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Abstract 

Microscopy allows us to peer into the complex deeply shrouded world that the 

cells of our body grow and thrive in. With the emergence of automated digital 

microscopes and software for anlysing and processing the large numbers of image 

that they produce; quantitative microscopy approaches are now allowing us to 

answer ever larger and more complex biological questions. In this thesis I explore two 

trends. Firstly, that of using quantitative microscopy for performing unbiased 

screens, the advances made here include developing strategies to handle imaging data 

captured from physiological models, and unsupervised analysis screening data to 

derive unbiased biological insights. Secondly, I develop software for analysing live cell 

imaging data, that can now be captured at greater rates than ever before and use this 

to help answer key questions covering the biology of how cells make the decision to 

arrest or proliferate in response to DNA damage. Together this thesis represents a 

view of the current state of the art in high-throughput quantitative microscopy and 

details where the field is heading as machine learning approaches become ever more 

sophisticated. 
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1 Introduction and Literature Review 

1.1 Background 

1.1.1 Microscopy 

Microscopy has remained a staple modality for studying biology since the first 

description of cells by Robert Hooke in his seminal work Micrographia (published in 

1665 by the Royal Society), that contained intricately detailed hand drawn images of 

natural objects invisible to the naked eye, Fig. 1-1A. Hand drawn images remained the 

primary means of disseminating microscopy data, until the emergence of cameras 

some 200 years later, and development of the first ‘photoelectric’ microscope by 

Alfred Francois-Donne. Using this photographic microscope he discovered both the 

microorganism Trichomonas vaginalis, now known to be a parasite responsible for 

the sexually transmitted disease Trichomoniasis, as well as being the first person to 

observe the enormous expansion of ‘mucus goblet’ cells, now termed leukocytes, in 

leukemia (Thorburn 1974), Fig. 1-1B. Charged coupled devices or CCD chips were 

developed in the Bell laboratories over the 1960’s, that allow for the direct conversion 

of  light into digital data (Smith 2010), and have since spawned a huge growth in the 

amount of imaging information captured around the world, now estimated to be over 

70% of all data traffic (Cisco 2017).  This massive growth in imaging data globally has 

also been paralleled by an increase in the amount of microscopy imaging data we are 

able to collect. Key factors driving this rise include the wide adoption of digital 

microscopes, as well as the development of automated microscopy systems,  that in 

https://paperpile.com/c/HjVDIT/ffA9
https://paperpile.com/c/HjVDIT/ffA9
https://paperpile.com/c/HjVDIT/AtI0
https://paperpile.com/c/HjVDIT/AtI0
https://paperpile.com/c/HjVDIT/J81k
https://paperpile.com/c/HjVDIT/J81k
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combination with the miniaturization of imaging plates, e.g. 384 wells, now allow 

imaging of tens to hundreds of thousands of conditions every week (Wollman and 

Stuurman 2007), Fig. 1-1C&D. 

Yet despite this digital revolution in the way we collect and store microscopy data, 

many analyses of imaging data are still performed using qualitative methods and the 

intuition of human experts in the field (Sailem et al. 2016; Pepperkok and Ellenberg 

2006). This limits both the number of images that can be analysed and the size of 

experiments that can be performed, as well as introducing potential bias in the 

observations and conclusions of the researcher. For example, an experimenter may 

select fields of view, or specific cells that support a hypothesis, rather than making an 

unbiased assessment of the overall phenotypic effect of a treatment. At best this 

means important novel findings could be missed, at worst it leads to conclusions and 

findings that cannot be reproduced, and may mislead future studies (Caicedo et al. 

2017). Thus, quantitative approaches to image analysis are critical for performing 

unbiased analysis of experimental conditions and yielding reproducible results. 

The lack of widespread adoption of quantitative methods is likely driven by the 

fact that collecting quantitative data from microscopy images can often be incredibly 

tedious, requiring extensive manual input. Even now, biologists will often find 

themselves using standard digital software packages, such as Image-J (Abràmoff et al. 

2004), to manually measure the length of hundreds of yeast (Smith et al. 2014), count 

the number of thousands of cells displaying mitotic phenotypes in cancer 

histopathology images (van Diest et al. 1992; Veta et al. 2015), or measure intensity 

changes in a fluorescently stained protein over imaging time courses that may last 

https://paperpile.com/c/HjVDIT/6olr
https://paperpile.com/c/HjVDIT/6olr
https://paperpile.com/c/HjVDIT/6olr
https://paperpile.com/c/HjVDIT/K0h3+JSbU
https://paperpile.com/c/HjVDIT/K0h3+JSbU
https://paperpile.com/c/HjVDIT/K0h3+JSbU
https://paperpile.com/c/HjVDIT/5RHJ
https://paperpile.com/c/HjVDIT/5RHJ
https://paperpile.com/c/HjVDIT/5RHJ
https://paperpile.com/c/HjVDIT/GRRt
https://paperpile.com/c/HjVDIT/GRRt
https://paperpile.com/c/HjVDIT/GRRt
https://paperpile.com/c/HjVDIT/5gq1
https://paperpile.com/c/HjVDIT/5gq1
https://paperpile.com/c/HjVDIT/e4IC+xE6h
https://paperpile.com/c/HjVDIT/e4IC+xE6h
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several days (Barr et al. 2016). Thus, there is a desperate need for better tools and 

workflows that are able to automate complex and time consuming quantitative image 

analysis tasks and perform unbiased analysis on the ever-increasing volumes of 

image data now being produced. 

 

Figure 1-1, Development of high throughput microscopes: A) Illustrations of cork tree specimens 

that for the first time revealed the existence of cells, that are now known to be the fundamental living unit 

in biology; B) The photographs of microscopic specimens, demonstrated significant over proliferation of 

white-blood cells in patients with blood diseases, now termed leukemias, due to excessive proliferation of 

leukocytes; C) One of the first automated microscopes, the ArrayScan®, was able to capture hundreds to 

thousands of fields of view every day, storing data digitally for quantitative analysis. D) Today standardised 

96, 384 and 1536 well formats allow advanced robotic platforms, coupled to sophisticated high-content 

microscopes, to prepare and image stacks of microplates collecting hundreds of thousands of images and 

equating to several terabytes of data, every day. 

  

https://paperpile.com/c/HjVDIT/DIw0
https://paperpile.com/c/HjVDIT/DIw0


 

11 

1.1.2 Automated image analysis 

The earliest use-cases of automated analysis of microscopy images emerged from 

studies that looked to drive automation and accuracy improvements in the detection 

of cancer cells from pappenheim-stained blood, or vaginal swab smears, such that 

population wide screening of leukemia, or cervical cancers, respectively could be 

performed (Bostrom et al. 1959; Harms et al. 1979). These approaches progressed 

over a period of a decade or so, from classification of one-dimensional readouts from 

electronic scanners (Bostrom et al. 1959; Spencer and Bostrom 1962), through early 

image based classifiers developed using custom optical scanning techniques (Prewitt 

and Mendelsohn 1966), to more advanced techniques that made use of computers to 

segment regions, before subsequent extraction and processing of basic features such 

as area and intensity from images captured using early digital microscopes (Harms et 

al. 1979; Harms et al. 1986; Jaggi et al. 1988). 

The use of quantitative image analysis applied to molecular biology research first 

arose in the analysis of hybridisation between fluorescent reporters and DNA for 

genetic applications, termed fluorescent in-situ hybridisation (FISH) (Nederlof et al. 

1992). It wasn’t then until the pharmaceutical industry got heavily involved that 

automated image analysis for molecular biology research became wide spread. Here, 

researchers began to develop secondary cell-based in vitro assays to validate hits 

emerging from increasingly high-throughput biochemical target-binding screens 

(HTS), that often had more complex endpoints. For example, Htun et al. labelled the 

glucocorticoid receptor with GFP fluorescent reporter to identify agonists that would 

induce this protein to translocate from the membrane to the nucleus, as was known 

https://paperpile.com/c/HjVDIT/Z3I6+oKQZ
https://paperpile.com/c/HjVDIT/Z3I6+oKQZ
https://paperpile.com/c/HjVDIT/Z3I6+Gubl
https://paperpile.com/c/HjVDIT/Z3I6+Gubl
https://paperpile.com/c/HjVDIT/n3DL
https://paperpile.com/c/HjVDIT/n3DL
https://paperpile.com/c/HjVDIT/n3DL
https://paperpile.com/c/HjVDIT/oKQZ+6bNi+w18M
https://paperpile.com/c/HjVDIT/oKQZ+6bNi+w18M
https://paperpile.com/c/HjVDIT/oKQZ+6bNi+w18M
https://paperpile.com/c/HjVDIT/bgiG
https://paperpile.com/c/HjVDIT/bgiG
https://paperpile.com/c/HjVDIT/bgiG
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to occur following binding of glucocorticoids (Htun et al. 1996). This assay required 

imaging data to be collected and the nuclear and membrane regions to be identified 

using separate stains and thresholding operations on the images. The ratio of 

membrane protein intensity to nuclear intensity could then be calculated and the level 

of glucocorticoid receptor translocation quantified  (Htun et al. 1996; Giuliano et al. 

1997). This analysis made use of early ArrayScan software developed by Cellomics, 

Fig. 1-2A. In another key example, voltage sensitive dyes and reporters were also used 

as an imaging readout of membrane potential. Here, image analysis steps consisted of 

identifying and quantifying intensity differences between regions on the inside and 

outside of the membrane (González and Negulescu 1998; Epps et al. 1994). This 

allowed the identification of a small molecule activator of ATP sensitive K+ ion 

channels in vascular smooth muscle cells. By interfering with membrane potential 

this small molecule, in turn, inhibited chloride transport and reduced vascular smooth 

muscle contraction (Holevinsky et al. 1994). Taken together, over the 1990s, an 

explosion in the use of high-throughput imaging approaches for research occurred; 

this was driven by novel screening approaches in the pharmaceutical industry. 

Typically however, such early automated image analysis pipelines remained 

tailored for a specific phenotypic assay, or readout, such as cell proliferation, or 

viability (Boutros et al. 2004). In key work by Murphy et al. it was shown that by 

extracting larger numbers of features describing the shape and texture properties of 

regions defined by fluorescently labeled proteins, accurate classification of the 

localisation of the protein to a cellular compartment, such as the endoplasmic 

reticulum, could be performed automatically (Boland and Murphy 2001; Murphy et 

https://paperpile.com/c/HjVDIT/5GKV
https://paperpile.com/c/HjVDIT/5GKV
https://paperpile.com/c/HjVDIT/5GKV+KkSi
https://paperpile.com/c/HjVDIT/5GKV+KkSi
https://paperpile.com/c/HjVDIT/5GKV+KkSi
https://paperpile.com/c/HjVDIT/zIKl+lXIf
https://paperpile.com/c/HjVDIT/Z79t
https://paperpile.com/c/HjVDIT/ynTX
https://paperpile.com/c/HjVDIT/ynTX
https://paperpile.com/c/HjVDIT/lqJM+23dj
https://paperpile.com/c/HjVDIT/lqJM+23dj
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al. 2000). This study therefore paved the way towards using high-dimensional 

morphological profiles to classify and predict biological behaviour from images. For 

example, Perlman et al. demonstrated that high-content imaging profiles from 

compounds with a known mechanism of action could be used to predict the 

mechanism of action of an unknown compound using its phenotypic profile (Perlman 

et al. 2004). That high-content phenotypic profiles can be used to infer mechanism of 

action has now been replicated in a number of retrospective studies since this first 

work (Young et al. 2008; Abassi et al. 2009; Kraus et al. 2016; Towne et al. 2012). Most 

notably, in recent work by Simm et al., prospective predictive power of such an 

approach has been shown. Specifically, the authors demonstrated that by cherry 

picking a set of small molecules from a large HTS compound screening library, 250-

fold enrichment in the likelihood target binding could be achieved by using a previous 

high-content screen to predict target binding (Simm et al. 2018). Relational studies 

also emerged that looked to infer genetic, physical, or functional interactions between 

genes and/or proteins. For example, Moffat et al. demonstrated that siRNA gene 

depletions that resulted in similar image based phenotypic profiles, would likely fall 

within the same biological signalling pathway (Moffat and Sabatini 2006). In another 

landmark study, Bakal et al. found that RNAi depletions that resulted in similar 

morphological characteristics in Drosophila BG2 cells, led to validated predictions as 

to a protein’s function, localisation, and binding partners (Bakal et al. 2007). 

This increasing use of large arrays of single cell features extracted from high-

content screens, termed phenotypic profiles, also motivated the development 

CellProfiler, an open-source software package that could be broadly applied to high-

https://paperpile.com/c/HjVDIT/lqJM+23dj
https://paperpile.com/c/HjVDIT/JEdM
https://paperpile.com/c/HjVDIT/JEdM
https://paperpile.com/c/HjVDIT/JEdM
https://paperpile.com/c/HjVDIT/Bggq+Vce6+Bjd0+VWp4
https://paperpile.com/c/HjVDIT/Bggq+Vce6+Bjd0+VWp4
https://paperpile.com/c/HjVDIT/kvSG
https://paperpile.com/c/HjVDIT/FPa1
https://paperpile.com/c/HjVDIT/FPa1
https://paperpile.com/c/HjVDIT/DHsR
https://paperpile.com/c/HjVDIT/DHsR
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content imaging data (Carpenter et al. 2006; Lamprecht et al. 2007; Jones et al. 2008). 

This software continues to be used today to analyse both chemical and genetic 

screens, Fig. 1-2B. For example, Shan et al. more recently performed a high-content 

screen of small molecules against primary human hepatocytes looking for small 

molecules that could either induce their proliferation or cause them to differentiate 

further towards mature hepatocytes as detected by a phenotypic profile extracted 

from imaging data. The authors identified a handful of compounds that could perform 

each task and thus represented important tools for generating a ready supply of 

human hepatocytes for research and potential future cell-therapies (Shan et al. 2013). 

Commercial software has also kept pace and driven perhaps even greater 

developments in the high-content imaging field. The Columbus software package  is 

used by a huge number of pharmaceutical and research labs around the world 

(Zanella et al. 2010), Fig. 1-2C. Enabling such a diverse array of high-content imaging 

studies as profiling compound toxicity based off morphology and proliferation 

markers (Martin et al. 2014), screening of potential chemotherapies against live 

tumour spheroid models (Reid et al. 2014), studying the infection of macrophages by 

parasites (Aulner et al. 2013), and even the detection and characterisation of 

biological weapons of mass destruction (Peruski et al. 2002). Thus, by extracting high-

dimensional phenotypic profiles from imaging data, screens can now be performed 

with complex endpoints, that may involve either the determination of multiple 

phenotypes, or relational studies that look to correlate the similarity between 

different conditions in order to identify the connection between different conditions. 

These studies together define the common high-content profiling workflow used by 

the majority of groups today (Caicedo et al. 2017). 

https://paperpile.com/c/HjVDIT/Xeiu+mocj+izBh
https://paperpile.com/c/HjVDIT/Xeiu+mocj+izBh
https://paperpile.com/c/HjVDIT/DdfU
https://paperpile.com/c/HjVDIT/DdfU
https://paperpile.com/c/HjVDIT/zMAw
https://paperpile.com/c/HjVDIT/zMAw
https://paperpile.com/c/HjVDIT/zMAw
https://paperpile.com/c/HjVDIT/Jvbq
https://paperpile.com/c/HjVDIT/Jvbq
https://paperpile.com/c/HjVDIT/oIj6
https://paperpile.com/c/HjVDIT/oIj6
https://paperpile.com/c/HjVDIT/qqHH
https://paperpile.com/c/HjVDIT/qqHH
https://paperpile.com/c/HjVDIT/owY6
https://paperpile.com/c/HjVDIT/owY6
https://paperpile.com/c/HjVDIT/5RHJ
https://paperpile.com/c/HjVDIT/5RHJ
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Figure 1-2, Example interfaces developed for analysis of high-content imaging data: A) Software 

that accompanied the ArrayScan® microscope allowed research to use simple thresholding operations to 

identify regions that intensity readings could be collected from. From these measurements, dose response 

curves and other key assay readouts could be plotted; B) CellProfiler represents perhaps the first open 

source software for performing high-content image analysis, that continues to be developed today, this 

allows pipelines to be created that can be used to process and extract thousands of single-cell features from 

very large, 10,000 conditions/1,000,000 image, screens. C) Perkin Elmer maintain the Columbus™ software 

that remains perhaps the most popular and easy to use software developed for analysis of high-content 

imaging data. Here a simple plug and play, format allows you to drag and drop functions to create an 

imaging pipeline for high-content analysis. 
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1.2 The high-content analysis workflow 

Currently, high-content image analysis workflows are generally tailored to a given 

screen being analysed, due to the unique combination of the cell line and fluorescent 

labels used, as well as the biological questions being asked of the dataset. However, 

across researchers in the field, a set of common themes and steps emerge. Together 

these underpin the standard workflow that includes the most common process used 

by labs today in the field of high-content imaging, Fig. 1-3. Although the exact number 

of steps is trivial, the process typically involves: 1) image-capture and storage 2) 

preprocessing of imaging data; 3) object detection and segmentation; 4) feature 

extraction; 5) feature reduction, processing and aggregation; and 6) Analysis and 

visualisation of results (Caicedo et al. 2017; Swedlow et al. 2009; Boutros et al. 2015; 

Carpenter 2007). Prior to studying how different conditions affect phenotypic 

profiles, analysis of single cell data can also be performed to identify and analyse 

subpopulations of cells, such as those in different stages of the cell cycle  (Neumann 

et al. 2010; Jones et al. 2008; Mukherji et al. 2006). Additionally in live cell 

experiments, after extraction of object coordinates and other features, cell tracking 

and time-series analysis can be performed  (Cooper and Bakal 2017). Finally, deep-

learning strategies have now been developed that facilitate direct conversion of raw 

data to visualisations and screening results (Kraus et al. 2017; Godinez et al. 2017). 
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Figure 1-3,  A standard high-content microscopy workflow: 1) Cells are automatically prepared 

and imaged using robotic plate handling and high-content automated microscopes; 2) Image preprocessing 

steps look to normalise images across microplates and reduce batch effects; 3) Segmentation steps involve 

detection of objects and identification of unique binary masks that cover each region; 4) Hundreds to 

thousands of features describing each region are extracted from segmented cells; 5) Features are typically 

reduced to non-redundant spaces, using either feature selection or transformation algorithms; 6) Extracted 

features can then be explored and visualised using a range of graphics and clustering approaches. 
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1.2.1 Image Capture and Storage 

The first step following the fixing and staining of cells in a high-content screen is 

to image the screen and store images in an accessible format for processing. Typical 

high-content microscopes can capture tens to hundreds of thousands of images every 

day using automation to supply microplates for imaging. Managing the huge amount 

of data that is produced can represent a significant challenge. A number of solutions 

exist for handling this data and are typically commercial. However, in a notable 

example Swedlow et al. have developed the Open Microscopy Environment (OME) an 

open-source software solution that is able to host and visually display image based 

screening data (Swedlow et al. 2003; Li et al. 2016; Allan et al. 2012). However, setting 

up and maintaining such servers remains challenging for most labs, thus commercial 

packages are typically used such as those marketed by PerkinElmer as the 

Columbus™ platform.  

1.2.2 Image preprocessing  

Image preprocessing involves clipping and illumination correction algorithms, 

that seek to ensure all conditions, and cells, being imaged are represented and treated 

equally over the entire imaging screen. Clipping, or the removal of high-intensity 

outlier pixels is performed as microscopes will often capture a very wide range of 

pixel intensities that may include artifacts, such as aggregated clumps of 

immunofluorescent probes. These can distort subsequent steps such as the 

calculation of intensity thresholds, aggregation of single cell data, or illumination 

correction. 

https://paperpile.com/c/HjVDIT/iCHU+mBhw+WPyG
https://paperpile.com/c/HjVDIT/iCHU+mBhw+WPyG
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Illumination correction, in turn, accounts for variations in the background image 

intensity over the field of view; these are generally an inherent property of the light 

path between the illumination source and camera. A number of strategies have 

therefore been devised to reduce this source of variation: 1) Prospective correction: 

Background images are captured with no sample present, and negated from future 

images (Singh et al. 2014); 2) Single image correction: A very wide filter, such as a 

gaussian blur, is applied to the image to give a rough intensity map that is then 

negated from the original image (Likar et al. 2000; Babaloukas et al. 2011); and 3) 

Multiple image correction: Average intensities are taken over the entire screen, and 

then negated from every individual image (Singh et al. 2014; Babaloukas et al. 2011). 

Generally, prospective methods and multi-image correction are preferred as 

adjustment of intensity values within single images can reduce the true range of 

intensity changes captured over an imaging dataset (Caicedo et al. 2017; Singh et al. 

2014). 

1.2.3 Object detection and Segmentation 

In object detection and segmentation steps, the goal is to identify regions of the 

image that correspond to objects of interest. A vast amount of research has gone into 

developing better algorithms for these tasks (Pal and Pal 1993; Haralick and Shapiro 

1985). Many of these approaches have been transferred to nuclei and cell 

segmentation in high-content imaging.  In the most straightforward approach objects 

can be detected with simple thresholding operations, for example Otsu’s method 

(Otsu 1979). However, these will often classify multiple touching nuclei and/or cells 

as a single object. Cell segmentation is thus typically split into two steps: 

https://paperpile.com/c/HjVDIT/bbbu
https://paperpile.com/c/HjVDIT/bbbu
https://paperpile.com/c/HjVDIT/ykAH+qZH1
https://paperpile.com/c/HjVDIT/ykAH+qZH1
https://paperpile.com/c/HjVDIT/bbbu+qZH1
https://paperpile.com/c/HjVDIT/bbbu+qZH1
https://paperpile.com/c/HjVDIT/5RHJ+bbbu
https://paperpile.com/c/HjVDIT/5RHJ+bbbu
https://paperpile.com/c/HjVDIT/5RHJ+bbbu
https://paperpile.com/c/HjVDIT/7lae+WJq7
https://paperpile.com/c/HjVDIT/7lae+WJq7
https://paperpile.com/c/HjVDIT/7lae+WJq7
https://paperpile.com/c/HjVDIT/sqpS
https://paperpile.com/c/HjVDIT/sqpS
https://paperpile.com/c/HjVDIT/sqpS
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1. The centers of nuclei are found. As these appear as round regions of intensity, 

consecutive radial blurring and erosion/dilation operations are often 

sufficient to transform the image such that a single intensity peak corresponds 

to each nuclei center, peak picking can then be used to detect nuclei centers 

(Carpenter et al. 2006). Other algorithms can also be used to detect nuclei 

where they may be touching, although are less common. For example, by 

assuming nuclei are round, a Hough transform, that is designed to detect 

circular objects, can be used to identify candidate nuclei (Thomas et al. 1992). 

Model based approaches, have also demonstrated high levels of performance 

(Molnar et al. 2016). 

2. A mask of the nuclei/cell region must then be created based off the detected 

centers. By far the most common approach here is the watershed algorithm 

(Beucher and Meyer 1992; Roerdink and Meijster 2000), that treats cell nuclei 

and background markers as valleys, and cell edges as ridges and then expands 

regions to cover the space between ridges (Malpica et al. 1997), [described in 

more detail in Chapter 3]. However, higher levels of performance have been 

shown (Meijering 2012) by using both graph-cuts (Shi and Malik 2000)(Al-

Kofahi et al. 2010) and learnt textures (Sommer et al. 2011). More recently, 

deep-learning approaches such as fully convolutional neural networks (Long 

et al. 2015), implemented as U-net for biomedical imaging data (Ronneberger 

et al. 2015), mask R-CNN (He et al. 2018), and  learnt watershed algorithms 

(Wolf et al. 2017; Bai and Urtasun 2017) have achieved human-level 

performance in nuclei segmentation challenges. 

https://paperpile.com/c/HjVDIT/Xeiu
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https://paperpile.com/c/HjVDIT/Akoj+rvoF
https://paperpile.com/c/HjVDIT/Akoj+rvoF
https://paperpile.com/c/HjVDIT/gbwH
https://paperpile.com/c/HjVDIT/gbwH
https://paperpile.com/c/HjVDIT/z0Ss
https://paperpile.com/c/HjVDIT/z0Ss
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1.2.4 Feature Extraction 

Following detection of cells and segmentation of regions, or masks, that define 

these objects features are then extracted that describe the shape of the cell, as well as 

the texture and intensity properties of different fluorescent markers inside the cell 

mask (Boland and Murphy 2001; Carpenter et al. 2006). Many features important for 

studying the shape of cells were described by Boland and Murphy, and include 

measures of size, eccentricity, and membrane/edge smoothness (Boland and Murphy 

2001). These measures can also be performed on geometrically defined sub-regions 

of the overall cell, such as protrusions that extend outward from the main cell body 

(Sailem et al. 2014; Yin et al. 2013). Features based on channel intensity and texture 

are also typically extracted and include: Haralick features; these analyse the 

relationship between neighbouring pixels (Haralick et al. 1973); Gabor features; that 

measure the intensity of a region following transformation with kernels tailored to 

find textures such as edges, spots and ridges (Jain and Farrokhnia 1991); and Zernike 

moments; a type of statistical moment that describes the distribution of intensity over 

a specific region (Khotanzad and Hong 1990; Zernike 1934). More recently features 

have also been engineered that describe the environment a cell is in with respect to 

other cells, such as stretches of cell membrane that are in contact with other cells, 

termed neighbour fraction, (Sero et al. 2015), or the spatial location of a cell relative 

to the center of clusters of cells, or other cells in a locally connected neighbourhood 

(Snijder et al. 2009).  

In high-content analysis the emphasis is upon building a broad and effective 

description of segmented regions, as opposed to specific features that have been 

https://paperpile.com/c/HjVDIT/lqJM+Xeiu
https://paperpile.com/c/HjVDIT/lqJM
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https://paperpile.com/c/HjVDIT/lqJM
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https://paperpile.com/c/HjVDIT/cYnn
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https://paperpile.com/c/HjVDIT/1I9C+3TkY
https://paperpile.com/c/HjVDIT/Pp8G
https://paperpile.com/c/HjVDIT/Pp8G
https://paperpile.com/c/HjVDIT/TobU
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engineered into the assay, such as intensity (Boutros et al. 2015; Caicedo et al. 2017). 

However, in some cases features must be engineered into the design of the analysis 

to reflect the proteins being fluorescently labelled; for example a number of proteins 

translocate into the nucleus on activation. Features that quantify the ratio of nuclear 

intensity levels versus intensity in a perinuclear ring region, are more robust for 

example, than those that give the ratio of nuclear to cytoplasmic intensity (Sero and 

Bakal 2017). Overall tens to hundreds of features can be extracted from each 

region of the cell; concatenated together these features should form a 1-

dimensional vector that effectively describes the morphology of a single cell. 

1.2.5 Feature aggregation and reduction 

Where very large numbers of features have been extracted, high levels of 

correlation and redundancy will often exist between features. For many analysis 

methods, such as determining the similarity between phenotypic profiles of different 

treatment conditions, having large groups of highly correlated features presents 

challenges. For example, in identifying effects that may be strong and highly relevant, 

but only present in a small number of features, versus correlated noise that may be 

present in tens to hundreds of features. Thus, identifying non-redundant feature 

spaces represents an important step in preparing high-content data sets for 

exploratory analysis (Caicedo et al. 2017). 

There are two approaches that are typically used to reduce the number of features 

that are used to describe a high-content imaging dataset, and both lend from large 

amounts of research that have been carried out on this task in other fields: 

https://paperpile.com/c/HjVDIT/iMLd+5RHJ
https://paperpile.com/c/HjVDIT/iMLd+5RHJ
https://paperpile.com/c/HjVDIT/YjgJ
https://paperpile.com/c/HjVDIT/YjgJ
https://paperpile.com/c/HjVDIT/YjgJ
https://paperpile.com/c/HjVDIT/5RHJ
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1) Feature selection: In feature selection approaches, algorithms seek to 

iteratively select an optimal set of features. In one example of a greedy approach, 

the most correlated pair of features in the dataset is identified and the feature in 

this pair that is most correlated with the rest of the dataset is then removed, this 

is iterated until a minimum correlation threshold is reached (Woehrmann et al. 

2013). Minimum-redundancy maximum-relevance selection have also been 

tested (Ding and Peng 2005; Ng et al. 2010). In more advanced algorithms, 

combinatorial optimisation methods such as genetic algorithms can be used to 

optimise against metrics such as Akaike or Bayesian information criterion 

(Akaike 1998; Schwarz 1978), with a penalty for features number. 

2) Linear transformation: Linear transformation methods in contrast look to 

rotate or transform the data such that a reduced number of features capture the 

majority of information in the dataset. The most common transformation 

method is principle component analysis (PCA). In PCA variance is maximised in 

successive orthogonal dimensions (Hotelling 1933). Meaning that, following 

transformation, dimensions are linearly uncorrelated with the first principle 

component capturing the most variance in the dataset, followed by the second, 

and so on. Typically, PCA is performed by singular value decomposition of the 

matrix of cell or well-level data following mean centering of feature 

distributions. Factor analysis where non-orthogonal linear combinations of 

features that represent frequent patterns in the data are found, and linear 

discriminant analysis where projections of the data that maximise separation 

between positive and negative controls have also been tested in high-content 

workflows (Young et al. 2008; Kümmel et al. 2010). 

https://paperpile.com/c/HjVDIT/k1s6
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Following reduction of feature spaces aggregation of single cell data to well-level 

readouts is performed, where each well corresponds to an experimental condition 

and a unit of a microwell plate. This converts an array of data for each well, where 

rows represent single cell objects and columns represent features, into a single 1-

dimensional vector for that well. Multiple aggregation techniques exist, though 

typically mean or median feature values are taken across the population of cells 

(Caicedo et al. 2017). These have consistently performed well (Ljosa et al. 2013), 

although more advanced measures such as divergence from control population values 

as measured using the KS-statistic have also been used (Perlman et al. 2004). 

Typically multiple wells will exist for each condition, however these will not be 

aggregated prior to downstream analysis, as these constitute technical replicates of 

each condition and thus contain valuable information on the reproducibility of a given 

condition. Aggregation may also occur prior to feature reduction in certain cases. 

1.2.6 Data set exploration and visualisation 

The major goal of most high-content imaging workflows is to understand how the 

effect of different conditions relate to one another, and to control data. This relational 

understanding is achieved through similarity metrics that allow comparison and 

hierarchical clustering of different conditions, a strategy that’s typically used with 

larger non-redundant feature spaces.  The two most common similarity-metrics that 

are used are: 1) Pearson’s correlation, this represents how similar two different 

profiles are based on the features values of both conditions (Schulze et al. 2013; Singh 

et al. 2015); and 2) Euclidean distance, this gives the total distance between the two 

data points in Euclidean space, (Adams et al. 2006; Woehrmann et al. 2013). Rank 

https://paperpile.com/c/HjVDIT/5RHJ
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correlation metrics and other metrics have been tested but are typically less common, 

and only used in cases where standard normalisation and feature reduction strategies 

have been used (Reisen et al. 2013; Ljosa et al. 2013). 

Where a smaller number of dimensions contain the majority of information, it can 

often be easier just to plot well-level data points directly and interpret results. High-

dimensional visualisation techniques, such as t-Stochastic Neighbor Embedding 

(Maaten and Hinton 2008) and Isomap (Tenenbaum et al. 2000), that look to identify 

manifolds and unwrap these into lower dimensional spaces have also been explored, 

as in (Amir et al. 2013). However, these approaches can generate data structures that 

may be over-interpreted without care (Balasubramanian and Schwartz 2002). 

Typically the choice of visualisation technique will depend on the biological question 

being asked in the experiment or screen. 

1.3 Single cell analysis 

Aggregating populations of single cell features into readouts that describe the 

overall effect of a condition typically works very well for identifying hits that are 

similar or dissimilar to controls, as well as to relate conditions to one another 

(Caicedo et al. 2017). However, such aggregation techniques disregard the presence 

of potential subpopulations of cells, that may point towards exciting new biology that 

can be explored  (Snijder et al. 2012), and may also significantly aid biological 

interpretation of high-content imaging datasets (Snijder and Pelkmans 2011; 

Altschuler and Wu 2010). This includes understanding shape (Fuchs et al. 2010; Bakal 

et al. 2007; Yin et al. 2013; Sailem et al. 2014), cell-cycle phase (Neumann et al. 2010; 
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Jones et al. 2008; Mukherji et al. 2006), and even the likelihood of viral infection 

(Snijder et al. 2009). As well as developing a better understanding of biological 

processes, subpopulation identification can also provide important clinical insights. 

For example, a high-content analysis of specific signaling and morphological 

subpopulations, in H460 lung cancer cells, demonstrated that some groups were more 

likely to be specific for resistance to paclitaxel, versus others, due to a distinct 

signalling state (Singh et al. 2010). 

Typically in identifying subpopulations of cells in high-content imaging screens, 

manual qualitative inspection of conditions is performed and alongside prior 

knowledge, is used to identify examples for each population (Kiger et al. 2003). These 

in turn are used to train classifiers for these subpopulations that can then be applied 

to the dataset as a whole (Fuchs et al. 2010; Eggert et al. 2004; Neumann et al. 2006; 

Loo et al. 2007).  For example Bakal et al. used a weakly supervised approach to 

identify reference shapes, in an RNAi screen for modulators of drosophila BG-12 

morphology. Specifically, 7 treatments were identified that qualitatively produced 

cell morphologies that were highly visually distinct from control conditions. Neural 

networks were then trained on extracted features that sought to classify cells into 

each of these conditions, and thus learnt the dominant morphology in each of these 7 

conditions (Bakal et al. 2007). A similar technique was also used to study the 

organisation of Rho GTPase signalling pathways in drosophila cells, using a single cell 

approach in which different Rho GTPases were depleted using siRNA (Nir et al. 2010). 

Classification of cells into distinct morphologies has also been used to map signalling 

networks using double knockout siRNA screens where network connections were 
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inferred from non-additive effects, calculated using a pairwise interaction matrix 

(Horn et al. 2011). Finally, where subpopulations have been manually identified on a 

limited group of cells, online learning methods have also been used to expand the 

number of subpopulations to include additional groups not qualitatively described in 

the original training set (Jones et al. 2009; Yin et al. 2007). Classification of single cells 

into distinct subpopulations, can therefore be used as an effective strategy to aid 

interpretation of the effect of experimental conditions and in the inference of genetic 

interaction and signalling networks.  

However, such supervised approaches still introduce bias into dataset analysis, 

and also require extensive manual input in defining the presence of subpopulations. 

Unsupervised analysis in turn offers the potential to quickly identify subpopulations, 

without also introducing potential bias of the experimenter. In analysing a screen of 

genes that regulate morphology and cytoskeleton dynamics in melanoma cancer cells 

plated upon collagen matrices that mimic physiological condition I therefore explored 

how unsupervised approaches could be used to test whether or not discrete 

subpopulations of cells exist within a population or whether a more continuous set of 

forms are present. This analysis being the subject of Chapter 2. 
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1.4 Live cell imaging 

Traditionally, whilst high-content workflows were engineered by pharmaceutical 

companies and academic groups to screen large libraries of drugs and genetic 

conditions, live-cell imaging approaches have been developed by academics with a 

focus on understanding the dynamics of specific biological pathways, and how 

information is propagated through these pathways (Purvis and Lahav 2013). In live 

cell-imaging experiments, throughput is limited by the fact that tens to hundreds of 

images may need to be captured, for each and every condition, to build up an accurate 

profile of how any given gene may be behaving over time (Cooper and Bakal 2017). 

Moreover, the number of fluorescent reporter genes and non-toxic dyes that can be 

employed has also been traditionally limited to only a handful of genes within 

mammalian systems. 

However, with advances in gene editing capabilities an increasing number of live 

cell reporters are now available that can quickly be introduced into cells and provide 

accurate readouts of the localisation and expression levels of key proteins, using only 

a single channel (Gaudet and Miller-Jensen 2016). Meaning that, the gap in 

throughput and diversity of protein readouts captured in a single experiment is 

closing between high-content analysis and live cell imaging. For example, Stewart-

Ornstein et al.  used CRISPR gene editing technology to engineer a system, termed 

eFlut, that allows efficient tagging of proteins with fluorescent reporters at their 

endogenous loci, thus providing a detailed readout of protein expression levels 

(Stewart-Ornstein and Lahav 2016), Fig. 1-4A. Meanwhile, Regot et al. developed 

kinase translocation reporters, that possess a target sequence engineered to be 
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homologous to the consensus binding sequence of a specific kinase. Upon 

phosphorylation of this target sequence, these reporters translocate into the nucleus 

and therefore act as a readout of the upstream kinases’ activity (Kudo et al. 2018; 

Regot et al. 2014), Fig. 1-4B.  These one channel reporters are much more amenable 

to high-content type live imaging screens, as they are able to capture the effects of 

multiple signaling pathways, whilst leaving channels free for automated nuclei 

detection and segmentation. This is in contrast to more traditional readouts of 

signalling activity such as Forster Resonance Energy Transfer (FRET) reporters, Fig. 

1-4B. With FRET reporters, signalling activity is quantified by the ratio of emission 

from a donor fluorescent protein to an acceptor fluorescent protein, that may be 

connected (Zhang and Allen 2007). When donor and acceptor proteins/domains are 

in close proximity, the donor absorbs at a higher wavelength, and resonance transfer 

shifts this energy to the acceptor which in turn can then emit light at a lower 

wavelength. A number of different strategies can then be used to link signalling 

activity to proximity changes (Fritz et al. 2013). However, these reporters occupy two 

different wavelengths, or channels, in imaging experiments. This limits their 

effectiveness in studies that look to relate multiple reporters. As such, advances in 

reporter technology have facilitated automated imaging and tracking of entire 

populations of cells, in combination with the ability to measure multiple readouts of 

signaling activity. 
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Figure 1-4, Fluorescent Sensors for Signalling Dynamics  (Cooper and Bakal 2017): (A) The levels 

and localisation of a protein may be determined by linking a fluorescent protein (FP) to the N or C terminus 

of the protein and measuring fluorescence intensity. Ideally this is done at the endogenous loci, such that it 

is under control of the natural promoter (B) Förster resonance energy transfer (FRET) reporters make use 

of resonance energy transfer between donor and acceptor proteins where resonance transfer has been 

engineered to change as a result of biological signalling. Activity levels are quantified as the ratio of donor 

emission intensity to acceptor emission intensity. (C) Studies characterising the behaviour of proteins that 

translocate out of the nucleus upon phosphorylation have led to the development of kinase activity reporters 

(KTRs). Kinase activity is then recorded as the cytoplasmic: nuclear (C:N) fluorescence ratio (Kudo et al. 

2018; Regot et al. 2014). ** Reproduced, with permission, from John Albeck (C). 

Significant improvements in auto-focus, stage control, and incubation 

technologies have also increased the number of fields of view that we can capture in 

a single experiment as well as the length of time cells can be imaged for (Pepperkok 

and Ellenberg 2006). Yet, these improvements have now created major bottlenecks 

in tracking cells over long periods of time, especially around automating entire 

tracking pipelines and integrating different steps in data analysis (Coutu and 
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Schroeder 2013). In development of a tracking workflow, typically the canonical high-

content workflow of image preprocessing, object detection and segmentation, and 

feature extraction is adopted as described previously (Cooper and Bakal 2017). 

However, notable variations on this pipeline occur, for example, frequently tracking 

is performed on bright-field images which can introduce additional challenges (Kerz 

et al. 2016; Buggenthin et al. 2013; Olivier et al. 2010). Following these stages an 

additional step is then included that seeks to track cells, or more commonly cell nuclei, 

over the period of imaging, Fig. 1-3. Yet, current solutions to live cell tracking typically 

require independent software packages to be used for segmentation, tracking of cells, 

and correction of tracks. This can create issues, and reduce throughput, for the 

majority of biologists who do not have experience in building software pipelines. This 

can be especially problematic when different software packages may use different 

programming languages and/or import and export images data in varying types of 

file format. To improve throughput and ease of use, new software tools are 

desperately needed for to enable simple tracking of cells and extraction of time-series 

data. This motivated the development of NucliTrack, a cross-platform package that 

allows segmentation, features extraction, tracking, and correction of tracks from live 

cell datasets in a single application.  Development of this application is detailed in 

Chapter 3. 

