nm) that fall within the visible portion of the electromagnetic spectrum. The 

absorption by hemoglobin of incident light at these wavelengths is orders of magnitudes higher 

than NIR (Fig. 1.2). Intrinsic signal imaging has been implemented in the context of FC mapping 

in mice and other animal models. Changes in reflectance of incident light at various wavelengths 

due to absorption by hemoglobin are measured and can be converted to changes in concentrations 

of oxyhemoglobin and deoxyhemoglobin [20]. Transcranial optical imaging of the optical intrinsic 

signal (OIS) has already been used to reveal these resting state functional connectivity (FC) 

networks in a mouse model [2]. Comparably, laser speckle contrast imaging, which measures 

cerebral blood flow instead of differential hemoglobin concentration changes, has been used to 

construct resting-state functional connectivity maps as well [21]. Optical imaging in animal models 

unlocks the potential to target other signals in the NVC stream that are provide complementary 

information to hemodynamics and are coupled to neural activity. A number of these approaches 

will be highlighted in the following sections.  
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Figure 1.2. Extinction coefficient spectra of hemoglobin. Extinction coefficient spectra for 

oxyhemoglobin (red) and deoxyhemoglobin (blue) per wavelength. Reflectance measurements 

acquired using wavelengths that span these spectra can be used together to determine differential 

concentration changes of hemoglobin. 

 

1.4 Functional Optical Neuroimaging 

1.4.1Voltage Sensitive Dyes and Glutamate Sensors 
 
Fluorescent voltage-sensitive dyes (VSDs) serve as sensors for transmembrane potential changes, 

enabling visualization of electrophysiological activity that is most commonly monitored and 

recorded using electrode-based modalities [22]. These probes are directly coupled to synaptic 

activity, enabling a temporal (µs) and spatial (50µm) specificity not possible using hemodynamic-

based signals. Importantly, VSDs enable detection of subthreshold synaptic potentials. 

Characterizing the patterns of subthreshold inputs is necessary to understand higher brain functions 

such as perception. Moreover, VSD signal in vivo predominately originates from dendrites rather 

than neuronal soma due to the order of magnitude larger surface area of dendrites [23]. These have 
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been used to establish the seeming dependence of spontaneous cortical activity on intracortical 

monosynaptic structural connections [24]. Historically, a significant weakness in the use of VSDs 

is the invasiveness and challenge associated with cortical dye injections. More recently, 

genetically-encoded voltage indicators (GEVI) have been prototyped and show comparable 

performance to traditional VSDs, overcoming these challenges [25].  

More recently, glutamate-sensing fluorescent reporters, such as iGluSnFR, have been used to 

visualize extracellular glutamate dynamics in awake and anesthetized mice [26]. Glutamate, as the 

primary excitatory neurotransmitter in the central nervous system, is implicated in learning, 

plasticity, general synaptic transmission and is often affected in disease. iGluSnFR has been used 

to visualize extracellular glutamate dynamics in the striatum in a mouse model of Huntington’s 

disease (HD) [27]. Using this glutamate sensor, the results of this study counter a long-held 

mechanism underlying HD pathology: compromised glutamate uptake impairment. Rather than 

relying on traditional in situ synaptosomes which have been used to characterize HD previously, 

the observed in vivo results from iGluSnFR showed glutamate uptake in the HD group that were 

in parity with control mice. Fluorescent neurotransmitter-based probes such as iGluSnFR provide 

insight into   

 

1.4.2 FAD and NADH Autofluorescence 

At the most macroscopic level, the vascular response to neural activity represents the most 

commonly studied index of neurophysiological activity. However, this is an indirect measure of 

neuronal activity with a spatial distribution constrained to cerebral vasculature [28]. The inherent 

flexibility of optical imaging modalities allows the study of non-neurovascular signals, such as 

metabolic and ionic activity using autofluorescence and exogenous indicators. As a result of 

neuronal action potentials, there is a rapid influx of calcium into the cell which is absorbed, in part, 
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by mitochondria. The increased concentration of intracellular calcium following action potentials 

can serve as a target for imaging. This increased availability of calcium allows for aerobic energy 

metabolism to occur, leading to the oxidation of flavoproteins and consequently, the potential for 

autofluorescence. Flavin adenine dinucleotide (FAD) is an autofluorescing metabolite involved in 

cellular aerobic metabolism within mitochondria. FAD, derived from riboflavin, is reduced to 

FADH2 during the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle. 

FADH2 then acts as an electron donor in the electron transport chain of oxidative phosphorylation 

for the production of adenosine triphosphate (ATP). It donates each hydrogen electron in a two-

step process before returning to its oxidized, fluorescing form, FAD [29-32]. Thus, variations in 

this fluorescence are representative of changes in mitochondrial TCA cycle rate [33] rather than 

changes in local hemoglobin availability.  

FAD autofluorescence imaging (FAI) has been previously used to image cortical activity in vitro 

in cerebral slices as well as in vivo in both rodents and primates [33-44]. Some of these studies 

have highlighted the differences between metabolic signals and those hemodynamic in origin. In 

a study examining experience-dependent plasticity in the mouse visual cortex, FAD 

autofluorescence showed a faster onset time and time to peak amplitude response to visual 

stimulation compared to the intrinsic signal while also providing a response an order of magnitude 

larger [37]. Sirotin and Das showed comparable response behavior between FAI and OIS in alert 

macaques in response to visual stimuli. They also showed that FAI provided a more focal response 

early in activation with smaller point spread functions than concurrently acquired OIS [41]. 

Similarly, Weber and colleagues showed a faster and more localized response to single vibrissa 

stimulation in rats using FAI compared to cerebral blood flow (CBF) changes measured using laser 

speckle imaging (LSI) [36]. FAD autofluorescence changes have also been used as a marker of 
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mitochondrial cerebral metabolic rate of oxygen (CMRO2) and compared OIS in a forelimb 

stimulation paradigm in rats. The FAD signal provided an evoked response with a time constant 

of approximately 1 second compared to the OIS time constant of 10 seconds [33]. Nicotinamide 

dinucleotide (NADH), which acts as an electron donor in aerobic respiration, is another 

autofluorescent metabolite that is fluorescent when reduced and not oxidized, in contrast to FAD 

autofluorescence. It has excitation and emission maxima at 350nm and 460nm, respectively, 

whereas FAD is maximally excited at 450nm and emits 535nm. If imaged concurrently, the ratio 

of FAD to NADH fluorescence (“redox ratio”) provides relative changes in the oxidation-

reduction state in the cell [45]. This powerful tool is often applied to tumor imaging given the 

abnormal redox state of tumors compared to the surrounding tissue [46].  

 

1.4.3 Calcium Indicators 

With the advent of genetic engineering techniques in mice, there are new opportunities for 

extending wide-field optical imaging to calcium dynamics and offer a more direct and faster 

measure of neural activity. Specifically, calcium concentration changes due to voltage-gated 

calcium channels at both the pre- and postsynapse can be imaged and visualized using fluorescent, 

genetically encoded calcium indicators (GECIs) [47]. These fluorophores, including GCaMP [48],  

are generated from modified green fluorescent protein that is coupled with a calcium binding 

domain, enabling increased fluorescence in the presence of elevated calcium levels and have been 

used extensively to study in vivo neural activity in C. elegans [48], mice [7, 48-52], rats [53], 

monkeys [54], and other animal models. Additionally, GECI expression can be driven by targeted, 

cell-specific (e.g. neurons or astrocytes) promotors that allow for imaging select subpopulations 

of cells, providing a powerful tool to map the structural and functional circuitry of the brain. 
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The GCaMP family consists of a circularly permuted green fluorescent protein (cpGFP), an M13 

peptide, and calmodulin (CaM) which serves as the calcium binding domain. CaM and M13 

interact and undergo conformational changes in the presence of calcium that cause increased 

fluorescence emission. Newer variants (e.g. GCaMP6) have reduced baseline fluorescence and 

faster kinetics than earlier generations (e.g. GCaMP3). In cultured dissociated rat hippocampal 

neurons, GCaMP6f has a rise time to peak following 1 to 100 action potential stimuli (driven by 

electrodes) of approximately 0.05-0.2s. The half decay time following 1 to 100 action potential 

stimuli spans 0.3-0.7s.  GCaMP3, an older generation variant, has a time to peak of around 0.2s 

and an approximately 5-fold lower SNR than GCaMP6f. Among the GCaMP6 variant, there are 

three subvariants: GCaMP6s, 6m, and 6f, for slow, medium, and fast kinetics respectively. 

Generally, the sensors with the slowest kinetics (e.g. GCaMP6s) have the highest SNR. 

Regardless, the GCaMP6 sensor is sensitive to individual action potentials and is a powerful proxy 

for intracellular cytoplasmic free calcium [55]. It is the primary optical probe used in this 

dissertation. 

 

1.5 Applications of Functional Optical Probes 
 
1.5.1 Disease 

Hemodynamic signals are based on the neurovascular coupling between increased neuronal 

activity and the corresponding increase in blood flow due to growing demand for oxygen and 

glucose [56]. In disease, this relationship has been shown to be altered in certain neuropathologies 

such as type 2 diabetes mellitus, Alzheimer’s disease, and stroke [57-59]. This presents an 

application for optical probes coupled to a signal independent of NVC. In a rat model of cerebral 

ischemia, Baker and colleagues showed that hemodynamic (blood flow, oxyhemoglobin, and 
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deoxyhemoglobin) responses were more attenuated than metabolic responses with increasing 

ischemia severity [44]. Zhao et al showed vasoconstriction in tissue surrounding a seizure focus 

before ictal onset, while no changes in metabolism (measured by FAI) were observed. Moreover, 

hypermetabolism was observed in the focus of the seizures, supporting the increased sensitivity 

and possibility for FAI to create focal maps of seizure activity than those allowable by intrinsic 

signal imaging [42].  

 

1.5.2 Sleep and Anesthesia 
 
With respect to functional connectivity, GCaMP and other GECIs and VSDs offer the opportunity 

to map spontaneous network activity at frequencies >0.5 Hz. Furthermore, by opening up access 

to higher frequencies, these reporters provide a mechanism to observe and study the state of the 

brain during sleep, induced by either natural sleep or anesthesia, wherein the delta-band slow 

oscillation(0.5-4.0Hz) activity is dramatically increased[60]. The delta-band slow wave sleep 

phenomenon, most often observed and reported using electrophysiological techniques [61-63], 

consists of synchronous, oscillating alternations between depolarized and hyperpolarized neuronal 

states.   As these waves of delta-band activity propagate over the cortex, they may interact with 

underlying spontaneous activity stereotypical of FC structure. For example, Lewis and colleagues 

have reported a fragmentation of electrophysiological FC in humans following propofol-induced 

loss of consciousness associated with a subsequent increase in ~1Hz cortical activity [64].  

