5,617 research outputs found

    An automated pattern recognition system for classifying indirect immunofluorescence images for HEp-2 cells and specimens

    Get PDF
    AbstractImmunofluorescence antinuclear antibody tests are important for diagnosis and management of autoimmune conditions; a key step that would benefit from reliable automation is the recognition of subcellular patterns suggestive of different diseases. We present a system to recognize such patterns, at cellular and specimen levels, in images of HEp-2 cells. Ensembles of SVMs were trained to classify cells into six classes based on sparse encoding of texture features with cell pyramids, capturing spatial, multi-scale structure. A similar approach was used to classify specimens into seven classes. Software implementations were submitted to an international contest hosted by ICPR 2014 (Performance Evaluation of Indirect Immunofluorescence Image Analysis Systems). Mean class accuracies obtained on heldout test data sets were 87.1% and 88.5% for cell and specimen classification respectively. These were the highest achieved in the competition, suggesting that our methods are state-of-the-art. We provide detailed descriptions and extensive experiments with various features and encoding methods

    Detecting cells and analyzing their behaviors in microscopy images using deep neural networks

    Get PDF
    The computer-aided analysis in the medical imaging field has attracted a lot of attention for the past decade. The goal of computer-vision based medical image analysis is to provide automated tools to relieve the burden of human experts such as radiologists and physicians. More specifically, these computer-aided methods are to help identify, classify and quantify patterns in medical images. Recent advances in machine learning, more specifically, in the way of deep learning, have made a big leap to boost the performance of various medical applications. The fundamental core of these advances is exploiting hierarchical feature representations by various deep learning models, instead of handcrafted features based on domain-specific knowledge. In the work presented in this dissertation, we are particularly interested in exploring the power of deep neural network in the Circulating Tumor Cells detection and mitosis event detection. We will introduce the Convolutional Neural Networks and the designed training methodology for Circulating Tumor Cells detection, a Hierarchical Convolutional Neural Networks model and a Two-Stream Bidirectional Long Short-Term Memory model for mitosis event detection and its stage localization in phase-contrast microscopy images”--Abstract, page iii

    Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests

    Get PDF
    INTRODUCTION: Analysis of autoantibodies (AAB) by indirect immunofluorescence (IIF) is a basic tool for the serological diagnosis of systemic rheumatic disorders. Automation of autoantibody IIF reading including pattern recognition may improve intra- and inter-laboratory variability and meet the demand for cost-effective assessment of large numbers of samples. Comparing automated and visual interpretation, the usefulness for routine laboratory diagnostics was investigated. METHODS: Autoantibody detection by IIF on human epithelial-2 (HEp-2) cells was conducted in a total of 1222 consecutive sera of patients with suspected systemic rheumatic diseases from a university routine laboratory (n = 924) and a private referral laboratory (n = 298). IIF results from routine diagnostics were compared with a novel automated interpretation system. RESULTS: Both diagnostic procedures showed a very good agreement in detecting AAB (kappa = 0.828) and differentiating respective immunofluorescence patterns. Only 98 (8.0%) of 1222 sera demonstrated discrepant results in the differentiation of positive from negative samples. The contingency coefficients of chi-square statistics were 0.646 for the university laboratory cohort with an agreement of 93.0% and 0.695 for the private laboratory cohort with an agreement of 90.6%, P < 0.0001, respectively. Comparing immunofluorescence patterns, 111 (15.3%) sera yielded differing results. CONCLUSIONS: Automated assessment of AAB by IIF on HEp-2 cells using an automated interpretation system is a reliable and robust method for positive/negative differentiation. Employing novel mathematical algorithms, automated interpretation provides reproducible detection of specific immunofluorescence patterns on HEp-2 cells. Automated interpretation can reduce drawbacks of IIF for AAB detection in routine diagnostics providing more reliable data for clinicians

    Automated microscopy for high-content RNAi screening

    Get PDF
    Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    Single-cell analysis of cell competition using quantitative microscopy and machine learning