By using higher throughput live cell approaches, we can also start to ask the 

question of whether subpopulations of cells exist that display distinct patterns of 

signaling behaviour. For example, in heterogeneous populations, where does a 

continuous set of behaviours become two discrete populations, defining a bifurcation 

https://paperpile.com/c/HjVDIT/Sd2W
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point in dynamics, that can for example determine a cell fate decision. In key studies 

for example, Spencer et al. identified a bifurcation point following mitosis in CDK2 

activity that governs a cell decision to proliferate or quiesce at the restriction point 

(Spencer et al. 2013). Studying the dynamics of how bacteria enter a competent state 

Süel et al. also identified a bifurcation point that underpins where a bacteria enters a 

limit cycle of competency, before transitioning back to a proliferative state  (Süel et 

al. 2006). Finally, previous work by Barr et al. demonstrated hysteresis at the G1/S 

transition in Hela cells, governing their ability to commit to DNA synthesis or remain 

in a G1 state (Barr et al. 2016). 

Following on from these studies we used a live high-content approach to explore 

how p21 modulates the decision point between arrest and quiescence in G1 phase in 

cells in response to DNA damage. Here using a combination of reporters, most 

importantly p21 tagged with GFP at its endogenous locus in hTert-RPE1 cells. 

Specifically, we found that two double negative feedback loops, between the cell cycle 

inhibitor p21 and the E3  ubiquitin ligases CRL4-Cdt2 and SCF-Skp2 underpin a bi-

furcation point between proliferation and arrest that occurs at the restriction point in 

populations of hTert-RPE1 cells in response to endogenous replication stress 

occurring in mother cell S-phase (Barr et al. 2017). This work being the subject of 

Chapter 4. 
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1.5 Deep-learning strategies for analysis of high-content data 

Shortly prior to, and during the course of this thesis, the field of deep-learning was 

rapidly emerging as a major new force in machine-learning and data analysis (LeCun 

et al. 2015). This was driven by both significant improvements in processors, known 

as Graphics Processing Units (GPUs), that are able to very efficiently handle large 

matrix operations such as those required to train and evaluate deep-neural networks, 

as well advances in software for managing such operations (Abadi et al. 2016; 

Bergstra et al. 2010). Together, these improvements allowed researchers to go from 

achieving superhuman performance on toy benchmark challenges such as classifying 

handwritten digits (LeCun et al. 1998), to such levels of accuracy on large image 

databases consisting of thousands of images that may have dimensions of hundreds 

to thousands of pixels (Krizhevsky et al. 2012), as well as segmenting these images 

(Long et al. 2015), detecting objects within them (Girshick 2015; Ren et al. 2017). 

This ability to handle larger images such as those captured by microscopes has 

driven the transfer of such deep-learning approaches to tasks in quantitative 

microscopy (Kraus and Frey 2016). For example, in early work Ronneberger et al. 

demonstrated how a fully convolutional neural network architecture, U-net, could be 

used to achieve state-of-the-art performance for segmenting cell images using 

brightfield and fluorescence microscopy in a  key benchmark challenge (Ronneberger 

et al. 2015). Moreover, Kraus et. al. demonstrated how correct pooling of information 

captured from a deep convolutional neural network could be used to accurately 

classify both protein localisation and compound mechanism of action. This used an 

approach termed multiple instance learning, where the network was trained on  data 

https://paperpile.com/c/q2kPz8/GB2t
https://paperpile.com/c/q2kPz8/GB2t
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https://paperpile.com/c/q2kPz8/nT95+gTxF
https://paperpile.com/c/q2kPz8/n8El
https://paperpile.com/c/q2kPz8/qniI
https://paperpile.com/c/q2kPz8/mDvC
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that had examples of proteins with known localisation, and compounds with known 

mechanism of action (Kraus et al. 2017; Kraus et al. 2016). Godinez et al. also applied 

deep-neural networks to classifying phenotypes using deep-convolutional neural 

networks in an early approach (Godinez et al. 2017), and transfer of features learned 

on large imaging datasets has also shown promise as a way of improving our ability 

to detect cell phenotypes (Pawlowski et al. 2016).  

Currently, however deep-learning strategies in microscopy require the use of 

labelled control data to train neural networks (Ching et al. 2018). However, often in 

high-content screens new phenotypes may be present. When faced with new 

phenotypes, neural networks trained on control examples will incorrectly classify 

them. This motivates the need for deep-learning strategies that can build meaningful 

hierarchical representations of imaging datasets without prior knowledge of classes. 

Deep convolutional neural networks, known as autoencoders, learn to compress 

images into lower dimensional spaces, known as an embeddings, and then 

reconstruct them in a way that minimises the reconstruction error as compared to 

the original image (Hinton and Salakhutdinov 2006; Vincent et al. 2010).  Such 

autoencoders can learn embeddings that when clustered lead to results that match 

ground truth class labels; this demonstrates that meaningful hierarchical 

representations of imaging datasets can be learnt (Hinton and Salakhutdinov 2006; 

Vincent et al. 2010). However, in contrast to many images, cells on 2D substrates are 

translationally and rotationally invariant, display a diverse range of morphologies 

that may be independent of experimental conditions, and often contain large batch 

effects. As such when applied to high-content images autoencoders typically learn 

https://paperpile.com/c/q2kPz8/r2Tw+dE6A
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embeddings that capture batch effects, or meaningless information on the spatial 

localisation of cells. 

This motivates the current line of research into using weakly-supervised deep-

neural networks to learn meaningful embeddings, that can then be clustered using 

traditional unsupervised approaches (Michael Ando et al. 2017; Caicedo et al. 2018). 

The ability to correctly classify technical replicates of a condition versus all other 

conditions also represents a promising weakly-supervised approach to extracting 

biologically meaningful embeddings that unsupervised clustering can then be 

performed on. Some of the concepts developed in this thesis as well as the work of 

Kraus et al. (Kraus et al. 2017; Kraus et al. 2016), have contributed to very recent work 

by Lu et al. who used such a weakly supervised approach to demonstrate state-of-the-

art performance when classifying protein localisation at the single cell level (Lu et al. 

2018), using a technique that can be broadly applied to the task of screening for new 

phenotypes in high-content screens. Thus, the transfer of deep-learning strategies to 

high-content microscopy, will likely underpin the next wave of innovation in the field, 

and is discussed briefly in Chapter 5, Summary and Future Directions. 

https://paperpile.com/c/q2kPz8/i2IX+VStb
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2 Characterising heterogeneity in cell shape dynamics 

2.1 Introduction 

Melanoma is a metastatic and highly aggressive form of skin cancer that arises 

from melanocytes. The aggression of melanomas stems in part from their ability to 

effectively invade neighbouring tissues, enter circulation, and ultimately disseminate 

to distant sites around the body. At the single cell level melanoma tumorigenesis is 

associated with transition from an epithelial state to a mesenchymal state, known as 

epithelial to mesenchymal transition (EMT). In over half of all cases this transition is 

associated with mutations in the driver genes BRAF and NRAS (Heppt et al. 2017), 

that together drive proliferation and transformation of melanocytes into a cancerous 

state (Caramel et al. 2013). 

For a long time EMT was associated with a single transition to an adherent motile 

phenotype. Though we are now aware that melanoma cells, and cancers more 

generally, display a wide range of migratory modes. Each of these are typically 

associated with varying substrate and/or stiffness of the extracellular matrix (Friedl 

and Wolf 2003). For example, melanoma cells cultured in soft 3D collagen matrix will 

adopt an adhesion independent, amoeboid phenotype, where migration is driven by 

contraction and membrane blebbing, Fig. 2-1A. This allows the cell to squeeze 

through gaps in the extracellular matrix (Sahai and Marshall 2003; Sanz-Moreno et al. 

2011).  In contrast, melanoma cells cultured on stiffer substrates, or in vitro on plastic, 

adopt a more typical mesenchymal form with migration characterised by rounds of 

https://paperpile.com/c/oNmvB8/jxUU
https://paperpile.com/c/oNmvB8/Zp42
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protrusion, adhesion, and retraction (Parsons, Horwitz, and Schwartz 2010; Yin et al. 

2013), Fig. 2-1B. Where cancer cells are unable to modify their migratory mode, in 

changing environments, traction and forward movement are severely compromised 

(Liu et al. 2015; Tozluoğlu et al. 2013; Ruprecht et al. 2015). The ability of cancer cells 

to adapt to environments of varying stiffness therefore represents a key factor in their 

ability disseminate through the body and metastasise. 

 

Figure 2-1, Melanoma cells adopt different migratory modes in vivo:  A) In soft extracellular 

matrix melanoma cells have been found to adopt an amoeboid migratory mode that involves contraction of 

the cell body. This drives blebbing of the membrane and exploration of new areas that the cell and nucleus 

can squeeze into. B) On stiffer ECM matrices cells migrate through mesenchymal forms that typically involve 

cyclic rounds of protrusion at the leading edge, adhesion to the extracellular matrix, and then retraction of 

the leading edge; this generates force that pulls the nucleus through the matrix. 

 
At the molecular level different migratory modes are driven by distinct signalling 

pathways. Chief among the regulators of migration, cell shape, and cytoskeletal 

dynamics are Rho family GTPases (Sadok and Marshall 2014; Hall 1998; Etienne-

https://paperpile.com/c/oNmvB8/PTGO+xRAf
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Manneville and Hall 2002). Rho GTPases are activated when bound to GTP and exert 

their effects through protein-protein interactions. Binding of a guanine activating 

protein (GAP) induces intrinsic hydrolysis of GTP to GDP and deactivation of the 

GTPase, subsequent binding of a guanine exchange factor (GEF), catalyses the 

exchange of GDP for GTP re-activating the Rho GTPase (Hall 1998; Etienne-

Manneville and Hall 2002), Fig. 2-2A. 

The Rho GTPases, RhoA, Rac1, and Cdc42 represent the best studied Rho family 

GTPases (Ridley 2012; Nobes and Hall 1995), Fig. 2-2B. RhoA’s major role in 

regulating cell morphology is associated with the induction of contraction, through 

activation of the effector protein Rho-associated kinase (ROCK) (Matsui et al. 1996; 

Amano, Fukata, and Kaibuchi 2000). ROCK promotes stabilisation of actin filaments 

by phosphorylation of the cytoskeleton modulator LIM kinase, an inhibitor of the actin 

polymerisation protein, cofilin (Maekawa et al. 1999). ROCK also phosphorylates and 

activates myosin light chains that generate force and drive contraction of actin 

filaments, overall leading to the development of contractile bundles and creation of 

tension within the cell (Kimura et al. 1996), Fig. 2-2B. In contrast, Rac1 is associated 

with the formation of actin protrusions and lamellipodia, through NED9/DOCK3 

dependent activation of Arp2/3 WAVE complexes that stabilise formation of new 

branched actin filaments (Eden et al. 2002), Fig. 2-2B. Finally, CDC42 is associated 

with induction of polar structures, and filopodia (Nobes and Hall 1995). CDC42 

dependent WASP activation of ARP2/3 complexes is considered a major mechanisms 

that induces filopodia (Rohatgi, Ho, and Kirschner 2000; Rohatgi et al. 1999), Fig. 2-

2B. IRSp53/MENA complexes have also been implicated in this process (Krugmann et 
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al. 2001). Thus, in cells cultured in the lab, distinct morphological characteristics are 

associated with the activity of specific Rho GTPases proteins, and these in turn, 

underpin different migratory forms at the single cell level (Friedl and Wolf 2003). 

 
Figure 2-2, Rho GTPase pathways involved in regulation of the cytoskeleton: A) RhoGTPase’s 

are active when bound to GTP and inactive when bound to GDP. GTPase activating factors (GAPs) catalyse 

intrinsic hydrolysis of GTP to GDP and lead to inactivation of the GTPase. GTP exchange factors catalyse 

exchange of GDP to GTP, and thus activate the GTPase. B) Observations from overexpression studies 

identified key pathways that regulate cytoskeletal dynamics downstream of Rho GTPase activity. Images 

are from (Hall, 1998). 

 
In establishing the link between specific Rho GTPases and their respective cell 

morphologies, typically microinjection or over-expression studies were performed 

(Hall 1998). However more recently, analysis of endogenous Rho GTPase activity in 

live cells using förster resonance energy transfer (FRET) reporters, Fig. 1-4C, has 

shown that in fact discrete spatio-temporal activity of both Rac1 and RhoA is required 

for correct cytoskeletal regulation in migrating cells (Pertz et al. 2006). Localisation 

of Rho and Rac signalling is achieved through negative feedback in which Rac1 
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inhibits RhoA-ROCK activity, and conversely RhoA inhibits Rac1, in part through Rac1 

dependent GAP activity (ARHGAP22) (Sanz-Moreno et al. 2008). High-content 

imaging of Drosophila BG-2 cells following siRNA depletion of different Rho GTPases 

also demonstrated that compartmentalisation of Rho GTPase activity occurs at a cell 

wide level (Bakal et al. 2007). This led to the proposal of a model where Rac1 activity 

at the leading-edge drives protrusions, and RhoA activity at the trailing edge drives 

membrane retraction; this enabling generation of traction and forward movement 

(Bakal et al. 2007). Chemoattractants in turn can then influence the directionality of 

this movement through CDC42 activity regulating the localisation of RhoA and Rac1 

activity (Pertz et al. 2006). Thus, where studies of individual Rho GTPases were able 

to identify the key signalling mechanisms required for Rho GTPases to modulate 

cytoskeletal dynamics, live-cell studies and genetic depletion screens of Rho GTPases 

in vitro have shown how emergent properties such as cell form and migration depend 

on interactions and feedback between key Rho GTPases such as RhoA, Rac1 and 

CDC42. 

However, with such studies being performed in vitro on stiff plastic substrates, 

they likely only captured a subset of the possible interactions and network behaviours 

that can occur in conditions that closer match those seen in vivo. Understanding how 

these networks change and adapt in more physiologically relevant conditions 

remains an open question. Specifically, where multiple migratory modes and forms 

are available to cells migrating in extracellular matrix is the lack of redundancy in Rho 

GTPase signalling that has been demonstrated on plastic maintained (Bakal et al. 

2007; Sailem et al. 2014).  If cells continue to demonstrate reliance on specific Rho 
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GTPases for certain cell shapes and migration modes, these Rho GTPases would then 

represent attractive targets for blocking the dissemination of melanoma throughout 

the body. If in contrast, there is increased levels of redundancy in melanoma cells 

growing and moving in more physiological conditions, this would raise questions as 

to how accurate our understanding of Rho GTPase signalling is based upon studies of 

cells cultured on stiff plastic substrates and suggest that targeting Rho GTPase 

signalling to block migration may not be an effective clinical strategy. 

Looking to answer these questions, as well as exploring the observation that 

melanoma cells exist in two distinct amoeboid and mesenchymal forms on substrates 

that resemble those found in vivo, we sought to perform an unbiased analysis of the 

set of shapes that wild-type populations of melanoma cells can adopt in conditions 

that mimic the stiffness of extracellular matrix in vivo. By then systematically 

depleting Rho family GTPases with small interference RNA (siRNA) we looked to 

understand how the set and/or distribution of cell shapes would change; this in turn 

allowing us to build an understanding of the degree of redundancy exhibited by Rho 

GTPase networks in vivo. Could we block the adoption or maintenance of specific cell 

forms as Rho GTPase depletions on stiff plastic substrates can achieve? A positive 

result here would indicate a viable strategy for blocking cancer cell migration in vivo 

and potentially suggest therapeutic targets for further exploration. A negative result 

would indicate greater redundancy in the system exists than we have previously 

observed in vitro, suggesting our observations on plastic don’t translate well to in vivo 

conditions? 
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2.2 Results 

To study how Rho GTPases affect the set of shapes that melanoma cells can adopt, 

WM266.4 cells were cultured upon thick (300-700μM) matrices of Bovine fibrillar 

collagen I gel. Thick collagen matrices have been shown to approximate in vivo 

conditions and induce amoeboid forms in melanoma cells (Sanz-Moreno et al. 2008). 

Specifically, the elastic modulus of the gel used is estimated to be ~200Pa (Paszek et 

al. 2005) a stiffness resembles that of lung alveolar tissue. WM266.4 cells were 

selected due to previous observations that they exist in a 50:50 mix of amoeboid and 

mesenchymal forms, and frequently transition between these forms on a scale of 

minutes to hours  (Sahai and Marshall 2003; Yin et al. 2013). In contrast other lines 

such as A375M2, adopt a largely amoeboid form at such stiffnesses, and rarely 

transition between different shapes (Sahai and Marshall 2003; Sanz-Moreno et al. 

2008). We reasoned that cells that transition at faster rates and have a more even 

mixture of shapes in wild-type populations, would give us a stronger effect size when 

exploring their ability to adopt and switch between different shapes. 

WM266.4 cells were imaged live, in 3D, in these conditions, over a period lasting 

several hours to capture shape transitions, using high-throughput confocal 

microscopy, Fig. 2-3A (Methods). Initial qualitative inspection of the images showed 

that the majority of cells remained atop of the collagen gel, in the x, y plane over the 

course of imaging, rather than penetrating the gel and moving in the z-dimension. The 

design of the optical path in confocal microscopes means that the point spread 

function is disperse in the z-axis limiting z-axis resolution, versus narrow in the x, y 

axis giving high resolution in these axis. Together these factors meant that we took 
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the decision to reduce each z-stack into a single maximally projected 2D image; here 

each pixel in the maximally projected image corresponds to the pixel with the 

maximum intensity value across the z-stack at that x-y position, Fig. 2-3B. Therefore, 

the output of the screen was a time-series of 2D fields of view, capturing melanoma 

cells plated atop 3D collagen matrix, treated with both control non-targeted siRNA 

and a library of siRNA targeting different Rho GTPases. For each condition at least two 

repeats were captured, though limitations in imaging through thick matrix, often 

prevented more than 2 repeats being captured in the screen. 

 
Figure 2-3, Imaging of melanoma cell plated in thick collagen matrix: A) Cells were imaged by 

confocal microscopy atop thick collagen matrices, in imaging media, live over time; B) Maximum 

projections were taken through the z-region corresponding to the top of the collagen gels. 

2.2.1 Characterising the shape space of the screen 

Segmentation was performed, and a set of 15 features was recorded for each cell 

object, filtering was then carried out to remove debris and out of focus cells, finally 

tracking was performed using a custom script (Methods). Overall after filtering a total 
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of 62,000 segmented cell objects being captured, with 423 being the minimum 

number of objects captured in a time series. A random sample of 2000 cells stratified 

over all conditions was used to identify the set of shapes in the population. By using a 

pooled sample this typically means all shapes observed in the screen are captured 

(Bakal et al. 2007; Bakal et al. 2008). Random samples of 400 cells were taken for each 

well for analysis of the effect of a specific siRNA depletion. We assumed that the speed 

that WM266.4 cells transition between shape would mean a random sample over time 

would approximate imaging a larger population of cells.  

Shape Clusters 

Previous work by the Bakal lab (Bakal et al. 2007; Yin et al. 2013; Sailem et al. 

2014), and others (Jones et al. 2008; Fuchs et al. 2010) have shown that identification 

of distinct cell shapes within a population can: 1) reduce dimensionality, by reducing 

large multiple features to just a few shapes; and 2) improve the interpretability of 

results. For example, understanding differences in the statistical moments of pixel 

intensity over a region is difficult, whilst knowing that more cells in a population have 

a ‘triangular’ shape is both easier to understand and to relate qualitatively to raw data, 

for sanity checks. Here, I quantitatively defined specific cell shapes as spatial clusters 

in the space of features extracted from single cells. Each ‘Shape Cluster’ (SC) 

corresponds to a cell shape seen within the imaged population of cells and is 

identified from the sample of 2000 cells pooled across the entire screen, Fig. 2-4A.  

I defined the ‘Shape Cluster Profile’ (SCP) as a unit vector giving the fraction of 

cells in each SC for any given condition. This allows us to quantitatively ask whether 
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specific conditions almost completely reduce the number of cells in a given shape, 

lead to cells adopting new shapes, or have weaker effects that correspond to shifting 

the distribution of cells in different shapes, Fig. 2-4B.  

 

Figure 2-4, Defining the shape space of a population of cells: A) Shape Clusters (SCs) are defined 

as spatial clusters of cells in feature space; B) Shape Cluster Profiles (SCPs) give the fraction of a population 

of cells in a specific SC. 

Identifying Shape Clusters 

Typically, to identify distinct SCs within a sample of cells, supervised methods are 

used  (Jones et al. 2009; Rämö et al. 2009; Bakal et al. 2007; Boland and Murphy 2001). 

Here, a set of reference manual shapes are selected, and classifiers used to map cells 

to these reference shape classes. However, such methods suffer from two challenges: 

1) to fully understand the set of all possible shapes, humans would need to analyse 

every shape in the sample. Due to time constraints this is difficult; and 2) There is 

natural bias in the way people select shapes, and this can introduce bias into the 

analysis. Thus unsupervised machine learning approaches can lead to more complete 

https://paperpile.com/c/oNmvB8/8pYZ+7vt0+LFCf+fPfi
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and unbiased analysis (Friedman, Hastie, and Tibshirani 2001), and form the basis of 

the analysis conducted here. However, these unsupervised approaches pose 

additional challenges in identifying the number of SCs that should be used to describe 

the population, termed model selection (Tibshirani, Walther, and Hastie 2001). 

In previous work Sailem et. al. developed an unsupervised method to characterize 

SCs based on the mean silhouette statistic (Sailem et al. 2014). In this approach, 

following z-score normalisation, PCA was performed on shape space to reduce the 

number of feature dimensions used to describe shapes (Hotelling 1933). Gaussian 

Mixture Models (GMMs) were fit with expectation maximisation to identify cell SCs in 

the dataset (Bilmes and Others 1998), and the silhouette score used to measure 

clustering quality (Rousseeuw 1987). Model number was chosen to maximise the 

silhouette score. When I used this previously adopted approach, the silhouette score 

for two clusters was high at 0.53, Fig. 2-5A. However further inspection of single cell 

data points after PCA transformation suggested the data was log distributed, and k-

means clustering was capturing the long tail of the log-distribution, Fig. 2-5B. I 

therefore log transformed feature values and reapplied k-means clustering for 

increasing model number. After log transformation the silhouette score never 

surpassed 0.4 suggesting no natural multi-modality, Fig. 2-5C (Dimitriadou, Dolničar, 

and Weingessel 2002; Bolshakova and Azuaje 2003; Rousseeuw 1987), visual 

inspection of individual data points confirmed this Fog. 2-5D. Yet, qualitative analysis 

also highlighted a divergence from the normal distribution along the first principal 

component Fig. 2-5D, indeed a Kolmogorov-Smirnov (KS) test for normality 

confirmed this with P<0.001, and this could be clearly seen in a histogram of the PC1 

https://paperpile.com/c/oNmvB8/bMid
https://paperpile.com/c/oNmvB8/T1v5
https://paperpile.com/c/oNmvB8/kzEr
https://paperpile.com/c/oNmvB8/eL5l
https://paperpile.com/c/oNmvB8/nhbq
https://paperpile.com/c/oNmvB8/pz8u
https://paperpile.com/c/oNmvB8/49CA+MwiU+pz8u
https://paperpile.com/c/oNmvB8/49CA+MwiU+pz8u
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probability distribution plotted alongside a normal distribution of equal mean and 

variance Fig2-5E. Moreover, structure could also be seen qualitatively when 

comparing the 1st and 3rd  principal components Fig2-5F. This gave an early indication 

that no natural multimodality existed in the sampled population of melanoma cells, 

and that more forms than the observed amoeboid and mesenchymal shapes existed. 

However, often feature transformation and selection, as well as optimisation of 

clustering technique can improve results (Caicedo et al. 2017). Therefore, I sought to 

develop an alternative unsupervised approach to analysing cell shape, to further test 

for the existence of natural structure in the dataset that would aid interpretation. 

 

Figure 2-5, The Silhouette score indicated that shape space was continuous: A) The silhouette 

score was calculated for increasing model number, using clusters determined by k-means from the first 3 

PC’s following PCA transformation of raw feature values from a sample of 2000 cells; B) Plotting of single 

cell PC1 and PC2 values showed a log distribution with no clear multi-modality; C) Applying the same 

method to log transformed data showed much weaker silhouette scores for all model numbers; D) In the 

log-transformed feature space no clear clustering could be seen. However, PC1 demonstrated divergence 

from a normal distribution; E) A probability distribution of single-cell PC1 values, versus an equivalent 

https://paperpile.com/c/oNmvB8/T9ZE
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normal distribution further shows this; F) Further structure was seen between principle components 1 and 

3.  

Optimising a method for unsupervised cell shape detection 

I began by looking to transform the feature space into one that would result in the 

most biologically relevant SCs, and SCPs that could best discriminate between 

conditions (signal) and would show minimal variation between technical repeats 

(noise). The Davies-Bouldin index (DBI) is a standard measure of internal clustering 

quality (Davies and Bouldin 1979). Lower DBI scores correspond to better clustering 

of the data. More formally in Euclidean space the separation of a cluster 𝑆𝑖 can be 

defined in terms of the cluster center 𝐴𝑖 , data points within the cluster 𝑋𝑗 , and the 

number of data points in the cluster 𝑇𝑖 , given the set of all clusters,  

𝑆𝑖 = (
1

𝑇𝑖
 ∑(𝑋𝑗 − 𝐴𝑖)

2

𝑇𝑖

𝑗=1

)

1
2

 

In turn the distance between two different clusters in Euclidean space 𝑅𝑖,𝑗  , is the 

Euclidean norm between the two centers, 𝐴𝑖 and 𝐴𝑗 , 

𝑅𝑖,𝑗  = ‖𝐴𝑖  −  𝐴𝑗‖
2
 

For each cluster the worst overlap between that cluster and another cluster is 

defined in (Davies and Bouldin 1979) as, 

https://paperpile.com/c/oNmvB8/d3Cn
https://paperpile.com/c/oNmvB8/d3Cn
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𝐷𝑖 = max ( 
𝑆𝑖 + 𝑆𝑗

𝑅𝑖,𝑗
) , 𝑗 ≠ 𝑖  

The DBI then gives the average overlap between a cluster and the nearest cluster 

to it over the entire dataset, 

𝐷𝐵𝐼 =
1

𝑁
∑ 𝐷𝑖

𝑁

𝑖=1

 

By defining SCP vectors of technical repeats as belonging to the same cluster, and 

different conditions (siRNA gene depletions) as belonging to different clusters, we can 

use the DBI to determine how effectively any given feature reduction technique and 

clustering approach is extracting biological information from technical noise. We 

reasoned that those combinations of approaches result in the best, or lowest, DBI 

scores would be most likely to reveal morphological sub-populations. 

Testing combinations of feature reduction and clustering methods. 

Using the DBI to evaluate the performance of feature reduction and clustering 

techniques, I looked to test several methods for reducing feature space and 

identifying SCs, against a benchmark DBI value. To obtain a benchmark DBI value, I 

took a mean-aggregate of features values from the sample of 400 cells from each 

condition. This has been found to give the most sensitive measure of a conditions 

effects, however suffers from issue with interpretability, and does not help with 

identification of subpopulations (Caicedo et al. 2017). The benchmark DBI was then 

calculated from the Euclidean distance between mean-aggregates of technical 

https://paperpile.com/c/oNmvB8/T9ZE
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repeats, versus the distance between different conditions. Since dimensionality is 

known to affect the DBI (Davies and Bouldin 1979), PCA was performed on the mean 

feature vector as is most commonly performed in high content analysis (Caicedo et al. 

2017), to create a vector with a dimensionality that would match the number of 

extracted SCs a technique was being compared to. This benchmark set of DBI values 

could then be used to assess the performance of different feature transformation and 

clustering strategies, Fig. 2-6 (red line). 

There are several major approaches to reducing the size of the space describing 

cell shapes. Firstly, reducing the dimensionality of the dataset, either through linear 

transformation, or feature selection. Secondly, reducing the space of variables for 

each feature, for example, through binning all features into discrete values. There are 

also several well documented approaches to unsupervised clustering of data, notably 

K-means clustering, Gaussian Mixture Models, fuzzy C-means clustering, and 

hierarchical clustering (Jain 2010). To test combinations of these techniques, each of 

the clustering approaches was tested over SC numbers ranging from 2 to 7, in 

combination with: 1) Raw feature data, Fig. 2-6A; 2) Binning of features into two 

values, those above and below the mean, Fig. 2-6B; and 3) Reduction of feature space 

using PCA to 3 PC’s (capturing >90% of variance), followed by clustering in this 

feature space, Fig. 2-6C.  

This analysis demonstrated that identifying SC’s from both raw data, and reduced 

feature spaces using PCA both led to greater DBI values, independent of the clustering 

method used, or number of SCs selected. In contrast, binning of features into two bins, 

based upon values being above or below the mean, resulted in DBI values that were 

https://paperpile.com/c/oNmvB8/d3Cn
https://paperpile.com/c/oNmvB8/T9ZE
https://paperpile.com/c/oNmvB8/T9ZE
https://paperpile.com/c/oNmvB8/jJ7X
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similar to those of the benchmark, as long as the SC number was greater than 2. 

Following feature binning, all clustering methods performed equally well. K-means 

clustering was significantly faster to run computationally and was therefore used in 

combination with feature binning. Together this analysis defined the feature 

transformation strategy and technique for clustering cells by their shapes. 

 
Figure 2-6, Analysis of different combinations of clustering technique and feature space 

transformation technique: A) Comparison of different unsupervised clustering approaches on raw data, 

versus benchmark score (red). B) Comparison of unsupervised approaches on data transformed by binning 

features into two values, above and below the mean, above 2 clusters scores resemble those of the mean 

feature benchmark; C) Comparison of clustering methods on the first 3 principal components following 

transformation of the feature space by PCA. All methods perform significantly worse than the benchmark 

here. 

Selecting shape cluster number 

Choosing the correct number of SCs with which to describe the data, often termed 

model selection, is a known challenge in unsupervised data analysis (Tibshirani, 

Walther, and Hastie 2001). Following K-means clustering of the data, calculation of 

the mean silhouette value on the transformed feature space showed that whilst the 

https://paperpile.com/c/oNmvB8/T1v5
https://paperpile.com/c/oNmvB8/T1v5
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quality of clustering was improved, the ideal value of 1 was still never approached, 

Fig. 2-7A. Moreover, the silhouette value dropped continuously from 2 clusters, 

further indicating no natural clustering was present, Fig. 2-7A. The Gap statistic was 

also considered (Tibshirani, Walther, and Hastie 2001), and compares increasing 

numbers of clusters compared to a control randomised dataset, here a single peak 

value indicates a positive results, but instead no peak value was observed instead the 

statistic plateaued after 4 clusters indicating a negative result, Fig. 2-7B. Finally, 

Bayesian information criterion (BIC) identified a broad optimum centred on 5 or 6 SC 

rather than a clear minimum as may be expected for natural clustering (Schwarz 

1978), Fig. 2-7C. Together this analysis indicated the data represented a largely 

continuous distribution with no clear discrete clusters emerging, together supporting 

the notion that melanoma shape space is largely continuous for cells cultured atop 

thick collagen matrix. 

To convert features space into a set of SCs for improving interpretability and 

facilitating analysis of dynamics I therefore looked to use measures of clustering 

stability to determine SC number, and identify structure in the continuous 

distribution of melanoma cells shapes. Such stability approaches are known model 

selection methods that seek to identify the number of clusters that leads to most 

reproducible separation, subject to perturbation of the data (Shamir and Tishby 2008, 

2009). I initially explored clustering reproducibility by performing k-means 

clustering 1000 times on cells resampled from a set of 61,000 cells; with a 1000 cells 

held out for validation of stability. How near cluster centroids fell to each other over 

successive iterations of clustering, was analysed using the silhouette score.  

https://paperpile.com/c/oNmvB8/T1v5
https://paperpile.com/c/oNmvB8/gHkg
https://paperpile.com/c/oNmvB8/gHkg
https://paperpile.com/c/oNmvB8/bErV+PmbH
https://paperpile.com/c/oNmvB8/bErV+PmbH
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Using this approach clear peaks at 2 or 6 clusters emerged with high silhouette 

values, when clustering was performed with either k-means, Fig. 2-7D, or fuzzy c-

means Fig. 2-7E. Moreover, 2 or 6 clusters remained stable on analysis of held out 

data, giving again similar centroid values to those obtained from the resampled 

datasets, Fig. 2-7F (large dark points). Given that the DBI score for 2 SCs was 

significantly worse than the benchmark results following transformation of feature 

space, Fig. 2-6B, indicating loss of information, 6 SCs were chosen to describe the data. 

Taken together this unsupervised analysis therefore revealed that whilst melanoma 

shape space was likely continuous, structure existed that could be captured by 

clustering. Both 2 SC’s, perhaps corresponding to the observed amoeboid and 

mesenchymal shapes, as well as 6 SC’s emerged as reproducible SC numbers that 

could be used to describe the data. 

 

Figure 2-7,  Selection of the optimum number of shape clusters with which to describe the data: 

A) Silhouette values were calculated on k-means clustering applied features after binning values above and 
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below the mean; B) Calculation of the GAP statistic from cluster numbers 2 through to 10; C) BIC calculated 

on the full dataset and cluster number increasing to 1; D) The stability score over cluster numbers 2–10, 

calculated as the silhouette value applied to k-means clustering of centroids. Centroids are from 100 

resamples of initial k-means clustering to identify SCs from a sample of 2000 cells;  E) Same as (D) except 

Fuzzy C-means clustering is used; F) Held out data (large dark points) mapped to clusters centroids sampled 

from training data (light circles). 

Corresponding cell shapes 

To interpret SC’s, the mean feature values of cells in each SC was calculated for 

both 2 SCs and 6 SCs, Fig. 2-8A. Classification of cells into two SCs yielded; 1) rounded 

cells, characterised by low length to width ratio, and poor symmetry caused by cells 

in this category having no clear lines of symmetry; and 2) elongated/protrusive cells 

that have a high length to width ratio, and contain typically bipolar cells with distinct 

axis of symmetry. The identification of these two cell SCs supports the canonical 

notion that melanoma cells adopt two distinct amoeboid and mesenchymal from 

when plated in 3D matrix. 

When clustered into 6 shapes, we found that three shapes that qualitatively would 

be classed as mesenchymal emerge, Fig. 2-8A. Specifically, these include the most 

common bipolar or ‘spindle’ like shapes, large stellate or ‘star’ shaped cells that have 

both a large area in the image and are highly protrusive, and finally mono-polar or 

‘tear drop’ shape cells, typified by a round nuclear body with single extending 

protrusion. Three distinct clusters also emerge from the amoeboid group, these are 

‘small elliptical’ and ‘small round’ cell shapes that are largely similar, but 

differentiated by levels of symmetry, and a ‘large round’ group of cells that resemble 
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cells that have lost contractile force. The fact that these allow better separation of 

conditions, and match benchline performance compared to mean aggregated well 

values as measured by the DBI, indicates that these shapes also correspond to 

important forms that are influenced by depletion of different Rho GTPases. 

 

Figure 2-8, Heat maps of normalised feature values were averaged for each SC: A) Mean feature 

values when two clusters are chosen to split single cell data, one cluster is enriched for length and is 

asymmetric, the other is enrich for area and roundness features and is symmetric; B) When split by 6 

categories, finer grained sub-populations emerge, Round shapes correspond to low symmetry and high 

roundness/width:length scores. The teardrop shape scores stronger for odd symmetry measures, whereas 

the spindle/mesenchymal shape is stronger for even symmetry measures and the large star shape scores 

high for all measures, except roundness/width:length; C) SCP of wild type cell populations visualised using 

a contour map, PCA was applied to a pooled sample of 2000 cells; the mean and SD for the first two PCs 

(77% of variance) are then plotted as a normal distribution scaled to cluster membership for wild-type cells. 
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Analysis of the wild-type SCP, or percentage of wild-type cells in each SC 

demonstrated that the majority of wild-type WM266.4 cells existed in the small round 

shape. These forms likely represent the contractile amoeboid shape that correspond 

to the canonical amoeboid form previously observed, Fig. 2-8B. The second most 

predominant shape is the spindle shape, that would classically be defined as 

mesenchymal. In wild-type WM266.4 cells, the ellipse, teardrop, large round and star 

shapes all exist as rarer forms. Thus, in wild-type populations we observed 

dominance of the canonical amoeboid and mesenchymal forms. However all shapes 

were present to some degree in wild-type populations, meaning that Rho-GTPase 

depletions did not give rise to completely new shapes, not-seen in wild-type 

populations. 

2.2.2 Gene depletion of Rho GTPases results in distinct groups 

In the screen of Rho family GTPases, 17 genes were knocked down. Hierarchical 

clustering of resulting SCPs identified four distinct groups of genes Fig. 2-9A. Notably, 

no gene depletions resulted in the formation of a single shape, rather depletions 

enriched for specific shapes with heterogeneity still present, this supporting the 

notion that no single Rho GTPase is responsible for adoption of a single form. Gene 

depletions that enriched cell populations for amoeboid phenotypes including 

teardrop, ellipse and small round represented the largest group of effects following 

gene depletion. These cells also had notably few cells in the star shape. Both Rac1 and 

RhoG depletions enhanced for such transitional shapes. This is in line with studies 

demonstrating that Rac1 is necessary for mesenchymal protrusive states, for 
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example, inhibition of Rac1 causes increased rounding in HT1080 cells cultured in 3D 

matrix (Sanz-Moreno et al. 2008; Yamazaki, Kurisu, and Takenawa 2009), and Rac1 

activity has also been shown to induce protusiveness and polarity in a Rho G 

dependent manner (Damoulakis et al. 2014). RhoA depletion also falls in the same 

large cluster, although demonstrates weaker enhancement of the small round shape. 

The less pronounced effect on morphology following depletion of RhoA, compared to 

similar studies, indicates that in 3D collagen matrix RhoA depletion is either less 

penetrant, or less involved in generation of contractility in melanoma than previously 

reported in in vitro studies. 

The second most prominent group includes those gene depletions that result in 

enhancement of the large round shape. Notably, this group contains the three genes 

Rnd2, Rnd3, and RhoB, agreeing with evidence suggesting that both Rnd2 and Rnd3 

both activate RhoB in endothelial cells, to promote contractility (Gottesbühren et al. 

2013). That we observe depletion of the Rnd2/3-RhoB axis leads to enrichment of 

large round cells provides support to the hypothesis that this shape is associated with 

loss of contractility. This contrasts those depletions that enrich for small round cells 

likely corresponding to the classical highly contractile amoeboid shape. The third 

group contains cells that suppress rounded forms. The three genes Rac3, RhoH and 

RhoD all strongly enrich for mesenchymal forms, suggesting a role for these genes in 

suppressing protrusions and/or formation of adhesions. Of these genes Rac3 has been 

demonstrated to exert an opposing effect to Rac1, blocking outgrowth of neurites in 

neuronal cell lines that share a similar developmental lineage to melanocytes (Hajdo-

Milasinovic et al. 2009; Hajdo-Milasinović et al. 2007). The final group enriches for 

https://paperpile.com/c/oNmvB8/5mkK+ULbR
https://paperpile.com/c/oNmvB8/m6Vq
https://paperpile.com/c/oNmvB8/9u1n
https://paperpile.com/c/oNmvB8/9u1n
https://paperpile.com/c/oNmvB8/AMOq+YDNV
https://paperpile.com/c/oNmvB8/AMOq+YDNV
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bipolar spindle shapes, though no other shape is notably depleted. Wild-type 

populations feature in this group indicating that generally in wild type populations 

the full range of cell shapes is present. Thus overall the static unsupervised analysis 

that I performed indicated that Rho GTPase depletion by siRNA caused enrichment of 

certain forms over others, versus, emergence of new shapes, or loss of specific 

morphologies, although notably some genes did lead to very strong enhancements of 

the spindle shape vs more amoeboid forms. This meant that sufficient redundancy 

likely exists in Rho-GTPase signalling in WM266.4 cells plated in thick collagen 

matrices as to account for loss of most genes, although this assumes effective gene 

depletion by siRNA. 