Sleep can be delineated into periods of rapid eye movement (REM) sleep, in which there are rapid, 

binocularly symmetrical eye movements, and non-REM (NREM) sleep which is characterized by 

a distinctive EEG pattern of “sleep spindles” occurring at ~12-14Hz and high amplitude, slow 

“delta” waves. NREM sleep consists of 3 stages, with so-called “slow wave sleep” occurring 
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during stage 3 [65]. During light periods, mice spend approximately 25-50% of their time awake, 

50-70% in NREM, with the remaining ~5% time spent in REM. Because mice are nocturnal, 

during dark periods, time in wakefulness is maximized (>75%), with time in NREM making up 

~20% of the total dark time and REM the remaining ~2% [66]. The primary cellular component 

underlying NREM sleep is a slow oscillation (0.5-2.0Hz) of the membrane potential of cortical 

neurons. Using a 256-channel high-density EEG system in humans (n=8), Massimini and 

colleagues show that each cycle of this slow oscillation is a traveling wave that originates in 

prefrontal-orbitofrontal regions and propagates along the anterior-posterior axis, sweeping the 

cortex [67]. This phenomenon was stable and reproducible within and across subjects and across 

nights. This neuronal oscillation consists of alternation between periods of membrane potential 

hyperpolarization (“down states”, a period of neuronal silence) and depolarizing envelopes (“up 

states”), first described by Steriade and colleagues in cats using intracellular recordings [61]. In 

natural sleep, these oscillations occur at approximately 0.4Hz, but can be pharmacologically 

modulated. For example, in the presence of ketamine/xylainze, the duration of the depolarizing 

“up” envelope was reduced, increasing the overall frequency of oscillation to ~1Hz.  

In the context of resting-state activity, using BOLD fMRI, Mitra and colleagues established the 

delay topography in normal adults during wakefulness and slow wave sleep [68]. They 

demonstrated that subcortical structures are early in relation to the cortex during wakefulness, but 

are late during slow wave sleep. They also observed that across resting-state networks, propagation 

was significantly altered in slow wave sleep compared to wakefulness, but within resting-state 

network propagation was preserved.  

Nevertheless, the extent that delta-band activity influences functional network structure is 

unknown. The ability of these fast optical probes, specifically GCaMP6, to be used as an FC 
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mapping tool and the state-dependence of calcium-based FC structure must be characterized. 

Because hemodynamic-based measures cannot be used to directly probe this activity, GCaMP6 

provides a unique approach for examining these oscillations and their relation to spontaneous FC 

structures. 

In this dissertation, we report concurrent imaging of hemoglobin and GCaMP6 dynamics in a 

Thy1/GCaMP6 transgenic mouse model [52]. An optical imaging system and algorithms were 

developed to image wide-field calcium and hemoglobin dynamics concurrently over three decades 

of frequency (0.008Hz to 8 Hz).  We first quantified the duration of spontaneous GCaMP6 data 

necessary to construct canonical FC images. The patterns of FC within the infraslow (0.008-

0.09Hz) spontaneous GCaMP6 and HbO2 dynamics were then explored using canonical seed-

based intercontrast FC analysis. Since GCaMP6 enables analysis at higher frequencies, we 

characterized delta-band (0.4-4.0Hz) GCaMP6 activity across the cortex in both anesthetized and 

awake states, to evaluate the possibility of a state-dependence of calcium-based FC topography. 

Spectral features of GCaMP6 dynamics were compared to simultaneously-measured EEG to 

validate the sensitivity of GCaMP6 to global cortical electrophysiological activity and to state 

(awake or anesthetized).  Finally, cortical propagation in GCaMP6 was examined during the 

transition from anesthetized state to wakefulness. The technology developed here for concurrent 

GCaMP6/hemodynamic imaging will provide a framework both for mapping calcium- and 

hemoglobin-based FC and for understanding how neurovascular coupling is altered in disease.  
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Chapter 2: METHODS 
2.1 GCaMP6/Thy1 Transgenic Mice 

Transgenic mice expressing GCaMP6 driven by the thymus cell antigen 1 (Thy1) promotor were 

acquired from Jackson Laboratories (JAX Strain: C57BL/6J-Tg (Thy1-GCaMP6f)GP5.5Dkim; 

stock: 024276)[52, 55]. In this model, GCaMP6 expression is widespread in the CNS (e.g. cortex, 

hippocampus, thalamus, and cerebellum) and localized predominantly to excitatory projection 

neurons [69]. GCaMP6/Thy1 transgenic genotypes were confirmed by PCR using the forward 

primer 5’-CATCAGTGCAGCAGAGCTTC-3’ and reverse primer 5’- 

CAGCGTATCCACATAGCGTA-3’.   

 

2.2 Animal Preparation 

All procedures have been approved by the Washington University School of Medicine Animal 

Studies Committee. Seven GCaMP6 mice (12-16weeks of age, 28-36g) were used in all 

experiments in this thesis. Mice were sedated with isoflurane (3% induction, 1% maintenance, 0.5 

L/min) and placed in a stereotactic holder. The head was then shaved, and a midline incision made 

to expose the skull. Body temperature was maintained at 37°C using a temperature controlled 

heating pad. Following scalp retraction, pilot holes were drilled into but not penetrating the skull 

at approximately -1mm posterior to bregma, and +/- 5mm lateral to bregma (near barrel/auditory 

cortex).  Small stainless steel self-tapping screws (BASI Inc., West Lafayette, IN, USA) were then 

inserted into these holes for collecting EEG recordings. Chronic cranial windows made of 

Plexiglas and with pre-tapped holes were fixed to the skull using dental cement (C&B-Metabond, 

Parkell Inc., Edgewood, NY, USA).   
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2.3 Epifluorescence and Confocal Imaging 

Mice were deeply anesthetized with FatalPlusTM (Vortech Pharmaceuticals, Dearborn, MI, USA) 

and transcardially perfused with 0.01 M PBS. The brains were removed and fixed in 4% 

paraformaldehyde for 24 h and transferred to 30% sucrose in 0.2 M PBS. After brains were 

saturated, they were snap-frozen on dry ice and coronal sections, 50μm thick, were made with a 

sliding microtome. Sections were stored in 0.2 M PBS, 30% sucrose, and 30% ethylene glycol at 

−20°C. For viewing, cut sections were washed in PBS, mounted, and intrinsic GCaMP6 

fluorescence was examined with epifluorescence microscopy (Nikon Eclipse 80i, Nikon 

Instruments Inc., Melville, NY, USA). For viewing using confocal microscopy, additional cut 

sections were washed in PBS, mounted, and coverslipped in DAPI containing mounting media 

(Vector Laboratories, Burlingame, CA, USA). Fluorescent images of DAPI labeled cells and 

intrinsic GCaMP6 fluorescence were then acquired with a Nikon A1-Rsi inverted confocal 

microscope. Excitation illumination was provided by 405nm and 488nm lasers for DAPI and 

GCaMP fluorescence, respectively (Nikon Eclipse 80i, Nikon Instruments Inc., Melville, NY, 

USA). 

 

2.4 In Vivo Optical Imaging System 

Sequential illumination was provided by four LEDs: 470nm (blue), 530nm (green), 590nm 

(yellow), and 625nm (red). The 470nm LED is used for GCaMP excitation, and the 470nm, 530nm, 

590nm, and 625nm LEDs are used for hyperspectral oximetric imaging. The 530nm LED was also 

used as an emission reference for GCaMP6 fluorescence in order to remove any confound of 

hemodynamics in the fluorescence signal (described below). Both the 470nm and 530nm LED 

light paths were made collinear by using a multi-wavelength beam combiner dichroic mirror 
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(Mightex Systems, Pleasanton, CA, USA). For image detection, we used a cooled, frame-transfer 

EMCCD camera (iXon 897, Andor Technologies, Belfast, Northern Ireland, United Kingdom) in 

combination with an 85mm f/1.4 camera lens (Rokinon, New York, NY, USA). Acquisition frame 

rate was 16.8Hz, well above respiration rates (approximately 3 Hz) and fast enough to adequately 

characterize hypothesized GCaMP6 activity. Images were acquired in five minute sessions. To 

increase frame rate as well as increase SNR, the CCD was binned at 4 x 4 pixels; this reduced the 

resolution of the output images from full-frame 512 x 512 pixels to 128 x 128 pixels but allowed 

for increased frame rate. Both the LEDs and the exposure of the CCD were synchronized and 

triggered via a DAQ (PCI-6733, National Instruments, Austin, TX, USA) using MATLAB 

(MathWorks, Natick, MA, USA). The field-of-view was adjusted to be approximately 1 cm2 

square resulting in an area that covered the majority of the convexity of the cerebral cortex with 

anterior-posterior coverage from the olfactory bulb to the superior colliculus. The resulting pixels 

were approximately 78µm x 78µm. To minimize specular reflection from the skull, we used a 

series of linear polarizers in front of the LED sources and the CCD lens. The secured mouse was 

placed at the focal plane of the camera. The combined, collimated LED unit was placed 

approximately 8 cm from the mouse skull, with a working distance of approximately 14cm as 

determined by the acquisition lens. A 515nm longpass filter (Semrock, Rochester, NY, USA) was 

placed in front of the CCD to filter out 470nm fluorescence excitation light and a 460/60nm 

bandpass filter (Semrock, Rochester, NY, USA) was used in front of the excitation source to 

further minimize leakage of fluorescence excitation light through the 515nm longpass filter. The 

pulse durations for the LEDs are 20ms, 5ms, 3ms, 1ms for 470nm, 530nm, 590nm, and 625nm, 

respectively. 
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2.5 Electrical Hindpaw Stimulation 

Electrical stimulation was generated using an isolated pulse stimulator (Model 2100, A-M 

Systems, Carlsborg, WA, USA) delivered to the left hindpaw of each mouse via micro vascular 

clips (Roboz Surgical Instrument Co., Gaithersburg, MD, USA) during the somatosensory 

activation imaging sessions. The stimulation block paradigm consisted of an initial rest period of 

5 seconds followed by four seconds of electrical stimulation at an application frequency of 2Hz 

(pulse duration: 300µs, current: 0.5mA) and ending with 51 seconds of rest. This 60 second block 

was repeated five times during each five minute imaging session for subsequent block averaging.  

 

2.6 Anesthetized Imaging 

For anesthetic imaging, mice were anesthetized with intraperitoneal injection of a 

ketamine/xylazine cocktail (86.9 mg/kg Ketamine, 13.4 mg/kg Xylazine). Anesthetic effect was 

verified by confirming that the animal was not responsive to a hind paw pinch. The animal was 

placed and kept on a solid state water circulating heating pad (T/Pump Classic, Stryker Co., 

Kalamazoo, MI, USA), maintained at 42°C , to minimize electronic noise in the EEG signal.  