    Get PDF
    Cell competition is a widely conserved, fundamental biological quality control mechanism. The cell competition assay of MDCK wild-type versus mutant MDCK Scribble-knockdown (ScribKD) relies on a mechanical mechanism of competition, which posits that the emergence of compressing stresses within the tissue at high confluency drive the competitive outcome. According to this mechanism, proliferating wild-type cells out-compete mutant ScribKD cells, resulting in their apoptosis and apical extrusion. Previous studies show that there is an increased division rate of wild-type cells in neighbourhoods with high numbers of ScribKD cells, but what still remains a mystery is whether this is a cause or consequence of increased apoptosis in the “loser” cell population. This project also interrogated the competitive assay of wild-type versus RasV12 , which is hypothesized to operate on a biochemical mechanism and results in the apical extrusion (but not apoptosis) of the loser RasV12 population. For both these mechanisms of competition it is still unknown which population of cells are driving the winner/loser outcome. Is the winner cell proliferation prompting the loser cell demise? Or is an autonomous loser elimination prompting a subsequent winner cell proliferation? In my research, I have employed multi-modal, time-lapse microscopy to image competition assays continuously for several days. These data were then segmented into wild-type or mutant instances using a Convolutional Neural Network (CNN) that can differentiate between the cell types, after which they were tracked across cellular generations using a Bayesian multi-object tracker. A conjugate analysis of fluorescent cell-cycle indicator probes was then utilised to automatically identify key time points of cellular fate commitment using deep-learning image classification. A spatio-temporal analysis was then conducted in order to quantify any correlation between wild-type proliferation and mutant cell demise. For the case of wild-type versus ScribKD , there was no clear evidence for the wild-type cells mitoses directly impacting upon the ScribKD cell apoptotic elimination. Instead, a subsequent analysis found that a more subtle mechanism of pre-emptive, local density increases around the apoptosis site appeared to be determining the eventual ScribKD fate. On the other hand, there was clear evidence of a direct impact of wild-type mitoses on the subsequent apical extrusion and competitive elimination of RasV12 cells. Both of these conclusions agree with the prevailing classification of cell competition types: mechanical interactions are more diffuse and occur over a larger spatio-temporal domain, whereas biochemical interactions are constrained to nearest neighbour cells. The hypothesized density-dependency of ScribKD elimination was further quantified on a single-cell scale by these analyses, as well as a potential new understanding of RasV12 extrusion. Most interestingly, it appears that there is a clear biophysical mechanism to the elimination in the biochemical RasV12 cell competition. This suggests that perhaps a new semantic approach is needed in the field of cell competition in order to accurately classify different mechanisms of elimination

    Advances in quantitative microscopy

    Get PDF
    Microscopy allows us to peer into the complex deeply shrouded world that the cells of our body grow and thrive in. With the emergence of automated digital microscopes and software for anlysing and processing the large numbers of image that they produce; quantitative microscopy approaches are now allowing us to answer ever larger and more complex biological questions. In this thesis I explore two trends. Firstly, that of using quantitative microscopy for performing unbiased screens, the advances made here include developing strategies to handle imaging data captured from physiological models, and unsupervised analysis screening data to derive unbiased biological insights. Secondly, I develop software for analysing live cell imaging data, that can now be captured at greater rates than ever before and use this to help answer key questions covering the biology of how cells make the decision to arrest or proliferate in response to DNA damage. Together this thesis represents a view of the current state of the art in high-throughput quantitative microscopy and details where the field is heading as machine learning approaches become ever more sophisticated.Open Acces

    Correlative Fluorescence and Raman Microscopy to Define Mitotic Stages at the Single-Cell Level: Opportunities and Limitations in the AI Era

    Get PDF
    Nowadays, morphology and molecular analyses at the single-cell level have a fundamental role in understanding biology better. These methods are utilized for cell phenotyping and in-depth studies of cellular processes, such as mitosis. Fluorescence microscopy and optical spectroscopy techniques, including Raman micro-spectroscopy, allow researchers to examine biological samples at the single-cell level in a non-destructive manner. Fluorescence microscopy can give detailed morphological information about the localization of stained molecules, while Raman microscopy can produce label-free images at the subcellular level; thus, it can reveal the spatial distribution of molecular fingerprints, even in live samples. Accordingly, the combination of correlative fluorescence and Raman microscopy (CFRM) offers a unique approach for studying cellular stages at the singlecell level. However, subcellular spectral maps are complex and challenging to interpret. Artificial intelligence (AI) may serve as a valuable solution to characterize the molecular backgrounds of phenotypes and biological processes by finding the characteristic patterns in spectral maps. The major contributions of the manuscript are: (I) it gives a comprehensive review of the literature focusing on AI techniques in Raman-based cellular phenotyping; (II) via the presentation of a case study, a new neural network-based approach is described, and the opportunities and limitations of AI, specifically deep learning, are discussed regarding the analysis of Raman spectroscopy data to classify mitotic cellular stages based on their spectral maps
    • 

    corecore