 

Figure 2-9, Rho-family GTPases regulate the exploration of shape space in 3D matrices. A) 

Hierarchical clustering of genes based on SCPs. Wards linkage was used for clustering, with a cut-off value 
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of 0.3 (maximum distance 1). Validations with individual OTP siRNAs was performed and p values for the 

best validating siRNA against a null distribution are displayed. B) Images of representative knockdowns for 

the four groups. Scale bars, 50 μm. C) Frequency distribution of Rnd1-depleted cells (left) and Rac3-depleted 

cells (right). Rnd1-depleted cells are enriched in large round cells, and Rac3 is enriched in spindle-shaped 

cells. 

Validation of individual gene depletions 

Seeking to understand the degree to which enrichment, versus loss or gain of 

morphologies, was due to biological redundancy in Rho GTPase signaling, and more 

generally cytoskeletal signalling, we looked to better understand the effects of the 

siRNA depletion technology on cell morphology. For the initial screen we used pooled 

‘siGenome’ siRNA. By analysing how the effect of different ‘onTarget plus’ siRNA 

depletions for each gene compared, we looked to test whether a statistically 

significant number of siRNA invoked the same effect as the siGenome pooled 

knockdown, suggesting a targeted and reproducible biological effect. 

We therefore conducted a screen of both pooled ‘siGenome’ siRNA and four 

individual ‘onTarget plus’ siRNA targeting each of the Rho GTPases, together giving 5 

different siRNA depletions for each Rho GTPase gene. This validation screen was 

conducted using WM266.4 melanoma cells plated on 3D collagen matrix, under the 

same conditions as for the original screen. However, in contrast to the original screen, 

cells were fixed and imaged statically. Overall 4 wells (2 repeat wells per plate, 2 

plates) were captured for each onTarget plus siRNA, alongside the siGenome pools 

used for the original screen. Imaging was then performed on fixed cells and maximum 

projections were taken through the thick collagen, to ensure all four well repeats 
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across two plate repeats were recorded. The same set of 15 features as used in the 

dynamic analysis were recorded from cell segments, and feature vectors were 

normalised plate wise to control for batch effects. Binning to binary values was 

performed and the same SC centroids from the dynamic analysis were used to classify 

shapes in this validation dataset. This led to SCPs which would be directly comparable 

to those obtained from static analysis of the first dynamic dataset. 

To determine the statistical significance of gene depletion effects, Pearson 

correlations were calculated between the SCP of the 5 cell populations created 

following SMARTpool and OTP siRNA gene depletions. This gave total of 20 data 

points (correlation values between depletion SCPs) per gene. A null distribution was 

then calculated by randomly drawing a SCP from a different condition, 4 times, for 

each of the 5 siRNA targeting the same gene and calculating the Pearson correlation 

between the siRNA SCP and the randomly drawn SCP. Overall this demonstrated that 

siRNA induced reproducible shapes changes in melanoma cells, Fig. 2-10A.  

We then looked at individual siRNA gene depletions for each Rho GTPase gene to 

determine whether onTarget siRNA gave rise to SCPs for all Rho GTPase gene 

depletions, or whether for certain gene depletions a higher number of onTarget siRNA 

validated with significant effects than for others. Meaning, where could we be more 

confident that the gene depletion had a biologically meaningful effect? Across the 

screen of deconvoluted siRNA a number of genes validated with high significance, Fig. 

2-10B. This was exemplified by the gene RhoD that demonstrated significant 

reproducibility of the pooled effect across all individual siRNA tested. Many genes had 

at least one individual siRNA demonstrate a similar effect to the pooled siRNA. Several 
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genes also failed to validate. Overall this analysis therefore demonstrated that whilst 

a statistically significant number of depletions are on-target, high levels of off-target 

effects and overall noise contribute to many of the results. Thus, whilst this screen 

effectively induced heterogeneity in the population, and this innate heterogeneity 

produced reproducible results, the results of an individual treatments must be 

treated with a degree of caution. Thus, in discussing the effect of single treatments, 

only those with a significant degree of validation are mentioned. Of note though, RhoD 

was observed to induce both a significant effect size following siRNA depletion, and 

this phenotype was recreated across all other siRNA tested. 

 

Figure 2-10, Validation of Rho GTPase gene depletions: A) OTP vs SMARTpool SCP correlation 

distribution for all wells shows a positive skew versus the null distribution generated by randomly 
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permuting OTP SCs and calculating correlation between SCPs and SMARTpool SCPs; B) Heatmaps show 

plate normalised SCPs for OTP siRNA against SMARTpool siRNA. OTP data is averaged across 4 well repeats. 

Significance values as shown in the main text are given beside the OTP siRNA numbers, these correspond to 

the final two digits of the catalogue number in the table of OTP siRNAs used (Cooper et al. 2015). 

2.2.3 Quantification of shape dynamics 

To understand how cells explore shape space dynamically I quantified the 

number of transitions that tracked cells (methods) made over time between different 

SCs. To explore these results matrices were created where rows corresponded to 

shapes in any given frame, and columns corresponded to shapes in the subsequent 

frame, Fig. 2-11A. Thus, for every frame that a shape remained the same, the 

corresponding diagonal value was increased by one, and for a shape transition the off-

diagonal value corresponding to the forward transition was increased by one. The 

value of each matrix element was then divided by the total number of transitions 

recorded for that condition, thus giving changes between shapes as a percentage of 

all transitions made. Initial inspection of these matrices revealed that we were likely 

capturing all of the transitions being made by cells between shapes, since typically we 

observed transitions between shapes with more similar morphologies, e.g. elliptical 

to teardrop, versus randomly between shapes with either similar or very different 

morphologies e.g. small-round to star. 

Two routes in shape space 

Noticeably two distinct routes between the amoeboid shapes and mesenchymal 

shapes emerged. One, a polar route, through the elliptical and tear-drop shapes, and 

https://paperpile.com/c/oNmvB8/KGEh
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the other through the large-round and mesenchymal star-shaped cell, here termed 

the ‘apolar’ route. Although transitions directly between amoeboid and mesenchymal 

shapes occurred these happened at much lower frequencies, as visualised using a 

graph of the transition matrix, Fig. 2-11B. I also observed no directionality in the 

shape transitions being made, this was evidenced by symmetry in the matrices along 

the diagonal, i.e. in no cases did cells make forward transitions from one shape to 

another only. Quantitatively the sum of upper triangular elements over lower 

triangular elements averaged over all matrices was 1.0028; with a standard deviation 

of 0.0098, indicating no deviation from this symmetry. This indicated that the various 

different shapes reside in equilibrium, and transitions are likely made due to 

stochastic variability in the signaling state or microenvironment of the cell, rather 

than say through evolved cyclic behaviour. Transitions to self were most-likely for 

cells in the spindle shape and large round shape, indicating these were also more 

stable shapes than the other transitionary forms, Fig. 2-11C. 

The effect of gene depletion on shape transition dynamics 

As well as having distinct effects on how cells explore shape space, siRNA 

depletions of Rho family GTPase genes also affected the dynamics with which cells 

transition between shapes. To quantify this I calculated a ‘dynamic score’ giving the 

number of transitions between different shapes versus a shape staying the same, this 

being the sum of off-diagonal elements in transition matrix divided by the sum of 

diagonal elements. Higher values mean that a population is more dynamic whilst 
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lower values, indicate that cells make less transitions. Across all matrices the average 

value of this score is 0.5, indicating shape transitions occur once every three frames.  

To determine the similarity of different gene depletions on transition dynamics I 

calculated the Euclidean distance between flattened transition matrices, and 

performed hierarchical clustering over all conditions in the live-cell screen, Fig. 2-

11D. Separating the different effects into five major groups gave: 1) cells in which the 

polar route is enriched and mesenchymal morphogenesis is weakly compromised 

(Rnd1 RNAi); 2) cells in which mesenchymal morphogenesis is compromised (Rnd2 

RNAi); 3) cells in which the apolar route is enriched and amoeboid morphogenesis is 

weakly compromised (RhoD RNAi); 4) cells with transition dynamics that are similar 

to wild type; and 5) cells in which amoeboid morphogenesis is compromised and the 

dynamic score is notably lower (Rac 3 RNAi). Thus, different depletions not only 

enrich for distinct morphologies, but also alter the dynamics of how cells transition 

between shapes. Moreover, where gene depletions enrich for similar shapes statically, 

for example, RhoD, RhoH and Rac3; dynamically the effect can be quite different, for 

example RhoH and Rac3 both reduce the number of transitions being made versus 

wild-type, whilst RhoD depletion caused an increase in the dynamic score. Together 

indicating certain genes may play a more significant role in regulating transition 

dynamics, versus controlling adoption of a specific shape. 

When looking at the absolute number of transitions being made versus 

percentage of transitions, through a network graph visualisation, we found that in 

cases where one dynamic transition is enriched, movements through the alternate 

polar or apolar routes were not noticeably lower, with the exception of Rac3 and 
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RhoH depletions, Fig. 2-11E. This indicates the number of transitions being made is 

generally higher following Rho depletion and is supported by these conditions having 

an increase in the dynamic score. Thus rather than shifting the way cells transition 

between shapes, Rho gene depletions appear to reduce the barriers in signalling 

changes that melanoma cells are required to undergo to transition between shapes. 

 

Figure 2-11, Quantifying the dynamics of shape transitions in melanoma cells plated in thick 

collagen: A) Heat map showing the percentage of transitions between shapes including to self (diagonal) 

averaged across all gene knockdowns; log-scale coloring; B) Alternative visualisation of the matrix shown 

in A. Weighted edges show the mean percentage of transitions made between shapes; the majority of 

transitions are made between “neighboring” shapes. The total joint probability (shown as percentage) of a 

cell going from small round to spindle via either route is given for a sense of the overall flux along each 

route; this is calculated as the sum of joint probabilities for the three possible ways of transitioning along 

either the polar or apolar route; C) Percentage of cells in a given shape staying in that shape; D) Effect of 
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depletion on the number of transitions being made; color as in A. In addition, off-diagonal values divided by 

diagonal values are given beside the gene name as a statistic of how dynamic a knockdown is, termed the 

“dynamic score”; E) Weighted graphs of four representative gene depletions, which emphasise how gene 

depletion affects dynamics. The dynamic score and route percentages based on joint probability are also 

shown for the example depletions. 

 

Information derived from dynamics  

Finally, I looked to determine whether including dynamic information increased 

the ability to discriminate between different conditions, meaning that there is 

additional biological signal captured in the dynamic profiles, that is not detected by 

static imaging alone. To measure this I calculated the Davies Bouldin Index score of 

the flattened dynamic profiles, reduced to a dimensionality of 6, to match the 

dimensionality of the static analysis, by using the first 6 PC’s obtained following PCA. 

Strikingly the Davies Bouldin index score decreased from 2.25 (obtained for static 

clustering using 6 SCs) to 1.88 demonstrating that additional biological effects were 

being captured that were not detected by static imaging alone. Taking the first 6 PC’s 

following transformation by PCA on the combined static SCs and flattened transition 

matrices, also gave rise to a DBI of 1.85 indicating that the dynamic transition 

matrices almost fully capture the information contained in the static profiles, likely 

through the number of identity transitions being made by a shape to itself. Thus taken 

together the dynamic analysis demonstrates that distinct and reproducible effects can 

be detected through analysing live cells that cannot be captured through static 

imaging alone. Moreover, we identify two distinct routes in features space that cells 
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can transition through when converting between amoeboid and mesenchymal 

shapes. 

2.3 Discussion 

2.3.1 Unsupervised analysis of cell shape 

Culturing and imaging of live cells in thick collagen matrices that mimic in vivo 

conditions represents a significant technical challenge, even when conducted in low 

throughput and analysed using manual qualitative approaches. Here we 

demonstrated an approach that allowed us to study the behaviour of thousands of live 

cells imaged in thick collagen matrices over time. Performing such experiments in 

these 3D conditions, is critical as it allows us to study cytoskeletal and cell shape 

regulatory pathways that may be masked when cells are cultured on stiff 2D plastic 

substrates (Yin et al. 2013). Importantly such conditions are also more likely to 

translate into the clinic (Sachs and Clevers 2014).  

By using unsupervised approaches, we designed the analysis to reduce human 

bias, that could be caused by previous qualitative observations of melanoma cells 

plated in 3D collagen matrix. This identified structure in the high silhouette sore of 2 

SC’s that could be likened to the canonical amoeboid and mesenchymal forms (Sahai 

and Marshall 2003), as well as revealing a sub-division of shapes beyond the 

canonically described amoeboid and mesenchymal forms. Importantly, this sub-

division of shapes improves the DBI, and ability to discriminate between different 

conditions implying these are true biological forms. Although we did not observe 

https://paperpile.com/c/oNmvB8/xRAf
https://paperpile.com/c/oNmvB8/o13Q
https://paperpile.com/c/oNmvB8/O1Ka
https://paperpile.com/c/oNmvB8/O1Ka
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these shapes to exist in discrete separable clusters in feature space, the evidence that 

these 6 SCs have biological significance, was strongly supported by the finding that 

cells transition between shapes that are more morphologically similar, and that two 

routes between the canonical amoeboid and mesenchymal forms exist. If these 6 

shapes were an artefact of the analysis, we would expect to observe random 

transitions between polar and apolar transitionary shapes, or directly from spindle 

shaped cells to small round cells. Together this provides important evidence that the 

method developed for quantifying cell shapes, led to SCs that had biological 

significance. Such an analysis approach could be generalised to other studies, and we 

believe is particularly amenable to noisy data sets, where clear clusters do not 

emerge. 

2.3.2 Emergence of polar, and apolar routes between amoeboid and mesenchymal 

forms 

The analysis conducted here identified two distinct routes in shape space that 

enable cells to transition between amoeboid and mesenchymal forms. The polar route 

resembles cases where cells either encounter a chemoattractant signal or migrate 

along 1D fibers in the extracellular matrix (Doyle et al. 2009). Depletions that 

enriched for transitions through this route likely shifted the balance towards 

establishment of polarity, and formation of either one or two protrusions that inhibit 

formation of further protrusions and adoption of the star shape. In the apolar route 

we observe formation of multiple protrusions and adoption of the star shape. Such a 

form is consistent with loss of contractility, the expansion of multiple protrusions and 

https://paperpile.com/c/oNmvB8/GlRS
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adhesion to extracellular matrix components (Paňková et al. 2010). These properties 

could be driven by the absence of chemoattractant or ability to respond to it, or 

alternatively the binding to and exploration of multiple extracellular matrix fibers. 

Together these two routes demonstrate additional plasticity in the ability of 

melanoma cells to adopt different forms, that emerges in environments that mimic 

physiological conditions. 

2.3.3 Role of Rho GTPases in regulating melanoma cell shape 

It has been demonstrated in mouse knockout lines that loss of the Rho GTPases 

Rac1 or Cdc42 both cause early embryonic lethality, demonstrating the critical 

importance of these factors for correct development. However, in the WM266.4 

melanoma cells analysed here, effects were less pronounced, perhaps with the 

exception of RhoD. In no cases did we observe significant levels of cell death or the 

gain of strikingly different shapes that may be associated with say cytokinesis defects, 

or apoptosis. Instead we observed enrichment of specific forms present in wild-type 

populations. We therefore hypothesise that in cancer cells in physiological 

environment, redundancy in Rho GTPase signaling exists, that allows cells to use 

multiple cytoskeletal regulatory pathways to maintain cell form and migrate through 

tissues, in the absence of a single Rho GTPase. Targeting of a specific Rho GTPases 

may however be more effective where activating mutation are present in that Rho 

GTPase. For example, multiple studies have implicated activating mutations in Rac1 

as a major driver of melanoma progression (Hodis et al. 2012; Krauthammer et al. 

2012). In such Rac1 addicted cancers, Rac1 depletion may have a significantly more 

pronounced effect than we observed in WM266.4 melanoma cells. Yet despite this 

https://paperpile.com/c/oNmvB8/OvZM
https://paperpile.com/c/oNmvB8/PJOw+zrcw
https://paperpile.com/c/oNmvB8/PJOw+zrcw
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redundancy, our finding that the Rho GTPAse, RhoD, significantly supressed 

amoeboid forms in all tested siRNAs, suggests it may play a role in influencing 

melanoma’s ability to migrate through amoeboid forms, and thus warrants further 

follow up studies. 

2.4 Conclusion 

In conclusion, our work demonstrates that melanoma cells dynamically explore a 

more diverse shape space in 3D environments than has been observed on 2D plastic 

substrates. Although It remains unclear how transitions between these forms plays a 

role in migration and ultimately metastasis of melanoma cells, in vivo. The ability of 

cells to transitions between migratory modes through these two different routes may 

evolve in cancer populations to allow greater plasticity and ultimately increased 

dissemination capability than either route alone. To shed light on whether targeted 

inhibitors of specific Rho GTPases could be effective against melanoma cell migration, 

further studies would need to test how depletion of genes such as RhoD, mapped to 

the ability of melanoma cells to migrate and metastasise in animal models. Such a 

study would also provide fascinating insights into how much more predictive results 

from cell cultured in environments that mimic in vivo conditions are of behaviour in 

animals. 

2.5 Methods 

Cell cultures were prepared and treated with siRNA by Amine Sadok, as per (Cooper 

et al. 2015). Imaging was performed using the Opera high-content imaging platform 

by Chris Bakal, as also described in (Cooper et al. 2015). 

https://paperpile.com/c/oNmvB8/KGEh
https://paperpile.com/c/oNmvB8/KGEh
https://paperpile.com/c/oNmvB8/KGEh
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2.5.1 Features and data preprocessing 

Cells were segmented using a simple threshold using the Acapella software 

(PerkinElmer). Fifteen features were recorded for each cell, detailed in Table 2.1; 

many as described in Boland and Murphy (2001). Cells touching the edge were 

removed, and a linear classifier, manually trained, removed poorly 

focused/segmented cells. Tracking was performed by searching for the closest 

centroid in the next frame. A track would stop if a movement between two frames was 

greater than the cell width. Cells tracked for fewer than four frames were discarded, 

as these would often be debris or false detections. Tracking and filtering was 

performed using custom written C++ scripts. In analysis of the static siRNA validation 

screen, features were standardised, and cells with a feature outside five SDs were 

removed. All data and code is available at:  

bitbucket.org/samocooper/wmpaper-data-and-code/src/d35c7dc716ba?at=master. 
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Table 2-1, Features extracted from cell segments and used for subsequent data analysis 

1 
Axial length ratio: Eccentricity of the ellipse that is equivalent based on second 
order moments to the segment (Boland and Murphy 2001). 

2 
Axial small length: The width of the ellipse that is equivalent, based on second 
order moments to the segment (Boland and Murphy 2001). 

3 
Symmetry 𝑛, 𝑚: Normalised moments of the segment and set of polynomial 
functions 𝑅𝑛,𝑚(𝜌, 𝜑) =  𝑛𝑒−𝑖𝑚𝜑  

11 Width to length ratio: Width divided by length. 

12 
Length: Maximum shortest path between two points on the edge, where the path 
is bounded by the cell edge. 

13 
Width: Double the minimum distance of the centre point to the cell edge, where 
the centre point is the point which is furthest away from any point on the cell edge. 

14 
Roundness: defined as  

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

4𝜋 𝑎𝑟𝑒𝑎2   this approaches one as the shape approaches a 

circle (Boland and Murphy 2001). 

15 Area: number of pixels in the segment. 

 

https://paperpile.com/c/oNmvB8/fPfi
https://paperpile.com/c/oNmvB8/fPfi
https://paperpile.com/c/oNmvB8/fPfi
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3 Developing the tools to track live cells in higher throughput  

3.1 Introduction 

The most significant bottleneck in live single-cell analysis is the challenge of 

accurately tracking live cells over long periods of time (Cooper and Bakal 2017; Coutu 

and Schroeder 2013). For example in the majority of labs, researchers continue to use 

manual approaches; these involve making a click-based intensity recording for every 

individual cell, in every frame. Where hundreds of timepoints may be recorded, for 

hundreds of cells, in multiple conditions, this task quickly becomes intractable. To 

resolve this problem computational approaches to cell tracking are therefore 

essential (Coutu and Schroeder 2013; Hilsenbeck et al. 2016; Maška et al. 2014). 

However, tracking cells is not trivial. Several key factors contribute to making this a 

very difficult problem to solve (Hilsenbeck et al. 2016): 

1. Cells can be highly motile and often make large jumps between frames. 

Imaging cells at higher frequencies would resolve this, but this is often not 

possible due to issues with phototoxicity and throughput. 

2. Where multiple fields of view must be captured, typically the microscope 

stage is not returned to exactly the same position. Here, jitter between frames 

must be managed effectively. 

3. Cells can undergo large morphology changes, divide, and can move into and 

out of the field of view. As such, there is no guarantee that an object will be 

present, or look the same, from one frame to the next, Fig. 3-1A. 

https://paperpile.com/c/Uprlpu/yIMJ+l0ni
https://paperpile.com/c/Uprlpu/yIMJ+l0ni
https://paperpile.com/c/Uprlpu/l0ni+8yun+hB1N
https://paperpile.com/c/Uprlpu/8yun
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4. Cells will also often clump together or migrate over the top of other cells. This 

means that errors in object detection and segmentation are frequently made;  

tracking must be robust to these errors, Fig. 3-1B. 

To address these challenges, and develop software that would allow cells to be 

tracked over the long periods of time necessary to study cell fate decisions, I 

experimented with existing approaches to cell tracking and tested a number of 

software solutions (Hilsenbeck et al. 2016; Klas E. G. Magnusson et al. 2015; Maška et 

al. 2014). It was immediately apparent that whilst many solutions claimed to address 

these challenges, no single package covered the entire segmentation and tracking 

pipeline, and all packages required extensive programming knowledge and 

understanding of file-formats, even to get examples provided with the programs to 

work. As a result of these challenges biologists attempting to track cells would: 1) Be 

forced to navigate multiple programs and fine tune parameters in each of these; 2) 

Have to install multiple software libraries and dependencies; and 3) Have difficulties 

in relating tracking data back to the original time-series images. No biologists have 

this level of computational expertise. Furthermore, to achieve human levels of 

accuracy manual correction is still needed, but no readily available solutions existed 

that allowed simple visual correction of tracking data at the time of creating 

NucliTrack. Since developing NucliTrack, Hilsenbeck et al. developed stand-alone 

software for track correction (Hilsenbeck et al. 2016). 

https://paperpile.com/c/Uprlpu/8yun+pQn5+hB1N
https://paperpile.com/c/Uprlpu/8yun+pQn5+hB1N
https://paperpile.com/c/Uprlpu/8yun
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Figure 3-1, Challenges in tracking cell Nuclei: A) Nuclei frequently undergo divisions and form two 

daughter cells that continue to continue to move and proliferate; B) Cells will often pass over the top of 

other cells, occluding nuclei for specific frame. 

I therefore decided to implement the most promising tracking and segmentation 

algorithms into a standard programming language, Python, and integrate these 

solutions into a single package that would allow users to go from time-series images 

all the way through to extracted time-series data in as short a time as possible. The 

software developed, NucliTrack (Cooper et al. 2017), cuts the time required to extract 

data from a single track lasting a period of several days from roughly 20 minutes to 2 

minutes, giving a 10-fold improvement in throughput. In this Chapter I will outline 

the algorithms and development of the published version of NucliTrack. 

Documentation1 and code2 can both be found online. 

                                                           
1 http://nuclitrack.readthedocs.io 

 
2 https://github.com/samocooper/nuclitrack 

https://paperpile.com/c/Uprlpu/Se9p
http://nuclitrack.readthedocs.io/
http://nuclitrack.readthedocs.io/
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3.2 Development of NucliTrack 

3.2.1 File loading 

The first objective in developing NucliTrack was to construct an interface for 

loading sequences of image files. Frequently videos can be several hundreds of frames 

with each image exceeding several megabytes in file size, the memory requirement 

therefore exceeds that which can be loaded into local memory on most computers. To 

address these problems, images are read directly from drive storage for all 

operations, a list of pointers to the image locations is the either loaded in by the user 

or created by interpolating between the first and last file names in the image 

sequence. In loading a number of checks are performed to ensure: 1) The files are in 

the specified locations; 2) are not corrupted; 3) are in a readable format; and 4) do 

not miss any key timepoints. 

Files are also created at this step that store parameters, and data on the video 

being tracked. The separation of the parameter file and data file, allows NucliTrack to 

be run from the command line in batch mode. Here chosen parameters can be used to 

segment and track cells automatically across an entire screen. At this stage pre-

segmented label images can also be loaded, allowing the user to use external 

segmentation software if desired. 
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3.2.2 Segmentation 

Nearly all automated tracking workflows can be separated into two steps: 1) The 

detection and segmentation of cells or their nuclei; and 2) The construction of tracks 

linking the detected objects over the period of imaging. Such a two-step approach is 

adopted in NucliTrack, as it lets the user visually inspect segmentation results, prior 

to tracking. The key goals for development of NucliTrack’s cell segmentation interface 

were: 

1. To develop a natural intuitive user interface that would allow the user to 

explore different parameter settings and understand how these changes 

affect the results of the segmentation pipeline. 

2. For the interface to be responsive; users would ideally receive real time 

updates on changes that are made to parameters, and how these affect results. 

3. To include the key steps for users to be able to segment cell nuclei that may 

be imaged in a wide variety of conditions and contain varying levels of 

heterogeneity between the appearance of nuclei in the same image. 

These considerations together motivated the choice of algorithm to use for 

segmentation, and the interface design.  

Watershed Segmentation  

The most common method of cell detection and segmentation remains marker-

controlled watershed segmentation. This method is both simple, provides 

intermediate visual outputs e.g. successful detection of nuclei centre, and is 
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computationally fast enough to be applied to hundreds of images on a typical laptop. 

The classical marker-controlled watershed segmentation approach involves two 

major components, firstly detecting foreground objects [nuclei centres] and secondly 

using the watershed algorithm to expand markers until they cover the whole nuclei 

region: 

1. Identification of foreground and background markers, Fig. 3-2 steps 1-6: In this 

stage the objective is to label the center of every cell nuclei with a single 

unique marker. This typically involves processing the image such that a single 

peak of intensity corresponds to a single nuclei center in each image. 

Following pre-processing where illumination effects are removed, the most 

common step is to threshold the image into foreground and background 

masks, based on intensity. This is because nuclei are typically labelled with a 

fluorescent marker and can be easily separated from background regions of 

low intensity. Following thresholding, the main challenge is then de-noising 

and blurring the foreground image such that a single peak of intensity exists 

at the center of each nucleus. A peak picking algorithm is then used to identify 

peaks in the foreground region, with filters being used to identify peaks that 

are separated by either insufficient distance or drop in intensity. 

2. Application of the Watershed Algorithm, Fig 3-2 steps 7&8: The watershed 

algorithm works by identifying segments that are separated by ridges of 

intensity, as per dropping water into a mountain range and identifying river 

basins. An edge filter is used to transform the image such that nuclei edges 

correspond to peaks in intensity, or ridges, whilst markers for nuclei are 
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transferred from the preceding steps. Application of the watershed algorithm 

then expands each marker region until the entire image is labelled. The result 

is that the background and each nucleus is assigned a unique integer label. 

 

Figure 3-2, A typical nuclei detection and segmentation workflow, implemented in NucliTrack: 

Raw data often contains multiple intensity spikes per nuclei and regions of very high intensity (1), clipping 

allows the peaks to be removed, and highlights the region covered by a nuclei (2), blurring transforms the 

image so that a single peak of intensity corresponds to the center of each nucleus. Thresholding separates 

foreground and background regions (3), and the combination of foreground region and blurred image (4) 

can be used to identify a single peak per nuclei (5). An edge transform is applied to the raw data to detect 

where the boundaries of each nucleus lie, this is weakly blurred to emphasise the most significant edges (6). 

By combining the foreground and background markers with the edge image (7), the watershed transform 

can be used to identify region masks covering each nucleus (8). 

Implementation 

To implement the watershed approach in a way that would provide user feedback, 

I developed a segmentation pipeline that involved a series of sliders that allow the 

user to adjust parameters controlling each step of a marker-controlled watershed 
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segmentation workflow Fig. 3-3. On adjustment of the parameter value, an event is 

triggered that calls all of the previous segmentation steps that have not been 

calculated, up to the stage that is being adjusted by the user. This means that on 

adjustment of a slider, the results of that specific change are smoothly returned as an 

image that demonstrates the impact changing that parameter has, with a minimum 

amount of computational effort. Once parameters have been chosen in this user 

interface, the user can then run segmentation across the entire set of images. A 

loading bar gives visual feedback on progression through the set of images. 

Importantly, to accelerate segmentation over the entire set of images where multiple 

CPU’s are available, I also implemented an option for the user to run segmentation of 

different images in parallel, using multiple  CPU threads. 

 

Figure 3-3, Interface for segmenting cell nuclei: Users can control sliders that adjust the 

parameters used for the segmentation workflow described in Fig. 2.1, a window also exists that allows the 

user to compare results to the original image. 
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Pixel wise classifier 

On top of the initial segmentation pipeline, I also implemented a pixel-wise image 

classifier based off a shallow 2-layer convolutional neural network, Fig. 3-4. Here the 

user is able to select example regions of foreground nuclei and background noise. A 

neural network is then trained to classify pixels, based upon a 15x15 region of interest 

(ROI) around each pixel. The trained model is then used to assign a probability of 

foreground or background to every pixel with the transformed image being returned 

to users. The user is then given the option to adjust the training dataset and rerun 

classification or continue the segmentation pipeline on the transformed image. 

Overall, this pixel-wise classifier therefore allows improved segmentation results of 

nuclei where a high level of heterogeneity in intensity and/or background noise vs. 

signal exists in the image. Overall the segmentation script thus allows the user to 

effectively detect and segment cells using a natural and easy to use interface. 
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Figure 3-4, Interface for classifying pixels in image: Users can select training data examples of 

foreground and background regions. A neural network is then trained to classify pixels based on a region of 

interest surrounding each pixel. The results are returned to the user for inspection, allowing either more or 

new training data to be chosen, or segmentation to be continued. This interface allows the user to identify 

nuclei in cases where high levels of noise exist. 

 

3.2.3 Feature extraction 

The segmentation interface and script produce a set of labelled images, with each 

label corresponding to an object. To track these objects over time and quantify 

biological processes, features describing each segmented object must be extracted. 

Simple shape and intensity features were extracted using a standard library in SciKit 

image. Additional features were engineered to detect reporters of cell cycle 

progression (Fig. 4-3C, Chapter 4). Moreover, to accommodate live-cell reporters that 

translocate to the nucleus as a readout of activity, for example kinase translocation 

reporters (Fig. 1-4B, Chapter 1), I also implemented a feature that gives the ratio of 
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mean intensity within the nucleus, versus mean intensity in a ring region around the 

nucleus, as defined in Sero et al. (Sero and Bakal 2017). The full list of features is 

described in methods. Overall, the output of the extraction process is a matrix giving 

feature values for every object detected, in every frame.  

3.2.4 Tracking 

Tracking algorithm  

Multiple object tracking in microscopy has typically lagged behind advancements 

in segmentation. In the majority of implementations tracks are typically constructed 

by linking objects from one frame to the next (Meijering, Dzyubachyk, and Smal 

2012). This involves the use of algorithms that either look for large overlaps between 

objects in neighbouring images or proceed through K-nearest neighbour approaches 

in which the minimum distance between both sets of objects is sought (Hilsenbeck et 

al. 2016; Cooper and Bakal 2017). Whilst these approaches work well in cases where 

nuclei do not make large jumps between frames, they struggle in cases where nuclei 

are more motile, or the frequency of imaging is lower due to technical or photo-

toxicity reasons. 

In these cases optimisation and machine-learning approaches, developed for 

general multiple object tracking problems, have been successfully modified for the 

challenge of tracking cells (Maška et al. 2014). Such optimisation and classical 

machine-learning approaches remain the gold-standard in object tracking(Milan et al. 

2016; Chenouard et al. 2014). In these approaches cost-functions and algorithms are 

https://paperpile.com/c/Uprlpu/fBpk
https://paperpile.com/c/Uprlpu/VF5Q
https://paperpile.com/c/Uprlpu/VF5Q
https://paperpile.com/c/Uprlpu/8yun+yIMJ
https://paperpile.com/c/Uprlpu/8yun+yIMJ
https://paperpile.com/c/Uprlpu/hB1N
https://paperpile.com/c/Uprlpu/8vw3+8xpS
https://paperpile.com/c/Uprlpu/8vw3+8xpS
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developed which seek to optimise tracks over the entire video sequence as opposed 

to between two frames (Bise, Yin, and Kanade 2011). 

In a recent challenge focused specifically at tracking cells and nuclei, such global 

optimisation approaches performed best (Maška et al. 2014). Notably a probabilistic, 

dynamic programming approach, described by Magnusson et al. stood out as 

outperforming other methods (Klas E. G. Magnusson et al. 2015; K. E. G. Magnusson 

and Jaldén 2012). This method superseded others through carefully handling cases 

where mis-segmentation, gaps, mitotic divisions and entry to and exit from the field 

of view occur. This approach proceeds through the following steps: 

1. Training data is selected by the user that contains examples of any erroneous 

segmentation, as well as normal, mitotic and post-mitotic cells. A model is 

then trained on this data and used to assign probabilities to every object 

detection in the entire image sequence, giving it a likelihood of being one of 

the above-mentioned classes, Fig. 3-5A. A score between nuclei in 

neighbouring frames is also calculated based on the distance between objects, 

Fig. 3-5A. This score assumes that cell movements are exponentially 

distributed, thus small movements are penalised exponentially less than 

larger movements. 

2. In a forward pass, the algorithm determines the highest scoring route to any 

given object, based on the sum of: 1) the scores of moving from an object in 

the previous frame to the object in the current frame; 2) the probability of the 

object in the current frame being a single nuclei; and 3) the scores of objects 

in the previous frame Fig. 3-5B. Scores exist for the probability of the object 

https://paperpile.com/c/Uprlpu/rspV
https://paperpile.com/c/Uprlpu/hB1N
https://paperpile.com/c/Uprlpu/pQn5+1KPH
https://paperpile.com/c/Uprlpu/pQn5+1KPH
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having emerged from a mitotic event, or entering the field of view. Exiting the 

field of view is handled by an additional object in the graph.  

3. At the end of the forward pass the highest scoring track is chosen and added 

to the set of all tracks Fig. 3-5C; this may be selected as the state 

corresponding to a cell that has left the field of view. 

The algorithm then iterates through this procedure until track scores become 

negative, indicating only incorrectly classified objects are left in the video. 

Importantly, the algorithm considers swaps between existing tracks, and thus the 

algorithm performs a greedy heuristic global optimisation. 

 

Figure 3-5, Dynamic programming approach: A) Initially probabilities of objects being correct, as 

well as the cost of a transition between two locations in neighbouring frames are assigned; B) In a forward 

past these scores are summed in a greedy manner; C) The highest scoring route to any given object is than 

calculated and the highest scoring track is then added to the set of all tracks. 



 

86 

Assigning classes to segmented objects  

The probabilistic algorithm developed by Magnusson et al. accounts for different 

objects that a segmented object can correspond to by first introducing a classification 

step that assigns a probability of a labelled object corresponding to any one of these 

occurrences (Klas E. G. Magnusson et al. 2015). Tracking then looks to optimise the 

probability of finding a correct track over these classes, Fig. 3-5. I utilised the same 

set of objects as Magnusson et al., additionally introducing a new class for cells exiting 

mitosis. This improved detection of the overall mitotic event. Thus the object types I 

defined for classification are: 

1. A Single nucleus: an accurately captured individual nucleus 

2. Mitotic event:  a detection corresponding to cell undergoing mitosis, the 

appearance of these can vary dramatically depending on the fluorescent 

marker. 

3. Mitotic exit: an object corresponding to a nucleus that has very recently 

exited mitosis 

4. Noise: False detection, corresponding to background noise or debris. 

5. Double detection: A segmentation corresponding to two nuclei captured as 

one, triple detections occurred but these are infrequent enough to warrant 

their own class. 

In the user interface segmentation results are returned to the user, and the user 

selects examples of each of these classes, Fig. 3-6. A classifier (support vector 

https://paperpile.com/c/Uprlpu/pQn5
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machine) is then trained using the feature vector describing each object, to assign a 

class probability for every object in every frame. 

 

Figure 3-6, Class selection interface: The user is presented with segmented objects and can then 

assign a label to the object depending on whether the object is a single cell, multiple cells, error, mitotic cell, 

or cell that has undergone a mitotic exit. Tracking parameters are also selected in this interface. After saving 

of training data, the software classifies all objects in the time-series, prior to tracking. 

Tracking Implementation 

After selection of data classes, a function is then iterated through the procedure, 

described in Fig. 3-5, for adding a single track. This function is called by a loop in the 

main code that that passes the current graph of all tracks, and an array of data 

describing each objects location and class probability. At the end of tracking, each 

object in this array is assigned a track ID, corresponding to the track it belongs to, as 

well as a parent ID if the track emerged from a mitotic event. 
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3.2.5 Track correction 

Whilst the software is capable of automating the majority of the tracking task, 

errors are still made. In studies over longer periods of times, these errors cause major 

inaccuracies in results. A final manual correction and inspection step is therefore 

necessary for allowing the user to edit the set of existing tracks and construct new 

tracks. The interface that I created for this had several key features: 

1. The ability to follow the selected track over the course of imaging. To achieve 

this I randomly coloured each track individually and rendered an image that 

allows the user to see where errors are made as the coloured track changes 

between frames on objects that by eye should be in the same track. 

2. The ability to see the raw images, to make decisions by eye as to what the 

correct track should be where coloured masks are unclear, as well as to see in 

the raw data effects such as changes in texture or intensity that can be seen in 

extracted features. 

3. A graph showing extracted features from objects (nuclei) over the entire 

period the object is tracked for. Here, disconnected jumps in the plot highlight 

potential areas of tracking error. Also the user can get an early understanding 

of how reporters are behaving over the video and inspect the raw data where 

interesting changes occur. 

4. The ability to add events to tracks such as the start or end of different phases 

in the cell-cycle, as well as selecting which tracks are accurate and should be 

exported for further analysis and visualisation. These are enormously helpful 
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for computationally synchronising time-series data to key transitions (for 

example, Fig 4-2A, Chapter 4). 

On top of developing the visual interface for tracking cells, keyboard shortcuts 

were also included that allow much more efficient editing of tracks by the user. 

Overall the interface provides significant throughput advantages over existing 

software, Fig. 3-7. 

 

Figure 3-7, Track correction interface: Here the user is able to inspect the results of tracking. A panel 

is provided that lets the user inspect the results of tracking and look for key biological changes and events, 

such as mitosis, or increases in reporter intensities. Functions are also provided to manually correct tracks 

and select data for export 
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3.3 Performance and benchmarking 

To ensure that my combination of segmentation approach and automated 

tracking were on par with existing approaches, I compared the performance of 

NucliTrack against the benchmark tracking challenge described in Maska et al.(Maška 

et al. 2014). I automatically segmented and tracked six different videos that were 

made available as part of the ISBI Cell Tracking Challenge 3. Each video is a time series 

acquisition of fluorescently-labelled nuclei, from three labelled cell lines. These lines 

are: GFP-GOWT1 labelled mouse stem cells, H2B-GFP labelled HeLa cells, and 

simulated nuclei of HL60 cells stained with Hoechst. Exported tracks were then 

compared to ground truth values to obtain a ‘tracking precision of the method’ score 

(TRA)(Maška et al. 2014). I compared the TRA values obtained by NucliTrack on held-

out data to those obtained by the top teams in the cell tracking competition. Whilst 

the comparison is on held-out training data versus test data, the results indicate that 

NucliTrack is able to obtain tracking results of a similar standard to other top 

performing algorithms. Overall the performance of NucliTrack was limited by the 

more basic segmentation procedures I adopted. To allow for higher accuracies based 

off more accurate segmentation results, I therefore implemented a functionality that 

allows the user to import segmentation results from other potentially more accurate 

packages into the file loading step. 

                                                           
3 http://www.codesolorzano.com/Challenges/CTC/Datasets.html 

 

https://paperpile.com/c/Uprlpu/hB1N
https://paperpile.com/c/Uprlpu/hB1N
https://paperpile.com/c/Uprlpu/hB1N
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Table 3-1, Tracking results of NucliTrack: Due to the test data not being available NucliTrack was 

benchmarked against available training data, specifically, parameters were chosen for a single video, and 

then applied to a second held-out time series. 