 

2.7 Awake Imaging 

We constructed a customized apparatus consisting of a felt pouch suspended by optical posts. This 

provided a dark, comfortable environment while preventing the awake mouse from putting torque 

on their restrained head. During the imaging session, the mouse was able to move freely while its 

head was secured. After recovery from this surgery (1 week), the mouse was then acclimated to 

the apparatus by a training period consisting of two 20min sessions. Acclimation is indexed by a 

return to normal behavior (e.g., whisking, grooming, and walking with head restrained). Once 
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acclimated, mice were mounted to the imaging system with a small bracket (using the window’s 

pre-tapped holes) with the body of the mouse placed inside the felt pouch. Imaging then proceeded 

as described above. 

 

2.8 EEG Recording and Processing 

Summed field potentials were concurrently recorded with OIS imaging sessions from the 2 screws 

implanted in the skull and digitized at 1kHz (AD Instruments Power Lab EEG Amplifier).  EEG 

frequency spectra were calculated by splitting data from each 5min session into thirty 10s epochs, 

applying a 10s Hann window to each, calculating the Fast Fourier Transform, then averaging the 

squared modulus of each epoch together.  

 

2.9 Image Processing 

A representative frame of baseline light levels in a dark environment, calculated from a mean of 

dark images collected over 1 minute, was subtracted from the raw data. All pixel time traces were 

detrended to remove any variations in light levels due to photobleaching, LED current drift, and 

nonuniformity across the skull [40]. Reflectance changes in the 470nm, 530nm, 590nm, and 

625nm LED channels were used in combination to provide oximetric data using the Modified 

Beer-Lambert Law, described previously [2]. Images in each contrast were smoothed with a 

Gaussian filter (5x5 pixel box with a 1.3 pixel standard deviation).  

The GCaMP6 fluorescent signal must be corrected for any contribution from vascular activity and 

varying concentrations of absorptive hemoglobin. Though the effects of hemodynamics will likely 

not mask the emission signals entirely, they will influence them. Common correction methods to 

calculate relative fluorescence changes include using a reference wavelength for applying 
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subtraction and ratiometric techniques. We implemented a ratiometric correction algorithm 

(Equation 1) to correct fluorescent emission for any absorption by hemoglobin and 

deoxyhemoglobin using the reflectance channels at the GCaMP6 emission wavelengths (530nm 

LED) as a reference. 

 

 

Iem refers to the detected fluorescent emission intensity. Iref describes the measured reflectance 

changes at the emission wavelength. A single frame from the 628nm reflectance channel was 

loaded into Adobe Photoshop CC 2014 (Adobe Systems, San Jose, CA, USA) and all regions not 

corresponding to brain were manually painted white. The image was loaded back into MATLAB 

and used to create a binary brain mask. All subsequent analysis was performed on those pixels 

labeled as brain. Image sequences from each mouse (as well as the brain mask for each mouse) 

were affine-transformed to a common atlas space (based on the Paxinos mouse atlas) using the 

positions of bregma and lambda (Franklin & Paxinos, 2008). The time traces of all pixels defined 

as brain by the binary mask were averaged to create a global brain signal. This global signal was 

regressed from every pixel’s time trace to remove global sources of variance. For all analysis 

involving spontaneous activity, data were filtered over either the canonical functional connectivity 

frequency range (0.009-0.08Hz) [1] or the delta activity band (0.4-4.0Hz). Evoked activity was 

lowpass filtered at 6Hz to remove high-frequency noise. This pre-processing stream is represented 

graphically in (Fig. 2.1).  

Eqn. 1 𝑦𝑦(𝑡𝑡) = 𝐼𝐼𝑒𝑒𝑒𝑒(𝑡𝑡)
𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)

· 𝐼𝐼0
𝑟𝑟𝑟𝑟𝑟𝑟

𝐼𝐼0
𝑒𝑒𝑒𝑒  
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Figure 2.1. Pre-processing stream for acquired GCaMP6 and OIS image series. Pre-

processing stream from acquisition of raw reflectance measurements (λ=530nm, 590nm, 625nm) 

used for estimating differential hemoglobin concentration changes (right half) and raw GCaMP6 

fluorescence emission (used with 530nm in a ratiometric correction algorithm to remove 

confounding hemoglobin absorption from the fluorescent signal) through detrending, bandpass 

filtering, spatial smoothing, and global signal regression. Data are then prepared for use in 

subsequent functional connectivity, coherence, and spectral analyses. 

 

2.10 Spectral Analysis 

To construct frequency spectra of spontaneous GCaMP6 activity, time series at each pixel were 

split into two 150s windows (per each 5min imaging session), windowed with 150s long Hann 
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functions, and then the Fast Fourier Transform was calculated. The squared moduli of these FFTs 

were then averaged across the brain to produce the final power spectra.  

 

2.11 Seed-Based Functional Connectivity 

Using the Paxinos histological atlas as a reference, seed locations were chosen at coordinates 

corresponding to the left and right visual, motor, somatosensory, cingulate, parietal, auditory, and 

retrosplenial cortices. A 0.5 mm diameter circle at each seed location was averaged to create a seed 

time trace. These seed traces were correlated against every other brain pixel to create functional 

connectivity maps. FC maps were calculated for every 5 minute imaging session, Fisher z-

transformed (using the inverse hyperbolic tangent function) to improve normality and stabilize the 

variance of the correlation coefficients, averaged across all imaging sessions and mice, then finally 

reverse transformed (using the hyperbolic tangent function) back to correlation coefficients. 

Matrices consisting of the correlation coefficient between each pair of network seed traces were 

constructed by plotting the pairwise correlation coefficients in each cell. A form of Dice’s 

coefficient was calculated (Eqn 2) to compare spatial similarity of variable length time and 

sampling window FC maps and maps created using group averaged data. Dice’s coefficient was 

calculated using: 

Eqn. 2  𝑆𝑆𝑆𝑆𝑆𝑆 = 2∑ 𝐴𝐴𝑖𝑖𝑑𝑑
𝑖𝑖=1 𝐵𝐵𝑖𝑖

∑ 𝐴𝐴𝑖𝑖
2𝑑𝑑

𝑖𝑖=1 +∑ 𝐵𝐵𝑖𝑖
2𝑑𝑑

𝑖𝑖=1
 

Where s is the spatial similarity, and A and B are the FC maps being compared. 
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2.12 Seed-Based Coherence 

The magnitude-squared, band-averaged real and imaginary coherence (Coh) values were 

calculated using spontaneous GCaMP6 data from both the ketamine/xylazine-anesthetized and 

awake states. Coherence, ranging from 0 to 1, is analogous to correlation in the frequency domain, 

with the real component of coherence between two signals providing a measure of shared spectral 

content, independent of phase, whereas the imaginary coherence estimates of degree of shared 

spectral content at non-zero delays. Using pre-processed data bandpassed filtered from 0.4-4.0Hz, 

the coherence (Eqn. 3) was calculated between each seed trace and all pixels across the FOV.  

Eqn. 3 𝐶𝐶𝐶𝐶ℎ𝑥𝑥𝑥𝑥2 (𝑘𝑘) =
�∑ 𝐺𝐺�𝑥𝑥𝑥𝑥(𝑘𝑘)𝑘𝑘2

𝑘𝑘=𝑘𝑘1 �
2

∑ 𝐺𝐺�𝑥𝑥𝑥𝑥(𝑘𝑘)𝑘𝑘2
𝑘𝑘=𝑘𝑘1 ∑ 𝐺𝐺�𝑦𝑦𝑦𝑦(𝑘𝑘)𝑘𝑘2

𝑘𝑘=𝑘𝑘1
 

Gxy is the cross-spectra of both time series, and Gxx and Gyy are the auto-spectra of each time series. 

 

2.13 Whole-Brain Delay Analysis 

The GCaMP6 time series from every pixel was cross-correlated with the global signal (described 

above) to reveal any phase shifts (quantified as time lags). The temporal shift that maximizes the 

correlation between both time series was plotted at each pixel to create a map of delay topography 

across the cortex.  

 

2.14 Parcellation 

To parcellate the brain into functional regions, we implemented an iterative, data-driven approach. 

Using sixteen canonical bilateral seeds as the initial condition, the organization of the 

neuroarchitecture can be refined with a method consisting of two steps: (1) updated time traces are 

found for each parcel (the seeds being the starting “parcels”) by averaging over all pixels in each 
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parcel, (2) updated spatial arrangements are found for each parcel by calculating the correlation 

coefficient between the time traces for each pixel and each parcel and subsequently assigning every 

pixel to the parcel with which it maximally correlated. New averaged time traces are calculated 

for each updated parcel spatial arrangement (a return to Step 1). This process is repeated until no 

pixel changes region from one cycle to the next. If at any point in the iterative scheme a parcel had 

fewer than ten pixels (0.04 mm2), it was eliminated from the analysis, thus preventing the 

development of overly small parcels (a pixel will have the highest possible correlation coefficient 

with a parcel consisting solely of itself). 

 

2.15 Statistical Analysis 

To compare differences in functional connectivity network maps across the anesthetized and 

awake states, two-tailed Welch’s unequal variances t-tests were used to compare Fisher z-

transformed correlation coefficients at every pixel. T-statistic maps were then created and 

subsequently thresholded using a Bonferroni-adjusted significance level of α=3e-6. Two-tailed 

paired t-tests were used to compare differences at each pixel in the visual network functional 

connectivity maps in the mouse transitioning from anesthesia to wakefulness. Each five minute 

epoch was divided into ten 30 second windows for all comparisons across epochs. Calculated t-

statistic maps were thresholded using q=0.001 after false discovery rate adjustment. Two-tailed 

Welch’s unequal variances t-tests were used to compare the full width at half maximum values for 

both the ipsilateral and contralateral horizontal line profiles from each seed-based functional 

connectivity map.  

 

 



   
 

23 

Chapter 3: RESULTS 
3.1 Histology of Fixed Coronal Slices from Thy1/GCaMP6 Mice 

To confirm GCaMP6 fluorescence was present in superficial cortical layers, corresponding to the 

maximal depth of the imaging system, paraformaldehyde-fixed GCaMP6 brain slices were imaged 

using both epifluorescence (Fig. 3.1A) and confocal (Fig. 3.1B) microscopy. Individual neuronal 

somas (Fig. 3.1B, green: GCaMP6, blue: DAPI stain) and their neurites are detectable throughout 

cortical layers I – VI (Fig. 3.1B) and across the cortex (Fig. 3.1A, green: GCaMP6).  

 

 

Figure 3.1. Histology of coronal slices collected from a representative Thy1/GCaMP6 mouse. 

Thy1/GCaMP6 Mouse Model Validation. Based on previous studies, Thy1/GCaMP6 fluorescence 

should provide a signal predominantly driven by cortical neuronal neurons and that is faster than 

hemodynamic measures A). Epifluorescence (A) and confocal (B) images of 50um coronal slices 

collected from a representative Thy1/GCaMP6 mice. GCaMP6 expression (green) is located 

throughout the cortex (i) and localized to neuronal soma (ii, blue-DAPI stain) and can be seen 

throughout cortical layers I-VI. 
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3.2 Concurrent Imaging of GCaMP6 Fluorescence and Hemodynamics 

In order to enable consistent, repeatable imaging sessions while minimizing number of invasive 

surgical procedures, all mice had a plexiglass optical imaging window implanted. Following a one-

time scalp retraction, these windows are adhered to the skull using dental cement and can stay in 

place for at least three months (Fig. 3.2A). During this same surgical procedure, two self-tapping 

bone screws were implanted bilaterally one (ground) is implanted posteriorly near the cerebellum 

to allow for global field potential recording during all imagining sessions (Fig. 3.2A).  After 

window implantation, mice were mounted in a suspended felt pouch that fixes the skull at the 

imaging plane but does not prevent the mice from moving their limbs freely (Fig. 3.2B). This 

imaging state was used for all ketamine/xylazine-anesthetized and awake imaging sessions.  

 

Figure 3.2. Concurrent GCaMP6 fluorescence, OIS, and EEG system for chronic imaging in 

awake and anesthetized mice.  A) Chronic plexiglass optical window implant enables for non-

invasive, consistent repeat imaging sessions. Two bilaterally-implanted electrodes are used to 

measure global field potential EEG during imaging. B) Felt pouch used for both awake and 

ketamine/xylazine-anesthetized imaging. C) Schematic of the combined GCaMP and OIS imaging 
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system. GCaMP excitation and reference LEDs share a collinear optical path using dichroic 

mirrors. Green (λ=523nm), yellow (λ=595), and red (λ=640) are used together to determine 

differential concentration changes of hemoglobin. Detection is done using a cooled EMCCD with 

an 85mm f/1.4 lens. 

 

In order to image both GCaMP6 activity and hemodynamics concurrently, we developed an optical 

imaging system with multiple illumination wavelengths that were temporally multiplexed. A 

filtered detection scheme provided both fluorescence and reflectance imaging. To image GCaMP6 

fluorescence, we selected incident LEDs wavelengths that match both the excitation (peak 

lambda=497nm) and emission (peak λ=512nm) spectra of GCaMP6 (Fig. 3.3A&B). The 

fluorescence measurement includes transport of light from the tissue surface through the brain, 

excitation of subsurface GCaMP6 and fluorescence emission, followed by the emitted light 

transporting back out of the tissue and being collected by the lens and focused onto the detector.  

The transport of light through the tissue will be modulated by changes in absorptive hemoglobin 

concentration. Thus, the dynamics of the detected GCaMP6 fluorescence emission will be a 

product of both the GCaMP6 dynamics and local hemodynamics [70]. To provide a strategy for 

correcting the raw fluorescence measurement for dynamic absorption changes, we incorporated a 

reference reflectance measure, specifically, reflectance from the green LED (peak λ=523nm), 

roughly equivalent to the GCaMP6 emission spectrum, was used as a reference measure in a 

ratiometric correction algorithm (see Chapter 2) to provide a signal that better tracks underlying 

calcium dynamics. 

The green LED was also used along with yellow (peak λ=595nm) and red (peak λ=640nm) LEDs 

for concurrent calculation of differential changes of hemoglobin concentration (see Methods) (Fig. 
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3.2C). The excitation light (peak λ=454nm) was blocked between the lens and the detector using 

a 515nm longpass filter (Fig. 3.2C, Fig.3.3A&B). Light was detected for all wavelengths using an 

electron multiplying charge coupled detector (EMCCD, iXon 897, Andor Technologies). After 

multiplexing through all four illumination LEDs, the resulting GCaMP6 and HbO2 frame rate was 

16.8Hz.  

 

Figure 3.3. GCaMP6 fluorescence excitation and emission spectra. A) GCaMP6 dynamics are 

imaged using fluorescence measurements, wherein the fluorophore has a peak excitation at 

λ=497nm and peak emission at λ=523nm spectra for GCaMP. A longpass filter at λ=515 nm is 

used to block fluorescence excitation light. B) Spectra from the excitation LED (λ =454nm, 

bandpass filtered at 460/60 nm). A reference (λ =523nm) LED is used for correcting for changes 

in optical properties due to the presence of absorptive hemoglobin. The transmission curve for the 

514nm longpass filter at detection is shown for reference. 

 

3.3 GCaMP6 Fluorescence is Detectable and Temporally Distinct from HbO2 

To evaluate the mapping fidelity of both the GCaMP6 and hemoglobin contrasts and the 

ratiometric correction strategy, we used a block design electrical hindpaw stimulation paradigm 

(each block consisted of 4 seconds of stimulation at 2 Hz, followed by 51 seconds of rest; 50 blocks 
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across n=7 mice were included in analysis). Maps of the spatial extent of hindpaw cortex, 

contralateral to stimulation, for both GCaMP6 and HbO2 show well-localized responses (Fig. 

3.4A). Before ratiometric correction, each electrical pulse is present in the raw GCaMP6 signal 

(Fig. 3.4B, dark green). However, during the stimulus, after initially rising, the raw fluorescence 

signal rapidly decreases, which is due to increased absorption (Fig. 3.4B, light green) from the 

increased blood volume and hemoglobin concentration (Fig. 3.4, red trace). After ratiometric 

correction for absorption, the GCaMP6 signal increases and stays elevated until returning to 

baseline approximate 6 seconds post stimulus. The evoked responses corresponding to HbO2 (Fig. 

3.4B, red trace) and HbR (Fig. 3.4B, blue trace) have an onset approximately 2 seconds after the 

initial stimulus presentation. Also, the observed ratio of HbO2 to HBr peak magnitudes is 

approximately 3:1, as expected from canonical functional responses [71]. These results suggest 

the correction algorithm sufficiently unmixes and estimates HbO2 and HbR dynamics using 

530nm, 590nm, and 625nm together for oximetry and  collectively demonstrate the ability of the 

hardware and algorithms to concurrently image both calcium dynamics (via GCaMP6) and 

hemodynamics.  

 

Figure 3.4. Somatosensory functional activations in concurrently-acquired GCaMP6 and 

OIS. A) Maps of stimulus evoked responses to electrical stimulation of left hindpaw (thresholded 
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at >50% peak response). B) Time series of evoked responses sampled using masks created from 

the right half of  the 50% peak response images in part B. Green reflectance (green trace, top panel) 

is used to correct raw GCaMP6 emission (teal trace) for absorption due to hemodynamics using a 

ratiometric approach (see Chapter 2; the corrected trace is black). This corrected GCaMP6 trace 

(black) is sensitive to each stimulus presentation (black trace, lower panel), whereas HbO2 (red) 

and HbR (blue) follow the slower, canonical hemodynamic response. Data from 50 blocks across 

7 mice are included in all evoked analysis. 

 

3.4 Functional Connectivity Mapping in GCaMP6 Mice 

Functional connectivity was quantified by calculating the correlation between the time traces in 

two distinct brain regions (Fig. 3.5). In order to facilitate comparisons of fcMRI and the functional 

connectivity analysis using the concurrent GCaMP6/hemodynamic imaging system, we 

implemented a standard functional connectivity processing pipeline across two frequency bands: 

0.009-0.08Hz (“infraslow”) and 0.4-4.0Hz (“delta-band”) for all contrasts. For resting-state 

imaging sessions during anesthesia and wakefulness, each mouse was stabilized using the chronic 

implanted optical window that was fixed at the imaging plane. Mice were secured in a suspended 

felt pouch that allowed free limb movement. After imaging and pre-processing, the whole brain 

global signal was regressed out from the imaging data the whole brain global signal to remove 

potentially confounding shared variance across the cortex [3]. Seed-based functional connectivity 

was then performed using spontaneous GCaMP6 and HbO2 activity across frequencies and states. 

In an illustrative example for spontaneous GCaMP6 data measured in wakefulness, the time series 

sampled from left motor and contralateral right motor cortices (Fig. 3.5, black & red traces and 

circles, respectively) over the infraslow band are highly correlated (r=0.95), whereas the 
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correlation strength between the left motor seed and right cingulate cortices is low (r=0.08). 

Functional connectivity maps were constructed by calculating the position dependent correlation 

coefficient between this left motor seed and the time series at every pixel across the field-of-view 

(Fig. 3.5, top right). This same analysis was applied to the higher frequency band (Fig, 3.5, 

bottom), which shows conservation of the functional relationships observed in the infraslow 

frequencies.  

 

Figure 3.5. Performing functional connectivity analysis in the awake mouse brain. Time series 

of spontaneous GCaMP6 activity filtered over the canonical functional connectivity band: 0.009-

0.08Hz (top) and the delta band: 0.4-4.0Hz (bottom). Black and red traces and seeds correspond 

to left and right somatosensory cortices, respectively. Green is sampled from left cingulate cortex. 

Over both frequency bands, left and right somatosensory cortex show highly correlated activity 

whereas right somatosensory with left cingulate show reduced temporal correlation. At the 

pixelwise level, correlating the time series from the left somatosensory (black) with every pixel in 

the brain produces a map showing homotopic functional somatosensory structure across 

hemispheres. 

 



   
 

30 

Because GCaMP6 is able to probe activity at frequencies higher than traditionally associated with 

FC (i.e. <0.1Hz), we examined the effect of time window length on the stability of the FC patterns. 

Using data acquired in the awake state and filtered over the delta frequency band (0.4-4.0Hz) in a 

spatial similarity analysis, we compared the effect of increasing time window length, ranging from 

2.6 seconds to 300 seconds and sampled from a single 5 minute imaging session from one mouse 

(Mouse 2). For each window length, we calculated the similarity between the individual mouse 

FC map from each network and the respective reference template calculated from longer data 

acquisitions with averaging across mice (i.e. group-level) maps (Fig. 3.6A). Using only 30s of data 

from an individual mouse, the FC maps constructed with 7 canonical seeds have distinct qualitative 

network-specific structure (Fig. 3.6B). The similarity between FC maps based on 30s of data vs. 

the group is consistent for all 7 networks for all mice (Fig. 3.6C). To evaluate the stability of the 

maps over time, the FC map for a seed placed in motor cortex was constructed for a sequence of 

overlapping 30s segments of data, shifted by increments of 2.6 seconds, for all   mice and compared 

to the group-averaged map. The similarity score remains relatively consistent across the entire 5 

min session (Fig. 3.6D). Collectively, these data imply that windows with a duration as short as 

30s can produce stable FC maps when using GCaMP6 data. The robustness of the GCaMP6 FC 

maps from these 30s windows is relatively independent of temporal sampling location, network 

seed, and mouse.   
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Figure 3.6. Stability and stationarity of spontaneous GCaMP6 activity in functional 

connectivity analysis. A) FC maps were constructed using time windows of spontaneous 0.4-

4.0Hz GCaMP6 (awake) data of increasing length from one mouse (Mouse 2). Windows were 

increased in length by ~2.6s up to ~300s. Spatial similarity (based on Dice’s coefficient) was 

calculated between each of these FC maps for all networks relative to their corresponding group 

level map. The FC maps calculated by using a seed in left motor cortex are highlighted as an 

example. Across all networks, similarity scores converge at 0.9 with a window length of ~30s. B) 

Seed-based FC maps from Mouse 2 constructed using 30s of spontaneous GCaMP6 data. C) For 

each of 7 networks, the same 30s window of spontaneous data for each network was compared to 

the corresponding group-level network FC map for all mice. The stability of similarity of 30s of 

data is present across network and across mice. D) Using consecutive 30s windows (sampled every 

~2.6s) from a single 300s imaging session from each mouse, the spatial similarity between all 30s 

motor FC maps and the group level motor FC map is shown to be relatively stationary. Error bars 

are standard error of the mean. 
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3.5 Intercontrast FC Between Delay-Shifted GCaMP6 and HbO2  

To further validate the ability of the system to properly unmix HbO2, HbR, and HbT, seed-based 

FC maps were constructed in the conventional 0.009-0.08Hz frequency band using data acquired 

in the anesthetized state to compare to previously reported results [2]. These hemoglobin-based 

FC maps qualitatively recapitulated previously reported FC topography (Fig. 3.7).  