Competition Performance [undisclosed test data] 

Rank N2DH-GOWT1 N2DL-HeLa N2DH-SIM 

1 0.976 0.991 0.975 

2 0.925 0.986 0.957 

3 0.916 0.982 0.948 

Performance on Public Datasets public data [training data from the competition] 

NucliTrack 0.952 0.943 0.970 

Teams 

KTH-SE KTH-GE CUNI-CZ HD-Har-GE 

HD-Gau-GE FR-Ro-GE PAST-FR  

 

3.4 Discussion 

Tracking cells represents a significant bottleneck in using live-cell data to 

understand the dynamics of cell signalling behaviour. By developing NucliTrack as an 

easy to use package for extracting data from fluorescently labelled cells/nuclei, 

significantly higher throughput extraction of tracking data can be performed than was 

previously possible. Importantly, by allowing users to inspect and correct tracking 

data, near 100% accuracy can be achieved. This is critical in understanding and 

quantifying the long-term effects that specific patterns and events in signalling 

dynamics have upon the cell, such as fate decisions. 
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Within our lab NucliTrack has been used by others to explore the dynamics of Erk 

activity over time in cancer cells in order to understand how different Erk inhibitors 

affect Erk activity in a cell cycle dependent manner. Importantly this led to the 

discovery that Erk inhibitors were only able to downregulate Erk activity in a window 

that occurs after mitosis and before entry into S-phase, demonstrating cell-cycle 

phase and quiescence may be a critical factor in determining a cancer cells ability to 

resist Erk inhibitors(Simpson and Bakal 2018). NucliTrack was also used extensively 

to study and understand how p21 regulates passage through the restriction point and 

entry into S-phase of the cell cycle, the subject of the next chapter(Barr et al. 2017). 

Moreover, a number of other labs have also implemented NucliTrack into their live 

cell workflow since publication. Overall, by coupling established packages for data 

processing in Python, with more recent solutions to data management (h5py), 

graphical user interface development (kivy) and image processing (skimage), this 

software also provides an example of how user friendly, scientific software may be 

efficiently developed in an open source environment. 

3.5 Methods 

3.5.1 Software and libraries  

To develop NucliTrack I first explored available options for which language to 

develop NucliTrack in and which libraries were available. Previously, I have tracked 

cells using custom software that I have written in C++ and Matlab. Whilst C++ has well 

developed libraries for image analysis, and fast compute speeds, developing user 

interfaces in C++ is highly challenging and typically requires allot of experience. 

https://paperpile.com/c/Uprlpu/uW6r
https://paperpile.com/c/Uprlpu/mhdj


 

93 

Meanwhile, Matlab suffers from the issue that the software is both proprietary, 

performance is typically slower than C/C++, and interfacing with other languages is 

very difficult. In contrast, Python is now the dominant language for data analysis, and 

additionally has abilities to integrate with web-packages, manage data storage, other 

languages such as C/C++, and more recently deep-learning libraries such as 

TensorFlow. Moreover, with a strong community behind it Python continues to be 

developed and maintained to a high standard, and thus was the language of choice for 

developing NucliTrack. 

However, Python currently suffers from a lack of good cross-platform tools for 

developing graphical user interfaces (GUI). The most commonly used packages have 

been PyGame, and tKinter, although without significant effort the GUIs developed 

using these libraries are both clunky and difficult to interact with. More recently, a 

more natural and interactive GUI library kivy has been developed by a community of 

programmers at MIT. Kivy allows user interfaces to be easily created  launched from 

the terminal and packaged into cross-platform applications. For these reasons I 

therefore chose to develop the GUI using the Kivy library. 

Overall in developing NucliTrack this combination of Kivy and Python worked 

very effectively. Although in several cases the performance of Python was insufficient 

for specific image processing and rendering tasks. I therefore also included functions 

written in C and a hybrid C and Python language ‘Cython’. These improved the speed 

of NucliTrack significantly. To create a self-contained distributable application, I used 

the PyInstaller library, although there were a number of challenges in creating an 

application that could be run on multiple operating systems, ultimately this goal was 
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achieved, and NucliTrack can now be downloaded and run on Linux, OSX, and 

Windows systems. NucliTrack therefore is coded predominantly in Python, contains 

certain optimised C functions, has a GUI written using the Kivy library, and is 

packaged and distributed as a standalone application that can be run on many 

systems. 

3.5.2 Features extracted 

In total 4 measures of cell shape are extracted as well as 7 measurements of the 

intensity and texture of each fluorescent channel imaged. 

Table 3-2, Features extracted from detected and segmented object in NucliTrack 

Area: the number of pixels in the mask 

Eccentricity:  defined by second order statistical moments 

Length: the longest straight line between two points on the convex hull 

Perimeter: length of the edge in pixels surrounding the region 

Mean intensity: measured for each channel 

Median intensity: measured for each channel 
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Floored mean intensity: all values below the mean are set to the mean, the 

mean of pixels above this value is calculated, measured for each channel 

Standard deviation of intensity: measured for each channel 

Floored mean standard deviation: all values below the mean are set to the 

mean, the standard deviation of pixels above this value is calculated, measured 

for each channel 

Ring-region: what is the intensity of pixels in the perinuclear ring region, 

optionally measured for each channel 

Nuclear to Ring-region ratio: what is the ratio of the perinuclear ring region 

intensity to the nuclear intensity, optionally measured for each channel 
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4 DNA damage in the mother cell causes p21 dependent G1 arrest 

in daughters 

4.1 Background  

Over the cell cycle, cells grow, replicate their DNA, and then divide into two 

daughter cells. Cell division, or mitosis represents the most visually striking of the 

phases that make up the cycle. Following division, proliferating daughter cells enter 

the first growth phase, termed G1 phase. During G1 phase the necessary machinery 

for DNA replication is produced and assembled on DNA strands in what are known as 

DNA replication origins. Following G1 phase, S-phase is initiated by the firing of 

replication origins, from which replication complexes including DNA polymerase and 

processivity factors such as proliferating cell nuclear antigen (PCNA)  synthesise an 

identical copy of DNA. After replication completes, the cell enters a second G2 growth 

phase where the necessary machinery for mitosis is assembled, prior to mitosis 

occurring and the cell cycle beginning anew.  

Across the cell cycle a number of checkpoints exist where cells can either continue 

to proliferate or enter an arrested state. Canonically, these checkpoints are: 1) The 

restriction point (RP) that occurs during G1 phase after mitosis. Passage through this 

point is associated with commitment to the cell cycle (Pardee 1974), whilst arrest 

typically causes entry into a quiescent G0 phase (Planas-Silva and Weinberg 1997);  

2) The G2 checkpoint which occurs prior to chromosome condensation and mitotic 

entry. This checkpoint is traditionally associated with ensuring DNA is fully and 

https://paperpile.com/c/2ptL1D/LKoQ
https://paperpile.com/c/2ptL1D/c6K0
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correctly replicated, and prevents propagation of mutations and damage to daughter 

cells (Norbury and Nurse 1992); and 3) The spindle assembly checkpoint (SAC) that 

serves to prevent aneuploidy occurring in daughter cells (Rudner and Murray 1996). 

Finally, an earlier S-phase checkpoint has also been proposed  to exist that would 

prevent DNA damage being propagated into G2 phase (Katou et al. 2003; Hurley and 

Bunz 2009). Whilst the RP acts as the major barrier to cells proliferating in the 

absence of extracellular stimulus, such as the presence of growth factors, all 

checkpoints play a major role in balancing the need for proliferation with the 

maintenance of genomic stability (Hartwell and Kastan 1994). Where these 

checkpoints fail, cells can begin to proliferate excessively and with this acquire 

instable genomes that together form the basis of tumorigenesis and cancer. 

At the molecular level, progression through cell cycle checkpoints is driven by the 

activity of Cyclin Dependent Kinases (CDKs) that phosphorylate a number of 

downstream targets and drive transcription of factors associated with the next cell 

cycle phase (van den Heuvel and Harlow 1993; Graña and Reddy 1995), Fig. 4-1A. 

CDKs are only active when bound to their respective Cyclins, factors whose levels 

oscillate over the course of the cell cycle  (Nurse 1990; Gautier et al. 1990; Evans et 

al. 1983). Passage through each checkpoint is associated with the activity of one or 

more Cyclin:CDK complexes (Norbury and Nurse 1992). CycD:CDK4/6 complexes are 

the principal mediators of passage through the G1 restriction point (Meyerson and 

Harlow 1994; Sherr 1993; Matsushime et al. 1991). CDK4/6 activity drives hypo-

phosphorylation of Retinoblastoma protein (Rb) (Matsushime et al. 1992), that in 

turn releases the bound transcription factor E2F (Weinberg 1995; Dyson 1998; 

https://paperpile.com/c/2ptL1D/E3Jz
https://paperpile.com/c/2ptL1D/NQ4X
https://paperpile.com/c/2ptL1D/XrP9+0yZW
https://paperpile.com/c/2ptL1D/XrP9+0yZW
https://paperpile.com/c/2ptL1D/i0wl
https://paperpile.com/c/2ptL1D/yjzq+goJT
https://paperpile.com/c/2ptL1D/R8A3+P9IQ+fSo2
https://paperpile.com/c/2ptL1D/R8A3+P9IQ+fSo2
https://paperpile.com/c/2ptL1D/E3Jz
https://paperpile.com/c/2ptL1D/YIBu+4q2M+ATz7
https://paperpile.com/c/2ptL1D/YIBu+4q2M+ATz7
https://paperpile.com/c/2ptL1D/aLW4
https://paperpile.com/c/2ptL1D/SwEW+zZjq+EMY6
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Chellappan et al. 1991). E2F causes upregulation of Cyclin E that binds to CDK2 (Geng 

et al. 1996), further phosphorylates Rb protein and establishes a positive feedback 

loop that commits the cell to S-phase, and therefore cell cycle entry (Arthur B. Pardee, 

Li, and Reddy 2004; Johnson and Skotheim 2013). Progression through the G2 

checkpoint meanwhile is associated with the buildup of Cyclin A/B levels that in turn 

induce CDK1 activity (Jackman et al. 2003). This, in turn, leads to phosphorylation of 

a number of targets associated with mitotic entry (Ubersax et al. 2003). Critically one 

of these is the Anaphase Promoting Complex (APC) (Zachariae and Nasmyth 1999). 

Following correct kinetochore attachment during mitosis, activation of the APC 

occurs through silencing spindle assembly complex signalling (Acquaviva et al. 2004). 

A  set of events is then set in motion that leads to ubiquitination of CycA/B, as well as 

a host of other factors that block re-entry into mitosis, by the APC that together ensure 

robust transition into G1 (Q. Yang and Ferrell 2013). In turn, daughter cells begin the 

next G1 phase, and again make the decision to pass through the restriction point or 

enter a quiescent state. Taken together, the activity of different Cyclin:CDK complexes 

over the course of the cell cycle drives passage through key checkpoints, and entry 

into mitosis that splits the cell into daughters ready to begin anew. 

Negative regulation of Cyclin:CDK activity is also observed at each checkpoint, Fig. 

4-1B. Two families of Cyclin:CDK inhibitors (CKIs) have so far been identified. These 

are the INK4 family of genes that contain p15, p16, p18 and p19, and the CIP/KIP 

family of genes containing p21, p27, and p57 (Besson, Dowdy, and Roberts 2008). The 

INK4 genes are primarily associated with inhibition of Cyclin D:CDK4/6 complexes 

and restriction point passage. Meanwhile, the CIP/KIP genes have been shown to 

https://paperpile.com/c/2ptL1D/SwEW+zZjq+EMY6
https://paperpile.com/c/2ptL1D/Nfec
https://paperpile.com/c/2ptL1D/Nfec
https://paperpile.com/c/2ptL1D/Zgz9+AEHL
https://paperpile.com/c/2ptL1D/Zgz9+AEHL
https://paperpile.com/c/2ptL1D/36yK
https://paperpile.com/c/2ptL1D/Fl0g
https://paperpile.com/c/2ptL1D/uAHC
https://paperpile.com/c/2ptL1D/p4xC
https://paperpile.com/c/2ptL1D/ekqw
https://paperpile.com/c/2ptL1D/ejFB
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inhibit all Cyclin:CDK complexes to varying degrees (Sherr and Roberts 1999), and 

have typically been associated with cell-cycle inhibition in response to a specific 

regulatory pathway (Besson, Dowdy, and Roberts 2008).  

The CIP/KIP protein p21 is best known for its role in the DNA damage pathway. 

In response to DNA damage, protein expression levels of the tumour suppressor p53 

increase, through phosphorylation and inhibition of its ubiquitination and 

degradation by the E3 ubiquitin ligase MDM2 (Kastan et al. 1991; Shieh et al. 1997). 

Increased levels of p53 in turn lead to transcriptional upregulation of p21 expression 

(el-Deiry et al. 1993), which in turn can cause p53 dependent G1 (Waldman, Kinzler, 

and Vogelstein 1995) and G2 arrests (Bunz et al. 1998). That are hypothesised to 

occur through p21 inhibiting all Cyclin:CDK complexes to varying degrees (Xiong et 

al. 1993), as well as p21 inhibiting the DNA replication factor Proliferating Cell 

Nuclear Antigen (PCNA) (Waga et al. 1994).  In contrast, p27 has been implicated in 

the ability of cells to arrest in response to serum starvation (Coats et al. 1996), and 

was identified as the major CKI that is upregulated following stimulation of 

fibroblasts by TGF-b in serum starved conditions (Toyoshima and Hunter 1994). 

Unlike p21, p27 is generally associated with a G1 specific arrest rather than the ability 

to arrest the cell cycle beyond the restriction point (Toyoshima and Hunter 1994). 

Specifically, in vitro p27 has been demonstrated to bind CDK1 (Toyoshima and Hunter 

1994), but in cells p27 has been found to bind CDK4/6 and CDK2 complexes, but not 

CDK1 (Soos et al. 1996). Moreover, p21 binds CDK4/6 and CDK2 in animal systems, 

in contrast p21 inhibition of CDK1 in animals had only been seen where levels have 

been elevated through depletion of the E3 ubiquitin ligase SCF-Skp2 that is known to 

https://paperpile.com/c/2ptL1D/bdJk
https://paperpile.com/c/2ptL1D/ejFB
https://paperpile.com/c/2ptL1D/Pgjy+NR7C
https://paperpile.com/c/2ptL1D/7KHJ
https://paperpile.com/c/2ptL1D/JfkP
https://paperpile.com/c/2ptL1D/JfkP
https://paperpile.com/c/2ptL1D/Pumq
https://paperpile.com/c/2ptL1D/2XUx
https://paperpile.com/c/2ptL1D/2XUx
https://paperpile.com/c/2ptL1D/mowz
https://paperpile.com/c/2ptL1D/WfSC
https://paperpile.com/c/2ptL1D/Ha0j
https://paperpile.com/c/2ptL1D/Ha0j
https://paperpile.com/c/2ptL1D/Ha0j
https://paperpile.com/c/2ptL1D/Ha0j
https://paperpile.com/c/2ptL1D/iXQf
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degrade p27 (Pagano 2004). Finally unlike p21 and p27 that are universally 

expressed in mammalian tissues, the CDK inhibitor p57 displays distinct and differing 

tissue localisation patterns in developing organisms and adults, thus implicating it in 

a developmental role (Balint et al. 2002; Georgia et al. 2006; Gosselet et al. 2007; 

Besson, Dowdy, and Roberts 2008). Again like p27 it is typically implicated in arrest 

at the restriction point, for example p57 is required for TGF-beta induced G1 arrest in 

hematopoietic stem cells (Scandura et al. 2004). Thus, whilst evidence supports the 

fact that p21 inhibits all cell cycle checkpoints in response to DNA damage, p27 and 

p57 typically act at the restriction point and are influenced by growth conditions and 

developmental processes respectively. Notably though, experiments demonstrating 

p21’s ability to inhibit all checkpoints used exogenous DNA damage to stimulate cell 

cycle arrest both in cell and animal models (Bunz et al. 1998; Waldman, Kinzler, and 

Vogelstein 1995; Xiong et al. 1993; Abbas and Dutta 2009). Thus, the question of 

which checkpoints and to what degree p21 inhibits cell cycle progression in cells in 

response to endogenous damage remains open. 

https://paperpile.com/c/2ptL1D/Mqox
https://paperpile.com/c/2ptL1D/BrNO+Av4o+WV62+ejFB
https://paperpile.com/c/2ptL1D/BrNO+Av4o+WV62+ejFB
https://paperpile.com/c/2ptL1D/pt4g
https://paperpile.com/c/2ptL1D/Pumq+JfkP+2XUx+HmkG
https://paperpile.com/c/2ptL1D/Pumq+JfkP+2XUx+HmkG
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Figure 4-1, Cyclin CDK activity drives cell cycle progression: A) Cyclin levels oscillate over multiple 

cell cycles. Over a single cell cycle, Cyclin-D activity is highest over the restriction point, afterwards allot of 

uncertainty surrounds whether its levels stay high or if it is degraded. Cyclin E meanwhile peaks over G1/S 

transition and is removed shortly after this (Barr et al. 2016). Cyclin A and B levels accumulate over S phase 

and G2, drive transition through mitotic entry, and play a role in regulating the timing of mitotic events; B) 

A simplified canonical model for regulation of cell cycle progression. In this dynamical system, Cyclin:CDK 

activity drives activation of downstream transcription factors such as E2F, that in turn drive expression of 

subsequent cyclins. Mitogen signalling initiates the cell cycle by driving Cyclin D transcription. The INK4 

proteins act primarily against Cyclin D: CDK4/6 complexes whilst, the CIP/KIP proteins p21, p27 and p57, 

are able to inhibit all Cyclin:CDK complexes, although the timings and relative strength of inhibition is 

uncertain. 

Correct regulation of the cell cycle checkpoints is critical for balancing the need 

for proliferation, required for growth and repair, with the build-up of endogenous 

DNA damage and mutations that can occur over successive rounds of replication and 

https://paperpile.com/c/2ptL1D/ZvjI
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cause cancer (Hanahan and Weinberg 2011). For example, one of the first genes to be 

implicated in cancer, and the first example of a tumour suppressor gene was that of 

Rb, a protein critical in suppressing E2F activity and passage through the restriction 

point (Weinberg 1995; Murphree and Benedict 1984; Cavenee et al. 1983). Here, 

mutations in Rb protein were almost exclusively correlated with the onset of pediatric 

retinoblastomas (Knudson 1971). The tumour suppressor p53 is also perhaps the 

best studied of all tumour suppressors (Hollstein et al. 1991), and has been implicated 

in over half of all cancers (Vogelstein et al. 2013). Moreover, familial mutations in p53 

are associated a wide range of early onset cancers, generally defined as Li-Fraumeni 

syndrome (Malkin et al. 1990; Li et al. 1988). Mutations in driver genes, such as Raf 

and Ras (Hall et al. 1983; Bos 1989; Davies et al. 2002; Wan et al. 2004), also have a 

vast body of evidence behind them implicating them in tumorigenesis. These driver 

mutations typically drive Cyclin-D expression Cyc-D:CDK4/6 activity, which together 

pushes the cell through the restriction point (Massagué 2004). Together, this 

demonstrates the importance of correctly balancing proliferation against the build-

up of somatic mutations in tumour suppressor genes such as TP53 and oncogenes 

such as Raf and Ras. 

Yet despite their major role in cell cycle progression, evidence shows that the 

dysregulation of CKIs such as p21 and p27 has a much weaker effect on 

tumourgenesis (Abbas and Dutta 2009). For example, whilst p21 showed is directly 

responsible for p53 dependent cell-cycle arrest (El-deiry et al. 1993), studies have 

also shown p21 is not responsible for p53 dependent apoptosis  (Deng et al. 1995), 

Fig. 4-2. Moreover, whilst Caballero et al. showed CDKN1A-/- mice spontaneously 

https://paperpile.com/c/2ptL1D/3Yc0
https://paperpile.com/c/2ptL1D/SwEW+4duc+KXxr
https://paperpile.com/c/2ptL1D/EzTI
https://paperpile.com/c/2ptL1D/M2sa
https://paperpile.com/c/2ptL1D/lGcf
https://paperpile.com/c/2ptL1D/K0u6+HuYq
https://paperpile.com/c/2ptL1D/5Md8+jA5m+lUZa+PtVr
https://paperpile.com/c/2ptL1D/WlMZ
https://paperpile.com/c/2ptL1D/HmkG
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develop tumors, this happens with late onset suggesting CDKN1A loss alone is 

insufficient for tumourgenesis as opposed to p53 (Caballero et al. 2001). The fact that 

Ras driven cancers are greatly accelerated by CDKN1A loss (Adnane et al. 2000), and 

CDKN1A null mice are much more susceptible to chemical induced tumorigenesis 

(Topley et al. 1999; Poole et al. 2004; Jackson et al. 2002), further supports the notion 

that p21 mutation must be accompanied by mutation in another tumor suppressor or 

driver gene. Yet, complicating the picture more recent studies that find p21 deletion 

can actually increase the lifespan of mice with telomerase mutations, without 

increasing levels of cancer (Choudhury et al. 2007). Taken together, these studies 

highlight that whilst p21 has tumor suppressive roles, these are not nearly as strong 

as those observed for TP53, and in certain cases p21 loss can be beneficial. 

Mutations in CKI’s also have a much weaker association with familial cancer 

diseases (Rainville and Garber 2008). For example, polymorphisms around CDKN1A, 

CDKN1B genes have been associated as risk-factors for colorectal, breast and prostate 

cancer (Dunlop et al. 2012; Ma et al. 2006; Kibel et al. 2003), but compared with TP53 

mutations in Li Fraumeni syndrome these effects are very minor  (Malkin et al. 1990). 

Similarly, CDKN1B familial mutations have only recently been implicated in a subset 

of patients harbouring multiple endocrine neoplasia. Here tumours and excessive 

growth are observed in multiple endocrine glands (Georgitsi et al. 2007). Familial p57 

mutations are the exception in that they induce lethal developmental defects (Yan et 

al. 1997; Zhang et al. 1997), and mutations in the CDKN1C that encodes p57 are 

associated with familial Beckwith-Wiedemann syndrome, a severe developmental 

disease (Lam et al. 1999). Though together the remarkable lack of somatic mutations 

https://paperpile.com/c/2ptL1D/Dbaj
https://paperpile.com/c/2ptL1D/TuUM
https://paperpile.com/c/2ptL1D/kpWl
https://paperpile.com/c/2ptL1D/icaY+9bPP+OAgH
https://paperpile.com/c/2ptL1D/IH1s
https://paperpile.com/c/2ptL1D/2r8a+mRvf
https://paperpile.com/c/2ptL1D/2r8a+mRvf
https://paperpile.com/c/2ptL1D/F1K2
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in CKIs in cancer stands out. In fact, the CKI p21 is more-frequently over-expressed 

across all tumours than under-expressed, (Forbes et al. 2011), and the presence of 

CDKN1A is in fact critical for maintenance of stem-like population of colorectal cancer 

cells that are able to effectively resist chemotherapy (O’brien et al. 2012). thus, major 

questions remain in our understanding of the role of CKIs, notably p21, in cell-cycle 

regulation and the progression of cancer. 

 

Figure 4-2, DNA damage leads to cell cycle arrest: In the canonical DNA damage response, damage 

leads to stabilisation and upregulation of p53, which in turn transcriptionally upregulates p21 protein 

which in turn inhibits Cyclin CDK complexes. 

These studies collectively highlight that we have identified the major players in 

cell cycle control and determined whether they positively or negatively regulate 

checkpoint progression in response to artificial conditions such as the addition of 

DNA damaging agents. Yet they also show that we have very little understanding of 

the dynamics of these checkpoints and how they function in normal cycling cells 

(Nurse 2000). For example how is it that cell cycle checkpoint are robust and 

irreversible, meaning that factors expressed prior to checkpoint passage cannot be 

re-expressed after passage (Tyson, Csikasz-Nagy, and Novak 2002), and that 

transitions are delayed until the cell is ready and able to commit to the next phase of 

https://paperpile.com/c/2ptL1D/IvVX
https://paperpile.com/c/2ptL1D/FseK
https://paperpile.com/c/2ptL1D/E6QO
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the cell cycle? Here, mathematical modelling has demonstrated that both positive and 

negative feedback loops are  critical to such decision making, and that each transition 

can be considered as a bistable state (Tyson, Chen, and Novak 2003; Sha et al. 2003; 

Chen et al. 2004). Specifically, negative feedback loops create a threshold level of CDK 

activity that must be surpassed to induce transition into the next phase, whilst 

positive feedback loops then ensure robust progression, and block passage back into 

the preceding phase (Tyson, Chen, and Novak 2003). Understanding what these 

feedback loops are, how they create a threshold level that can be surpassed by 

positive regulation, and how their dysregulation contributes to disease remains a 

largely open question (Kolch et al. 2015; Kholodenko 2006).  

Live single-cell experiments allow us to quantify how the activity and levels of 

signalling factors result in cell-fate decisions in individual cells, without the use of 

exogenous agents needed to synchronise entire populations (J. E. Purvis and Lahav 

2013; Cooper and Bakal 2017; Gaudet and Miller-Jensen 2016). As such, they are an 

ideal tool for understanding the dynamics of cell-cycle processes. Specifically, by 

using live cell analysis to analyse how normal, unperturbed, cycling cells behave in 

response to varying p21-levels over the course of the cell cycle we sought to resolve 

the uncertainties and paradoxes surrounding how p21 is linked to cell-cycle 

checkpoint control and cancer. 

In this line of research, a live-cell study by Spencer et al., in unperturbed cycling 

cells, demonstrated that a bifurcation in CDK2 activity after mitosis causes a 

subpopulation of cells to enter a p21-dependent post mitotic quiescent arrest state 

prior to restriction point passage (Spencer et al. 2013). Here, the authors examined 

https://paperpile.com/c/2ptL1D/vtAu+xMTD+p82S
https://paperpile.com/c/2ptL1D/vtAu+xMTD+p82S
https://paperpile.com/c/2ptL1D/vtAu
https://paperpile.com/c/2ptL1D/5l54+Rjst
https://paperpile.com/c/2ptL1D/Vu2X+cwYR+u9dK
https://paperpile.com/c/2ptL1D/Vu2X+cwYR+u9dK
https://paperpile.com/c/2ptL1D/2ENo
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this arrest state in response to mitogen withdrawal and implicated this p21-

dependent arrest as a response to mitogens since they observed after mitogen 

withdrawal that a number of cells shifted from a CDK2 low state to a CDK2 high state. 

Yet, this work stopped short of demonstrating that p21 depletion or knockout further 

sensitises cells to mitogen withdrawal, thus leaving the field open to alternative 

explanations. Independently and prior to this, Lahav et al. demonstrated that in a live-

cell system, in response to DNA damage, p53 displays pulses of expression (Lahav et 

al. 2004). Where these are transient pulses, cells continue to cycle. However, 

following more frequent pulses, or sustained activity, cells will either arrest or 

undergo apoptosis; this being dependent on the rate of p53 increase (Jeremy E. Purvis 

et al. 2012). Given the canonical pathway, in which p53 induces p21 expression that 

then causes cell cycle arrest, we hypothesised that p21 would act to integrate pulsatile 

p53 signalling over time, demonstrating slower non-pulsatile dynamics, and then be 

responsible for the observed bifurcation of CDK activity and the overall proliferation-

quiescence decision that Spencer et al. observed, but attributed principally to mitogen 

signalling withdrawal. To test this hypothesis, we looked to record p21 levels in live, 

unperturbed, cycling cells, over time and analyse how levels were regulated and 

corresponded with cell cycle arrest. 

Alexis Barr working in the Bakal lab conceived this project, following previous 

work looking at G1/S transition in Hela cells (Barr et al. 2016), and conducted all wet-

lab experiments. I used the NucliTrack software that I developed to analyze and 

interpret the live cell imaging data that Alexis collected, including manual inspection 

and correction of every track. Additionally, I created all figures and graphs relating to 

https://paperpile.com/c/2ptL1D/6HCT
https://paperpile.com/c/2ptL1D/6HCT
https://paperpile.com/c/2ptL1D/gmqx
https://paperpile.com/c/2ptL1D/gmqx
https://paperpile.com/c/2ptL1D/ZvjI
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live cell data, with the exception of Fig. 4-7B. My contribution increased the number 

of cells being tracked by ~10 fold compared with previous projects in the Bakal lab 

and allowed us to ask questions about the dynamics of p21 levels over entire 

populations of cells rather than just a select handful of cells (Cooper et al. 2017). We 

also collaborated with Stefan Heldt from Bela Novak’s group, to model the time series 

data being produced and better understand the role of p21 in the establishment and 

passage of the restriction point, and other cell cycle checkpoints. 

4.2 Results 

4.2.1 Quantifying p21 levels over the cell cycle 

To understand how p21 levels vary in live cells over time, a GFP tag was 

introduced into the C-terminus of both alleles of the CDKN1A gene, at the endogenous 

loci, in hTert-RPE1 cells using a CRISPR system.  Visual inspection of the p21 reporter 

indicated it to be exclusively nuclear, matching immunofluorescent staining of p21, 

Fig. 4-3A. Population growth was also unaffected, and cell cycle times matched the 

control cell line. Moreover, in vitro experiments demonstrated that p21 binding to 

CDK was not disrupted either. Together these experimental studies indicated that the 

GFP tag did not interfere with p21 functionality (Barr et al. 2017). 

The GFP reporter was introduced into hTert-RPE1 cells that already contained an 

mRuby reporter on a single allele of the gene Proliferating Cell Nuclear Antigen 

(PCNA)  (Zerjatke et al. 2017). PCNA is a key protein in DNA synthesis; with levels of 

PCNA shown to progressively increase over S-phase. Quantitative analysis of another 

https://paperpile.com/c/2ptL1D/Dw7F
https://paperpile.com/c/2ptL1D/K4GP
https://paperpile.com/c/2ptL1D/H9n5
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hTert-RPE1 cell line expressing both mRuby-PCNA, and Cyclin-A GFP, suggested that 

the point at which PCNA levels begin to increase is precisely timed with the start of S-

phase Fig. 4-3B. A very small jump in the foci feature is also observed here Fig. 4-3C. 

Therefore, by marking where PCNA levels begin to increase G1/S transition can be 

identified. PCNA develops distinct foci structures towards the end of S-phase that are 

rapidly disassembled over the S-phase / G2 transition, the feature engineered in 

NucliTrack is able to quantify the presence or absence of these foci, and allows G2/S 

transition to be demarcated, Fig. 4-3C. The major changes in both area and intensity, 

associated with nuclear envelope breakdown, then allow the mitotic event to be 

identified and G1 and G2 phase to be defined.  As such the three growth phases of the 

cell cycle could all be determined with a single PCNA channel, Fig. 4-3C. This 

represents an important advance as previously two channels have typically been 

required, for example, the commonly used FUCCI system uses a combination of GFP-

geminin for marking S and G2 phase and RFP-cdt1 for marking G1 phase (Zeilke et al., 

2015). Thus, by combining the dual p21, PCNA reporter cell line developed by Alexis 

with NucliTrack, we were able to quantitatively analyse the relationship between p21 

and cell cycle progression across large populations of unperturbed, asynchronously 

growing cells. 
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Figure 4-3, Quantifying the cell cycle: A) p21 and PCNA can only be detected in the nucleus in hTert-

RPE1 cells; B) increasing levels of PCNA correlate with the start of S-phase as marked by increasing cyclin-

A level; C)  Using only a PCNA reporter we are able to capture every phase of the cell cycle, at G1/S PCNA 

levels increase, at S/G2 the engineered PCNA foci measure peaks prior to disassembly of replication foci, 

mitosis can be identified by gross change in morphology.  

4.2.2 Heterogeneity in p21 levels  

Tracking of wild-type populations of tagged hTert-RPE1 cells with NucliTrack 

revealed notable variability in p21 levels over the cell cycle, Fig. 4-4A. Levels of p21 

were greatest and most variable in G1 phase and demonstrated strong positive 

correlation with the length of G1 phase (R = 0.62**; Methods), meaning that cells with 

higher levels of p21 remained in G1 phase for longer periods of time, Fig. 4-4B. In S-

phase p21 levels were undetectable in all imaged cells, indicating the presence of 

strong protein degradation and/or suppression of transcription. G2 phase 
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demonstrated intermediate levels of p21, and a significant positive correlation 

between p21 levels and G2 length (R = 0.51**).   

Notably, in contrast to previous reports we observed no degradation of p21 over 

mitosis, as such, p21 levels were inherited from mother to daughter. Indeed we 

observed strong correlation between the highest p21 levels reached in mother G2 

phase and daughter G1 phase (R = 0.75**), Fig. 4-4C. p21 levels were also highly 

correlated between sister cells (R = 0.81**), as did length of G1 phase between sister 

cells (R = 0.53**), indicating inheritance of factors corresponding to G1 length and 

p21 levels. Unusually, given correlation between mother and daughter cell p21 levels, 

p21 levels in G1 with G1 length, and p21 levels in G2 and G2 length, we observed very 

little correlation between mother G2 length and G1 length (R = 0.07, P = 0.36, 

Pearson’s Correlation). Instead, very high levels of correlation were observed 

between the highest p21 levels reached in G1 phase and the combined length of 

mother G2 phase and daughter G1 phase (R = 0.68**). In fact, this correlation was 

stronger than that observed in either phase individually (G1: R = 0.61**, G2: R = 

0.51**). This indicated that variation in G2 and G1 length was caused by noise in the 

timing of mitosis, Fig. 4-4D. As such, we found that the maximum p21-GFP level 

reached in the G1 phase of daughter cells is most reflective of the time period between 

the end of S-phase in the mother cell and S-phase entry in daughter cells. That we 

observed much weaker correlations between phase lengths before and after S-phase, 

therefore suggested that stochastic events occurring in S-phase determine the p21 

levels in, and the length of, the combined mother G2 and daughter G1 phase. 
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Figure 4-4, p21-GFP levels over the cell cycle: A) Tracks of p21 levels over the cell cycle are 

computationally synchronised to S/G2 transition, identified by the loss of PCNA foci. We observed that 

following S/G2 transition the majority of cells did not express high levels of p21, however, in some cases p21 

levels increased prior to mitosis (Black Marker) often these then increased significantly after mitosis. p21 

levels were below baseline over S-phase in all cells measured, no G2 arrest were observed; B) The maximum 

levels of p21 reached in G1 phase demonstrated strong positive correlation with G1-phase length (Pearson’s 

Correlation R = 0.62** (P < 0.01). We saw no change in the distribution of cells at different exposure 

intensities (Exp1, n = 206 cells; Exp2, n = 90; Exp3, n= 52 (Methods)), indicating exposure levels were below 

those that caused phototoxic effects on p21 levels and phase length; C) A high level of correlation was 

observed between sister cells in both p21 levels and phase length (n = 62, Pearson’s Correlation R = 0.81** 

(P < 0.01)). D) The strongest correlation between maximum p21 levels in G1 phase and phase length 

occurred between the combined mother cell G2 phase and daughter cell G1 phase. This suggests events over 

mother cell S-phase determine the time period until G1/S transition in daughter cells, whilst a level of 

uncertainty not dictated by these events exists in the timing of mitosis. 
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4.2.3 A p21 high G1 arrest state 

Aligning tracks of p21 levels to mitosis immediately reveals that in a fraction of 

cells p21-GFP accumulates to a high level shortly after mitosis and these cells then 

enter an arrest state that we define as G1 post mitotic arrest, where G1 length is 

greater than 600 minutes, Fig. 4-5A. We found these cells also had 

hypophosphorylated Rb indicating this arrested state to be a block before the 

restriction point. Consistent with p21 levels being inherited by daughter cells, linear 

regression between the maximum p21 level in the mother G2 phase and entry to the 

G1 post mitotic arrest state displayed significant positive correlation (R = 0.43**). 

Following both daughter cells after mitosis, we also found that in 70% (45/64) of 

cases both daughters continue to proliferate. In 16% (10/64) of cases both daughter 

cells enter a G1 arrest (twin arrest), whilst 14% of the time (9/64), one daughter 

arrests and the other cycles (single arrest). If arrest were to occur by chance following 

mitosis, we would expect fewer than 4.4% of mitoses to result in twin arrest (21% 

chance of any cell arresting, 0.212=0.044). As such, conditions for arrest are 

frequently inherited by both daughter cells. Finally, where either single or twin arrest 

occurs in daughter cells, mean p21-GFP levels are higher in the mother cell G2, than 

in the mother cell G2 where daughter cells continue to proliferate (twin arrest = 9.6 

a.u.; single arrest = 8.0 a.u.; cycling = 5.9 a.u), Fig. 4-5B. Thus, we propose that factors 

contributing to G1pm arrest are detected prior to mitosis and the single arrest we 

observe is caused by asymmetric inheritance of these factors. Although p21 levels can 

increase further in G1 to promote G1pm arrest. Taken together, these observations 

suggest that the decision between proliferation and arrest in daughter cell G1 phase, 
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in unperturbed cells, is regulated by p21 levels, which in turn are determined by 

events occurring in the mother cell S-phase.  

 

Figure 4-5, A p21 high arrest state: A) Tracks of p21 levels in unperturbed hTert-RPE1 were 

computationally aligned to mitosis. Two distinct subpopulations emerged, those where p21 levels increased 

to very high levels, and cell entered a G1 arrest state that we qualitatively defined as having a G1 length > 

600 minutes, and those that continued to cycle (n = 51 cells); B) Average p21 levels in cells that continued 

to cycle were lower than those where either daughter arrested. Average G2 p21 levels were even higher 

where both cells arrested. Cycling (n = 49 cells; single arrest, n = 9; twin arrest, n = 10). Significant 

differences are observed between arrested and cycling states using a two-sample t-test on log-transformed 

data. Error bar is s.d. (*P < 0.05, **P < 0.01). 

4.2.4 The tumour suppressor p53 drives heterogeneity in p21 levels in cycling cells 

The most well studied regulator of p21 levels is the tumour suppressor p53, due 

to its role in the DNA damage response. To understand the degree to which p53 levels 

are responsible for p21 transcriptional upregulation we depleted p53 with siRNA in 

populations of hTert-RPE1 cells. Following p53 depletion we used NucliTrack follow 

p21 levels in asynchronous cells, and observed a major reduction in basal p21 levels, 
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Fig. 4-6A. Notably the length of G1 also became similar across all cells tracked and we 

observed no cells entering a G1 arrested state, Fig. 4-6B. Thus, we found that p53 

accounted for all detectable heterogeneity in p21 levels, variation in G1 phase length, 

and entry into G1 arrest states in unperturbed hTert-RPE1 cells.  

To further validate this finding, we monitored p21 following addition of the 

compound Nutlin-3. Nutlin-3 is an inhibitor of the interaction between p53 and the 

E3 ubiquitin ligase MDM2 that is responsible for degradation of p53 and suppression 

of p53 levels in the absence of DNA damage (Vassilev 2004; Kojima et al. 2006). Thus, 

by adding Nutlin-3, p53 levels increase, and we hypothesised we would see an 

increase in p21 levels. Indeed, this was the case, as demonstrated by a drastic net 

increase in p21 levels following addition of nutlin 3 to hTert-RPE1 cells, Fig. 4-6D. 

However, only cells in G1 and G2 phase on Nutlin-3 accumulated p21 continuously. 

Cells in S-phase meanwhile maintained low levels of p21 over the course of S-phase 

before rapidly accumulating on S/G2 transition. In these cells exiting S-phase, we 

observed that a fraction entered a G2 arrest state, consistent with the observation that 

following exogenous DNA damage p21 can cause a G2 arrest (Bunz et al. 1998). Most 

strikingly, by computationally synchronizing cells exiting S-phase we found that G2 

arrest was associated with the rate of p21 increase, Fig. 4-6E. Specifically, in those cell 

with the highest rate of p21 accumulation G2 arrest was observed, whilst in those 

with lower accumulation rates, cells would undergo mitosis and arrest in the 

subsequent G1. Potentially indicating competitive feedback, against factors 

promoting mitotic entry. As such, by analysing how p21 levels and cell-cycle 

progression is affected by p53 suppression, and up-regulation, we provide very 

https://paperpile.com/c/2ptL1D/4wWr+ZLSn
https://paperpile.com/c/2ptL1D/Pumq
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strong evidence that observable heterogeneity in p21-GFP levels in hTert-RPE1 cells 

is caused by p53. Moreover, our data supports the notion that factors block p53 

dependent, p21 expression, over S-phase whilst DNA replication is still occurring. 

4.2.5 G1 arrest requires p21, however G1 delay is p21 independent 

Having established that both G1 arrest and delay is dependent on p53 we looked 

to understand the role of p21 in both scenarios. We depleted p21 using siRNA again, 

and this time observed that whilst less cells entered a G1 post mitotic arrest (5/75 for 

p21 siRNA versus 11/64 for NT siRNA, P=0.0536), variability in G1 length remained 

unaffected. To validate these finding Henriette Stoy, also generated p21 knockout cell 

lines, using two CRISPR/cas9 induced deletions, termed p21 knockouts 1 and 2. 

Again, no change in G1 length heterogeneity was observed, Fig. 4-6C, and an even 

stronger reduction in the number of cells arresting was observed, this time 

demonstrating a high level of statistical significance, with only 1 out of 172 cells 

entering an arrested state (P< 0.001). Thus, we found for the first time that in hTert-

RPE1 cells, G1 delay occurs through p21 independent mechanisms whilst G1 arrest in 

asynchronous unperturbed cells is p21 dependent.  
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Figure 4-6, The effects of p53 and p21 on cell cycle progression: A) Following depletion of p53 

(yellow, n=81) we observed a significant reduction in both p21 levels and the length of G1 phase versus 

control populations (blue, n=75). In contrast, following p21-GFP depletion, no change in G1  phase length 

was observed, despite the expected loss in p21 signal (red, n=90); B) Depletion of both p21 and p53 led to a 

significant reduction in the number of cells entering a G1 post mitotic arrest. ‘N-1’ Chi-squared test for 

divergence between arrest (assumed binomial probability) in NT and Wild Type vs. p21 and p53 siRNA/KO 

gave; NT:p21 siRNA: P = 0.0536, NT:p53 siRNA: P < 0.001, WT:p21 KO1: P < 0.001, WT:p21 KO2: P<0.001); 

C) G1 phase length in both p21 knockout lines was not statistically different from control populations; D) 

Following addition of nutlin-3 that is known to increase p53 signalling, we observed am immediate and 

dramatic upregulation in p21 levels, in cells in G1/G2 phase, that increased to higher levels than those 

observed in wild-type populations, (>200 a.u. Versus typical heightened levels of ~100 a.u. However, where 

cells were in S-phase p21 levels remained low until S-phase exit (teal marker) and entered a G2 arrest 

indicated by the absence of mitosis (black marker); E) Cells were computationally synchronised to S/G2 

transition to highlight the transition dynamics. We found G2 phase arrest to be  strongly associated with 

the rate of p21 increase following S/G2 transition. 
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4.2.6 High levels of p21 inhibit CDK2 activity 

Cyclin:CDK complexes represent the best characterised inhibitory target of p21. 

Importantly biochemical studies have demonstrated that p21 is a strong suppressor 

of Cyclin E:CDK2 activity. For example, Spencer et al. demonstrated that CDK2 activity 

bifurcates in cells post-mitosis (Spencer et al. 2013). However, in this study the cause 

of CDK2 activity bifurcation, in multiple unperturbed cycling cell lines was largely 

attributed to mitogen signalling levels. We hypothesised that in hTert-RPE1 cells we 

would observe a bifurcation in CDK2 activity post-mitosis in unperturbed cycling cells 

and that this would be p21 and p53 dependent. To test this hypothesis the CDK2 

reporter used by Spencer et al. was introduced into hTert-RPE1 cells expressing 

mRuby-PCNA only. This reporter translocates out of the nucleus on phosphorylation 

by CDK2, Fig. 1-4B. To quantify the activity of CDK2 in these cells, an additional 

feature therefore needed to be developed within NucliTrack that reported the ratio of 

intensity inside the nucleus, versus the intensity in the perinuclear ring region outside 

of the nucleus.  

In wild-type populations, this feature gave an effective readout of CDK2 activity, 

indicated by detection of the sudden drop in nuclear reporter intensity post-mitosis 

in the majority of cells, indicating loss of CDK2 activity associated with APC mediated 

degradation of Cyclins, Fig. 4-7A. In line with the findings of Spencer et al. we also 

observed a CDK2 low state to emerge post-mitosis, and the percentage of cells 

entering this state was insignificantly different to the number of cells p21-GFP tagged 

hTert-RPE1 cells that we observed entering a p21 high post mitotic arrest state. 

https://paperpile.com/c/2ptL1D/2ENo
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Heterogeneity in CDK2 activity levels post mitosis was also observed. Cells that had 

lower levels of CDK2 activity for longer, had delayed G1 phases, Fig. 4.7A.  

To test whether this CDK2 low state was p53 dependent we depleted p53 with 

siRNA and followed CDK2 activity levels post mitosis. In line with our previous 

observations we observed that following p53 depletion, G1 phase length became 

homogeneous, Fig. 4.7A. Moreover, we observed that CDK2 activity levels also has 

reduced variability, increasing rapidly in all cells following mitosis. Following p21 

depletion, we observed that whilst there remained heterogeneity in CDK2 levels, and 

G1 phase length, significantly fewer cells entered a CDK2 low arrest state. Thus, our 

data showed that in hTert-RPE1 cells, the CDK2 post mitotic arrest phenotype is both 

p21 and p53 dependent, consistent with the notion that high levels of p21 inhibit 

CDK2 activity, and that this activity blocks cell cycle progression. 

Finally, to validate that the p21 high state corresponded to cells with inhibited 

CDK2 activity,  hTert-RPE1 cells expressing p21-GFP only were transiently 

transfected with a CDK2-mRuby reporter. Several cells were identified that were in a 

p21 high state and had low CDK2 activity for prolonged periods of time, Fig. 4-7B. This 

provides critical further evidence that the p21 high post-mitotic arrest state 

corresponds to inhibition of CDK2 activity. Taken together we thus find that a 

percentage of cells enter a p21 and p53 dependent arrest state post mitosis, and this 

corresponds to inhibition of CDK2 activity.  
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Figure 4-7, CDK2 low post mitotic arrest is both p21 and p53 dependent: A) Time-series of CDK2 

activity in cycling cells show a significant drop in activity over mitosis associated with APC degradation of 

Cyclins (Peters 2002; King et al. 1996). Moreover in control cells we observe bifurcation after mitosis into 

CDK high and low states in line with previous observations (Spencer et al. 2013; Overton et al. 2014) (n=51). 

Following p21 depletion, consistent with our previous observations, variability in CDK2 levels of G1 Phase 

were present, although only a single cell to enter a CDK2 low state, suggesting that the post-mitotic CDK2 

low state is p21 dependent (n=68). Depletion of the tumour suppressor p53 resulted in homogenous 

behaviour in CDK2 levels following mitosis, with no cells entering a post-mitotic arrest state (n=25); B) 

Transient transfection of hTert-RPE1 cells expressing p21-GFP only, with a mRuby-CDK2 reporter allowed 

us to quantify p21 and CDK2 level simultaneously in a select handful of single-cells. This demonstrated that 

high p21 levels correlate with suppression of CDK2 activity [Graphs by Alexis Barr]. 

https://paperpile.com/c/2ptL1D/B9Mr+2gYy
https://paperpile.com/c/2ptL1D/2ENo+eplM
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4.2.7 Expression of p21 correlates with the presence of DNA damage foci 

Given that: 1) The G1 post mitosis state is p53 dependent; 2) p21 levels are most 

reflective of the combined length of G2 in the mother cell and G1 in the daughter cell; 

and 3) p21 levels accumulate after the S/G2 transition, we postulated that DNA 

damage occurring over S-phase in the mother cell underpins p21 levels in G2 phase 

of the mother cell and G1 phase of daughter cells. To test this proposal, we looked to 

correlate the presence of DNA damage in the mother cell S-phase with DNA damage 

levels in daughter cells. Much of the work in this section was performed by Frankie 

Butera working in the Bakal lab.  

The protein γH2AX marks DNA damage, and is typically associated with double 

strand breaks (Kuo and Yang 2008), where it is phosphorylated by the damage 

sensing protein ATM (Burma et al. 2001). By immunostaining for γH2AX we looked 

for correlation between γH2AX expression levels and high levels of p21. Although no 

significant correlation was observed when intensities were related; a striking 

correlation between the presence of at least one strong γH2AX foci in the nuclear 

region, G1 phase length, and high p21 levels was observed, Fig. 4-8A,B&C. 

Immunofluorescence staining of other markers of DNA damage, specifically 53BP1 

(Schultz et al. 2000) and phosphorylated ATM  (Bakkenist and Kastan 2003), also 

demonstrated a similar correlation between a strong foci and p21-GFP levels, Fig. 4-

8C. It was noted that these single foci looked resembled stretches of incompletely 

replicated DNA, that have been shown to result in single-stranded DNA gaps being 

present in G2 cells (Durkin and Glover 2007). Indeed co-localisation of RPA2, a 

marker for ssDNA (Zou and Elledge 2003), was observed with single γH2AX foci in G2 

https://paperpile.com/c/2ptL1D/jkkx
https://paperpile.com/c/2ptL1D/j8aE
https://paperpile.com/c/2ptL1D/9SXH
https://paperpile.com/c/2ptL1D/qr46
https://paperpile.com/c/2ptL1D/H5IA
https://paperpile.com/c/2ptL1D/BstB
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Fig. 4-8D. Finally, time-lapse imaging revealed that in the majority of cell divisions, 

sister G1 cells behave similarly such that in 47% (67/142) of mitoses neither sister 

has a 53BP1 focus, in 24% (34/142) both sister cells have a focus, and in 29% 

(41/142) only one sister has a focus, Fig. 4-8E. Taken together, this analysis suggested 

that incompletely replicated DNA and damage that occurs over the mother cell S-

phase is inherited by daughter cells. Inheritance of this DNA damage in turn correlates 

with up-regulation of p21 levels and induction of G1 post mitotic arrest. 
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Figure 4-8, DNA damage over S-phase correlates with p21 induction: A) Immunofluorescent 

staining γH2AX revealed that the presence of a distinct foci is correlated with high p21 expression; B) The 

presence of a foci is associated with an increase in G1 phase length (unpaired student’s t-test P < 0.001); C) 

Foci of the DNA damage markers, γH2AX, 53BP1and phosphorylate ATM all correlate with increased p21 

levels, indicating that these foci are DNA repair complexes, marking regions of damage; D) After 47% of 

mitosis both daughter cells continue to proliferate, in 24% of cases a single daughter arrests, whilst in 29% 

of cases both daughters undergo a post mitotic arrest. The fact that these percentage are higher than those 

observed for p21-GFP, mRuby-PCNA labelled cells, indicates that the 53BP1 reporter being used may be 

responsible for low levels of DNA damage or replication stress; E) RPA-2 a marker of single strand DNA 

localises alongside γH2AX, indicating that the DNA damage is stemming from under replicated DNA 

originating in S-phase [Figure by Alexis Barr and Frankie Butera]. 
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4.2.8 Replication stress induces high levels of p21 expression 

Taken together our evidence suggested that endogenous DNA damage, occurring 

during DNA replication in the mother cell S-phase, was responsible for p21 

heterogeneity and G1 post mitotic arrests observed in daughter cells. To determine 

whether induction of replication stress with exogenous agents could further increase 

p21 levels and the number of cells arresting in G1 phase, we treated populations of 

cells expressing p21-GFP and mRuby-PCNA with aphidicolin. Aphidicolin is a fungal 

antibiotic that inhibits the processivity of DNA polymerases in S-phase and thus 

causes increased levels of replication stress, and DNA damage specifically during S-

phase (Ikegami et al. 1978). In hTert-RPE1 cells treated with aphidicolin we observed 

an increase in the number of cells expressing γH2AX foci, as well as a major increase 

in the number of foci per cell, Fig. 4-9A. S-phase length was increased and in cells 

exiting S-phase p21 upregulation occurred versus DMSO treated control populations, 

Fig. 4-9B. Following mitosis, we found that a much higher fraction of cells entered G1 

post mitotic arrest (62.5%, 20/32) when compared to DMSO controls (13.2%, 5/38). 

As such, by inducing exogenous replication stress with Aphidicolin we were able to 

significantly shift the fraction of daughter cells entering arrest states, indicating that 

inheritance of DNA damage is indeed behind the G1 arrest that we have observed. 

Moreover, a fraction of mother cells also entered a G2 arrest state after S-phase (25%, 

8/32), with high levels of p21, a phenotype that we previously hadn’t observed in 

wild-type or control populations.  

To test whether this arrest state corresponded to the CDK2 low state we have 

observed in unperturbed populations of cycling cells, we treated hTert-RPE1 cells 

https://paperpile.com/c/2ptL1D/pDKY
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expressing the CDK2 reporter and mRuby-PCNA with aphidicolin, Fig. 4-9C. 

Consistent with the arrest states equating to one another, we observed an increase in 

the number of cells entering G1 post-mitotic arrest, as well as cells arresting in G2. In 

those cells entering a G2 arrest, we found that after a period of time CDK2 activity was 

downregulated, indicating that once p21 levels are sufficiently high they are able to 

effectively inhibit CDK2 activity in G2 phase. 

We also sought to both validate that both p21 and p53 are required to invoke G1 

post-mitotic arrest following exogenous stress and determine whether G2 arrest is 

p53 and p21 dependent. We replicated the p21 and p53 siRNA gene depletions 

previously performed and following knockdown cells were treated with aphidicolin. 

Consistent with the notion that G1 arrest and delay are p53 dependent, we observed 

no variation in G1 length of G1 arrest following p53 depletion and aphidicolin 

treatment, moreover no cells entered a G2 arrest indicating this arrest is also p53 

dependent, although in a rare case extended G2 was observed, Fig. 4-9C. Following 

p21 depletion again we observed heterogeneity in G2 and G1 lengths. Notably G2 

arrest was absent, and G1 arrest was compromised, Fig. 4-9C. Together this verified 

that the observed G1 arrest is p53 and p21 dependent, in response to either 

endogenous or exogenous replication stress in mother cell S-phase. This analysis also 

revealed the presence of a p21 and p53 dependent G2 arrest at higher levels of DNA 

damage, and thus also supports a causal link between the rate of p21 increase versus 

likelihood of G2 arrest. 

We also analysed the response of hTert-RPE1 cells to ATR kinase inhibition using 

the inhibitor AZD6738 (Jones et al. 2013). ATR inhibitors induce additional 

https://paperpile.com/c/2ptL1D/9Ys8
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replication stress through destabilising stalled replication forks that are formed 

during DNA synthesis (Couch et al. 2013). Treatment with ATR inhibitors led to an 

increase in the number of cells with DNA damage foci as marked by γH2AX, Fig. 4-9A. 

In line with Aphidicolin treatment we also observed a marked increase in the number 

of cells entering a G1 arrest state versus DMSO treated cells, and an increase in G1 

length, Fig. 4-9B. However, in contrast to aphidicolin treatment we noted that both S-

phase and G2 phase were shorter, no cells arrested in G2, and the majority of p21 

accumulation occurred rapidly and shortly after mitosis, Fig. 4-9B. This supports 

evidence suggesting that inhibition of progression through G2 phase of the cell cycle 

is ATR dependent (Cliby et al. 2002; Liu et al. 2000). As such, we find that inhibition 

of ATR activity, induces increased levels of DNA damage during and after S-phase, and 

this corresponds to an increase in the number of cells entering a G1 post mitotic 

arrest. Additionally, we find that ATR may be involved in the p53-p21 G2 dependent 

arrest that we identified with aphidicolin. 

https://paperpile.com/c/2ptL1D/3Y2L
https://paperpile.com/c/2ptL1D/b1L5+FKHp
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Figure 4-9, Exogenous replication increases the number of cells entering a p21 high - CDK2 

low post mitotic arrest: A) Following treatment of hTert-RPE1 cells for 24hrs with either 0.3uM or 0.6 uM 

Aphidicolin, there is a dramatic increase in the number of cells that displaying γH2AX foci. ATR inhibitors 

also increase the number of foci per cell and number of cells exhibiting γH2AX foci, however the effect is less 

pronounced. [Graphs by Alexis Barr]; B) Tracking of cells and computational alignment to S/G2 transition, 

after addition of 0.3um Aphidicolin revealed that nearly all cells upregulate p21 following S-phase exit 

compared to DMSO controls cells that typically continue to proliferate (blue). This upregulation of p21 is 

accompanied by either G1 arrest (red) or G2 arrest (yellow). ATR inhibitors had a similar effect causing the 

majority of cells to upregulate p21, however no cells were observed to enter a G2 arres; C) Cells that 

expressed a CDK2 reporter were tracked and computationally aligned to S/G2 transitions following 

addition of 0.3 uM aphidicolin, either after treatment with non targeting, p21 or p53 siRNA. G2 arrest was 

completely compromised following p21 depletion, and significantly fewer cells entered a G1 post-mitotic 

arrest. This effect was ven stronger following p53 depletion where no cells entered either a G1 or G2 arrest, 

however in one rare case we noticed a very extended G2 phase. 

4.2.9 Skp2 and Cdt2 pathways both co-operate to induce p21 degradation prior to S-

phase 

Over all tested conditions p21 levels were undetectable over S-phase, and where 

p21 levels were high in G1, they would drop rapidly prior to S-phase. Together these 

features suggested that active degradation of p21-GFP was occurring prior to and 

during S-phase. Further supporting the role of active degradation in p21 loss prior to 

S-phase was the fact that we observed two rates of p21 loss in wild type cells, a slower 

rate of degradation that occurred over several hours prior to S-phase entry, and a 

much faster switch like degradation of p21 that occurred at the G1/S-phase transition. 

Previous studies had indicated that over G1 and S-phase the E3 ubiquitin ligases SCF-

Skp2 and CRL4-Cdt2 both play a role in degrading p21 (Bornstein et al. 2003; Abbas 

https://paperpile.com/c/2ptL1D/QxBI+y3i0
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et al. 2008). However little work has gone into understanding the timing and rate with 

which these ubiquitin ligases remove p21 protein. 

To determine the roles that these two ubiquitin ligases play in p21 degradation, 

we depleted Cdt2, Skp2 individually and the combination of both Cdt2 and Skp2 using 

siRNA, and then observed the rates of p21 loss across populations of cells 

computationally synchronised to G1/S transition. Following loss of Skp2 we observed 

that all cells entering S-phase, and exhibited switch like loss of p21, Fig. 4-10A. This 

indicated that SCF-Skp2 was responsible for the slower rate of p21 degradation 

observed in the run-up to G1/S transition; p21 levels remained undetectable over S-

phase. Following Cdt2 depletion we observed that cells entering S-phase 

demonstrated active degradation of p21 prior to G1/S transition, however no switch 

like loss of p21 was seen, Fig. 4-10A. After Cdt2 depletion we also saw cells 

reaccumulate p21 in S-phase, in long slow oscillatory cycles. Nuclei also continued to 

increase in size beyond what we had previously observed in cell exiting S-phase into 

G2. Another known role of p21 is as a strong inhibitor of PCNA (Waga et al. 1994), loss 

of p21 is required to initiate DNA synthesis and S-phase (Arias and Walter 2006), thus 

we hypothesised that re-accumulation of p21 during S-phase interfered with the 

reversibility of G1/S transition, leading to incomplete replication occurring. Analysis 

of total DNA content in cell nuclei using fluorescence activated cell sorting, showed 

that following Cdt2 depletion cells frequently had DNA content levels that fell 

between n=2 and n=4 (fully replicated DNA), indicating the presence of incomplete 

replication and the cell cycle stalling in S-phase. Moreover, by depleting p21 this 

phenotype was rescued, demonstrating that Cdt2 is required to prevent p21 

https://paperpile.com/c/2ptL1D/QxBI+y3i0
https://paperpile.com/c/2ptL1D/mowz
https://paperpile.com/c/2ptL1D/jKVY
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dependent inhibition of S-phase.  Following depletion of both Cdt2 and Skp2 we 

observed that the rate of p21 depletion prior to G1/S transition was severely 

compromised, indicating both proteins cooperate to induce degradation of p21, Fig. 

4-10A. Importantly, no cell entered S-phase with detectable levels of p21, despite 

depletion of both of these factors. Thus, indicating that p21 is a highly potent inhibitor 

of S-phase entry, and that active degradation of p21 is essential for proper transition. 

Taken together we found that both Skp2 and Cdt2 co-operate to remove p21 prior to 

G1/S transition in unperturbed cycling hTert RPE1 cells. Whilst SCF-Skp2 complexes 

are responsible for degrading high levels of p21 in G1 phase, CRL4-Cdt2 complexes 

account for the switch like loss of p21 of G1/S transition and maintain low levels of 

p21 over S-phase, where p21 is present both DNA replication and correct temporal 

control of S-phase are interfered with, and this is likely due to inhibition of PCNA 

(Waga et al. 1994). 

4.2.10 Cdt2 and Skp2 are critical for controlling the length of G1 phase 

In line with the notion that Cdt2 and Skp2 degradation are required to remove 

p21 prior to S-phase, I analysed how the length of G1 phase was affected by depletion 

of either of these two ubiquitin ligases as well as the combination of both. Following 

depletion of Cdt2, we observed  a small but significant increase in the length of G1 

phase, though notably only the G1 length of cells that re-enter S-phase was captured, 

Fig. 4-10B. A significant proportion of cells entered a permanent stalled S-phase or G1 

arrest with increasing p21 levels, as evidenced by the increasing average p21 levels 

over the course of imaging, Fig. 4-10C. In contrast, following Skp2 depletion we 

https://paperpile.com/c/2ptL1D/mowz
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observed G1 phase to be much longer and for p21 levels to reach significantly higher 

maximum levels in G1, (Fig. 4-10B. The majority of Skp2 depleted cells also eventually 

re-entered S-phase through Cdt2 mediated depletion of p21, this likely underpins 

why average p21 levels remained only slightly above those of control populations, Fig. 

4-10C. This data is consistent with the notion that Skp2 suppresses p21 levels over a 

much longer period in G1 phase and suggests that CRL4-Cdt2 complexes are unable 

to degrade high levels of p21 either due to direct inhibition of active replication 

complexes by p21 or through reduced Cyclin:CDK activity. If this were not the case, 

G1 phase length would not be compromised following Skp2 depletion. Together 

implying the presence of negative feedback between CRL4-Cdt2 activity and p21 

levels. 
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Figure 4-10, The E3 Ubiquitin ligases SCF-Skp2 and CRL4-Cdt2 co-operate to target p21 for 

degradation: A) p21-GFP levels in hTert-RPE1 cells that were tracked and computationally aligned to G1/S 

transition following treatment with four siRNA conditions; non-targeting, Skp2, Cdt2 and the combination 

of Skp2 and Cdt2. Only cells that underwent G1/S transition and entered S-phase are shown. The number of 

cells captured entering S-phase following Cdt2 or Skp2 and Cdt2 depletion was significantly less owing to a 

large number of cells in an arrested state with high p21; B) G1 length versus p21 levels following treatment 

with the different siRNA conditions. Skp2 depletion led to a significant increase in G1 length, again though 

it should be noted many cells after Cdt2 or Skp2 and Cdt2 depletion did not have defined G1 lengths as they 

did not re-enter the cell cycle; C) The effect of Cdt2 depletion alone or in combination on total p21-GFP levels 

is best observed when all cells in the field of view are considered. Here p21-GFP levels increase ~5 fold over 

the course of imaging in contrast to p21-GFP levels in Skp2 depleted cells that remain similar to control. 

4.2.11 Serum is not responsible for a p21 dependent arrest 

Finally, to exclude the possibility that mitogen signalling is also responsible for a 

p21 dependent arrest we looked to explore how p21-GFP levels in hTert-RPE1 cells 

are influenced by the absence of mitogens. To explore this response we serum 

starved, imaged and tracked hTert-RPE1 cells. Serum contains high levels of mitogens 

required for maintaining this immortalised cell line in a proliferative state. Following 

serum withdrawal, we observed that all cells entered an arrested state. However, in 

contrast to the p21-dependent DNA damage arrest state that we observed, p21 levels 

in arrested cells following serum withdrawal exhibited high levels of variability, 

indicating this arrest state was perhaps p21 independent, Fig. 4-11A. To verify this, 

we withdrew serum from the two p21 KO cell lines that we had previously generated. 

Indeed, in these cells arrest was not compromised, further providing evidence that 

following serum withdrawal arrest is p21 independent, Fig. 4-11B.  



 

133 

Mitogen signalling is known to stimulate cyclin D CDK4/6 activity, through either 

driving expression of cyclin D or through phosphorylation and activation of Cyclin 

D:CDK4/6 complexes. Thus, by depleting cyclin D with siRNA we would also expect to 

observe a p21 independent cell cycle arrest. We treated hTert-RPE1 cells with cyclin 

D siRNA and tracked them over time. Following cyclin D depletion in these cells we 

observed that the majority of the population entered an arrested state, evidenced by 

no cells entering S-phase. Importantly, this was independent off p21-levels, further 

supporting the notion that a mitogen withdrawal arrest is p21-independent, and 

probably occurs through a route that involves downregulation of Cyclin D:CDK4/6 

activity as has been traditionally thought (Terada et al. 1999), Fig. 4-11C. However, at 

intermediate mitogen levels, the threshold p21 levels required to induce arrest would 

likely be lowered, as observed in Overton et al.,  due to reduced CDK mediated Skp2 

activity (Overton et al. 2014), this would explain the findings of Spencer et al. (Spencer 

et al. 2013), and is consistent with our model of p21 activity being regulated by two 

double negative feedback loops. 

https://paperpile.com/c/2ptL1D/vL38
https://paperpile.com/c/2ptL1D/eplM
https://paperpile.com/c/2ptL1D/2ENo
https://paperpile.com/c/2ptL1D/2ENo
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Figure 4-11, Serum withdrawal arrest is p21 independent: A) Following withdrawal of serum in 

the previous cell cycle, p21 levels were measured in hTert-RPE1 cells and tracks were aligned to mitosis; n 

= 29 cells. Grey line marks 600 min time point used to define G1pm arrest. In Fig. 4.5A, red curves represent 

cells entering G1pm arrest, blue curves represent cells that enter S-phase; B) Graph showing the percentage 

of cells arresting in G1 in three different mRuby-PCNA hTert-RPE1 cell lines (WT and two p21KO clones) 

after serum withdrawal for 24 h. The mean and standard deviation (error bars), of two independent FACS 

experiments are shown [Graph by Henriette Stoy]; C) hTert-RPE1 cell were treated with Cyclin D siRNA and 

tracked over time. Tracks are aligned to 24 hours after treatment with Cyclin D siRNA. G1 arrests are 

indicated by the absence of cells entering S-phase (blue dots) after S-phase exit (purple) and mitosis (black). 
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4.3 Discussion 

Prior to this work, our understanding of how p21 is regulated over the cell cycle 

was limited to static single cell analysis and studies in which dynamics were 

measured destructively in synchronised populations, for example using western 

blots. Through endogenous tagging of p21 protein in hTert RPE1 cells, we were able 

to directly visualise p21-GFP levels in live cells populations. NucliTrack then allowed 

us to track hundreds of highly motile hTERT-RPE1 and computationally synchronise 

time series-data on p21-levels, preventing the need for using biological agents to 

synchronise populations. This is important as multiple studies have demonstrated 

these can cause unwanted side-effects and behaviour that are not physiologically 

relevant (Urbani et al. 1995). This pipeline allowed us to also track enough cells that 

we could quantify and assign statistical significance to behaviours that we observed 

qualitatively over the cell cycle. In the majority of previous live-cell studies results 

remain qualitative due to only a handful of cells being tracked. Taken together, this 

pipeline therefore represents a step towards being able to easily dissect the dynamics 

of signaling pathways using live-cell reporters, in large populations of live 

unperturbed single-cells. 

Through analysing the time-series data that we collected we were then able to 

build a picture of how p21 is regulated over the cell cycle. This demonstrated that 

induction of p21 in hTert-RPE1 cells could be fully accounted for by the activity of 

p53, consistent with Stewart-Ornstein et al. who identified that p21-CFP levels 

increased following a peak in p53-YFP activity in live cells (Stewart-Ornstein and 

Lahav 2016). We also observed that in unperturbed cells, DNA damage originated in 

https://paperpile.com/c/2ptL1D/H7Kb
https://paperpile.com/c/2ptL1D/fYza
https://paperpile.com/c/2ptL1D/fYza
https://paperpile.com/c/2ptL1D/fYza
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S-phase and was likely due to replication stress. Through p53 dependent 

upregulation of p21 levels in G2 phase, the transfer of DNA damage to one or both 

daughter cells during mitosis, and likely continued p53 signalling in G1 phase, cells 

would then either enter a p21 and p53 dependent quiescent state, or delay 

progression through a still unknown p53 dependent, p21 independent, mechanism. 

Importantly, this p21 dependent arrest accounted for the bifurcation of CDK2 activity 

observed in Spencer et al. (Spencer et al. 2013). Together we therefore quantified the 

dynamics of p21 over the cell cycle and illustrated how endogenous DNA damage in 

mother cells influences the proliferation-quiescence decision in daughter cells. 

We also characterised how p21 levels are degraded prior to G1/S transition. 

Where previously studies had implicated both SCF-Skp2 (Bornstein et al. 2003), and 

CRL4-Cdt2 (Abbas et al. 2008) in the degradation of p21 levels, uncertainty 

surrounded the rates and timings that these two ligases started p21 for proteolytic 

degradation (Abbas and Dutta 2009). We identified that both SCF-Skp2 and CRL4-

Cdt2 cooperate to facilitate the degradation of p21 over the G1/S transition. SCF-Skp2 

targets p21 for degradation at a slower rate, relatively, but is active for a longer period 

of G1 phase, and likely due to weaker inhibitory feedback appears able to remove 

higher p21 levels. CRL4-Cdt2, meanwhile, very quickly degrades p21 at the G1/S 

transition; though we speculate is only active once p21 levels are lower, due to strong 

inhibition of PCNA by p21 that is essential for formation of the active replication 

complexes that are required for CRL4-Cdt2 activity (Hayashi et al. 2014; Havens and 

Walter 2011). Thus, the sequential activity of these two ubiquitin ligases is effective 

in degrading p21 prior to S-phase, even where levels of p21 may be high. Over S-

https://paperpile.com/c/2ptL1D/2ENo
https://paperpile.com/c/2ptL1D/QxBI
https://paperpile.com/c/2ptL1D/y3i0
https://paperpile.com/c/2ptL1D/HmkG
https://paperpile.com/c/2ptL1D/BtJ9+CSZy
https://paperpile.com/c/2ptL1D/BtJ9+CSZy
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phase, we found CRL4-Cdt2 is necessary to maintain low levels of p21, and without it, 

faulty replication is observed. This is in line with previous reports that CRL4-Cdt2 

activity is essential for preventing re-replication (Hayashi et al. 2014; Havens and 

Walter 2011). 

Together, these findings allow us to put forward a working hypothesis that two 

double negative feedback loops exist, that govern establishment of the proliferation-

quiescence decision point and G1/S transition. In the first feedback loop, p21 inhibits 

CDK activity (likely some combination of CDK4/6 and CDK2 activity), whilst CDK 

activity in turn drives increasing SCF-Skp2 activity that degrades and thus inhibits the 

activity of p21. This model is consistent with the theoretical work of  Overton et al. 

who hypothesised that the restriction point is bistable with respect to p21, due to a 

double negative feedback loop that includes CDK2 and SCF-Skp2 (Overton et al. 

2014). In the second double negative feedback system, CDK activity drives the 

formation and activation of replication complexes that bind CRL4-Cdt2 to induce p21 

degradation, whilst p21 inhibits the formation of replication complexes by binding to 

PCNA, mathematical modelling using systems of ordinary differential equations 

demonstrated that such a model can fully explain the behaviour of p21-GFP levels that 

we observed (Barr et al. 2017; Heldt et al. 2018). Thus, the live cell approach has 

allowed us to develop a more comprehensive model of p21’s role in restriction point 

passage. 

Since publication of this work, several papers validating our findings have been 

published.  Notably, Arora et al. and Moser et al. replicated the finding that 

endogenous replication stress in mother cells causes a p21-dependent arrest in 

https://paperpile.com/c/2ptL1D/BtJ9+CSZy
https://paperpile.com/c/2ptL1D/BtJ9+CSZy
https://paperpile.com/c/2ptL1D/eplM
https://paperpile.com/c/2ptL1D/eplM
https://paperpile.com/c/2ptL1D/K4GP+ibcZ
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daughters, using a CDK2 reporter (Arora et al. 2017; Moser et al. 2018). Yang et al. 

also found that levels of mitogen signalling can compete directly with p53 signalling 

activity to effect passage through the restriction point, using a live cell Cyclin-D 

reporter (H. W. Yang et al. 2017). Here, they showed that CycD:CDK4/6 complexes are 

stabilised and bound by a single protein of p21; where cyclin-D expression increases 

fast enough it is able to overcome the inhibitory effects p53-p21 signaling, and drive 

restriction point passage, this work explaining and echoing many of the findings of a 

similar study examining the behaviour of Cyclin-D in live cells (Zerjatke et al. 2017). 

Our finding that DNA lesions occurring in S-phase determine G1 phase lengths has 

also been replicated and published in key work by Lezaja et al. (Lezaja and Altmeyer 

2018). Finally, Schwarz et al. quantified CDK activity levels required for restriction 

point passage in primary fibroblasts, and found variability existed in the timing of 

passage that could not be explained by mitogen signalling only. The authors 

postulated that inheritance of DNA damage, as we uncovered may underpin this 

(Schwarz et al. 2018). 

Together this points towards a model where p21 acts downstream of pulsatile 

p53 signalling to temporally integrate information on DNA damage during the mother 

G2/M phases and the daughter G1 phases. Such a model is consistent with evidence 

that cells can exit an arrested state in response to a reduction in total p53 signalling 

over a distinct period of time (Reyes et al. 2018). In previous work Purvis et al. 

identified that p53 mediated apoptosis is rate-dependent, with slow induction of a 

downstream anti-apoptotic factor (Jeremy E. Purvis et al. 2012). Given p21’s known 

anti-apoptotic role (Jänicke et al. 2007; Yu et al. 2005; Attardi et al. 1996; Polyak et al. 

https://paperpile.com/c/2ptL1D/yjeC+wB2c
https://paperpile.com/c/2ptL1D/P7xH
https://paperpile.com/c/2ptL1D/H9n5
https://paperpile.com/c/2ptL1D/qkPl
https://paperpile.com/c/2ptL1D/qkPl
https://paperpile.com/c/2ptL1D/OmEu
https://paperpile.com/c/2ptL1D/U5ab
https://paperpile.com/c/2ptL1D/gmqx
https://paperpile.com/c/2ptL1D/NmMp+CWpg+8Vaw+yCcB+J7af


 

139 

1997; Wettersten et al. 2013), we speculate that this may be the factor whose slow 

build-up blocks apoptosis and instead promotes G1 arrest. Such a hypothesis would 

be consistent with clinical observations as to the role of p21 in cancer (Abbas and 

Dutta 2009).  Degradation of p21 before S-phase entry would then ensure that 

information on DNA damage generated during the previous cycle is fully erased 

before cells commit to a new cell cycle. This would allow the process of gathering 

information on DNA damage and deciding whether to proliferate, arrest, or apoptose, 

to begin anew following S/G2 passage. The idea of information-gathering phase and 

a reset phase leads to the attractive possibility that cells have evolved a DNA damage 

decision making system that is invariant to time and therefore remains consistent 

across both populations and generations of live single cells. 

  

https://paperpile.com/c/2ptL1D/NmMp+CWpg+8Vaw+yCcB+J7af
https://paperpile.com/c/2ptL1D/HmkG
https://paperpile.com/c/2ptL1D/HmkG
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4.4 Methods 

Wet-lab experimental procedures were performed by Alexis Barr, Frankie Butera, 

and Henriette Stoy (working in the Bakal lab) and are described in detail in (Barr et 

al. 2017). Cell segmentation, tracking and correction, was performed by myself using 

NucliTrack, as described in Chapter II. Additionally, I created all of the figures that 

made use of live-cell data with the exception of figure 4-7B. Everyone involved aided 

in interpreting data and conceiving follow up experiments. 

 

4.4.1 Sampling cell tracks for figures and normalisation 

To determine correlations, between p21 levels and phase length, for both control 

data and depletion experiments, a single-cell lineage was used. This was selected 

based on the daughter cell captured within the FOV for the longest period of time. The 

likelihood of arrest observed using this sampling regime very closely matched (21% 

n.47/219) that observed for sampling both daughters, where only mitosis in which 

both daughters are subsequently tracked for greater than 60 frames are used (23% 

n.29/128). The single lineage-sampling regime is used outside of calculations 

comparing daughters, as here n is greater. In all conditions at least two technical 

replicates were analysed, and tracks from each replicate were visually compared to 

ensure dynamics were consistent, prior to pooling of the data. Relative p21 levels 

decreased over imaging, this is due to intensity adjustments made by the microscope 

caused by increasingly bright images, (more p21-GFP expressing cells as population 

expands). No adjustment for this decrease was made, such that data remains faithful 

https://paperpile.com/c/2ptL1D/K4GP
https://paperpile.com/c/2ptL1D/K4GP
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to the original imaging data sets, though baseline levels for arrest thresholds are 

defined at 15 a.u. For all p21-GFP traces except Fig. 4.X, p21-GFP levels were 

normalised using the lowest level of p21-GFP captured across all tracks. This value (4 

a.u. For Fig. 4.X traces) was generally similar to those seen in imaging (p21-GFP 

background levels were 12 a.u. In the first frame at the 10th percentile, while p21-

GFP background levels were 2 a.u. in the last frame at the 10th percentile). The lowest 

track level was used rather than imaging baseline values, to avoid negative values. 

4.4.2 Maximum and mean p21 expression levels and P-values.  

p21-GFP values, used for population mean, s.d. and correlation measures in the 

main text are derived from the maximum p21-GFP value reached within a single cell 

in the cell cycle phase defined. The maximum p21-GFP value was used rather than the 

mean p21 value, as this generally gave stronger correlations to cell cycle phase length, 

though in all cases analysed for both mean and maximum the mean value also 

provided a statistically significant correlation. 

While both maximum G1 p21 levels and G1 length were not normally distributed 

as determined by a one sample Kolmogorov–Smirnov test (G1 p21 levels, P = 1.8677e-

04; G1 length, P = 0.0012). Following log transformation, the sample fell under the 

normal distribution (G1 p21 levels, P = 0.1467; G1 length, P = 0.2408). Therefore, we 

calculated the Pearson correlations on the log-transformed data as well, since 

Pearson’s correlation does not fully describe the association of data which does not 

fall under a bivariate normal distribution. While correlation values did change, at no 

point did a previously significant result become insignificant. As such, for simplicity 
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and to match that data presented in figures, correlations determined on the 

untransformed data are given in the main text. Table 1 gives the values quoted in the 

main text (derived from the maximum p21 value per cell, per phase) alongside the 

respected value derived from the mean p21 level per cell. Full P-values are also 

quoted in this table; otherwise P = 0.01 is marked by **, and P = 0.05 is denoted by *.  

Correlations between p21-GFP levels (mean and maximum) with phase lengths 

following S-phase are also quoted. Results following log transformation of the max 

p21 levels versus length data are also given. Mitotic timing masks correlation between 

G2M and G1D lengths. Given that we observe strong correlation between; 1) p21-GFP 

levels in the mother G2 (G2M) and daughter G1 (G1D), 2) p21-GFP levels in G2M and 

G2M length, and 3) p21-GFP levels in G1D and G1D length; we were initially surprised 

to find no correlation between G2M length and G1D length. However, in this 

comparison noise in the timing of mitosis has the dual effect of increasing G2M length 

and decreasing G1D length, and vice versa. Thus, if noise in mitotic timing is indeed 

masking the relationship between cell cycle phase length and p21 levels, we reasoned 

that the combined length of G2M and G1D would correlate better with the maximum 

p21-level reached than either length alone. We found this to be the case with R.0.68** 

for maximum p21 level in G2M/G1D against length of G2M/G1D, versus against length 

of G1D (R.0.62**) or G2M (R.0.52**) alone. This result was calculated from the merged 

experimental repeats (n.4). Within each repeat this result held as well (see 

Supplementary Table 2). 
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Table 4-1, Summary of R- and P-values for Pearson’s correlations. 