 

Figure 3.7. Seed-based functional connectivity maps and matrices constructed using 

spontaneous, infraslow hemodynamics. Group-level seed-based functional connectivity maps 

(A) and matrices (B) of infraslow (0.009-0.08Hz) spontaneous oxyhemoglobin (HbO2), 

deoxyhemoglobin (HbR), and total hemoglobin (HbT) acquired in the ketamine/xylazine-

anesthetized state. 
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Though the origins of the GCaMP6 and HbO2 signals are distinct, they are associated via 

neurovascular coupling [70, 72].   Because of this, we wanted to examine the potential interaction 

between infraslow GCaMP6 and HbO2 dynamics. By calculating the cross-correlation (with 

sliding delay) between the GCaMP6 and HbO2 evoked responses to electrical hindpaw stimulation 

(Fig. 3.4), we measured the temporal delay of HbO2 relative to GCaMP6 to be ~0.65s (Fig. 3.8A 

& B). For reference, we evaluated the same seed locations previously used for hemodynamic 

functional connectivity mapping [2] (Fig. 3.8C, top). Within the infraslow frequency band, 

GCaMP6 produced intact functional connectivity patterns (Fig. 3.8C, bottom) spatially 

qualitatively similar to concurrent HbO2 maps (Fig. 3.8C, top), as well as to maps made using 

deoxyhemoglobin (HbR) and total hemoglobin (HbT) (Fig. 3.7). Next, to evaluate the potential 

relationship between spontaneous GCaMP6 activity and hemoglobin dynamics, we temporally 

shifted spontaneous GCaMP6 traces for the seven seeds by the 0.65s delay (from the hindpaw 

activation data) and then calculated correlation maps between the GCaMP6 seeds and the shifted 

HbO2 data. The resulting maps (Fig. 3.8C, middle) have distinct patterns that look qualitatively 

similar to the within-contrast hemoglobin based functional connectivity maps (Fig. 3.8C, top). 

These results imply that both signals carry shared functional information, with GCaMP6 

potentially containing predictive information of downstream hemodynamics. 
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Figure 3.8. Intercontrast functional connectivity mapping using delay derived from 

somatosensory functional responses. Based on the temporal delay between evoked GCaMP6 and 

HbO2 responses combined with similar observed infraslow FC structure, delay-shifted GCaMP6 

likely shares functional network information with HbO2. A) GCaMP6 (black) and HbO2 (red) 

evoked responses to 2Hz 0.5mA electrical stimulation of left hind paw (see Fig. 3.4). Data from a 

sampling window spanning from approximately t=0s to t=7.5s were included in subsequent cross-

correlational delay analysis. B) Cross correlation from the GCaMP6 and HbO2 time courses in A) 

show a delay of 0.65s between responses. C) Top and Bottom: Seed-based group-averaged FC 

mapping in filtered (0.009-0.08Hz) anesthetized data using HbO2 and GCaMP6. Spontaneous 

GCaMP6 and HbO2 show similar functional network topography at low frequencies. Middle: 

Intercontrast FC maps using GCaMP6 seed traces against delay-shifted (0.65s) HbO2 data.  

Infraslow correlation between spontaneous HbO2 and GCaMP6 contrasts is optimized by 

removing the intersignal time shift between contrasts. 
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To establish the relationship between the magnitudes of the delay used to shift HbO2 relative to 

GCaMP6, we calculated the similarities of the outputted intercontrast FC maps, parametric in delay 

magnitude, against the corresponding group-average infraslow HbO2 FC map, which served as the 

ground truth for reference (Fig 3.9). For certain networks (e.g. visual, motor), spatial similarity 

between the intercontrast FC map and the HbO2 reference image are maximized at a delay of 

approximately 1.5-2 seconds, whereas the similarity compared to the HbO2 reference for other 

networks (e.g. auditory, retrosplenial) are monotonically decreasing and are thus maximally 

similar at a zero delay. It should be noted that more data are necessary to ensure that these 

networkwise differences are intact and not due exclusively to sampling variability.  

 

Figure 3.9. Spatial similarity of seed-based intercontrast functional connectivity maps 

parametric in delay. Spatial similarity between the constructed seed-based intercontrast FC maps 

and the corresponding HbO2 maps, all constructed using anesthetized spontaneous data filtered 

from 0.008-0.09Hz. GCaMP6 seed traces were correlated with HbO2 data shifted from 0 to 10 

seconds in increments of approximately 0.12 seconds for all networks. By the 10 second delay, all 
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networks a highly reduced similarity. However, at shorter magnitude delays, some networks (e.g. 

motor) are more similar than the zero-shift images. 

 

3.6 Propagating Waves in Spontaneous, Delta-Band GCaMP6 Activity in Anesthetized Mice 

When examining pre-processed, delta-band spontaneous GCaMP6 image series acquired during 

the anesthetized state, a salient wave-like feature is prominent across all sessions (a representative 

1.2s image series from one mouse can be seen in Fig. 3.10). Starting from the t=0 frame, there is 

an area of high activity (red) located in the anterior portion of the brain that travels backward 

through t=0.36s, before repeating from t=0.42s to t=1.2s. This phenomenon continues and is 

observable across all ketaminze/xylazine-anesthetized imaging sessions but is attenuated in 

wakefulness.  Given this state-dependence and the occurrence in the delta frequency band (0.4-

4.0Hz), it is likely that these waves are propagating delta-band waves associated with slow wave 

sleep and anesthesia. 

 

Figure 3.10. Image series of spontaneous, delta-band (0.4-4.0Hz) GCaMP6 activity from a 

representative anesthetized mouse. Consecutive frames from a 1.2 second duration image series 

of spontaneous GCaMP6 activity from one ketamine/xylazine-anesthetized mouse. Data are 

filtered from 0.4-4.0Hz. Note the anterior-posterior propagation areas of peak activity.  
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3.7 Delta-Band GCaMP6 Shows a Striking State-Dependence in FC Structure 

To examine a potential dependence of GCaMP6 activity on state (anesthesia vs awake), we 

evaluated seed based functional connectivity maps of GCaMP6 in the higher 0.4-4.0Hz frequency 

band (Fig. 3.11). Under ketamine/xylazine anesthesia (Fig. 3.11, top row), GCaMP6 networks 

show an anterior-posterior network separation, with large regions of high magnitude correlations 

and anti-correlations arising across the cortex.  In contrast, network correlation structure in the 

awake state (Fig. 3.11A, second row) exhibits higher spatial specificity for each network of 

interest. To quantify the degree of detail and localization, we thresholded using pixels with positive 

correlations >0.2 of the maximum correlation value in each image and then summed the remaining 

pixels to generate an score in units of estimate of area (here referred to as correlation area) and 

averaged these across all seven seeds. The mean correlation area in the awake state was 39.2% (std 

+/- 15.9%) smaller than that of the corresponding anesthesia maps. The difference images 

constructed between the group level anesthetized and awake functional connectivity maps (third 

row) show approximately the same overall topography in cingulate, motor, somatosensory, 

retrosplenial, and visual networks, pointing to a loss of specificity in seed-based functional 

connectivity maps in the anesthetized state. This is further supported by the many common 

structures across the pixelwise T-statistic maps (Welch’s t-test). Finally, horizontal line profiles 

through the center of each seed for both the awake (red) and anesthetized (blue) functional 

connectivity maps show higher spatial focality (measured using reductions in ipsilateral and 

contralateral full width at half maximum, Table 3.1) in cingulate, motor, somatosensory, 

retrosplenial, and visual networks in the awake state.  
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Figure 3.11. Group-level seed-based GCaMP6 functional connectivity maps constructed 

from delta-band spontaneous activity acquired in the anesthetized and awake states. A) Seed-

based FC maps for seven canonical functional networks in anesthetized and awake GCaMP6 mice 

(n=7) at delta-band frequencies. Under anesthesia (top), delta activity (0.4-4.0Hz) drives a strongly 

correlated/anticorrelated network structure between anterior and posterior brain regions that is not 

observed in awake animals (second row). This high magnitude correlation feature is preserved in 

the difference images (third row) and after performing pixelwise t-tests and thresholding the T-

statistic maps at a Bonferroni adjusted α=3.1e-6 (fourth row).  Together, these show that the 

topography of FC maps in the anesthetized state is largely independent of seed-based network 

structure. Finally, horizontal line profiles through the center of each seed show higher ipsilateral 

and contralateral focality in the awake (red) FC maps compared to anesthetized (blue) maps (fifth 

row and table in Table 3.1). 
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Table 3.1. Ipsilateral and contralateral full width at half maximum values of horizontal line 
profiles sampled from group-level seed-based, delta-band GCaMP6 functional connectivity 
maps in the anesthetized and awake states. 

 Ipsilateral FWHM  Contralateral FWHM  
Network Anest. Awake P-valuea Anest. Awake P-valuea 

Cing.  975 (155) 643 (78) 5.7e-12* 1362 (185) 1009 (252) 2.3e-09* 
Mot. 1005 (157) 726 (88) 4.4e-10* 1872 (258) 1595 (328) 0.00010* 

Ss 1116 (166) 792 (64) 8.5e-11* 1743 (341) 1518 (500) 0.014 
Ret. 966 (273) 751 (180) 0.00046* 1860 (451) 1421 (546) 0.00028* 
Par. 1269 (425) 1050 (334) 0.015 2157 (432) 2217 (601) 0.314 
Vis. 2727 (712) 1572 (687) 9.1e-09* 3561 (509) 3096 (410) 0.00013* 

Aud. 900 (429) 801 (141) 0.131 2712 (1007) 2356 (748) 0.062 
FWHM, full width at half maximum. Mean (SD) in µm are shown. ap-values determined using 

Welch’s t-test. *Significant difference using a Bonferonni-corrected α=0.007 threshold.  