CORRELATION  MEAN P21 LEVEL MAXIMUM P21 LEVEL LOG(TIME) VS LOG(MAX) P21 

 R P R P R P 

G1 LENGTH TO P21 LEVEL 
  
  

0.5939 4.1231E-19 0.6163 7.6580E-21 0.5616 5.4876E-17 

G2 LENGTH TO P21 LEVEL 
  
  

0.4528 1.3023E-15 0.5146 2.1324E-20 0.4719 1.6389E-14 

S-PHASE LENGTH TO P21 LEVEL 
  
  

-0.0741 0.3146 0.0720 0.3285 0.0306 0.6785 

G2 MOTHER P21 LEVEL TO G1 

DAUGHTER P21 LEVEL 
  

0.7012 1.2832E-26 0.7482 6.2568E-32 0.7166 3.0996E-28 

G2 MOTHER LENGTH TO G1 

DAUGHTER LENGTH 
R = 0.0707 
P = 0.3580 

G1 MOTHER P21 LEVELS TO G1 

DAUGHTER P21 LEVELS 
  

0.5272 0.0023 0.5075 0.0036 0.4247 0.0173 

G1 MOTHER LENGTH TO G1 

DAUGHTER LENGTH 
  

R = 0.1258 
P = 0.5002 

G1 DAUGHTER P21 LEVELS TO G2 

MOTHER + G1 DAUGHTER LENGTH 
0.6687 1.6250E-23 0.6834 7.2175E-25 0.6445 1.8888E-21 

G1 Daughter p21 levels to G2 
Daughter p21 levels 
  

0.3308 2.7011e-04 0.3063 7.8206e-04     

G1 Daughter length to G2 
Daughter length 
  

R = 0.1607 
P = 0.0835 
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Table 4-2, R-values for Pearson’s correlations between phase length and maximum 

p21 value for different experimental repeats 

  Length of G1 daughter  vs p21 
max 

Length of G2 mother +G1 
daughter  vs p21 max 

Repeat 1 0.3980 0.5993 

Repeat 2 0.7671 0.8144 

Repeat 3 0.7444 0.7951 

Repeat 4 0.6991 0.7254 

 



 

145 

5 Conclusions and Future Directions 

5.1 Summary of work and contributions 

Within the field of high-content image analysis, workflows for analysis of simple 

2D assays on rigid imaging substrates are now largely defined, and routinely used in 

drug and target discovery projects. In contrast, we are only just beginning to develop 

workflows that can robustly handle imaging data generated from more complex 

physiologically relevant assays, such as cells cultured in extra-cellular matrix, or in 

combination with other cell-types. Moreover, the use of live-cell imaging for 

understanding signalling dynamics in cells plated on 2D substrates, is only just 

transitioning from workflows that require extensive manual effort, to those where the 

majority of data extraction and analysis is automated. 

In Chapter 2, I developed a new data analysis workflow for analyzing an assay 

where cells were cultured on substrates that much closer match those found in the 

body. Specifically, I looked at how our understanding of Rho GTPase signalling built 

up using overexpression studies, biochemical techniques, and systems wide siRNA 

screens on 2D cultures translates into how melanoma cells behave in collagen 

matrices (Cooper et al. 2015). Here, we observed that cells adopt a number of 

morphologies that are not observed on flat substrates, such as the “large round” 

shape. The siRNA screen also led to weaker phenotypes than others have observed on 

2D plastic substrates (Yin et al. 2013). Together this showed that by performing 

https://paperpile.com/c/q2kPz8/ZAzo
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phenotypic screens on  3D matrices we can observe additional levels of complexity 

beyond what many have seen on plastic substrates.  

However, this also brought with it challenges in both capturing and analysing the 

dataset. Firstly, the number of technical repeats and fields of view that could be 

captured vs. a typical high-content screen was limited by the distance that cells had 

to be imaged through collagen. Secondly, large numbers of artifact and noise meant 

that extensive effort had to be put into filtering mis-segmented objects and ensuring 

that features were biologically relevant. This motivated careful consideration of how 

to transform feature space, using the DBI as a readout, and highlights that as we move 

away from simple adherent cultures towards 3D matrices (Puls et al. 2018), co-

culture systems (Tape et al. 2016; Bourhis et al. 1997), and even miniature organoids 

(Sachs and Clevers 2014), workflows capable of handling high noise to signal ratios 

will be necessary. Indeed, since publication, this work has been cited by several 

studies looking to analyse the behaviour of cells in 3D matrix, (Kimmel et al. 2018; 

Holmes et al. 2017;  Alizadeh et al. 2018; Baniukiewicz et al. 2018). Together this 

contribution forms part of a larger trend in the pharmaceutical industry towards 

developing physiologically relevant assays  and analysis strategies that improve our 

ability to predict behaviour in the clinic, and is discussed in 5.2, ‘Towards 

physiologically relevant models’. 

In Chapter 3, I developed NucliTrack, that gave myself and others the capabilities 

required to track hundreds to thousands of live-cells over long periods of time 

(Cooper et al. 2017). Specifically, where before tools have been widely available for 

automated segmentation of cell nuclei, as well as automated cell tracking, no tools 

https://paperpile.com/c/q2kPz8/QnsC
https://paperpile.com/c/q2kPz8/D4NQ+ZUsI
https://paperpile.com/c/q2kPz8/OxCP
https://paperpile.com/c/q2kPz8/Zg3z
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combined these two components of the pipeline into a single package. Most 

importantly, there were no solutions for manually correcting and annotating large 

number of tracks. This facilitated the studies in Chapter 4 where we analysed how 

p21 levels vary over the cell cycle (Barr et al. 2017; Heldt et al. 2018). Moreover, in 

work by Simpson et al. NucliTrack was used to investigate the dynamics of Erk 

signalling over the cell cycle, revealing a distinct bi-furcation in ERK activity after 

mitosis, and that BRAF and MEK inhibitors are effective in a cell-cycle dependent 

manner. As such this software relieves a key bottleneck in the live-cell imaging 

pipeline and is allowing those studying the cell cycle within the Bakal lab, and 

elsewhere to increase the number of cells being tracked by and order of magnitude 

when compared to previous work (Barr et al. 2016).  

In Chapter 4 we revealed for the first time how a bifurcation in p21 levels after S-

phase in the mother cell, and continuing into mitosis, underpins the previously 

observed p53 and p21 dependent G1 arrest state that occurs in response to DNA 

damage signalling. Before this investigation, to the best of our knowledge studies of 

p21 had been restricted to fixed endpoint assays, where dynamics were inferred from 

populations of cells that had been synchronised with agents that block cells at specific 

checkpoints (Urbani et al. 1995), or where arrest is induced by high concentrations of 

exogenous DNA damaging agents (Waldman, Kinzler, and Vogelstein 1995;  Bunz et 

al. 1998). Here, for the first time we analysed p21 levels over the cell-cycle in 

unperturbed asynchronous cycling populations.   This allowed us to define a p53 and 

p21 dependent G1 post mitotic arrest state, where elevated levels of p21 suppress the 

activity of CDK2. We found that this bifurcation of p21 activity is caused by stochastic 

https://paperpile.com/c/q2kPz8/6rIF+WdU5
https://paperpile.com/c/q2kPz8/N19T
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DNA damage that occurs during S-phase in the mother cell and is likely the result of 

endogenous DNA replication stress. In turn this  stochastic DNA damage and  p21 

bifurcation underpins the bifurcation in CDK2 activity previously identified by 

Spencer et al. in seminal live cell studies of CDK2 activity (Spencer et al. 2013). Finally, 

we also characterised how p21 is degraded by the two E3-ubiqutin ligases, CRL4Cdt2 

and SCFSkp2, showing that they cooperate to remove high-levels of p21,  and 

both likely participate in double-negative feedback loops with p21, leading to the 

robust bifurcation that we observe in p21 levels prior to G1/S.  Together this work 

led to a major step forwards in our understanding of p21 protein. The significance of 

this is highlighted by the increasing number of studies that our building off these 

results; several are discussed in Chapter 4 ,  though now over 50 publications have 

cited this work in the 2 years proceeding its publication. The significance of this work 

further highlights a growing trend towards the use of live-cell imaging studies for 

understanding the dynamics of biological signalling pathways and is discussed in 5.3, 

‘Towards understanding the dynamics of biological systems’ 

Over the course of this thesis the informatics tools and biology discovered with 

them have both advanced our image analysis capabilities and helped answer key 

questions in fundamental and cancer biology.  These studies continue to impact the 

scientific community, and combined point towards a growing movement to analyse 

the behavior of cells and systems and a single cell level, using fully automated analysis 

tools. How the image analysis approached explored in this thesis, and the work I 

continue to pursue beyond this thesis, is part of an even greater trend towards 

reducing the cycle time between experiments and analysis is the final future direction 

https://paperpile.com/c/2ptL1D/2ENo
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I consider in 5.4, ‘Towards unsupervised and weakly supervised  to close the loop on 

discovery’, and sets the stage for the next chapter in quantitative microscopy.  

5.2 Towards physiologically relevant models 

Perhaps the single greatest challenge currently facing pharmaceutical research is 

that of being able to predict how a drug will behave against a disease in a clinical 

setting, notably phase 2 clinical trials (Paul et al. 2010). A major aspect of developing 

a better understanding of how biology will translate into a clinical setting is 

developing in vitro disease models that better approximate physiological conditions 

(Zanella et al. 2010; Skardal et al. 2016; Li et al. 2016; Breslin and O'Driscoll 2013; 

Tiscornia et al. 2011; Fatehullah et al. 2016). We also need to understand how the 

knowledge that we have built up in adherent cultures translates into these models, 

since where they translate well screening of adherent systems can be much simpler 

and more efficient (Pollard et al. 2009). Together such models and understanding will 

drive better selection of targets, and further drive the resurgence in phenotypic 

screening approaches that is currently happening (Swinney and Anthony 2011).  

Quantitative image analysis approaches are now increasingly being developed 

and used to analyse such physiologically relevant models, such as the method 

developed in Chapter 2. For example, a 3D watershed algorithm originally used for 

segmentation of a handful of cell nuclei (Lin et al. 2003), was recently adapted to 

effectively detect hundreds to thousands of nuclei in a method for analysing 

fluorescently labeled nuclei in large 3D spheroids in high throughput (Boutin et al. 

2018).  Updates to CellProfiler now include the ability to extract features from 3D 

https://paperpile.com/c/q2kPz8/slUY
https://paperpile.com/c/q2kPz8/gavK+KdHn+s6uf+xao6+2KrO+zZEA
https://paperpile.com/c/q2kPz8/gavK+KdHn+s6uf+xao6+2KrO+zZEA
https://paperpile.com/c/q2kPz8/7Yt2
https://paperpile.com/c/q2kPz8/aJJL
https://paperpile.com/c/q2kPz8/vhuu
https://paperpile.com/c/q2kPz8/V75c
https://paperpile.com/c/q2kPz8/V75c
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objects (McQuin et al. 2018). Finally, the development of fully convolutional neural 

networks (Long et al. 2015), and there transfer to cell segmentation (Ronneberger et 

al. 2015), have shown incredible performance in segmenting nuclei in complex and 

cluttered images such as those take from histological stains (Caicedo et al. 2018), and 

can also be applied to 3D imaging stacks (Çiçek et al. 2016). However, performing 

unsupervised analysis of microscopy data, as was carried out in Chapter 2, using 

deep-neural networks remains incredibly difficult, since separating signal from noise 

is almost in possible in the absence of effective training labels, typically data on a cells 

position, rotational orientation, or channel intensity dominate more subtle effects. A 

solution to this is in weakly supervised learning, as discussed in 5.4. As such, trends 

in pharmaceutical research towards more physiologically relevant models, continue 

to motivate the development of better algorithms for managing complex images and 

will remain a major theme as the field progresses over the next five to ten years. If we 

can effectively analyse images of more translational models and extract valuable 

results and data from drug screens against these assays, this represents an exciting 

avenue for potentially reducing the number of phase II failures that occur.  

5.3 Towards understanding the dynamics of biological systems 

Over the last half century an enormous amount of work has gone into firstly 

identifying the factors involved in cellular signalling networks, and then 

understanding the connections between these factors. However, we still have a very 

limited understanding of how these networks function in time and space. For 

example, how do emergent properties such as the ability to integrate information on 

the environment and internal state of the cell in order to respond and make key 

https://paperpile.com/c/q2kPz8/EwFV
https://paperpile.com/c/q2kPz8/mDvC
https://paperpile.com/c/q2kPz8/CbIt
https://paperpile.com/c/q2kPz8/CbIt
https://paperpile.com/c/q2kPz8/T5eD
https://paperpile.com/c/q2kPz8/laQ5
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decisions (Tyson et al. 2003; Nurse 2000), arise? Live single-cell imaging is emerging 

as the dominant method for studying signalling dynamics; this being due to the fact it 

is perhaps one of the only techniques that is non-destructive and provides reliable 

readouts of signalling behaviour (Purvis and Lahav 2013; Gaudet and Miller-Jensen 

2016). However, major challenges remain in processing and analysing live cell data 

(Cooper and Bakal 2017). 

Going forwards, the dynamics of cell cycle regulation continues to be unpicked 

and dissected by live-single cell studies (Yang et al. 2017; Arora et al. 2017; Moser et 

al. 2018; Zerjatke et al. 2017). In the pipeline, signalling studies that include three or 

more live-cell reporters in a single cell promise to shed more light on how the cell 

cycle is regulated over time. Improvements in tracking are also on the horizon, with 

deep-neural networks beginning to yield significant performance improvements 

(Kristan et al. 2015; Wang et al. 2015; Bertinetto et al. 2016), albeit lagging behind 

advances in segmentation accuracies versus classical models. Moreover tools are now 

being developed that will allow us to effectively share and analyse others results, as 

well as perform studies exploring signalling dynamics over multiple datasets 

(Borland et al. 2018). For example, in recent studies of ERK signalling151 in 

Drosophila embryos, spectacular behaviours were observed. These showed how 

spatiotemporal orchestration of ERK signalling151 controls cell fate 

and  segmentation patterning, and that optogenetic techniques can be used to alter 

these spatiotemporal signalling patterns and artificially determine cell fate and 

segmentation (Toettcher et al. 2013; Johnson et al. 2017; Johnson et al. 2018). 

Together, these trends underpin what will be a surge in the number of studies using 

https://paperpile.com/c/q2kPz8/J5jN+ZUey
https://paperpile.com/c/q2kPz8/Z9Mn+GFZZ
https://paperpile.com/c/q2kPz8/Z9Mn+GFZZ
https://paperpile.com/c/q2kPz8/9X2X
https://paperpile.com/c/q2kPz8/PTdS+ONQt+C0s4+G00E
https://paperpile.com/c/q2kPz8/PTdS+ONQt+C0s4+G00E
https://paperpile.com/c/q2kPz8/rIec+mpwZ+pLfV
https://paperpile.com/c/q2kPz8/NChw
https://paperpile.com/c/q2kPz8/AzBW+KKar+zhSr
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live-cell analysis to dissect dynamics across large populations of cells. With live cell 

signalling studies also standing poised to uncover the signalling152 behaviours that 

underpin developmental and complex multicellular behaviours, that to date have 

remained largely a complete mystery. 

5.4 Towards unsupervised and weakly supervised deep-learning to close the 

loop on discovery 

A topic of research explored in this Chapter 2 of this thesis was that of using 

unsupervised machine learning strategies to perform unbiased analysis of high-

content imaging data. Here, the DBI was used as a readout for the performance of a 

given feature reduction strategy, and quantified how close members of the same 

cluster were versus how close different clusters are to each one another, where a low 

DBI indicated successful feature reduction. Machine learning models can also be 

trained to directly optimise feature space against the DBI. In this case the primary 

objective is minimising the DBI. The auxiliary task then contains the result that we are 

interested in, which is creating a feature space where the distance between different 

biological conditions represents how similar the phenotypes are to one another. As 

such, an approach in which we optimize directly against a measure such as the DBI 

can be considered a weakly supervised learning problem, where we train a model to 

effectively separation conditions, but are interested in the auxiliary task of where 

conditions lie in the feature space that the model learns. The DBI can also be replaced 

by a simple classification challenge, where a model learns to predict which condition 

an image or cell belongs to. For example, if an effective classification between cells or 

sample images from two conditions can be made in a given feature space, then they 
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are likely different and will appear distant in the learnt feature space. If errors are 

made then they are likely indistinguishable and will appear as close or overlapping in 

the feature space. As such an effective weakly supervised strategy is to train models 

to classify images of single cells, regions of interest, or whole fields of view, as 

belonging to a certain conditions. The feature space learnt in turn can be used to 

effectively map phenotypic similarity between different conditions. 

Critically, this formulates the problem in a way that is amenable to deep-learning 

and solves many of the challenges faced by unsupervised methods. As discussed in 

1.5, convolutional neural networks learn features directly from raw imaging data. By 

training these networks on such a weakly supervised task as in (Caicedo et al. 2018), 

we can extract meaningful embeddings of different conditions directly from raw 

imaging data without any prior knowledge. This means, that there is a much higher 

theoretical limit on accuracy since features are learnt and not engineered, that in 

practice has repeatedly been shown to materialize (LeCun et al. 2015). Moreover, it 

also lets us apply such techniques to complex images where segmentation and feature 

extraction techniques fail. As such, weakly supervised deep learning has been used 

successfully to rapidly profile and detect variations between conditions such as 

compounds with different mechanism of action; results here demonstrated marked 

improvements on traditional engineered feature based methods (Ando et al. 2017; 

Caicedo et al. 2018). Moreover, in work by Lu et al., that I was involved in over the last 

year of my PhD, weakly supervised learning was used to create an effective distance 

map that described how similar the localisation patterns are of 12,000 different 

proteins inside the human cell (Lu et al. 2018). This revealed,  amongst other findings, 

https://paperpile.com/c/q2kPz8/GB2t
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13 proteins that localised to the nucleolar rim and previously had been un-

documented (Lu et al. 2018). Taken together weakly supervised learning is therefore 

letting us move towards analysis pipelines that enable us to rapidly convert raw high-

content imaging data into actionable results, that crucially include detection of 

previously unseen behavior, and overcome issues with pure unsupervised learning of 

embeddings.  

Through training models to jointly embed different data types, for example HTS 

and high-content data, allow conversion from imaging data to other data modalities. 

For example, in recent work, Simm et al. used extracted features from high-content 

images to learn an embedding between high-throughput biochemical binding  (HTS) 

data, that allowed them to predict target binding profiled (Simm et al. 2018). 

Prospectively, this allowed them to screen for new compounds against a target and 

demonstrate 250-fold enrichment (Simm et al. 2018), representing perhaps the first 

significant demonstration of the power of machine and specifically deep-learning 

tools to pharmaceutical research. With trends towards generative models that allow 

novel compounds to be created from embeddings of compounds structure, such 

jointly learnt embeddings have exciting prospects for being able to automatically 

generate new compound structure that could be synthesised and would have a high 

likelihood of being functionally active in a given assay. As has been demonstrated in 

key studies looking at the design of novel materials using fully automated approaches 

(Duvenaud et al. 2015; Er et al. 2015; Gómez-Bombarelli et al. 2018; Tabor et al. 

2018). These generative approaches are the final tool in the puzzle for developing 

systems that can fully automatically explore and optimize real world spaces, such as 

https://paperpile.com/c/q2kPz8/aUnf+zxlx+itKV+0W1P
https://paperpile.com/c/q2kPz8/aUnf+zxlx+itKV+0W1P
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chemical space, thus closing the loop on the cycle of discovery. The question is now 

how we can practically integrate such machine learning approaches with automated 

platforms for designing and setting up experiments? and use these platforms to 

automate the search for new targets against physiologically relevant disease models, 

reporters that demonstrate interesting dynamic behavior, and the next blockbuster 

drug. Together, such closed loop discovery, driven by advances in data analysis and 

machine learning, is looking set to be the next revolution in scientific exploration that 

will guide advancements over the coming century. 

 



 

156 

6 Bibliography 

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, 
et al. 2016. “Tensorflow: A System for Large-Scale Machine Learning.” In OSDI, 16:265–83. 

Abassi, Yama A., Biao Xi, Wenfu Zhang, Peifang Ye, Shelli L. Kirstein, Michelle R. Gaylord, Stuart C. 
Feinstein, Xiaobo Wang, and Xiao Xu. 2009. “Kinetic Cell-Based Morphological Screening: Prediction of 
Mechanism of Compound Action and off-Target Effects.” Chemistry & Biology 16 (7): 712–23. 

Abbas, Tarek, and Anindya Dutta. 2009. “p21 in Cancer: Intricate Networks and Multiple Activities.” 
Nature Reviews. Cancer 9 (6): 400–414. 

Abbas, Tarek, Uma Sivaprasad, Kenta Terai, Virginia Amador, Michele Pagano, and Anindya Dutta. 
2008. “PCNA-Dependent Regulation of p21 Ubiquitylation and Degradation via the CRL4Cdt2 Ubiquitin 
Ligase Complex.” Genes & Development 22 (18): 2496–2506. 

Abràmoff, Michael D., Paulo J. Magalhães, and Sunanda J. Ram. 2004. “Image Processing with ImageJ.” 
Biophotonics International 11 (7): 36–42. 

Acquaviva, Claire, Franz Herzog, Claudine Kraft, and Jonathon Pines. 2004. “The Anaphase 
Promoting Complex/cyclosome Is Recruited to Centromeres by the Spindle Assembly Checkpoint.” 
Nature Cell Biology 6 (9): 892–98. 

Adams, Cynthia L., Vadim Kutsyy, Daniel A. Coleman, Ge Cong, Anne Moon Crompton, Kathleen A. 
Elias, Donald R. Oestreicher, Jay K. Trautman, and Eugeni Vaisberg. 2006. “Compound Classification 
Using Image-Based Cellular Phenotypes.” Methods in Enzymology 414: 440–68. 

Adnane, J., R. J. Jackson, S. V. Nicosia, A. B. Cantor, W. J. Pledger, and S. M. Sebti. 2000. “Loss of 
p21WAF1/CIP1 Accelerates Ras Oncogenesis in a Transgenic/knockout Mammary Cancer Model.” 
Oncogene 19 (47): 5338–47. 

Akaike, Hirotogu. 1998. “Information Theory and an Extension of the Maximum Likelihood 
Principle.” In Selected Papers of Hirotugu Akaike, edited by Emanuel Parzen, Kunio Tanabe, and Genshiro 
Kitagawa, 199–213. New York, NY: Springer New York. 

Alizadeh, E., Xu, W., Castle, J., Foss, J. and Prasad, A., 2018. TISMorph: A tool to quantify texture, 
irregularity and spreading of single cells. bioRxiv, p.372755. 

Al-Kofahi, Yousef, Wiem Lassoued, William Lee, and Badrinath Roysam. 2010. “Improved Automatic 
Detection and Segmentation of Cell Nuclei in Histopathology Images.” IEEE Transactions on Bio-Medical 
Engineering 57 (4): 841–52. 

Allan, Chris, Jean-Marie Burel, Josh Moore, Colin Blackburn, Melissa Linkert, Scott Loynton, Donald 
Macdonald, et al. 2012. “OMERO: Flexible, Model-Driven Data Management for Experimental Biology.” 
Nature Methods 9 (3): 245–53. 

Altschuler, Steven J., and Lani F. Wu. 2010. “Cellular Heterogeneity: Do Differences Make a 
Difference?” Cell 141 (4): 559–63. 

Amano, M., Y. Fukata, and K. Kaibuchi. 2000. “Regulation and Functions of Rho-Associated Kinase.” 
Experimental Cell Research 261 (1): 44–51. 

http://paperpile.com/b/w4tVdv/g3TcH
http://paperpile.com/b/w4tVdv/g3TcH
http://paperpile.com/b/w4tVdv/OtpAd
http://paperpile.com/b/w4tVdv/OtpAd
http://paperpile.com/b/w4tVdv/OtpAd
http://paperpile.com/b/w4tVdv/xlIQZ
http://paperpile.com/b/w4tVdv/xlIQZ
http://paperpile.com/b/w4tVdv/OPw5u
http://paperpile.com/b/w4tVdv/OPw5u
http://paperpile.com/b/w4tVdv/OPw5u
http://paperpile.com/b/w4tVdv/hEb1i
http://paperpile.com/b/w4tVdv/hEb1i
http://paperpile.com/b/w4tVdv/hEb1i
http://paperpile.com/b/w4tVdv/QPz2i
http://paperpile.com/b/w4tVdv/QPz2i
http://paperpile.com/b/w4tVdv/QPz2i
http://paperpile.com/b/w4tVdv/Wab86
http://paperpile.com/b/w4tVdv/Wab86
http://paperpile.com/b/w4tVdv/Wab86
http://paperpile.com/b/w4tVdv/8c3Jo
http://paperpile.com/b/w4tVdv/8c3Jo
http://paperpile.com/b/w4tVdv/8c3Jo
http://paperpile.com/b/w4tVdv/5sOg7
http://paperpile.com/b/w4tVdv/5sOg7
http://paperpile.com/b/w4tVdv/PPtZk
http://paperpile.com/b/w4tVdv/PPtZk


 

157 

Amir, El-Ad David, Kara L. Davis, Michelle D. Tadmor, Erin F. Simonds, Jacob H. Levine, Sean C. 
Bendall, Daniel K. Shenfeld, Smita Krishnaswamy, Garry P. Nolan, and Dana Pe’er. 2013. “viSNE Enables 
Visualization of High Dimensional Single-Cell Data and Reveals Phenotypic Heterogeneity of Leukemia.” 
Nature Biotechnology 31 (6): 545–52. 

Arias, Emily E., and Johannes C. Walter. 2006. “PCNA Functions as a Molecular Platform to Trigger 
Cdt1 Destruction and Prevent Re-Replication.” Nature Cell Biology 8 (1): 84–90. 

Arora, Mansi, Justin Moser, Harsha Phadke, Ashik Akbar Basha, and Sabrina L. Spencer. 2017. 
“Endogenous Replication Stress in Mother Cells Leads to Quiescence of Daughter Cells.” Cell Reports 19 
(7): 1351–64. 

Attardi, L. Donatella, S. W. Lowe, J. Brugarolas, and T. Jacks. 1996. “Transcriptional Activation by 
p53, but Not Induction of the p21 Gene, Is Essential for Oncogene-Mediated Apoptosis.” The EMBO 
Journal 15 (14): 3693–3701. 

Aulner, Nathalie, Anne Danckaert, Eline Rouault-Hardoin, Julie Desrivot, Olivier Helynck, Pierre-
Henri Commere, Hélène Munier-Lehmann, et al. 2013. “High Content Analysis of Primary Macrophages 
Hosting Proliferating Leishmania Amastigotes: Application to Anti-Leishmanial Drug Discovery.” PLoS 
Neglected Tropical Diseases 7 (4): e2154. 

Babaloukas, Georgios, Nicholas Tentolouris, Stavros Liatis, Alexandra Sklavounou, and Despoina 
Perrea. 2011. “Evaluation of Three Methods for Retrospective Correction of Vignetting on Medical 
Microscopy Images Utilizing Two Open Source Software Tools.” Journal of Microscopy 244 (3): 320–24. 

Bai, Min, and Raquel Urtasun. 2017. “Deep Watershed Transform for Instance Segmentation.” In 
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2858–66. IEEE. 

Bakal, Chris, John Aach, George Church, and Norbert Perrimon. 2007. “Quantitative Morphological 
Signatures Define Local Signaling Networks Regulating Cell Morphology.” Science 316 (5832): 1753–56. 

Bakal, Chris, Rune Linding, Flora Llense, Elleard Heffern, Enrique Martin-Blanco, Tony Pawson, and 
Norbert Perrimon. 2008. “Phosphorylation Networks Regulating JNK Activity in Diverse Genetic 
Backgrounds.” Science 322 (5900): 453–56. 

Bakkenist, Christopher J., and Michael B. Kastan. 2003. “DNA Damage Activates ATM through 
Intermolecular Autophosphorylation and Dimer Dissociation.” Nature 421 (6922): 499–506. 

Balasubramanian, Mukund, and Eric L. Schwartz. 2002. “The Isomap Algorithm and Topological 
Stability.” Science 295 (5552): 7. 

Balint, Eva, Andrew C. Phillips, Serguei Kozlov, Colin L. Stewart, and Karen H. Vousden. 2002. 
“Induction of p57(KIP2) Expression by p73beta.” Proceedings of the National Academy of Sciences of the 
United States of America 99 (6): 3529–34. 

Baniukiewicz, P., Collier, S. and Bretschneider, T., 2018. QuimP: analyzing transmembrane signalling 
in highly deformable cells. Bioinformatics, 34(15), pp.2695-2697. 

Barr, Alexis R., Samuel Cooper, Frank S. Heldt, Francesca Butera, Henriette Stoy, Jörg Mansfeld, Béla 
Novák, and Chris Bakal. 2017. “DNA Damage during S-Phase Mediates the Proliferation-Quiescence 
Decision in the Subsequent G1 via p21 Expression.” Nature Communications 8 (March): 14728. 

Barr, Alexis R., Frank S. Heldt, Tongli Zhang, Chris Bakal, and Béla Novák. 2016a. “A Dynamical 
Framework for the All-or-None G1/S Transition.” Cell Systems 2 (1): 27–37. 

http://paperpile.com/b/w4tVdv/jcjET
http://paperpile.com/b/w4tVdv/jcjET
http://paperpile.com/b/w4tVdv/jcjET
http://paperpile.com/b/w4tVdv/jcjET
http://paperpile.com/b/w4tVdv/IXs0Y
http://paperpile.com/b/w4tVdv/IXs0Y
http://paperpile.com/b/w4tVdv/jctLb
http://paperpile.com/b/w4tVdv/jctLb
http://paperpile.com/b/w4tVdv/jctLb
http://paperpile.com/b/w4tVdv/hPOyq
http://paperpile.com/b/w4tVdv/hPOyq
http://paperpile.com/b/w4tVdv/hPOyq
http://paperpile.com/b/w4tVdv/9enRb
http://paperpile.com/b/w4tVdv/9enRb
http://paperpile.com/b/w4tVdv/9enRb
http://paperpile.com/b/w4tVdv/9enRb
http://paperpile.com/b/w4tVdv/AJkKa
http://paperpile.com/b/w4tVdv/AJkKa
http://paperpile.com/b/w4tVdv/AJkKa
http://paperpile.com/b/w4tVdv/ctApJ
http://paperpile.com/b/w4tVdv/ctApJ
http://paperpile.com/b/w4tVdv/4lN0z
http://paperpile.com/b/w4tVdv/4lN0z
http://paperpile.com/b/w4tVdv/ha0sN
http://paperpile.com/b/w4tVdv/ha0sN
http://paperpile.com/b/w4tVdv/ha0sN
http://paperpile.com/b/w4tVdv/vY2p4
http://paperpile.com/b/w4tVdv/vY2p4
http://paperpile.com/b/w4tVdv/gUadQ
http://paperpile.com/b/w4tVdv/gUadQ
http://paperpile.com/b/w4tVdv/kwtnJ
http://paperpile.com/b/w4tVdv/kwtnJ
http://paperpile.com/b/w4tVdv/kwtnJ
http://paperpile.com/b/w4tVdv/aIpgz
http://paperpile.com/b/w4tVdv/aIpgz


 

158 

Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume 
Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. 2010. “Theano: A CPU and GPU Math 
Compiler in Python.” In Proc. 9th Python in Science Conf. Vol. 1.   

Bertinetto, Luca, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. 2016. 
“Fully-Convolutional Siamese Networks for Object Tracking.” In Computer Vision – ECCV 2016 Workshops, 
850–65. Springer International Publishing. 

Besson, Arnaud, Steven F. Dowdy, and James M. Roberts. 2008. “CDK Inhibitors: Cell Cycle 
Regulators and beyond.” Developmental Cell 14 (2): 159–69. 

Beucher, Serge, and Fernand Meyer. 1992. “The Morphological Approach to Segmentation: The 
Watershed Transformation.” Optical Engineering-New York-Marcel Dekker Incorporated- 34: 433–433. 

Bilmes, Jeff A., and Others. 1998. “A Gentle Tutorial of the EM Algorithm and Its Application to 
Parameter Estimation for Gaussian Mixture and Hidden Markov Models.” International Computer Science 
Institute 4 (510): 126. 

Bise, R., Z. Yin, and T. Kanade. 2011. “Reliable Cell Tracking by Global Data Association.” In 2011 IEEE 
International Symposium on Biomedical Imaging: From Nano to Macro, 1004–10. 

Boland, M. V., and R. F. Murphy. 2001. “A Neural Network Classifier Capable of Recognizing the 
Patterns of All Major Subcellular Structures in Fluorescence Microscope Images of HeLa Cells.” 
Bioinformatics  17 (12): 1213–23. 

Bolshakova, N., and F. Azuaje. 2003. “Cluster Validation Techniques for Genome Expression Data.” 
Signal Processing 83 (4): 825–33. 

Borland, David, Hong Yi, Gavin D. Grant, Katarzyna M. Kedziora, Hui Xiao Chao, Rachel A. Haggerty, 
Jayashree Kumar, Samuel C. Wolff, Jeanette G. Cook, and Jeremy E. Purvis. 2018. “The Cell Cycle Browser: 
An Interactive Tool for Visualizing, Simulating, and Perturbing Cell-Cycle Progression.” Cell Systems 7 (2): 
180–84.e4. 

Bornstein, Gil, Joanna Bloom, Danielle Sitry-Shevah, Keiko Nakayama, Michele Pagano, and Avram 
Hershko. 2003. “Role of the SCFSkp2 Ubiquitin Ligase in the Degradation of p21Cip1 in S Phase.” The 
Journal of Biological Chemistry 278 (28): 25752–57. 

Bos, J. L. 1989. “Ras Oncogenes in Human Cancer: A Review.” Cancer Research 49 (17): 4682–89. 

Bostrom, R. C., H. S. Sawyer, and W. E. Tolles. 1959. “Instrumentation for Automatically Prescreening 
Cytological Smears.” Proceedings of the IRE 47 (11): 1895–1900. 

Bourhis, Xuefen Dong-Le, Yolande Berthois, Guy Millot, Armelle Degeorges, Monique Sylvi, Pierre-
Marie Martin, and Fabien Calvo. 1997. “Effect of Stromal and Epithelial Cells Derived from Normal and 
Tumorous Breast Tissue on the Proliferation of Human Breast Cancer Cell Lines in Co-Culture.” 
International Journal of Cancer 71 (1): 42–48. 

Boutin, Molly E., Ty C. Voss, Steven A. Titus, Kennie Cruz-Gutierrez, Sam Michael, and Marc Ferrer. 
2018. “A High-Throughput Imaging and Nuclear Segmentation Analysis Protocol for Cleared 3D Culture 
Models.” Scientific Reports 8 (1): 11135. 

Boutros, Michael, Florian Heigwer, and Christina Laufer. 2015. “Microscopy-Based High-Content 
Screening.” Cell 163 (6): 1314–25. 

http://paperpile.com/b/w4tVdv/IDKmM
http://paperpile.com/b/w4tVdv/IDKmM
http://paperpile.com/b/w4tVdv/IDKmM
http://paperpile.com/b/w4tVdv/imPaB
http://paperpile.com/b/w4tVdv/imPaB
http://paperpile.com/b/w4tVdv/imPaB
http://paperpile.com/b/w4tVdv/k6fOl
http://paperpile.com/b/w4tVdv/k6fOl
http://paperpile.com/b/w4tVdv/QEHos
http://paperpile.com/b/w4tVdv/QEHos
http://paperpile.com/b/w4tVdv/wHe24
http://paperpile.com/b/w4tVdv/wHe24
http://paperpile.com/b/w4tVdv/wHe24
http://paperpile.com/b/w4tVdv/E0upW
http://paperpile.com/b/w4tVdv/E0upW
http://paperpile.com/b/w4tVdv/5pJXc
http://paperpile.com/b/w4tVdv/5pJXc
http://paperpile.com/b/w4tVdv/5pJXc
http://paperpile.com/b/w4tVdv/rxKsk
http://paperpile.com/b/w4tVdv/rxKsk
http://paperpile.com/b/w4tVdv/m6R6L
http://paperpile.com/b/w4tVdv/m6R6L
http://paperpile.com/b/w4tVdv/m6R6L
http://paperpile.com/b/w4tVdv/m6R6L
http://paperpile.com/b/w4tVdv/bUXXL
http://paperpile.com/b/w4tVdv/bUXXL
http://paperpile.com/b/w4tVdv/bUXXL
http://paperpile.com/b/w4tVdv/5wBKX
http://paperpile.com/b/w4tVdv/mRNgm
http://paperpile.com/b/w4tVdv/mRNgm
http://paperpile.com/b/w4tVdv/0VKga
http://paperpile.com/b/w4tVdv/0VKga
http://paperpile.com/b/w4tVdv/0VKga
http://paperpile.com/b/w4tVdv/0VKga
http://paperpile.com/b/w4tVdv/JBBYp
http://paperpile.com/b/w4tVdv/JBBYp
http://paperpile.com/b/w4tVdv/JBBYp
http://paperpile.com/b/w4tVdv/3nt5q
http://paperpile.com/b/w4tVdv/3nt5q


 

159 

Boutros, Michael, Amy A. Kiger, Susan Armknecht, Kim Kerr, Marc Hild, Britta Koch, Stefan A. Haas, 
Renato Paro, Norbert Perrimon, and Heidelberg Fly Array Consortium. 2004. “Genome-Wide RNAi 
Analysis of Growth and Viability in Drosophila Cells.” Science 303 (5659): 832–35. 

Breslin, Susan, and Lorraine O’Driscoll. 2013. “Three-Dimensional Cell Culture: The Missing Link in 
Drug Discovery.” Drug Discovery Today 18 (5-6): 240–49. 

Buggenthin, Felix, Carsten Marr, Michael Schwarzfischer, Philipp S. Hoppe, Oliver Hilsenbeck, Timm 
Schroeder, and Fabian J. Theis. 2013. “An Automatic Method for Robust and Fast Cell Detection in Bright 
Field Images from High-Throughput Microscopy.” BMC Bioinformatics 14 (October): 297. 

Bunz, F., A. Dutriaux, C. Lengauer, T. Waldman, S. Zhou, J. P. Brown, J. M. Sedivy, K. W. Kinzler, and B. 
Vogelstein. 1998. “Requirement for p53 and p21 to Sustain G2 Arrest after DNA Damage.” Science 282 
(5393): 1497–1501. 

Burma, S., B. P. Chen, M. Murphy, A. Kurimasa, and D. J. Chen. 2001. “ATM Phosphorylates Histone 
H2AX in Response to DNA Double-Strand Breaks.” The Journal of Biological Chemistry 276 (45): 42462–
67. 

Caicedo, J. C., J. Roth, A. Goodman, and T. Becker. 2018. “Evaluation of Deep Learning Strategies for 
Nucleus Segmentation in Fluorescence Images.” bioRxiv.  
https://www.biorxiv.org/content/early/2018/06/16/335216.abstract. 

Caicedo, Juan C., Sam Cooper, Florian Heigwer, Scott Warchal, Peng Qiu, Csaba Molnar, Aliaksei S. 
Vasilevich, et al. 2017. “Data-Analysis Strategies for Image-Based Cell Profiling.” Nature Methods 14 (9): 
849–63. 

Caicedo, Juan C., Claire McQuin, Allen Goodman, Shantanu Singh, and Anne E. Carpenter. 2018. 
“Weakly Supervised Learning of Single-Cell Feature Embeddings.” bioRxiv, 293431. 

Caramel, Julie, Eftychios Papadogeorgakis, Louise Hill, Gareth J. Browne, Geoffrey Richard, Anne 
Wierinckx, Gerald Saldanha, et al. 2013. “A Switch in the Expression of Embryonic EMT-Inducers Drives 
the Development of Malignant Melanoma.” Cancer Cell 24 (4): 466–80. 

Carpenter, Anne E. 2007. “Image-Based Chemical Screening.” Nature Chemical Biology 3 (8): 461–
65. 

Carpenter, Anne E., Thouis R. Jones, Michael R. Lamprecht, Colin Clarke, In Han Kang, Ola Friman, 
David A. Guertin, et al. 2006. “CellProfiler: Image Analysis Software for Identifying and Quantifying Cell 
Phenotypes.” Genome Biology 7 (10): R100. 

Cavenee, W. K., T. P. Dryja, R. A. Phillips, W. F. Benedict, R. Godbout, B. L. Gallie, A. L. Murphree, L. C. 
Strong, and R. L. White. 1983. “Expression of Recessive Alleles by Chromosomal Mechanisms in 
Retinoblastoma.” Nature 305 (5937): 779–84. 

Chellappan, S. P., S. Hiebert, M. Mudryj, J. M. Horowitz, and J. R. Nevins. 1991. “The E2F Transcription 
Factor Is a Cellular Target for the RB Protein.” Cell 65 (6): 1053–61. 

Chen, Katherine C., Laurence Calzone, Attila Csikasz-Nagy, Frederick R. Cross, Bela Novak, and John 
J. Tyson. 2004. “Integrative Analysis of Cell Cycle Control in Budding Yeast.” Molecular Biology of the Cell 
15 (8): 3841–62. 

Chenouard, Nicolas, Ihor Smal, Fabrice de Chaumont, Martin Maška, Ivo F. Sbalzarini, Yuanhao Gong, 
Janick Cardinale, et al. 2014. “Objective Comparison of Particle Tracking Methods.” Nature Methods 11 
(3): 281–89.  

http://paperpile.com/b/w4tVdv/Tmv1w
http://paperpile.com/b/w4tVdv/Tmv1w
http://paperpile.com/b/w4tVdv/Tmv1w
http://paperpile.com/b/w4tVdv/j0I0U
http://paperpile.com/b/w4tVdv/j0I0U
http://paperpile.com/b/w4tVdv/Ggy1U
http://paperpile.com/b/w4tVdv/Ggy1U
http://paperpile.com/b/w4tVdv/Ggy1U
http://paperpile.com/b/w4tVdv/8WOT2
http://paperpile.com/b/w4tVdv/8WOT2
http://paperpile.com/b/w4tVdv/8WOT2
http://paperpile.com/b/w4tVdv/9Ly66
http://paperpile.com/b/w4tVdv/9Ly66
http://paperpile.com/b/w4tVdv/9Ly66
http://paperpile.com/b/w4tVdv/PfXky
http://paperpile.com/b/w4tVdv/Yd3eZ
http://paperpile.com/b/w4tVdv/Yd3eZ
http://paperpile.com/b/w4tVdv/Yd3eZ
http://paperpile.com/b/w4tVdv/3btsh
http://paperpile.com/b/w4tVdv/3btsh
http://paperpile.com/b/w4tVdv/797RR
http://paperpile.com/b/w4tVdv/797RR
http://paperpile.com/b/w4tVdv/797RR
http://paperpile.com/b/w4tVdv/XmkAC
http://paperpile.com/b/w4tVdv/XmkAC
http://paperpile.com/b/w4tVdv/xA0x2
http://paperpile.com/b/w4tVdv/xA0x2
http://paperpile.com/b/w4tVdv/xA0x2
http://paperpile.com/b/w4tVdv/IAy4o
http://paperpile.com/b/w4tVdv/IAy4o
http://paperpile.com/b/w4tVdv/IAy4o
http://paperpile.com/b/w4tVdv/Ir1K4
http://paperpile.com/b/w4tVdv/Ir1K4
http://paperpile.com/b/w4tVdv/TmyDI
http://paperpile.com/b/w4tVdv/TmyDI
http://paperpile.com/b/w4tVdv/TmyDI
http://paperpile.com/b/w4tVdv/iFS71
http://paperpile.com/b/w4tVdv/iFS71
http://paperpile.com/b/w4tVdv/iFS71


 

160 

Ching, Travers, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A. Kalinin, Brian T. Do, 
Gregory P. Way, Enrico Ferrero, et al. 2018. “Opportunities and Obstacles for Deep Learning in Biology 
and Medicine.” Journal of the Royal Society, Interface / the Royal Society 15 (141).  
https://doi.org/10.1098/rsif.2017.0387. 

Choudhury, Aaheli Roy, Zhenyu Ju, Meta W. Djojosubroto, Andrea Schienke, Andre Lechel, Sonja 
Schaetzlein, Hong Jiang, et al. 2007. “Cdkn1a Deletion Improves Stem Cell Function and Lifespan of Mice 
with Dysfunctional Telomeres without Accelerating Cancer Formation.” Nature Genetics 39 (1): 99–105. 

Çiçek, Özgün, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ronneberger. 2016. 
“3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.” In Medical Image 
Computing and Computer-Assisted Intervention – MICCAI 2016, 424–32. Springer International 
Publishing. 

Cisco, V. N. I. 2017. “Cisco Visual Networking Index: Forecast and Methodology 2016--2021.(2017).” 

Cliby, William A., Kriste A. Lewis, Kia K. Lilly, and Scott H. Kaufmann. 2002. “S Phase and G2 Arrests 
Induced by Topoisomerase I Poisons Are Dependent on ATR Kinase Function.” The Journal of Biological 
Chemistry 277 (2): 1599–1606. 

Coats, S., W. M. Flanagan, J. Nourse, and J. M. Roberts. 1996. “Requirement of p27Kip1 for Restriction 
Point Control of the Fibroblast Cell Cycle.” Science 272 (5263): 877–80. 

Cooper, Sam, and Chris Bakal. 2017a. “Accelerating Live Single-Cell Signalling Studies.” Trends in 
Biotechnology 35 (5): 422–33. 

Cooper, Sam, Alexis R. Barr, Robert Glen, and Chris Bakal. 2017a. “NucliTrack: An Integrated Nuclei 
Tracking Application.” Bioinformatics  33 (20): 3320–22. 

Cooper, Sam, Amine Sadok, Vicky Bousgouni, and Chris Bakal. 2015. “Apolar and Polar Transitions 
Drive the Conversion between Amoeboid and Mesenchymal Shapes in Melanoma Cells.” Molecular 
Biology of the Cell 26 (22): 4163–70. 

Couch, Frank B., Carol E. Bansbach, Robert Driscoll, Jessica W. Luzwick, Gloria G. Glick, Rémy Bétous, 
Clinton M. Carroll, et al. 2013. “ATR Phosphorylates SMARCAL1 to Prevent Replication Fork Collapse.” 
Genes & Development 27 (14): 1610–23. 

Coutu, D. L., and T. Schroeder. 2013. “Probing Cellular Processes by Long-Term Live Imaging–
historic Problems and Current Solutions.” Journal of Cell Science.  
http://jcs.biologists.org/content/126/17/3805.short. 

Damoulakis, George, Laure Gambardella, Kent L. Rossman, Campbell D. Lawson, Karen E. Anderson, 
Yoshinori Fukui, Heidi C. Welch, Channing J. Der, Len R. Stephens, and Phillip T. Hawkins. 2014. “P-Rex1 
Directly Activates RhoG to Regulate GPCR-Driven Rac Signalling and Actin Polarity in Neutrophils.” 
Journal of Cell Science 127 (Pt 11): 2589–2600. 

Davies, D. L., and D. W. Bouldin. 1979. “A Cluster Separation Measure.” IEEE Transactions on Pattern 
Analysis and Machine Intelligence 1 (2): 224–27. 

Davies, Helen, Graham R. Bignell, Charles Cox, Philip Stephens, Sarah Edkins, Sheila Clegg, Jon 
Teague, et al. 2002. “Mutations of the BRAF Gene in Human Cancer.” Nature 417 (6892): 949–54. 

Deiry, W. S. el-, T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. 
W. Kinzler, and B. Vogelstein. 1993. “WAF1, a Potential Mediator of p53 Tumor Suppression.” Cell 75 (4): 
817–25. 

http://dx.doi.org/10.1098/rsif.2017.0387
http://paperpile.com/b/w4tVdv/OaFaU
http://paperpile.com/b/w4tVdv/NfHPJ
http://paperpile.com/b/w4tVdv/NfHPJ
http://paperpile.com/b/w4tVdv/NfHPJ
http://paperpile.com/b/w4tVdv/krYt6
http://paperpile.com/b/w4tVdv/krYt6
http://paperpile.com/b/w4tVdv/krYt6
http://paperpile.com/b/w4tVdv/krYt6
http://paperpile.com/b/w4tVdv/62e3L
http://paperpile.com/b/w4tVdv/oYypq
http://paperpile.com/b/w4tVdv/oYypq
http://paperpile.com/b/w4tVdv/oYypq
http://paperpile.com/b/w4tVdv/FEsnf
http://paperpile.com/b/w4tVdv/FEsnf
http://paperpile.com/b/w4tVdv/79uJW
http://paperpile.com/b/w4tVdv/79uJW
http://paperpile.com/b/w4tVdv/0jAwK
http://paperpile.com/b/w4tVdv/0jAwK
http://paperpile.com/b/w4tVdv/QlPU3
http://paperpile.com/b/w4tVdv/QlPU3
http://paperpile.com/b/w4tVdv/QlPU3
http://paperpile.com/b/w4tVdv/ZNKdW
http://paperpile.com/b/w4tVdv/ZNKdW
http://paperpile.com/b/w4tVdv/ZNKdW
http://paperpile.com/b/w4tVdv/jJNhi
http://paperpile.com/b/w4tVdv/jJNhi
http://jcs.biologists.org/content/126/17/3805.short
http://paperpile.com/b/w4tVdv/jJNhi
http://paperpile.com/b/w4tVdv/h4GRB
http://paperpile.com/b/w4tVdv/h4GRB
http://paperpile.com/b/w4tVdv/h4GRB
http://paperpile.com/b/w4tVdv/h4GRB
http://paperpile.com/b/w4tVdv/Is3q8
http://paperpile.com/b/w4tVdv/Is3q8
http://paperpile.com/b/w4tVdv/YIvOB
http://paperpile.com/b/w4tVdv/YIvOB
http://paperpile.com/b/w4tVdv/JryEZ
http://paperpile.com/b/w4tVdv/JryEZ
http://paperpile.com/b/w4tVdv/JryEZ


 

161 

Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. and Leder, P., 1995. Mice lacking p21CIP1/WAF1 
undergo normal development, but are defective in G1 checkpoint control. Cell, 82(4), pp.675-684. 

Diest, P. J. van, J. P. Baak, P. Matze-Cok, E. C. Wisse-Brekelmans, C. M. van Galen, P. H. Kurver, S. M. 
Bellot, J. Fijnheer, L. H. van Gorp, and W. S. Kwee. 1992. “Reproducibility of Mitosis Counting in 2,469 
Breast Cancer Specimens: Results from the Multicenter Morphometric Mammary Carcinoma Project.” 
Human Pathology 23 (6): 603–7. 

Dimitriadou, Evgenia, Sara Dolničar, and Andreas Weingessel. 2002. “An Examination of Indexes for 
Determining the Number of Clusters in Binary Data Sets.” Psychometrika 67 (1): 137–59. 

Ding, Chris, and Hanchuan Peng. 2005. “Minimum Redundancy Feature Selection from Microarray 
Gene Expression Data.” Journal of Bioinformatics and Computational Biology 3 (2): 185–205. 

Doyle, Andrew D., Francis W. Wang, Kazue Matsumoto, and Kenneth M. Yamada. 2009. “One-
Dimensional Topography Underlies Three-Dimensional Fibrillar Cell Migration.” The Journal of Cell 
Biology 184 (4): 481–90. 

Dunlop, Malcolm G., Sara E. Dobbins, Susan Mary Farrington, Angela M. Jones, Claire Palles, Nicola 
Whiffin, Albert Tenesa, et al. 2012. “Common Variation near CDKN1A, POLD3 and SHROOM2 Influences 
Colorectal Cancer Risk.” Nature Genetics 44 (7): 770–76. 

Durkin, Sandra G., and Thomas W. Glover. 2007. “Chromosome Fragile Sites.” Annual Review of 
Genetics 41: 169–92. 

Duvenaud, David K., Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan 
Aspuru-Guzik, and Ryan P. Adams. 2015. “Convolutional Networks on Graphs for Learning Molecular 
Fingerprints.” In Advances in Neural Information Processing Systems 28, edited by C. Cortes, N. D. 
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2224–32. Curran Associates, Inc. 

Dyson, N. 1998. “The Regulation of E2F by pRB-Family Proteins.” Genes & Development 12 (15): 
2245–62. 

Eden, Sharon, Rajat Rohatgi, Alexandre V. Podtelejnikov, Matthias Mann, and Marc W. Kirschner. 
2002. “Mechanism of Regulation of WAVE1-Induced Actin Nucleation by Rac1 and Nck.” Nature 418 
(6899): 790–93. 

Eggert, Ulrike S., Amy A. Kiger, Constance Richter, Zachary E. Perlman, Norbert Perrimon, Timothy 
J. Mitchison, and Christine M. Field. 2004. “Parallel Chemical Genetic and Genome-Wide RNAi Screens 
Identify Cytokinesis Inhibitors and Targets.” PLoS Biology 2 (12): e379. 

Epps, D. E., M. L. Wolfe, and V. Groppi. 1994. “Characterization of the Steady-State and Dynamic 
Fluorescence Properties of the Potential-Sensitive Dye Bis-(1,3-Dibutylbarbituric Acid)trimethine 
Oxonol (Dibac4(3)) in Model Systems and Cells.” Chemistry and Physics of Lipids 69 (2): 137–50. 

Er, Süleyman, Changwon Suh, Michael P. Marshak, and Alán Aspuru-Guzik. 2015. “Computational 
Design of Molecules for an All-Quinone Redox Flow Battery.” Chemical Science  6 (2): 885–93. 

Etienne-Manneville, Sandrine, and Alan Hall. 2002. “Rho GTPases in Cell Biology.” Nature 420 
(6916): 629–35. 

Evans, T., E. T. Rosenthal, J. Youngblom, D. Distel, and T. Hunt. 1983. “Cyclin: A Protein Specified by 
Maternal mRNA in Sea Urchin Eggs That Is Destroyed at Each Cleavage Division.” Cell 33 (2): 389–96. 

http://paperpile.com/b/w4tVdv/R19cw
http://paperpile.com/b/w4tVdv/R19cw
http://paperpile.com/b/w4tVdv/MIZXu
http://paperpile.com/b/w4tVdv/MIZXu
http://paperpile.com/b/w4tVdv/Io0UE
http://paperpile.com/b/w4tVdv/Io0UE
http://paperpile.com/b/w4tVdv/Io0UE
http://paperpile.com/b/w4tVdv/Wo1WE
http://paperpile.com/b/w4tVdv/Wo1WE
http://paperpile.com/b/w4tVdv/Wo1WE
http://paperpile.com/b/w4tVdv/Nd2dz
http://paperpile.com/b/w4tVdv/Nd2dz
http://paperpile.com/b/w4tVdv/wNwQd
http://paperpile.com/b/w4tVdv/wNwQd
http://paperpile.com/b/w4tVdv/wNwQd
http://paperpile.com/b/w4tVdv/wNwQd
http://paperpile.com/b/w4tVdv/M4QZH
http://paperpile.com/b/w4tVdv/M4QZH
http://paperpile.com/b/w4tVdv/uyrUS
http://paperpile.com/b/w4tVdv/uyrUS
http://paperpile.com/b/w4tVdv/uyrUS
http://paperpile.com/b/w4tVdv/wYEwD
http://paperpile.com/b/w4tVdv/wYEwD
http://paperpile.com/b/w4tVdv/wYEwD
http://paperpile.com/b/w4tVdv/HZJZK
http://paperpile.com/b/w4tVdv/HZJZK
http://paperpile.com/b/w4tVdv/HZJZK
http://paperpile.com/b/w4tVdv/A4sQL
http://paperpile.com/b/w4tVdv/A4sQL
http://paperpile.com/b/w4tVdv/grhHW
http://paperpile.com/b/w4tVdv/grhHW
http://paperpile.com/b/w4tVdv/Qfyw4
http://paperpile.com/b/w4tVdv/Qfyw4


 

162 

Fatehullah, Aliya, Si Hui Tan, and Nick Barker. 2016. “Organoids as an in Vitro Model of Human 
Development and Disease.” Nature Cell Biology 18 (3): 246–54. 

Forbes, Simon A., Nidhi Bindal, Sally Bamford, Charlotte Cole, Chai Yin Kok, David Beare, Mingming 
Jia, et al. 2011. “COSMIC: Mining Complete Cancer Genomes in the Catalogue of Somatic Mutations in 
Cancer.” Nucleic Acids Research 39 (Database issue): D945–50. 

Friedl, Peter, and Katarina Wolf. 2003. “Tumour-Cell Invasion and Migration: Diversity and Escape 
Mechanisms.” Nature Reviews. Cancer 3 (5): 362–74. 

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. 
Vol. 1. Springer series in statistics New York, NY, USA: 

Fritz, Rafael D., Michel Letzelter, Andreas Reimann, Katrin Martin, Ludovico Fusco, Laila Ritsma, Bas 
Ponsioen, et al. 2013. “A Versatile Toolkit to Produce Sensitive FRET Biosensors to Visualize Signaling in 
Time and Space.” Science Signaling 6 (285): rs12. 

Fuchs, Florian, Gregoire Pau, Dominique Kranz, Oleg Sklyar, Christoph Budjan, Sandra Steinbrink, 
Thomas Horn, Angelika Pedal, Wolfgang Huber, and Michael Boutros. 2010a. “Clustering Phenotype 
Populations by Genome‐wide RNAi and Multiparametric Imaging.” Molecular Systems Biology 6 (1): 370. 

Gaudet, Suzanne, and Kathryn Miller-Jensen. 2016. “Redefining Signaling Pathways with an 
Expanding Single-Cell Toolbox.” Trends in Biotechnology 34 (6): 458–69. 

Gautier, J., J. Minshull, M. Lohka, M. Glotzer, T. Hunt, and J. L. Maller. 1990. “Cyclin Is a Component of 
Maturation-Promoting Factor from Xenopus.” Cell 60 (3): 487–94. 

Geng, Y., E. N. Eaton, M. Picón, J. M. Roberts, A. S. Lundberg, A. Gifford, C. Sardet, and R. A. Weinberg. 
1996. “Regulation of Cyclin E Transcription by E2Fs and Retinoblastoma Protein.” Oncogene 12 (6): 
1173–80. 

Georgia, Senta, Rosemary Soliz, Min Li, Pumin Zhang, and Anil Bhushan. 2006. “p57 and Hes1 
Coordinate Cell Cycle Exit with Self-Renewal of Pancreatic Progenitors.” Developmental Biology 298 (1): 
22–31. 

Georgitsi, Marianthi, Anniina Raitila, Auli Karhu, Rob B. van der Luijt, Cora M. Aalfs, Timo Sane, Outi 
Vierimaa, et al. 2007. “Germline CDKN1B/p27Kip1 Mutation in Multiple Endocrine Neoplasia.” The 
Journal of Clinical Endocrinology and Metabolism 92 (8): 3321–25. 

Girshick, Ross. 2015. “Fast R-Cnn.” In Proceedings of the IEEE International Conference on Computer 
Vision, 1440–48. 

Giuliano, Kenneth A., Robbin L. DeBiasio, R. Terry Dunlay, Albert Gough, Joanne M. Volosky, Joseph 
Zock, George N. Pavlakis, and D. Lansing Taylor. 1997. “High-Content Screening: A New Approach to 
Easing Key Bottlenecks in the Drug Discovery Process.” Journal of Biomolecular Screening 2 (4): 249–59. 

Godinez, William J., Imtiaz Hossain, Stanley E. Lazic, John W. Davies, and Xian Zhang. 2017. “A Multi-
Scale Convolutional Neural Network for Phenotyping High-Content Cellular Images.” Bioinformatics  33 
(13): 2010–19. 

Gómez-Bombarelli, Rafael, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, 
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. 
Adams, and Alán Aspuru-Guzik. 2018. “Automatic Chemical Design Using a Data-Driven Continuous 
Representation of Molecules.” ACS Central Science 4 (2): 268–76. 

http://paperpile.com/b/w4tVdv/40eor
http://paperpile.com/b/w4tVdv/40eor
http://paperpile.com/b/w4tVdv/6lf2k
http://paperpile.com/b/w4tVdv/6lf2k
http://paperpile.com/b/w4tVdv/6lf2k
http://paperpile.com/b/w4tVdv/EkjMQ
http://paperpile.com/b/w4tVdv/EkjMQ
http://paperpile.com/b/w4tVdv/X7EXs
http://paperpile.com/b/w4tVdv/X7EXs
http://paperpile.com/b/w4tVdv/pYdY7
http://paperpile.com/b/w4tVdv/pYdY7
http://paperpile.com/b/w4tVdv/pYdY7
http://paperpile.com/b/w4tVdv/rEAHw
http://paperpile.com/b/w4tVdv/rEAHw
http://paperpile.com/b/w4tVdv/rEAHw
http://paperpile.com/b/w4tVdv/FL1aD
http://paperpile.com/b/w4tVdv/FL1aD
http://paperpile.com/b/w4tVdv/TOoh4
http://paperpile.com/b/w4tVdv/TOoh4
http://paperpile.com/b/w4tVdv/JxIOW
http://paperpile.com/b/w4tVdv/JxIOW
http://paperpile.com/b/w4tVdv/JxIOW
http://paperpile.com/b/w4tVdv/LxyUj
http://paperpile.com/b/w4tVdv/LxyUj
http://paperpile.com/b/w4tVdv/LxyUj
http://paperpile.com/b/w4tVdv/hGRyu
http://paperpile.com/b/w4tVdv/hGRyu
http://paperpile.com/b/w4tVdv/hGRyu
http://paperpile.com/b/w4tVdv/LiSZZ
http://paperpile.com/b/w4tVdv/LiSZZ
http://paperpile.com/b/w4tVdv/57MGJ
http://paperpile.com/b/w4tVdv/57MGJ
http://paperpile.com/b/w4tVdv/57MGJ
http://paperpile.com/b/w4tVdv/mTqby
http://paperpile.com/b/w4tVdv/mTqby
http://paperpile.com/b/w4tVdv/mTqby
http://paperpile.com/b/w4tVdv/8Q0ZH
http://paperpile.com/b/w4tVdv/8Q0ZH
http://paperpile.com/b/w4tVdv/8Q0ZH
http://paperpile.com/b/w4tVdv/8Q0ZH


 

163 

González, J. E., and P. A. Negulescu. 1998. “Intracellular Detection Assays for High-Throughput 
Screening.” Current Opinion in Biotechnology 9 (6): 624–31. 

Gosselet, Fabien P., Thierry Magnaldo, Raphaël M. Culerrier, Alain Sarasin, and Jean-Claude Ehrhart. 
2007. “BMP2 and BMP6 Control p57(Kip2) Expression and Cell Growth Arrest/terminal Differentiation 
in Normal Primary Human Epidermal Keratinocytes.” Cellular Signalling 19 (4): 731–39. 

Gottesbühren, Undine, Ritu Garg, Philippe Riou, Brad McColl, Daniel Brayson, and Anne J. Ridley. 
2013. “Rnd3 Induces Stress Fibres in Endothelial Cells through RhoB.” Biology Open 2 (2): 210–16. 

Graña, X., and E. P. Reddy. 1995. “Cell Cycle Control in Mammalian Cells: Role of Cyclins, Cyclin 
Dependent Kinases (CDKs), Growth Suppressor Genes and Cyclin-Dependent Kinase Inhibitors (CKIs).” 
Oncogene 11 (2): 211–19. 

Hajdo-Milasinović, Amra, Saskia I. J. Ellenbroek, Saskia van Es, Babet van der Vaart, and John G. 
Collard. 2007. “Rac1 and Rac3 Have Opposing Functions in Cell Adhesion and Differentiation of Neuronal 
Cells.” Journal of Cell Science 120 (Pt 4): 555–66. 

Hajdo-Milasinovic, Amra, Rob A. van der Kammen, Zvezdana Moneva, and John G. Collard. 2009. 
“Rac3 Inhibits Adhesion and Differentiation of Neuronal Cells by Modifying GIT1 Downstream Signaling.” 
Journal of Cell Science 122 (Pt 12): 2127–36. 

Hall, A. 1998. “Rho GTPases and the Actin Cytoskeleton.” Science 279 (5350): 509–14. 

Hall, A., C. J. Marshall, N. K. Spurr, and R. A. Weiss. 1983. “Identification of Transforming Gene in Two 
Human Sarcoma Cell Lines as a New Member of the Ras Gene Family Located on Chromosome 1.” Nature 
303 (5916): 396–400. 

Hanahan, Douglas, and Robert A. Weinberg. 2011. “Hallmarks of Cancer: The next Generation.” Cell 
144 (5): 646–74. 

Haralick, Robert M., K. Shanmugam, Its’hak Dinstein, and Others. 1973. “Textural Features for Image 
Classification.” IEEE Transactions on Systems, Man, and Cybernetics 3 (6): 610–21. 

Haralick, Robert M., and Linda G. Shapiro. 1985. “Image Segmentation Techniques.” In Applications 
of Artificial Intelligence II, 0548:2–10. International Society for Optics and Photonics. 

Harms, H., U. Gunzer, and H. M. Aus. 1986. “Combined Local Color and Texture Analysis of Stained 
Cells.” Computer Vision, Graphics, and Image Processing 33 (3): 364–76. 

Harms, H., U. Gunzer, H. M. Aus, A. Rüter, M. Haucke, and V. ter Meulen. 1979. “Computer Aided 
Analysis of Chromatin Network and Basophil Color for Differentiation of Mononuclear Peripheral Blood 
Cells.” The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society  27 
(1): 204–9. 

Hartwell, L. H., and M. B. Kastan. 1994. “Cell Cycle Control and Cancer.” Science 266 (5192): 1821–
28. 

Havens, Courtney G., and Johannes C. Walter. 2011. “Mechanism of CRL4(Cdt2), a PCNA-Dependent 
E3 Ubiquitin Ligase.” Genes & Development 25 (15): 1568–82. 

Hayashi, Akiyo, Naohiro Suenaga, Yasushi Shiomi, and Hideo Nishitani. 2014. “PCNA-Dependent 
Ubiquitination of Cdt1 and p21 in Mammalian Cells.” Methods in Molecular Biology  1170: 367–82. 

http://paperpile.com/b/w4tVdv/3JaID
http://paperpile.com/b/w4tVdv/3JaID
http://paperpile.com/b/w4tVdv/mOI0g
http://paperpile.com/b/w4tVdv/mOI0g
http://paperpile.com/b/w4tVdv/mOI0g
http://paperpile.com/b/w4tVdv/0JAOg
http://paperpile.com/b/w4tVdv/0JAOg
http://paperpile.com/b/w4tVdv/lT51s
http://paperpile.com/b/w4tVdv/lT51s
http://paperpile.com/b/w4tVdv/lT51s
http://paperpile.com/b/w4tVdv/G71y2
http://paperpile.com/b/w4tVdv/G71y2
http://paperpile.com/b/w4tVdv/G71y2
http://paperpile.com/b/w4tVdv/3gjXH
http://paperpile.com/b/w4tVdv/3gjXH
http://paperpile.com/b/w4tVdv/3gjXH
http://paperpile.com/b/w4tVdv/UKmf4
http://paperpile.com/b/w4tVdv/8zgAH
http://paperpile.com/b/w4tVdv/8zgAH
http://paperpile.com/b/w4tVdv/8zgAH
http://paperpile.com/b/w4tVdv/Fns87
http://paperpile.com/b/w4tVdv/Fns87
http://paperpile.com/b/w4tVdv/CA97Q
http://paperpile.com/b/w4tVdv/CA97Q
http://paperpile.com/b/w4tVdv/Qgh8m
http://paperpile.com/b/w4tVdv/Qgh8m
http://paperpile.com/b/w4tVdv/2E5t9
http://paperpile.com/b/w4tVdv/2E5t9
http://paperpile.com/b/w4tVdv/Fjo4X
http://paperpile.com/b/w4tVdv/Fjo4X
http://paperpile.com/b/w4tVdv/Fjo4X
http://paperpile.com/b/w4tVdv/Fjo4X
http://paperpile.com/b/w4tVdv/abU8D
http://paperpile.com/b/w4tVdv/abU8D
http://paperpile.com/b/w4tVdv/9XzTh
http://paperpile.com/b/w4tVdv/9XzTh
http://paperpile.com/b/w4tVdv/KF2GJ
http://paperpile.com/b/w4tVdv/KF2GJ


 

164 

He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2018. “Mask R-CNN.” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, June.  
https://doi.org/10.1109/TPAMI.2018.2844175. 

Heldt, F. S., A. R. Barr, and S. Cooper. 2018. “A Comprehensive Model for the Proliferation–
quiescence Decision in Response to Endogenous DNA Damage in Human Cells.” Proceedings of the. 
http://www.pnas.org/content/early/2018/02/15/1715345115.short. 

Heppt, Markus V., Timo Siepmann, Jutta Engel, Gabriele Schubert-Fritschle, Renate Eckel, Laura 
Mirlach, Thomas Kirchner, et al. 2017. “Prognostic Significance of BRAF and NRAS Mutations in 
Melanoma: A German Study from Routine Care.” BMC Cancer 17 (1): 536. 

Heuvel, S. van den, and E. Harlow. 1993. “Distinct Roles for Cyclin-Dependent Kinases in Cell Cycle 
Control.” Science 262 (5142): 2050–54. 

Hilsenbeck, Oliver, Michael Schwarzfischer, Stavroula Skylaki, Bernhard Schauberger, Philipp S. 
Hoppe, Dirk Loeffler, Konstantinos D. Kokkaliaris, et al. 2016. “Software Tools for Single-Cell Tracking 
and Quantification of Cellular and Molecular Properties.” Nature Biotechnology 34 (7): 703–6. 

Hodis, Eran, Ian R. Watson, Gregory V. Kryukov, Stefan T. Arold, Marcin Imielinski, Jean-Philippe 
Theurillat, Elizabeth Nickerson, et al. 2012. “A Landscape of Driver Mutations in Melanoma.” Cell 150 (2): 
251–63. 

Holevinsky, K. O., Z. Fan, M. Frame, J. C. Makielski, V. Groppi, and D. J. Nelson. 1994. “ATP-Sensitive 
K+ Channel Opener Acts as a Potent Cl− Channel Inhibitor in Vascular Smooth Muscle Cells.” The Journal 
of Membrane Biology 137 (1): 59–70. 

Hollstein, M., D. Sidransky, B. Vogelstein, and C. C. Harris. 1991. “p53 Mutations in Human Cancers.” 
Science 253 (5015): 49–53. 

Holmes, W.R., Park, J., Levchenko, A. and Edelstein-Keshet, L., 2017. A mathematical model coupling 
polarity signalling to cell adhesion explains diverse cell migration patterns. PLoS computational 
biology, 13(5), p.e1005524. 

Horn, Thomas, Thomas Sandmann, Bernd Fischer, Elin Axelsson, Wolfgang Huber, and Michael 
Boutros. 2011. “Mapping of Signaling Networks through Synthetic Genetic Interaction Analysis by RNAi.” 
Nature Methods 8 (4): 341–46. 

Hotelling, Harold. 1933. “Analysis of a Complex of Statistical Variables into Principal Components.” 
Journal of Educational Psychology 24 (6): 417. 

Htun, H., J. Barsony, I. Renyi, D. L. Gould, and G. L. Hager. 1996. “Visualization of Glucocorticoid 
Receptor Translocation and Intranuclear Organization in Living Cells with a Green Fluorescent Protein 
Chimera.” Proceedings of the National Academy of Sciences of the United States of America 93 (10): 4845–
50. 

Hurley, Paula J., and Fred Bunz. 2009. “Distinct Pathways Involved in S-Phase Checkpoint Control.” 
In Checkpoint Controls and Targets in Cancer Therapy, edited by Zahid H. Siddik, 27–36. Totowa, NJ: 
Humana Press. 

Ikegami, S., T. Taguchi, M. Ohashi, M. Oguro, H. Nagano, and Y. Mano. 1978. “Aphidicolin Prevents 
Mitotic Cell Division by Interfering with the Activity of DNA Polymerase-Alpha.” Nature 275 (5679): 458–
60. 

http://paperpile.com/b/w4tVdv/Oh7Vu
http://paperpile.com/b/w4tVdv/RpRxV
http://paperpile.com/b/w4tVdv/RpRxV
http://www.pnas.org/content/early/2018/02/15/1715345115.short
http://paperpile.com/b/w4tVdv/RpRxV
http://paperpile.com/b/w4tVdv/qj9KV
http://paperpile.com/b/w4tVdv/qj9KV
http://paperpile.com/b/w4tVdv/qj9KV
http://paperpile.com/b/w4tVdv/G9p7R
http://paperpile.com/b/w4tVdv/G9p7R
http://paperpile.com/b/w4tVdv/QpXzi
http://paperpile.com/b/w4tVdv/QpXzi
http://paperpile.com/b/w4tVdv/QpXzi
http://paperpile.com/b/w4tVdv/jQVbt
http://paperpile.com/b/w4tVdv/jQVbt
http://paperpile.com/b/w4tVdv/jQVbt
http://paperpile.com/b/w4tVdv/N2rZN
http://paperpile.com/b/w4tVdv/N2rZN
http://paperpile.com/b/w4tVdv/N2rZN
http://paperpile.com/b/w4tVdv/hDpXt
http://paperpile.com/b/w4tVdv/hDpXt
http://paperpile.com/b/w4tVdv/hDpXt
http://paperpile.com/b/w4tVdv/zOV5X
http://paperpile.com/b/w4tVdv/zOV5X
http://paperpile.com/b/w4tVdv/GmJc4
http://paperpile.com/b/w4tVdv/GmJc4
http://paperpile.com/b/w4tVdv/GmJc4
http://paperpile.com/b/w4tVdv/GmJc4
http://paperpile.com/b/w4tVdv/sBzuD
http://paperpile.com/b/w4tVdv/sBzuD
http://paperpile.com/b/w4tVdv/sBzuD
http://paperpile.com/b/w4tVdv/xa1oh
http://paperpile.com/b/w4tVdv/xa1oh
http://paperpile.com/b/w4tVdv/xa1oh


 

165 

Jackman, Mark, Catherine Lindon, Erich A. Nigg, and Jonathon Pines. 2003. “Active Cyclin B1–Cdk1 
First Appears on Centrosomes in Prophase.” Nature Cell Biology 5 (January): 143. 

Jackson, R.J., Adnane, J., Coppola, D., Cantor, A., Sebti, S.M. and Pledger, W.J., 2002. Loss of the cell 
cycle inhibitors p21 Cip1 and p27 Kip1 enhances tumorigenesis in knockout mouse 
models. Oncogene, 21(55), p.8486. 

Jaggi, B., S. S. Poon, C. MacAulay, and B. Palcic. 1988. “Imaging System for Morphometric Assessment 
of Absorption or Fluorescence in Stained Cells.” Cytometry 9 (6): 566–72. 

Jain, Anil K. 2010. “Data Clustering: 50 Years beyond K-Means.” Pattern Recognition Letters 31 (8): 
651–66. 

Jain, Anil K., and Farshid Farrokhnia. 1991. “Unsupervised Texture Segmentation Using Gabor 
Filters.” Pattern Recognition 24 (12): 1167–86. 

Jänicke, Reiner U., Dennis Sohn, Frank Essmann, and Klaus Schulze-Osthoff. 2007. “The Multiple 
Battles Fought by Anti-Apoptotic p21.” Cell Cycle  6 (4): 407–13. 

Johnson, Amy, and Jan M. Skotheim. 2013. “Start and the Restriction Point.” Current Opinion in Cell 
Biology 25 (6): 717–23. 

Johnson, Heath E., Yogesh Goyal, Nicole L. Pannucci, Trudi Schüpbach, Stanislav Y. Shvartsman, and 
Jared E. Toettcher. 2017. “The Spatiotemporal Limits of Developmental Erk Signaling.” Developmental 
Cell 40 (2): 185–92. 

Johnson, Heath E., Stanislav Y. Shvartsman, and Jared E. Toettcher. 2018. “Signaling Dynamics 
Control Cell Fate in the Early Drosophila Embryo.” bioRxiv. https://doi.org/10.1101/342998. 

Jones, Clifford D., Kevin Blades, Kevin M. Foote, Sylvie M. Guichard, Philip J. Jewsbury, Thomas 
McGuire, Johannes W. Nissink, et al. 2013. “Abstract 2348: Discovery of AZD6738, a Potent and Selective 
Inhibitor with the Potential to Test the Clinical Efficacy of ATR Kinase Inhibition in Cancer Patients.” 
Cancer Research 73 (8 Supplement): 2348–2348. 

Jones, Thouis R., Anne E. Carpenter, Michael R. Lamprecht, Jason Moffat, Serena J. Silver, Jennifer K. 
Grenier, Adam B. Castoreno, et al. 2009. “Scoring Diverse Cellular Morphologies in Image-Based Screens 
with Iterative Feedback and Machine Learning.” Proceedings of the National Academy of Sciences of the 
United States of America 106 (6): 1826–31. 

Jones, Thouis R., In Han Kang, Douglas B. Wheeler, Robert A. Lindquist, Adam Papallo, David M. 
Sabatini, Polina Golland, and Anne E. Carpenter. 2008. “CellProfiler Analyst: Data Exploration and 
Analysis Software for Complex Image-Based Screens.” BMC Bioinformatics 9 (November): 482. 

Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig. 1991. “Participation of p53 
Protein in the Cellular Response to DNA Damage.” Cancer Research 51 (23 Pt 1): 6304–11. 

Katou, Yuki, Yutaka Kanoh, Masashige Bando, Hideki Noguchi, Hirokazu Tanaka, Toshihiko Ashikari, 
Katsunori Sugimoto, and Katsuhiko Shirahige. 2003. “S-Phase Checkpoint Proteins Tof1 and Mrc1 Form 
a Stable Replication-Pausing Complex.” Nature 424 (6952): 1078–83. 

Kerz, Maximilian, Amos Folarin, Ruta Meleckyte, Fiona M. Watt, Richard J. Dobson, and Davide 
Danovi. 2016. “A Novel Automated High-Content Analysis Workflow Capturing Cell Population Dynamics 
from Induced Pluripotent Stem Cell Live Imaging Data.” Journal of Biomolecular Screening 21 (9): 887–
96. 

http://paperpile.com/b/w4tVdv/WhP96
http://paperpile.com/b/w4tVdv/WhP96
http://paperpile.com/b/w4tVdv/WbiRM
http://paperpile.com/b/w4tVdv/WbiRM
http://paperpile.com/b/w4tVdv/8EoIA
http://paperpile.com/b/w4tVdv/8EoIA
http://paperpile.com/b/w4tVdv/Lu8tQ
http://paperpile.com/b/w4tVdv/Lu8tQ
http://paperpile.com/b/w4tVdv/zSVmH
http://paperpile.com/b/w4tVdv/zSVmH
http://paperpile.com/b/w4tVdv/v1Npq
http://paperpile.com/b/w4tVdv/v1Npq
http://paperpile.com/b/w4tVdv/v1Npq
http://paperpile.com/b/w4tVdv/XZOvJ
http://paperpile.com/b/w4tVdv/XZOvJ
http://dx.doi.org/10.1101/342998
http://paperpile.com/b/w4tVdv/XZOvJ
http://paperpile.com/b/w4tVdv/4epXM
http://paperpile.com/b/w4tVdv/4epXM
http://paperpile.com/b/w4tVdv/4epXM
http://paperpile.com/b/w4tVdv/4epXM
http://paperpile.com/b/w4tVdv/yYtdR
http://paperpile.com/b/w4tVdv/yYtdR
http://paperpile.com/b/w4tVdv/yYtdR
http://paperpile.com/b/w4tVdv/yYtdR
http://paperpile.com/b/w4tVdv/RonUr
http://paperpile.com/b/w4tVdv/RonUr
http://paperpile.com/b/w4tVdv/RonUr
http://paperpile.com/b/w4tVdv/G5fyn
http://paperpile.com/b/w4tVdv/G5fyn
http://paperpile.com/b/w4tVdv/dl3SQ
http://paperpile.com/b/w4tVdv/dl3SQ
http://paperpile.com/b/w4tVdv/dl3SQ
http://paperpile.com/b/w4tVdv/Sftpl
http://paperpile.com/b/w4tVdv/Sftpl
http://paperpile.com/b/w4tVdv/Sftpl
http://paperpile.com/b/w4tVdv/Sftpl


 

166 

Kholodenko, Boris N. 2006. “Cell-Signalling Dynamics in Time and Space.” Nature Reviews. Molecular 
Cell Biology 7 (3): 165–76. 