 

Visualized in matrix form (Fig. 3.12), the pairwise functional network connections under 

anesthesia (Fig. 3.12, left) show clustering of positive correlations in anterior networks (cingulate, 

motor, and somatosensory) and negative correlations in posterior networks (retrosplenial, parietal, 

visual, and auditory), whereas awake animals (Fig. 3.12, right) exhibit stereotypical high 

correlation strength only in the off-diagonals. Note the FC structure over the delta band during 

wakefulness is consistent across all mice (Supplementary Fig. 3.1). 
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Figure 3.12. Group-level seed-based GCaMP6 functional connectivity matrices constructed 

from delta-band spontaneous activity acquired in the anesthetized and awake states. 

Regional correlation coefficients between each seed reveal heterogeneous connectivity structure 

within each contrast across different states. Clusters of networks are present in the anesthetized 

matrix (left), including between cingulate, motor, and somatosensory networks that are diminished 

in the awake mouse (right). 

 

Next, seed-based coherence and imaginary coherence maps were made for both the awake and 

anesthetized states in delta-band GCaMP6 data. Coherence can be intuitively understood as 

correlation of spectral content. The high global coherence values in the anesthetized maps describe 

a common shared spectral content across both anterior and posterior cortical regions. This feature 

is largely absent in the awake coherence maps (Fig. 3.13A, bottom row), wherein the seed-based 

maps are highly spatially-specific. The imaginary coherence images (Fig. 3.13B) show similar 

behavior, with regions of high imaginary coherence implying shared spectral content at non-zero 

time delays (relative to each respective seed). Collectively, these results point to a widespread 
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phenomenon with spatially-independent, stable spectral content that exists across non-zero time 

delays compared to each seed, likely propagating delta-band waves.   

 

Figure 3.13. Group-level seed-based coherence and imaginary coherence maps constructed 

using spontaneous, delta-band GCaMP6 activity in the anesthetized and awake states. Seed-

based coherence (A) and imaginary coherence (B) maps for the group-level ketamine/xylazine-

anesthetized (top row) and awake (bottom row) spontaneous GCaMP6 data. There is a high global 

coherence and imaginary coherence across seeds that is absent upon wakefulness.  

 

3.8 Strong Cortical Delta-Band Activity is Associated with Anterior-Posterior GCaMP6 

Dynamics and FC Structure 

Compared to the FC structure of GCaMP6 during wakefulness, FC maps under anesthesia largely 

contain strong anti-correlations between anterior and posterior brain structures (Fig. 3.11). These 

anti-correlations might be indicative of coherent propagating waves of spontaneous GCaMP6 

activity over the anterior-posterior axis. To determine if our model and system are sensitive to 

these dynamics, we examined the frequency content of global spontaneous GCaMP6 activity in a 
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representative mouse under ketamine/xylazine anesthesia and while awake (Fig. 3.14).  A 

phenomena commonly reported in the sleeping and anesthetized brain is the presence of prominent 

propagating slow-wave delta activity [67]. The GCaMP6 spectra of mice under anesthesia (Fig. 

3.14, black trace) reveal a peak centered at ~1.5Hz that is absent upon wakefulness (Fig. 3.14, gray 

trace), which is consistent with previous electrophysiological studies reporting delta-band activity 

over this frequency range [61]. Further, the state-dependence of delta activity exhibited in 

GCaMP6 dynamics is recapitulated in the simultaneously-acquired global field potential EEG data 

(anesthetized: dark green, awake: light green).  

 

Figure 3.14. Frequency spectra of spontaneous GCaMP6 activity and concurrently acquired 

EEG sampled from a representative mouse in the anesthetized and awake states. Frequency 

spectra from the whole brain from a representative mouse. The presence of a peak at ~1.5Hz in 

both the anesthetized GCaMP6 (dark black) and EEG (dark green) corresponds increased delta 

band (0.4-4.0Hz) activity in the brain under deep, slow-wave sleep. Note that this peak is absent 

when the mouse is awake (GCaMP6, transparent black, EEG, transparent green).  

 

In order to better understand the observed state-dependent GCaMP6 FC structure, we examined 

the delay topography of the GCaMP6 signal by calculating the pixelwise lag relative to the whole-
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brain signal (Fig. 3.15 & Fig. 3.16). The time shift that maximizes the cross-correlation between 

each pixel’s time series and the whole brain signal is plotted at every pixel to construct a time 

delay map. At the group level (Fig. 3.15), the statewise contrast observed in Fig. 3.11 is prominent, 

with somatomotor regions tending to lead the brain by up to 0.08s and visuoparietal areas lagging 

by a comparable magnitude. This temporal separation across the cortex could underlie the 

observed anterior/posterior structure found in the functional connectivity maps of GCaMP6 

activity in anesthetized animals (Fig. 3.11). 

 

Figure 3.15. Group-level pixelwise delay maps in the anesthetized and awake states 

constructed using spontaneous, delta-band GCaMP6 activity. Group-wise delay maps in 

anesthetized (left) and awake (right) mice (n=7). Spontaneous activity in anesthetized and awake 

mice reveals regional temporal delay structure with respect to the whole brain signal.  Maximum 

cross-correlation between the whole brain signal and each pixel’s timeseries were calculated across 

the FOV. The map from anesthetized mice (left) show a temporal separation along the anterior-

posterior axis of the brain, with anterior somatomotor regions leading the whole brain signal by 

<=0.06s and posterior visuoparietal areas lagging the whole brain signal by <=0.06s. This time 

shift is in agreement with the striking correlated/anti-correlated structure in the delta band FC 

maps. This structure is no longer intact in awake mice.   
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Finally, to illustrate the changes in delay and functional connectivity structure that depend on state, 

we examined spontaneous GCaMP6 activity in a mouse transitioning from anesthesia to 

wakefulness across six consecutive five-minute epochs (Fig. 3.16). In the first epoch (E1), the 

mouse shows an anterior-posterior delay structure (Fig 3.16, top), with cingulate regions leading 

the whole brain signal by ~0.08s and visual/parietal regions lagging by ~0.08s. As the mouse 

wakens (determined by the attenuation of delta-band power, peak at ~1.7Hz, Fig. 7C spectrogram), 

this topography deteriorates (Fig. 3.16, top, transition from E2 to E3). The corresponding 

functional connectivity map constructed using a left visual seed is shown for each epoch (Fig. 3.16, 

middle section, top row). To improve SNR when creating average functional connectivity maps 

(Fig. 3.16, middle section: top row) and enable statistical testing using paired t-tests (Fig. 3.16, 

middle section: bottom row), each five-minute epoch was divided into ten 30s windows. This 

window length was selected based on the observed convergence in spatial similarity of functional 

connectivity maps constructed using at least 30s of spontaneous data compared to the group 

average reference (Fig. 3.6). During wakefulness, the correlation maps show smaller, more 

detailed regions of reduced correlation magnitude, both ipsilateral and contralateral to the seed, as 

compared to the maps during anesthesia. Successive difference maps calculated for each epoch 

compared to E1 show parietal cortex differ the most between across this transition from anesthesia 

to wakefulness. There is also a subtle but visible difference in cingulate cortex between E1 and the 

later epochs. It should be noted that when implementing a seed-based iterative parcellation strategy 

across this state transition, there is a subtle restructuring of functional parcels, especially in 

posterior regions, in E6 compared to E1 (Supplementary Fig 3.2A). It is possible that in the absence 

of delta-band wave propagation, the brain will tend to parcellate into truer functional parcels. At 

the group level, parcellation maps during wakefulness of much more prominent medial regions 
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(e.g. retrosplenial cortex) that were “masked” under anesthesia (Supplementary Fig. 3.2B). We 

plotted T-statistic maps (thresholded at q<0.001 after false discovery rate adjustment) constructed 

from pixelwise paired t-tests between E1 and all subsequent epochs recapitulate these findings 

(Fig. 3.16, middle portion: bottom). The anterior, cingulate region leads the brain during anesthesia 

(E1, Fig. 3.16, top), which is consistent within the difference T-statistic maps of functional 

connectivity during the awake epochs (E5 and E6). The boundary of maximum delay value from 

this cingulate network (E1, Fig. 3.16, top) is overlaid on the T-statistic map in E6, showing the 

agreement across both analysis strategies.   

 

Figure 3.16. Pixelwise delay and functional connectivity analyses using spontaneous 

GCaMP6 activity during a state transition (anesthetized to wakefulness) from a 

representative mouse. Top: Delay maps from consecutive 300s epochs from one mouse as it 

transitions out of anesthesia to awake reveals a loss of anterior-posterior delay structure across 

time. Middle section: FC maps for a left visual seed from each epoch (top row), difference images 

between each successive epoch and E1 (middle row), and pixelwise T-statistic maps after 

performing paired t-tests between E1 and each other epoch (bottom row). The boundary of the area 
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of maximum delay in the anterior, cingulate network in the delay map in E1 (top row) is overlaid 

on the E6 T-statistic map for reference. These data show that the correlation magnitude of the 

parietal region differs across state and that there is agreement across delay and FC analyses in the 

implicated cingulate network.  All analysis was performed after dividing each 300s epoch into ten 

30s windows. Bottom: Spectrogram over the delta frequency band (0.4-4.0Hz) from each epoch 

showing the loss of delta-band activity (peak at ~1.7Hz) with time across epochs.  

3.9 Supplemental Figures for Chapter 3 

 

Supplementary Figure 3.1. Seed-based, delta-band GCaMP6 functional connectivity maps 

from seven individual awake mice. GCaMP6 functional connectivity maps of all 7 individual 

mice in the imaging cohort, filtered over the delta (0.4-4.0Hz) frequency band. The same canonical 

network seeds used in Figures 4 & 5 were applied here. Data shown are acquired in the awake 

state. 
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Supplementary Figure 3.2.  Parcellation maps constructed using spontaneous, delta-band 

GCaMP6 data during a state transition and during both the anesthetized and awake states (at the 

group-level). A) Top: Parcellation maps from consecutive 300s epochs from one mouse as it 

transitions out of anesthesia to awake. Bottom: Spectrogram over the delta frequency band (0.4-

4.0Hz) from each epoch showing the loss of delta-band activity (peak at ~1.7Hz) with time across 

epochs. B) Spatially-smoothed group-wise parcellation maps in anesthetized (top) and awake 

(bottom) mice (N=7). Parcellation maps were calculated for each 5 minute imaging session (within 

state) and the mode for each pixel was determined across sessions.  The mode, corresponding to 

the most frequently assigned parcel selected for each pixel, was plotted for all pixels to construct 

the final group-level images 
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Chapter 4: DISCUSSION 
4.1 Overview of Findings 

The goal of this thesis was to establish the existence of FC patterns in spontaneous calcium activity 

and determine whether they are modulated by state. For functional mapping, calcium dynamics 

have the appeal of being faster and more directly related to neuronal activity than hemoglobin 

dynamics. Specifically, we imaged spontaneous calcium activity in mice expressing GCaMP6 

driven by the Thy-1 promoter. The neural origins of the fluorescence signal were established first 

through electrical stimulation of the hindpaw, in which the fast positive response of the corrected 

GCaMP6 signal to each pulse presentation indicated both the neuronal origin and also the utility 

of the correction for absorption transients (Fig. 3.4). Resting GCaMP6 activity also exhibited 

spatio-temporal correlative structure reflecting functional network connectivity within an 

infraslow frequency band (0.009-0.08Hz) and also at a higher frequency band (0.4-4.0Hz) that 

captures delta activity (Fig. 3.11). Spontaneous GCaMP6 data at this higher frequency band can 

provide stable, consist FC maps with as little as 30s of imaging (Fig. 3.6). Additionally, under 

resting state conditions in anesthetized mice, simultaneously-acquired EEG independently 

confirmed that the GCaMP6 signal contained a high-amplitude peak in delta-band that was absent 

in awake mice (Fig. 3.14). Moreover, state-dependent differences in apparent FC structure in delta-

band GCaMP6 activity appeared to be driven by the underlying temporal delay topography of the 

brain (Fig. 3.15 and Fig. 3.16).  

 

4.2 Functional Connectivity Stationarity and Sampling Variability  

In attempting to establish a floor for the amount of spontaneous delta-band GCaMP6 data 

necessary to construct typical FC maps, we observed that seed-based functional connectivity maps 



   
 

49 

converge on a spatially similar structure to that of group-averaged data (made using 300 second 

sessions) with as little as 30 seconds of data. We also observed, while these 30 second windows 

were relatively stationary (Fig. 3.6), there was a slight drift in spatial similarity. This could be due 

to neurophysiological changes arising across the duration of the run. However, it should be noted 

that this analysis does not account for or examine the effects of sampling variability and 

physiological stability separately in isolation. Laumann et al. have reported that for short time 

windows (e.g. <300 seconds), the variance in functional connectivity Pearson correlation 

measurements is attributable to sampling error and is inversely proportional to time window length 

[73]. More recently, it has been reported that fluctuating arousal state and sleep can drive non-

stationarity in functional connectivity structure, even after accounting for the variance in FC maps 

contributed to by motion and sampling variability [74]. The variability in the similarity of the 

sliding 30 second window of spontaneous GCaMP6 data (sampled from left motor cortex; Fig. 

3.6) compared to the group average image could be driven by these artifacts. Future studies are 

needed to thoroughly examine the stability and stationarity of the GCaMP6 and the confounding 

effects of motion.  

 

4.3 Inherent Functional Connectivity across Contrast, Frequency, and State 

The correspondence between functional connectivity maps of HbO2 and GCaMP6 over the 

infraslow frequency band (Fig. 3.8C, top and bottom) is in agreement with previously reported 

observations that measures of spontaneous calcium, local field potentials, and HbO2 low frequency 

oscillations (<0.1Hz) are correlated across the rat cortical vascular tree [8]. Collectively, these 

findings further reinforce the utility of functional hemodynamic measures as surrogates for 

neuronal activity at frequencies <0.5Hz. Interestingly, the similar functional connectivity features 
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in the infraslow FC maps and the ability to recover functional connectivity structure in delay-

shifted spontaneous HbO2 data using inter-contrast functional connectivity analysis (Fig. 3.8C, 

middle) point to an inherent shared network topography across both calcium and hemoglobin 

dynamics. This is further supported by the high spatial similarity observed across network in all 

constructed intercontrast FC maps compared to the corresponding HBO2 images, even at zero 

delay shift (Fig 3.9). The inter-contrast results also strongly suggest that the spontaneous calcium 

and hemoglobin are synchronized. Furthermore, the general superficial similarity in GCaMP6 FC 

structure over both frequency bands and across states-of-consciousness (Fig. 3.11) implies a base 

FC structure, in that at least some components of the underlying functional network architecture 

exist independent of state and across a wide band of frequencies. These reports add to a growing 

literature on stable, stereotypical FC network structure, observed using a fluorescent glutamate 

sensor in both isoflurane-anesthetized and awake mice at frequencies up to 12Hz [26] and using 

128-channel electrocorticography in ketamine/medetomidine-anesthetized and awake macaques 

[75]. However, upon calculating difference images and using pixelwise statistical tests, the state-

dependent changes in functional connectivity structure become much more apparent. At the group 

level, seed-based functional connectivity maps created using anesthetized spontaneous data show 

a topography that is relatively independent of network seed (Fig. 3.11, third and fourth row) other 

than a sign change as the seeds move along the anterior to- posterior axis. Across the anesthetized 

data, there exists a highly clustered binary structure with high magnitude correlations and 

anticorrelations that persists even after subtraction of the more focal and spatially specific awake 

maps. Similar topography exists in the corresponding seed-based coherence maps. The anterior 

and posterior correlative structure combined with the high coherence in both clusters points to 

equivalent neural activity that is out of phase along the anterior-posterior axis. When examining 
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an individual mouse transitioning from anesthesia to wakefulness, cingulate and parietal areas are 

most different with maximally attenuated delta-band power (Fig. 3.16). This parietal region, 

located in the transition zone between the anterior and posterior network clusters, has been shown 

to act a sink for activity induced multi-modal sensory stimulation, imaged in vivo in mice using a 

voltage-sensitive dye [24]. It is possible that as a sensory integration center, it is highly 

synchronized with the activity of the visual cortex during anesthesia.  

 

4.4 Delay Topography and Functional Connectivity  

In addition to patterns of functional connectivity, the temporal delay topography of the cortex (Fig. 

3.15 and Fig. 3.16) was also dependent on state. Under anesthesia, the GCaMP6 activity over the 

delta frequency band propagated from anterior regions (e.g. motor) to posterior regions (e.g. 

visual), and is consistent with previous observations in sleeping humans and anesthetized mice 

[67, 76]. These travelling oscillatory waves have been suggested to facilitate memory 

consolidation during natural sleep [77]. Importantly, ketamine and xylazine (used here), compared 

to other common anesthetics, has been shown to best mimic natural sleep, especially in the context 

of the sleep slow oscillation [60].  The strength of the oscillations likely underlies the strong 

correlations and anti-correlations seen in the functional connectivity maps of the delta frequency 

band (Fig. 3.11). The temporal separation observed across the cortex drives activity in anterior 

somatomotor networks to be more out of phase with posterior visual/parietal regions (Fig. 3.15), 

increasing the apparent strength in contralateral homotopic connections while also increasing the 

anti-correlation magnitudes between somatosensory and parietal regions. Human fcMRI studies 

have shown that FC structure can be a consequence of the delay topography while the reverse 

might not necessarily hold true [78]. It is therefore possible that this prominent propagating wave 
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of delta-band oscillations is superimposed with spontaneous activity associated with functional 

network connectivity structure (e.g. that seen in wakefulness), and provides the increased 

correlation magnitudes and anterior-posterior clustering unobserved in awake animals.  This 

concept is supported by recent work in isoflurane-anesthetized transgenic Emx1/GCaMP3 mice in 

which traveling transient neuronal coactivations occurred in areas exhibiting high functional 

connectivity [79]. In this thesis, we observed that the same anterior, cingulate regions that lead the 

brain in the delay maps (Fig. 3.16, top, E1 & E2) are also the regions of maximal difference in the 

functional connectivity structure across a transition from anesthesia to wakefulness (Fig 3.16, 

middle section: bottom, E5 & E6). Interestingly, the delay structure present over the delta band 

under anesthesia was not observed in awake animals (Fig. 3.15). However the current analysis was 

limited by the sampling rate (16.8 Hz) and would not be sensitive to delays shorter than 

approximately 0.06 seconds.  

 

4. 5 Related Studies in the Field 

While there are studies of evoked responses with macroscopic imaging of GECIs, there are 

relatively few with GECI’s that explore either functional connectivity [7, 50, 51, 79] or other 

analysis of calcium dynamics (e.g. functional hyperemia) [80] Of the studies reporting correlative 

functional structure in spontaneous calcium dynamics, they are either limited to one state of 

consciousness and/or to poorer performing GECIs [7, 50, 79]. Collectively, though, these previous 

reports largely support the results of the present thesis. For example, while Vanni et al. 

demonstrated mesoscale somatomotor functional connections in spontaneous calcium activity, 

using an isoflurane-anesthetized Emx1/GCaMP3 mouse model, which resemble the 

somatosensory and motor seed-based functional connectivity maps of the present thesis [50]. 
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Recently, Silasi and colleagues reported similar homotopic functional connectivity structure in 

seed-based maps in awake and isoflurane-anesthetized mice. They observed an increase in network 

focality and reduction in correlation magnitude upon wakefulness, analogous to the results 

reported here, despite the difference in selected anesthesia (isoflurane vs. ketamine/xylazine), 

frequency content of spontaneous data (1-10Hz vs. 0.4-4.0Hz), and amount of data included in 

analysis (approximately 35 minutes of awake imaging data from 7 mice and approximately 10 

minutes of anesthetized data from 2 mice compared to the 130 minutes of anesthetized data and 

225 minutes of awake data across 7 mice, acquired within the same imaging session, in the present 

thesis) [51].  

 

4.6 Limitations 

There are several limitations to the current thesis that support the need for further work. The 

ratiometric method implemented here for removing confounding absorption of GCaMP6 

fluorescence emission by hemoglobin could be additionally optimized. For example, to remove 

confounding absorption of in situ fluorescence by glycation end-products in porcine skin models 

of diabetes, Hull and colleagues estimated two scaling parameters used in their ratiometric 

correction that minimized intra-subject fluorescence variability across sessions and maximized the 

expected correlation between age and fluorescence intensity [81]. While the correction method 

implemented here is effective at removing artifactual absorption dynamics (e.g. the negative 

uncorrected raw GCaMP6 response to left hindpaw stimulation, Fig. 3.4B), further optimization 

could focus on using a physiologic marker (e.g. pulse) that would provide independent validation 

of the correction. Additionally, flavoproteins are autofluorescing metabolites that display elevated 

fluorescence emission with increasing oxidative metabolism [35]. Problematically, their 
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fluorescence spectra overlap with that of GCaMP6 (excitation at λ=460 and emission at λ=520). 

However, their temporal dynamics are distinctly slower than those of calcium. In particular, it has 

been shown that compared to flavoprotein autofluorescence, GCaMP3 has a significantly faster 

onset (GCaMP3: 0.28s vs. flavoproteins: 0.62s; p=0.002) and time to peak (GCaMP3: 0.65s vs 

flavoprotein: 1.11s; p<0.001) in response to a 1s hindlimb stimulation at 100Hz [50]. Similarly, in 

vitro studies in rat cortical slices showed an evoked calcium response (measured using the rhod-2 

calcium indicator) to 1s 20Hz electrical stimulation peaking ~1.5s before the measured 

flavoprotein autofluorescent response [34]. Thus, the slower temporal characteristics of 

flavoprotein dynamics compared to calcium transients, at least over higher frequencies (e.g. delta-

band analyses in this thesis), will likely result in little contamination of the GCaMP6 signal. 

Finally, Thy1 expression patterns determine the effective field-of-view of our imaging system and 

can vary with age, sex, filial generation, and genetic background [82]. The cohort of mice in the 

present thesis share the same background and are matched for age and sex. However, mice were 

either F1 (n=3) or F2 (n=4) relative to their F0 breeding pair from The Jackson Laboratory 

(https://www.jax.org/). Despite this difference, results were assessed at the individual mouse level 

and were qualitatively recapitulated across the group.  

 

4.7 Future Studies 

Future studies could take advantage of concurrent GCaMP6 and hemodynamic imaging to study 

diseases that impact neurovascular coupling by providing evidence on the sequence of 

neurodegeneration and vasculopathy underlying these conditions. In this thesis, we found a high 

concordance between calcium and HbO2 at infraslow frequencies. These were in healthy adult 

mice in which neurovascular coupling is relatively intact and spatially homogenous across the 
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cortex. However, in a wide variety of diseases such as stroke [3, 44] and Alzheimer’s disease (AD) 

[4, 83, 84], neurovascular coupling and hemodynamic functional connectivity can be compromised 

or modulated. For example, in a mouse model of AD, a decline in hemodynamic functional 

connectivity was found to be driven, in part, by deposition of amyloid-β (Aβ) plaques [4].  This 

AD-associated functional disruption was restored upon immunotherapy with HJ6.3 antibody that 

limits formation and growth of new Aβ plaques [5], with treated mice showing mildly improved 

performance in a spatial learning task. A concurrently-acquired imaging probe of neuronal activity 

(e.g. GCaMP6) could provide mechanistic information underlying these observed cognitive 

changes. Furthermore, AD-related Aβ accumulation and deposition has been recently shown to 

disrupt delta-band slow wave coherence and propagation [85], providing a fitting target of study 

for the multi-modal imaging system described here.  

 

4.8 Summary 

In summary, GCAMP6 activity reveals functional connectivity structure over a frequency range 

(from 0.009 Hz to >4Hz) higher than the canonical functional connectivity band (0.009 to 0.08 

Hz) that is state-dependent. Calcium-based spontaneous mapping of functional connectivity is 

faster and more directly coupled to neural activity than hemoglobin-based mapping of functional 

connectivity. Further, the calcium signal can be targeted and localized to specific types of cells 

providing an exquisitely specific method for detailed mapping of mesocopic connectivity patterns. 

Finally, combined GCaMP6 and hemodynamic imaging will enable the dissociation of changes in 

ionic- and hemodynamic-based networks and neurovascular coupling and provide a framework 

for subsequent studies of neurological disease such as stroke. 
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Chapter 5: CONCLUSIONS 
5.1 Going Forward 

Building off the methods and results described in this dissertation, there are a number of different 

avenues to pursue next, spanning topics that attempt to address disease pathology (e.g. narcolepsy) 

or fundamental architectural questions of the brain (e.g. delay topography). 

 

5.1.1 Sleep and Narcolepsy 

Given the ability of the described imaging session to visualize phenomena directly associated with 

sleep state, there is promising potential in extending this technique to the study of alternative sleep 

and anesthetic states as well as to sleep disorders. Steriade and colleagues have reported a delta-

band frequency content dependence on anesthesia. Specifically, common anesthetics impact the 

“up” state depolarization envelope to varying degrees, subsequently impacting the frequency at 

which delta-band oscillations occur. Functionally, this becomes especially important given the 

different mechanisms of action of these anesthetics. For example, ketamine is a glutamate receptor 

(NMDA) antagonist, whereas dexmedetomidine is an α2-adrenergic receptor agonist, and 

isoflurane’s anesthetic effect is thought to be mediated by antagonizing NMDA receptors or 

activating GABAA receptors [86]. Not only would this in vivo GCaMP imaging system allow for 

characterization of the potential influence of each of these anesthetics on the behavior of delta 

wave propagation, but it would also allow study of the effects of these anesthetics given their 

mechanistic and neuropharmacological differences. For example, a fluorophore expressed at 

glutamatergic synapses would be selectively impacted by ketamine compared to the potentially 

more indirect effect of the adrenergic agonist dexmedetomidine. Moreover, these anesthetics can 

strongly influence the cardiorespiratory system of mice (e.g. ketamine/xylazine causes significant 
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bradycardia, isoflurane decreases respiratory rate) [87]. The potential effects of these anesthetics 

on reported functional neuroimaging results must be established, especially given their 

commonality in rodent imaging studies. Broadly, the extent that anesthesia is pharmacologically 

modulating functional connectivity network topography and delay structure should be 

characterized.  

Because of the aforementioned potential confounding effects of anesthesia, the mouse brain in 

natural sleep is likely the ideal model to study the state-dependence of functional connectivity 

structure. Though anesthetics, especially ketamine, are considered good models of slow wave 

sleep, conclusions from sleep studies that implement anesthesia are limited in the extent that they 

can be translated to sleep phenomenology. We have recently begun designing and carrying out a 

preliminary study to address these questions. The proposed study includes imaging GCaMP6 in 

wakefulness, natural, sleep, and a set of common anesthetics (ketamine/xylazine, isoflurane, and 

dexmetadomodine). Furthermore, the study includes both concurrently acquired EEG as well as 

EMG to confirm state of arousal. The next steps would be to use this approach to study sleep 

disorders, specifically narcolepsy. Narcolepsy is a disorder characterized by excessive daytime 

sleepiness, cataplexy, and fragmentation of sleep/wakefulness driven by a loss of 

orexin/hypocretin-expressing neurons of the hypothalamus. A double null mutant mouse model 

lacking both the orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) provides a reasonable 

model of narcolepsy-like symptomatology.  A recently described doxycycline (DOX)-inducible 

model of narcolepsy, in which the presence of DOX reduces the number of orexin neurons, allows 

for nuanced control of orexin neuron population as well as age of onset (narcolepsy has a 

postpubertal onset in humans) [88]. This is especially powerful given that it allows for pre-onset 

imaging data to be acquired as a control timepoint. Because the extent of cortical network 
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involvement in the orexin system that underlie the narcolepsy phenotype is unknown, a bigenic 

mouse model that is OX1R/OX2R null and expresses GCaMP6 would provide pertinent 

information as to the pathology of narcolepsy, potentially driving a route to effective therapeutic 

interventions.  

 

5.1.2 Projection-based Delay Analysis 

The delay topography results observed in the resting-state GCaMP6 data over the delta frequency 

band across states and during a state transition points to the potential sensitivity of this approach 

to network reorganization. Mitra et al., have shown that “lag threads”, sequences of propogated 

activity, reflect neuronal processes rather than hemodynamic delay and potentially underlie 

spontaneous BOLD oscillations and subsequently-created resting-state functional connectivity 

networks [78, 89]. They have recently shown that the delay structure is sensitive to changes 

associated with Autism Spectrum Disorder (ASD) when compared to that of healthy controls [90]. 

Not only where these changes, observed in frontopolar cortex, occipital cortex, and putamen, 

associated with behavioral measures relevant to ASD diagnosis, but resting-state functional 

connectivity showed no groupwise differences. Similarly, this propagation analysis method has 

been shown to be sensitive to state of consciousness (wakefulness and slow-wave natural sleep) in 

humans, results that are recapitulated by those in this dissertation [68]. The combined GCaMP6 

and hemodynamic imaging system described here permits the pursuit of more extensive 

propagation and delay analysis to examine the state- and frequency-dependence of delay 

topography and constituent lag threads. Components of the approach implemented by Mitra and 

colleagues (e.g. parabolic interpolation to improve effective sampling rate, lag projection map 
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construction on global-signal regressed resting-state data versus the non-regressed approach used 

here, etc.) will likely provide more striking statewise delay differences than reported here. 

 

5.1.3 Neurovascular Coupling and Hemodynamic Response Functions 

The fluorescent optical probes detailed in Chapter 1 provide an exciting opportunity to track 

synaptic activity throughout the cortex, with each probe providing complementary 

neurophysiological information. In order to truly begin to map the interplay across all stages 

believed to be part of neurovascular coupling (Fig 1.1), a number of methodological issues must 

be addressed. For example, the GCaMP fluorescence spectra overlap with that of FAD 

autofluorescence (~470nm excitation, ~530nm emission). If they can be concurrently imaged, one 

would be able to relate spontaneous metabolic fluctuations coupled to aerobic respiration to ionic 

transients. A possible solution is the use of recently developed CaM-calcium indicators that have 

different excitation wavelengths (e.g. >560nm). RCaMP1 (excitation at λ=575nm and emission at 

λ=610) has been recently engineering and provided SNR and kinetics on par with GCaMP6 [91]. 

These can be accommodated in the imaging system by use of multi-pass band filters or by using a 

high-speed filter wheel that is synced to switch to adjacent filter positions in the presence of 

respective excitation LED. Alternatively, a multi-camera array could also be implemented, similar 

to the system described by Vazquez et al. [7], but with required filers in different optical paths of 

the separate cameras. In this manner, it would be possible to gather information from 

hemodynamics (OIS), ionic transients (CaM), metabolism (FAD/NADH), and electrophysiology 

(VSDs). This also enables the acquisition parameters of each camera to be tuned for the specific 

contrast it is acquiring. For example, higher on-chip spatial binning in a CCD would increase SNR 

and potential frame-rate, parameters that may be useful for endogenous fluorophores with fast 
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kinetics. With this data, one would have biomarkers of a number of processes involved in NVC 

and would be able to use them to not only track disease mechanisms, but also use these contrasts 

in functional mapping approaches.  

This becomes especially important if attempting to establish a response function between each pair 

of these contrasts. Logothetis and colleagues related field potential recordings to simultaneously-

measured BOLD data by using the cross-correlation function to determine the impulse response 

functional relating the two [6]. More recently, Bentley et al., showed that this response function is 

spatially-variant and frequency dependent [9]. A system that enables concurrent imaging of 

temporally distinct contrasts provides the means to estimate the response functions that relate these 

contrasts. 

 

5.2 Final Thoughts  

The approaches and findings detailed in this dissertation are meaningful not only for their 

implications regarding synchronicity and coherence in spontaneous calcium activity but also for 

their potential as infrastructure for future, more impactful neurophysiological studies. Using 

fluorophores driven by transgenic expression (GCaMP6) with endogenous contrasts 

(hemodynamics) provide a chronic imaging capability with invasiveness limited to the initial, one-

time optical window implantation. More powerful is the insight gained by using distinct, 

complementary contrasts that can provide data driven by specific cell populations, vasculature, or 

individual biochemical processes (e.g. the tricarboxylic acid cycle). This dissertation serves as a 

starting point for downstream functional imaging studies that will be able to tackle foundational 

questions unanswered by contemporary neuroscience.  
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