Khotanzad, A., and Y. H. Hong. 1990. “Invariant Image Recognition by Zernike Moments.” IEEE 
Transactions on Pattern Analysis and Machine Intelligence 12 (5): 489–97. 

Kibel, Adam S., Brian K. Suarez, Jay Belani, Joe Oh, Raul Webster, Michele Brophy-Ebbers, Chan Guo, 
William J. Catalona, Joel Picus, and Paul J. Goodfellow. 2003. “CDKN1A and CDKN1B Polymorphisms and 
Risk of Advanced Prostate Carcinoma.” Cancer Research 63 (9): 2033–36. 

Kiger, A. A., B. Baum, S. Jones, M. R. Jones, A. Coulson, C. Echeverri, and N. Perrimon. 2003. “A 
Functional Genomic Analysis of Cell Morphology Using RNA Interference.” Journal of Biology 2 (4): 27. 

Kimmel, J.C., Chang, A.Y., Brack, A.S. and Marshall, W.F., 2018. Inferring cell state by quantitative 
motility analysis reveals a dynamic state system and broken detailed balance. PLoS computational 
biology, 14(1), p.e1005927. 

Kimura, K., M. Ito, M. Amano, K. Chihara, Y. Fukata, M. Nakafuku, B. Yamamori, et al. 1996. 
“Regulation of Myosin Phosphatase by Rho and Rho-Associated Kinase (Rho-Kinase).” Science 273 
(5272): 245–48. 

King, R. W., R. J. Deshaies, J. M. Peters, and M. W. Kirschner. 1996. “How Proteolysis Drives the Cell 
Cycle.” Science 274 (5293): 1652–59. 

Knudson, A. G., Jr. 1971. “Mutation and Cancer: Statistical Study of Retinoblastoma.” Proceedings of 
the National Academy of Sciences of the United States of America 68 (4): 820–23. 

Kojima, Kensuke, Marina Konopleva, Teresa McQueen, Susan O’Brien, William Plunkett, and Michael 
Andreeff. 2006. “Mdm2 Inhibitor Nutlin-3a Induces p53-Mediated Apoptosis by Transcription-
Dependent and Transcription-Independent Mechanisms and May Overcome Atm-Mediated Resistance 
to Fludarabine in Chronic Lymphocytic Leukemia.” Blood 108 (3): 993–1000. 

Kolch, Walter, Melinda Halasz, Marina Granovskaya, and Boris N. Kholodenko. 2015. “The Dynamic 
Control of Signal Transduction Networks in Cancer Cells.” Nature Reviews. Cancer 15 (9): 515–27. 

Kraus, Oren Z., Jimmy Lei Ba, and Brendan J. Frey. 2016. “Classifying and Segmenting Microscopy 
Images with Deep Multiple Instance Learning.” Bioinformatics  32 (12): i52–59. 

Kraus, Oren Z., and Brendan J. Frey. 2016. “Computer Vision for High Content Screening.” Critical 
Reviews in Biochemistry and Molecular Biology 51 (2): 102–9. 

Kraus, Oren Z., Ben T. Grys, Jimmy Ba, Yolanda Chong, Brendan J. Frey, Charles Boone, and Brenda J. 
Andrews. 2017. “Automated Analysis of High‐content Microscopy Data with Deep Learning.” Molecular 
Systems Biology 13 (4): 924. 

Krauthammer, Michael, Yong Kong, Byung Hak Ha, Perry Evans, Antonella Bacchiocchi, James P. 
McCusker, Elaine Cheng, et al. 2012. “Exome Sequencing Identifies Recurrent Somatic RAC1 Mutations 
in Melanoma.” Nature Genetics 44 (9): 1006–14. 

Kristan, Matej, Jiri Matas, Ales Leonardis, Michael Felsberg, Luka Cehovin, Gustavo Fernandez, 
Tomas Vojir, Gustav Hager, Georg Nebehay, and Roman Pflugfelder. 2015. “The Visual Object Tracking 
vot2015 Challenge Results.” In Proceedings of the IEEE International Conference on Computer Vision 
Workshops, 1–23. 

http://paperpile.com/b/w4tVdv/2X92q
http://paperpile.com/b/w4tVdv/2X92q
http://paperpile.com/b/w4tVdv/KtRFh
http://paperpile.com/b/w4tVdv/KtRFh
http://paperpile.com/b/w4tVdv/RA2ve
http://paperpile.com/b/w4tVdv/RA2ve
http://paperpile.com/b/w4tVdv/RA2ve
http://paperpile.com/b/w4tVdv/7JoQT
http://paperpile.com/b/w4tVdv/7JoQT
http://paperpile.com/b/w4tVdv/7JoQT
http://paperpile.com/b/w4tVdv/V8Mab
http://paperpile.com/b/w4tVdv/V8Mab
http://paperpile.com/b/w4tVdv/4maX1
http://paperpile.com/b/w4tVdv/4maX1
http://paperpile.com/b/w4tVdv/vwo9i
http://paperpile.com/b/w4tVdv/vwo9i
http://paperpile.com/b/w4tVdv/vwo9i
http://paperpile.com/b/w4tVdv/vwo9i
http://paperpile.com/b/w4tVdv/mLW8H
http://paperpile.com/b/w4tVdv/mLW8H
http://paperpile.com/b/w4tVdv/jPCIM
http://paperpile.com/b/w4tVdv/jPCIM
http://paperpile.com/b/w4tVdv/Tq8Qt
http://paperpile.com/b/w4tVdv/Tq8Qt
http://paperpile.com/b/w4tVdv/p97SE
http://paperpile.com/b/w4tVdv/p97SE
http://paperpile.com/b/w4tVdv/p97SE
http://paperpile.com/b/w4tVdv/NYHYs
http://paperpile.com/b/w4tVdv/NYHYs
http://paperpile.com/b/w4tVdv/NYHYs
http://paperpile.com/b/w4tVdv/u9eII
http://paperpile.com/b/w4tVdv/u9eII
http://paperpile.com/b/w4tVdv/u9eII
http://paperpile.com/b/w4tVdv/u9eII


 

167 

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. “ImageNet Classification with Deep 
Convolutional Neural Networks.” In Advances in Neural Information Processing Systems 25, edited by F. 
Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, 1097–1105. Curran Associates, Inc. 

Krugmann, S., I. Jordens, K. Gevaert, M. Driessens, J. Vandekerckhove, and A. Hall. 2001. “Cdc42 
Induces Filopodia by Promoting the Formation of an IRSp53:Mena Complex.” Current Biology: CB 11 (21): 
1645–55. 

Kudo, Takamasa, Stevan Jeknić, Derek N. Macklin, Sajia Akhter, Jacob J. Hughey, Sergi Regot, and 
Markus W. Covert. 2018. “Live-Cell Measurements of Kinase Activity in Single Cells Using Translocation 
Reporters.” Nature Protocols 13 (1): 155–69. 

Kümmel, Anne, Hanspeter Gubler, Patricia Gehin, Martin Beibel, Daniela Gabriel, and Christian N. 
Parker. 2010. “Integration of Multiple Readouts into the Z′ Factor for Assay Quality Assessment.” Journal 
of Biomolecular Screening 15 (1): 95–101. 

Kuo, Linda J., and Li-Xi Yang. 2008. “Gamma-H2AX - a Novel Biomarker for DNA Double-Strand 
Breaks.” In Vivo  22 (3): 305–9. 

Lahav, Galit, Nitzan Rosenfeld, Alex Sigal, Naama Geva-Zatorsky, Arnold J. Levine, Michael B. Elowitz, 
and Uri Alon. 2004. “Dynamics of the p53-Mdm2 Feedback Loop in Individual Cells.” Nature Genetics 36 
(2): 147–50. 

Lamprecht, Michael R., David M. Sabatini, and Anne E. Carpenter. 2007. “CellProfilerTM: Free, 
Versatile Software for Automated Biological Image Analysis.” BioTechniques 42 (1): 71–75. 

Lam, W. W., I. Hatada, S. Ohishi, T. Mukai, J. A. Joyce, T. R. Cole, D. Donnai, W. Reik, P. N. Schofield, 
and E. R. Maher. 1999. “Analysis of Germline CDKN1C (p57KIP2) Mutations in Familial and Sporadic 
Beckwith-Wiedemann Syndrome (BWS) Provides a Novel Genotype-Phenotype Correlation.” Journal of 
Medical Genetics 36 (7): 518–23. 

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature 521 (7553): 436–
44. 

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-Based Learning Applied to Document 
Recognition.” Proceedings of the IEEE 86 (11): 2278–2324. 

Lezaja, Aleksandra, and Matthias Altmeyer. 2018. “Inherited DNA Lesions Determine G1 Duration 
in the next Cell Cycle.” Cell Cycle  17 (1): 24–32. 

Li, F. P., J. F. Fraumeni Jr, J. J. Mulvihill, W. A. Blattner, M. G. Dreyfus, M. A. Tucker, and R. W. Miller. 
1988. “A Cancer Family Syndrome in Twenty-Four Kindreds.” Cancer Research 48 (18): 5358–62. 

Likar, B., J. B. Maintz, M. A. Viergever, and F. Pernus. 2000. “Retrospective Shading Correction Based 
on Entropy Minimization.” Journal of Microscopy 197 (Pt 3): 285–95. 

Li, Linfeng, Qiong Zhou, Ty C. Voss, Kevin L. Quick, and Daniel V. LaBarbera. 2016. “High-Throughput 
Imaging: Focusing in on Drug Discovery in 3D.” Methods  96 (March): 97–102. 

Lin, Gang, Umesh Adiga, Kathy Olson, John F. Guzowski, Carol A. Barnes, and Badrinath Roysam. 
2003. “A Hybrid 3D Watershed Algorithm Incorporating Gradient Cues and Object Models for Automatic 
Segmentation of Nuclei in Confocal Image Stacks.” Cytometry. Part A: The Journal of the International 
Society for Analytical Cytology 56 (1): 23–36. 

http://paperpile.com/b/w4tVdv/F2HH6
http://paperpile.com/b/w4tVdv/F2HH6
http://paperpile.com/b/w4tVdv/F2HH6
http://paperpile.com/b/w4tVdv/Jvlcf
http://paperpile.com/b/w4tVdv/Jvlcf
http://paperpile.com/b/w4tVdv/Jvlcf
http://paperpile.com/b/w4tVdv/huACN
http://paperpile.com/b/w4tVdv/huACN
http://paperpile.com/b/w4tVdv/huACN
http://paperpile.com/b/w4tVdv/ulPUb
http://paperpile.com/b/w4tVdv/ulPUb
http://paperpile.com/b/w4tVdv/ulPUb
http://paperpile.com/b/w4tVdv/ZFRzb
http://paperpile.com/b/w4tVdv/ZFRzb
http://paperpile.com/b/w4tVdv/EcJdv
http://paperpile.com/b/w4tVdv/EcJdv
http://paperpile.com/b/w4tVdv/EcJdv
http://paperpile.com/b/w4tVdv/5Ll0l
http://paperpile.com/b/w4tVdv/5Ll0l
http://paperpile.com/b/w4tVdv/GhYRl
http://paperpile.com/b/w4tVdv/GhYRl
http://paperpile.com/b/w4tVdv/GhYRl
http://paperpile.com/b/w4tVdv/GhYRl
http://paperpile.com/b/w4tVdv/m6mlQ
http://paperpile.com/b/w4tVdv/m6mlQ
http://paperpile.com/b/w4tVdv/Pht6S
http://paperpile.com/b/w4tVdv/Pht6S
http://paperpile.com/b/w4tVdv/NX1LS
http://paperpile.com/b/w4tVdv/NX1LS
http://paperpile.com/b/w4tVdv/Aazlr
http://paperpile.com/b/w4tVdv/Aazlr
http://paperpile.com/b/w4tVdv/8dkBp
http://paperpile.com/b/w4tVdv/8dkBp
http://paperpile.com/b/w4tVdv/3BqGt
http://paperpile.com/b/w4tVdv/3BqGt
http://paperpile.com/b/w4tVdv/lWoXo
http://paperpile.com/b/w4tVdv/lWoXo
http://paperpile.com/b/w4tVdv/lWoXo
http://paperpile.com/b/w4tVdv/lWoXo


 

168 

Li, Simon, Sébastien Besson, Colin Blackburn, Mark Carroll, Richard K. Ferguson, Helen Flynn, 
Kenneth Gillen, et al. 2016. “Metadata Management for High Content Screening in OMERO.” Methods  96 
(March): 27–32. 

Liu, Q., S. Guntuku, X. S. Cui, and S. Matsuoka. 2000. “Chk1 Is an Essential Kinase That Is Regulated 
by Atr and Required for the G2/M DNA Damage Checkpoint.” Genes.  
http://genesdev.cshlp.org/content/14/12/1448.short. 

Liu, Yan-Jun, Maël Le Berre, Franziska Lautenschlaeger, Paolo Maiuri, Andrew Callan-Jones, Mélina 
Heuzé, Tohru Takaki, Raphaël Voituriez, and Matthieu Piel. 2015. “Confinement and Low Adhesion 
Induce Fast Amoeboid Migration of Slow Mesenchymal Cells.” Cell 160 (4): 659–72. 

Ljosa, Vebjorn, Peter D. Caie, Rob Ter Horst, Katherine L. Sokolnicki, Emma L. Jenkins, Sandeep Daya, 
Mark E. Roberts, et al. 2013. “Comparison of Methods for Image-Based Profiling of Cellular Morphological 
Responses to Small-Molecule Treatment.” Journal of Biomolecular Screening 18 (10): 1321–29. 

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. 2015. “Fully Convolutional Networks for 
Semantic Segmentation.” In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 3431–40. 

Loo, Lit-Hsin, Lani F. Wu, and Steven J. Altschuler. 2007. “Image-Based Multivariate Profiling of Drug 
Responses from Single Cells.” Nature Methods 4 (5): 445–53. 

Lu, Alex, Oren Z. Kraus, Sam Cooper, and Alan M. Moses. 2018. “Learning Unsupervised Feature 
Representations for Single Cell Microscopy Images with Paired Cell Inpainting.” bioRxiv. 
https://doi.org/10.1101/395954. 

Maaten, Laurens van der, and Geoffrey Hinton. 2008. “Visualizing Data Using T-SNE.” Journal of 
Machine Learning Research: JMLR 9 (Nov): 2579–2605. 

Maekawa, M., T. Ishizaki, S. Boku, N. Watanabe, A. Fujita, A. Iwamatsu, T. Obinata, K. Ohashi, K. 
Mizuno, and S. Narumiya. 1999. “Signaling from Rho to the Actin Cytoskeleton through Protein Kinases 
ROCK and LIM-Kinase.” Science 285 (5429): 895–98. 

Magnusson, K. E. G., and J. Jaldén. 2012. “A Batch Algorithm Using Iterative Application of the Viterbi 
Algorithm to Track Cells and Construct Cell Lineages.” In 2012 9th IEEE International Symposium on 
Biomedical Imaging (ISBI), 382–85. 

Magnusson, Klas E. G., Joakim Jalden, Penney M. Gilbert, and Helen M. Blau. 2015. “Global Linking of 
Cell Tracks Using the Viterbi Algorithm.” IEEE Transactions on Medical Imaging 34 (4): 911–29. 

Ma, Hongxia, Guangfu Jin, Zhibin Hu, Xiangjun Zhai, Wensen Chen, Shui Wang, Xuechen Wang, et al. 
2006. “Variant Genotypes of CDKN1A and CDKN1B Are Associated with an Increased Risk of Breast 
Cancer in Chinese Women.” International Journal of Cancer. Journal International Du Cancer 119 (9): 
2173–78. 

Malkin, D., F. P. Li, L. C. Strong, J. F. Fraumeni Jr, C. E. Nelson, D. H. Kim, J. Kassel, M. A. Gryka, F. Z. 
Bischoff, and M. A. Tainsky. 1990. “Germ Line p53 Mutations in a Familial Syndrome of Breast Cancer, 
Sarcomas, and Other Neoplasms.” Science 250 (4985): 1233–38. 

Malpica, N., C. O. de Solórzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. García-Sagredo, and F. del 
Pozo. 1997. “Applying Watershed Algorithms to the Segmentation of Clustered Nuclei.” Cytometry 28 (4): 
289–97. 

http://paperpile.com/b/w4tVdv/38Zwd
http://paperpile.com/b/w4tVdv/38Zwd
http://paperpile.com/b/w4tVdv/38Zwd
http://paperpile.com/b/w4tVdv/Eajww
http://paperpile.com/b/w4tVdv/bDxBv
http://paperpile.com/b/w4tVdv/bDxBv
http://paperpile.com/b/w4tVdv/bDxBv
http://paperpile.com/b/w4tVdv/LuX0N
http://paperpile.com/b/w4tVdv/LuX0N
http://paperpile.com/b/w4tVdv/LuX0N
http://paperpile.com/b/w4tVdv/hAbQl
http://paperpile.com/b/w4tVdv/hAbQl
http://paperpile.com/b/w4tVdv/hAbQl
http://paperpile.com/b/w4tVdv/AYwLX
http://paperpile.com/b/w4tVdv/AYwLX
http://paperpile.com/b/w4tVdv/Bf5tH
http://paperpile.com/b/w4tVdv/Bf5tH
http://paperpile.com/b/w4tVdv/Bf5tH
http://dx.doi.org/10.1101/395954
http://paperpile.com/b/w4tVdv/Bf5tH
http://paperpile.com/b/w4tVdv/qz5Hf
http://paperpile.com/b/w4tVdv/qz5Hf
http://paperpile.com/b/w4tVdv/tRi3a
http://paperpile.com/b/w4tVdv/tRi3a
http://paperpile.com/b/w4tVdv/tRi3a
http://paperpile.com/b/w4tVdv/B4GTP
http://paperpile.com/b/w4tVdv/B4GTP
http://paperpile.com/b/w4tVdv/B4GTP
http://paperpile.com/b/w4tVdv/Gs99X
http://paperpile.com/b/w4tVdv/Gs99X
http://paperpile.com/b/w4tVdv/YFcjT
http://paperpile.com/b/w4tVdv/YFcjT
http://paperpile.com/b/w4tVdv/YFcjT
http://paperpile.com/b/w4tVdv/YFcjT
http://paperpile.com/b/w4tVdv/UVgoD
http://paperpile.com/b/w4tVdv/UVgoD
http://paperpile.com/b/w4tVdv/UVgoD
http://paperpile.com/b/w4tVdv/X6ReT
http://paperpile.com/b/w4tVdv/X6ReT
http://paperpile.com/b/w4tVdv/X6ReT


 

169 

Martín-Caballero, J., Flores, J.M., García-Palencia, P. and Serrano, M., 2001. Tumor susceptibility of 
p21Waf1/Cip1-deficient mice. Cancer research, 61(16), pp.6234-6238. 

Martin, Heather L., Matthew Adams, Julie Higgins, Jacquelyn Bond, Ewan E. Morrison, Sandra M. Bell, 
Stuart Warriner, Adam Nelson, and Darren C. Tomlinson. 2014. “High-Content, High-Throughput 
Screening for the Identification of Cytotoxic Compounds Based on Cell Morphology and Cell Proliferation 
Markers.” PloS One 9 (2): e88338. 

Maška, Martin, Vladimír Ulman, David Svoboda, Pavel Matula, Petr Matula, Cristina Ederra, Ainhoa 
Urbiola, et al. 2014. “A Benchmark for Comparison of Cell Tracking Algorithms.” Bioinformatics  30 (11): 
1609–17. 

Massagué, Joan. 2004. “G1 Cell-Cycle Control and Cancer.” Nature 432 (7015): 298–306. 

Matsui, Takeshi, Mutsuki Amano, Takaharu Yamamoto, Kazuyasu Chihara, Masato Nakafuku, 
Masaaki Ito, Takeshi Nakano, Katsuya Okawa, Akihiro Iwamatsu, and Kozo Kaibuchi. 1996. “Rho-
Associated Kinase, a Novel Serine/threonine Kinase, as a Putative Target for Small GTP Binding Protein 
Rho.” The EMBO Journal 15 (9): 2208–16. 

Matsushime, H., M. E. Ewen, D. K. Strom, J. Y. Kato, S. K. Hanks, M. F. Roussel, and C. J. Sherr. 1992. 
“Identification and Properties of an Atypical Catalytic Subunit (p34PSK-J3/cdk4) for Mammalian D Type 
G1 Cyclins.” Cell 71 (2): 323–34. 

Matsushime, H., M. F. Roussel, R. A. Ashmun, and C. J. Sherr. 1991. “Colony-Stimulating Factor 1 
Regulates Novel Cyclins during the G1 Phase of the Cell Cycle.” Cell 65 (4): 701–13. 

McQuin, Claire, Allen Goodman, Vasiliy Chernyshev, Lee Kamentsky, Beth A. Cimini, Kyle W. 
Karhohs, Minh Doan, et al. 2018. “CellProfiler 3.0: Next-Generation Image Processing for Biology.” PLoS 
Biology 16 (7): e2005970. 

Meijering, E. 2012. “Cell Segmentation: 50 Years Down the Road [Life Sciences].” IEEE Signal 
Processing Magazine 29 (5): 140–45. 

Meijering, Erik, Oleh Dzyubachyk, and Ihor Smal. 2012. “Methods for Cell and Particle Tracking.” 
Methods in Enzymology 504: 183–200. 

Meyerson, M., and E. Harlow. 1994. “Identification of G1 Kinase Activity for cdk6, a Novel Cyclin D 
Partner.” Molecular and Cellular Biology 14 (3): 2077–86. 

Michael Ando, D., Cory McLean, and Marc Berndl. 2017. “Improving Phenotypic Measurements in 
High-Content Imaging Screens.” bioRxiv. https://doi.org/10.1101/161422. 

Milan, Anton, Laura Leal-Taixe, Ian Reid, Stefan Roth, and Konrad Schindler. 2016. “MOT16: A 
Benchmark for Multi-Object Tracking.” arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1603.00831. 

Moffat, Jason, and David M. Sabatini. 2006. “Building Mammalian Signalling Pathways with RNAi 
Screens.” Nature Reviews. Molecular Cell Biology 7 (3): 177–87. 

Molnar, Csaba, Ian H. Jermyn, Zoltan Kato, Vesa Rahkama, Päivi Östling, Piia Mikkonen, Vilja 
Pietiäinen, and Peter Horvath. 2016. “Accurate Morphology Preserving Segmentation of Overlapping 
Cells Based on Active Contours.” Scientific Reports 6 (August): 32412. 

Moser, Justin, Iain Miller, Dylan Carter, and Sabrina L. Spencer. 2018. “Control of the Restriction 
Point by Rb and p21.” Proceedings of the National Academy of Sciences of the United States of America, 
August. https://doi.org/10.1073/pnas.1722446115. 

http://paperpile.com/b/w4tVdv/D2tVY
http://paperpile.com/b/w4tVdv/D2tVY
http://paperpile.com/b/w4tVdv/D2tVY
http://paperpile.com/b/w4tVdv/D2tVY
http://paperpile.com/b/w4tVdv/Dy4IY
http://paperpile.com/b/w4tVdv/Dy4IY
http://paperpile.com/b/w4tVdv/Dy4IY
http://paperpile.com/b/w4tVdv/zVLuq
http://paperpile.com/b/w4tVdv/sKhXq
http://paperpile.com/b/w4tVdv/sKhXq
http://paperpile.com/b/w4tVdv/sKhXq
http://paperpile.com/b/w4tVdv/sKhXq
http://paperpile.com/b/w4tVdv/SlBaf
http://paperpile.com/b/w4tVdv/SlBaf
http://paperpile.com/b/w4tVdv/SlBaf
http://paperpile.com/b/w4tVdv/OEJeY
http://paperpile.com/b/w4tVdv/OEJeY
http://paperpile.com/b/w4tVdv/CUZxo
http://paperpile.com/b/w4tVdv/CUZxo
http://paperpile.com/b/w4tVdv/CUZxo
http://paperpile.com/b/w4tVdv/ItVwi
http://paperpile.com/b/w4tVdv/ItVwi
http://paperpile.com/b/w4tVdv/oOEuB
http://paperpile.com/b/w4tVdv/oOEuB
http://paperpile.com/b/w4tVdv/TCdYp
http://paperpile.com/b/w4tVdv/TCdYp
http://paperpile.com/b/w4tVdv/Asdfe
http://paperpile.com/b/w4tVdv/Asdfe
http://dx.doi.org/10.1101/161422
http://paperpile.com/b/w4tVdv/Asdfe
http://paperpile.com/b/w4tVdv/iSYAk
http://paperpile.com/b/w4tVdv/iSYAk
http://arxiv.org/abs/1603.00831
http://paperpile.com/b/w4tVdv/iSYAk
http://paperpile.com/b/w4tVdv/1x0yn
http://paperpile.com/b/w4tVdv/1x0yn
http://paperpile.com/b/w4tVdv/oE6Lz
http://paperpile.com/b/w4tVdv/oE6Lz
http://paperpile.com/b/w4tVdv/oE6Lz
http://paperpile.com/b/w4tVdv/8DrQ3
http://paperpile.com/b/w4tVdv/8DrQ3
http://paperpile.com/b/w4tVdv/8DrQ3
http://dx.doi.org/10.1073/pnas.1722446115
http://paperpile.com/b/w4tVdv/8DrQ3


 

170 

Mukherji, Mridul, Russell Bell, Lubica Supekova, Yan Wang, Anthony P. Orth, Serge Batalov, Loren 
Miraglia, et al. 2006. “Genome-Wide Functional Analysis of Human Cell-Cycle Regulators.” Proceedings of 
the National Academy of Sciences of the United States of America 103 (40): 14819–24. 

Murphree, A. L., and W. F. Benedict. 1984. “Retinoblastoma: Clues to Human Oncogenesis.” Science 
223 (4640): 1028–33. 

Murphy, Robert F., Michael V. Boland, Meel Velliste, and Others. 2000. “Towards a Systematics for 
Protein Subcellular Location: Quantitative Description of Protein Localization Patterns and Automated 
Analysis of Fluorescence Microscope Images.” In ISMB, 251–59. 

Nederlof, P. M., S. van der Flier, N. P. Verwoerd, J. Vrolijk, A. K. Raap, and H. J. Tanke. 1992. 
“Quantification of Fluorescence in Situ Hybridization Signals by Image Cytometry.” Cytometry 13 (8): 
846–52. 

Neumann, Beate, Michael Held, Urban Liebel, Holger Erfle, Phill Rogers, Rainer Pepperkok, and Jan 
Ellenberg. 2006. “High-Throughput RNAi Screening by Time-Lapse Imaging of Live Human Cells.” Nature 
Methods 3 (5): 385–90. 

Neumann, Beate, Thomas Walter, Jean-Karim Hériché, Jutta Bulkescher, Holger Erfle, Christian 
Conrad, Phill Rogers, et al. 2010. “Phenotypic Profiling of the Human Genome by Time-Lapse Microscopy 
Reveals Cell Division Genes.” Nature 464 (7289): 721–27. 

Ng, Alvin Y. J., Jagath C. Rajapakse, Roy E. Welsch, Paul T. Matsudaira, Victor Horodincu, and James 
G. Evans. 2010. “A Cell Profiling Framework for Modeling Drug Responses from HCS Imaging.” Journal of 
Biomolecular Screening 15 (7): 858–68. 

Nir, Oaz, Chris Bakal, Norbert Perrimon, and Bonnie Berger. 2010. “Inference of RhoGAP/GTPase 
Regulation Using Single-Cell Morphological Data from a Combinatorial RNAi Screen.” Genome Research 
20 (3): 372–80. 

Nobes, C. D., and A. Hall. 1995. “Rho, Rac, and cdc42 GTPases Regulate the Assembly of 
Multimolecular Focal Complexes Associated with Actin Stress Fibers, Lamellipodia, and Filopodia.” Cell 
81 (1): 53–62. 

Norbury, C., and P. Nurse. 1992. “Animal Cell Cycles and Their Control.” Annual Review of 
Biochemistry 61: 441–70. 

Nurse, P. 1990. “Universal Control Mechanism Regulating Onset of M-Phase.” Nature 344 (6266): 
503–8. 

Nurse, Paul. "A long twentieth century of the cell cycle and beyond." Cell 100.1 (2000): 71-78. 

Olivier, Nicolas, Miguel A. Luengo-Oroz, Louise Duloquin, Emmanuel Faure, Thierry Savy, Israël 
Veilleux, Xavier Solinas, et al. 2010. “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-
Free Nonlinear Microscopy.” Science 329 (5994): 967–71. 

'Brien, C.A., Kreso, A., Ryan, P., Hermans, K.G., Gibson, L., Wang, Y., Tsatsanis, A., Gallinger, S. and Dick, 
J.E., 2012. ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through 
p21. Cancer cell, 21(6), pp.777-792. 

Otsu, Nobuyuki. 1979. “A Threshold Selection Method from Gray-Level Histograms.” IEEE 
Transactions on Systems, Man, and Cybernetics 9 (1): 62–66. 

http://paperpile.com/b/w4tVdv/2yqG0
http://paperpile.com/b/w4tVdv/2yqG0
http://paperpile.com/b/w4tVdv/2yqG0
http://paperpile.com/b/w4tVdv/aOL0u
http://paperpile.com/b/w4tVdv/aOL0u
http://paperpile.com/b/w4tVdv/1q3ON
http://paperpile.com/b/w4tVdv/1q3ON
http://paperpile.com/b/w4tVdv/1q3ON
http://paperpile.com/b/w4tVdv/zTFKM
http://paperpile.com/b/w4tVdv/zTFKM
http://paperpile.com/b/w4tVdv/zTFKM
http://paperpile.com/b/w4tVdv/ZvSYb
http://paperpile.com/b/w4tVdv/ZvSYb
http://paperpile.com/b/w4tVdv/ZvSYb
http://paperpile.com/b/w4tVdv/KhANm
http://paperpile.com/b/w4tVdv/KhANm
http://paperpile.com/b/w4tVdv/KhANm
http://paperpile.com/b/w4tVdv/Xj19R
http://paperpile.com/b/w4tVdv/Xj19R
http://paperpile.com/b/w4tVdv/Xj19R
http://paperpile.com/b/w4tVdv/1EV84
http://paperpile.com/b/w4tVdv/1EV84
http://paperpile.com/b/w4tVdv/1EV84
http://paperpile.com/b/w4tVdv/VrXCh
http://paperpile.com/b/w4tVdv/VrXCh
http://paperpile.com/b/w4tVdv/VrXCh
http://paperpile.com/b/w4tVdv/MaxEJ
http://paperpile.com/b/w4tVdv/MaxEJ
http://paperpile.com/b/w4tVdv/GrLUc
http://paperpile.com/b/w4tVdv/GrLUc
http://paperpile.com/b/w4tVdv/OBKIa
http://paperpile.com/b/w4tVdv/OBKIa
http://paperpile.com/b/w4tVdv/OBKIa
http://paperpile.com/b/w4tVdv/kncJW
http://paperpile.com/b/w4tVdv/kncJW


 

171 

Overton, K. Wesley, Sabrina L. Spencer, William L. Noderer, Tobias Meyer, and Clifford L. Wang. 
2014. “Basal p21 Controls Population Heterogeneity in Cycling and Quiescent Cell Cycle States.” 
Proceedings of the National Academy of Sciences of the United States of America 111 (41): E4386–93. 

Pagano, Michele. 2004. “Control of DNA Synthesis and Mitosis by the Skp2-p27-Cdk1/2 Axis.” 
Molecular Cell 14 (4): 414–16. 

Pal, Nikhil R., and Sankar K. Pal. 1993. “A Review on Image Segmentation Techniques.” Pattern 
Recognition 26 (9): 1277–94. 

Paňková, K., D. Rösel, M. Novotný, and Jan Brábek. 2010. “The Molecular Mechanisms of Transition 
between Mesenchymal and Amoeboid Invasiveness in Tumor Cells.” Cellular and Molecular Life Sciences: 
CMLS 67 (1): 63–71. 

Pardee, A. B. 1974. “A Restriction Point for Control of Normal Animal Cell Proliferation.” Proceedings 
of the National Academy of Sciences of the United States of America 71 (4): 1286–90. 

Pardee, Arthur B., Chiang J. Li, and G. Prem Veer Reddy. 2004. “Regulation in S Phase by E2F.” Cell 
Cycle  3 (9): 1091–94. 

Parsons, J. Thomas, Alan Rick Horwitz, and Martin A. Schwartz. 2010. “Cell Adhesion: Integrating 
Cytoskeletal Dynamics and Cellular Tension.” Nature Reviews. Molecular Cell Biology 11 (9): 633–43. 

Paszek, Matthew J., Nastaran Zahir, Kandice R. Johnson, Johnathon N. Lakins, Gabriela I. Rozenberg, 
Amit Gefen, Cynthia A. Reinhart-King, et al. 2005. “Tensional Homeostasis and the Malignant Phenotype.” 
Cancer Cell 8 (3): 241–54. 

Paul, Steven M., Daniel S. Mytelka, Christopher T. Dunwiddie, Charles C. Persinger, Bernard H. 
Munos, Stacy R. Lindborg, and Aaron L. Schacht. 2010. “How to Improve R&D Productivity: The 
Pharmaceutical Industry’s Grand Challenge.” Nature Reviews. Drug Discovery 9 (3): 203–14. 

Pawlowski, Nick, Juan C. Caicedo, Shantanu Singh, Anne E. Carpenter, and Amos Storkey. 2016. 
“Automating Morphological Profiling with Generic Deep Convolutional Networks.” bioRxiv.  
https://doi.org/10.1101/085118. 

Pepperkok, Rainer, and Jan Ellenberg. 2006. “High-Throughput Fluorescence Microscopy for 
Systems Biology.” Nature Reviews. Molecular Cell Biology 7 (9): 690–96. 

Perlman, Zachary E., Michael D. Slack, Yan Feng, Timothy J. Mitchison, Lani F. Wu, and Steven J. 
Altschuler. 2004. “Multidimensional Drug Profiling by Automated Microscopy.” Science 306 (5699): 
1194–98. 

Pertz, Olivier, Louis Hodgson, Richard L. Klemke, and Klaus M. Hahn. 2006. “Spatiotemporal 
Dynamics of RhoA Activity in Migrating Cells.” Nature 440 (7087): 1069–72. 

Peruski, Anne Harwood, Linwood Hill Johnson 3rd, and Leonard Francis Peruski Jr. 2002. “Rapid 
and Sensitive Detection of Biological Warfare Agents Using Time-Resolved Fluorescence Assays.” Journal 
of Immunological Methods 263 (1-2): 35–41. 

Peters, Jan-Michael. 2002. “The Anaphase-Promoting Complex: Proteolysis in Mitosis and beyond.” 
Molecular Cell 9 (5): 931–43. 

Planas-Silva, M. D., and R. A. Weinberg. 1997. “The Restriction Point and Control of Cell 
Proliferation.” Current Opinion in Cell Biology 9 (6): 768–72. 

http://paperpile.com/b/w4tVdv/smcFB
http://paperpile.com/b/w4tVdv/smcFB
http://paperpile.com/b/w4tVdv/smcFB
http://paperpile.com/b/w4tVdv/sDOGY
http://paperpile.com/b/w4tVdv/sDOGY
http://paperpile.com/b/w4tVdv/vMfuh
http://paperpile.com/b/w4tVdv/vMfuh
http://paperpile.com/b/w4tVdv/BeU4S
http://paperpile.com/b/w4tVdv/BeU4S
http://paperpile.com/b/w4tVdv/BeU4S
http://paperpile.com/b/w4tVdv/Ldj6s
http://paperpile.com/b/w4tVdv/Ldj6s
http://paperpile.com/b/w4tVdv/1XoJj
http://paperpile.com/b/w4tVdv/1XoJj
http://paperpile.com/b/w4tVdv/wEbD3
http://paperpile.com/b/w4tVdv/wEbD3
http://paperpile.com/b/w4tVdv/frhDb
http://paperpile.com/b/w4tVdv/frhDb
http://paperpile.com/b/w4tVdv/frhDb
http://paperpile.com/b/w4tVdv/pF3Jf
http://paperpile.com/b/w4tVdv/pF3Jf
http://paperpile.com/b/w4tVdv/pF3Jf
http://dx.doi.org/10.1101/085118
http://paperpile.com/b/w4tVdv/Is5ht
http://paperpile.com/b/w4tVdv/pmVui
http://paperpile.com/b/w4tVdv/pmVui
http://paperpile.com/b/w4tVdv/OpHWZ
http://paperpile.com/b/w4tVdv/OpHWZ
http://paperpile.com/b/w4tVdv/OpHWZ
http://paperpile.com/b/w4tVdv/SFYJX
http://paperpile.com/b/w4tVdv/SFYJX
http://paperpile.com/b/w4tVdv/o2Hn3
http://paperpile.com/b/w4tVdv/o2Hn3
http://paperpile.com/b/w4tVdv/o2Hn3
http://paperpile.com/b/w4tVdv/kva5A
http://paperpile.com/b/w4tVdv/kva5A
http://paperpile.com/b/w4tVdv/gOXMB
http://paperpile.com/b/w4tVdv/gOXMB


 

172 

Pollard, Steven M., Koichi Yoshikawa, Ian D. Clarke, Davide Danovi, Stefan Stricker, Roslin Russell, 
Jane Bayani, et al. 2009. “Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific 
Phenotypes and Are Suitable for Chemical and Genetic Screens.” Cell Stem Cell 4 (6): 568–80. 

Polyak, K., Y. Xia, J. L. Zweier, K. W. Kinzler, and B. Vogelstein. 1997. “A Model for p53-Induced 
Apoptosis.” Nature 389 (6648): 300–305. 

Poole, A.J., Heap, D., Carroll, R.E. and Tyner, A.L., 2004. Tumor suppressor functions for the Cdk 
inhibitor p21 in the mouse colon. Oncogene, 23(49), p.8128. 

Prewitt, J. M., and M. L. Mendelsohn. 1966. “The Analysis of Cell Images.” Annals of the New York 
Academy of Sciences 128 (3): 1035–53. 

Puls, T. J., Xiaohong Tan, Mahera Husain, Catherine F. Whittington, Melissa L. Fishel, and Sherry L. 
Voytik-Harbin. 2018. “Development of a Novel 3D Tumor-Tissue Invasion Model for High-Throughput, 
High-Content Phenotypic Drug Screening.” Scientific Reports 8 (1): 13039. 

Purvis, J. E., and G. Lahav. 2013. “Encoding and Decoding Cellular Information through Signaling 
Dynamics.” Cell. https://www.sciencedirect.com/science/article/pii/S0092867413001530. 

Purvis, Jeremy E., Kyle W. Karhohs, Caroline Mock, Eric Batchelor, Alexander Loewer, and Galit 
Lahav. 2012. “p53 Dynamics Control Cell Fate.” Science 336 (6087): 1440–44. 

Rainville, Irene, and Judy E. Garber. 2008. “Familial Cancer Database Online.” The Lancet Oncology 9 
(10): 925–26. 

Rämö, Pauli, Raphael Sacher, Berend Snijder, Boris Begemann, and Lucas Pelkmans. 2009. 
“CellClassifier: Supervised Learning of Cellular Phenotypes.” Bioinformatics  25 (22): 3028–30. 

Regot, Sergi, Jacob J. Hughey, Bryce T. Bajar, Silvia Carrasco, and Markus W. Covert. 2014. “High-
Sensitivity Measurements of Multiple Kinase Activities in Live Single Cells.” Cell 157 (7): 1724–34. 

Reid, Brian G., Taleen Jerjian, Purvi Patel, Qiong Zhou, Byong Hoon Yoo, Peter Kabos, Carol A. 
Sartorius, and Daniel V. Labarbera. 2014. “Live Multicellular Tumor Spheroid Models for High-Content 
Imaging and Screening in Cancer Drug Discovery.” Current Chemical Genomics and Translational Medicine 
8 (Suppl 1): 27–35. 

Reisen, Felix, Xian Zhang, Daniela Gabriel, and Paul Selzer. 2013. “Benchmarking of Multivariate 
Similarity Measures for High-Content Screening Fingerprints in Phenotypic Drug Discovery.” Journal of 
Biomolecular Screening 18 (10): 1284–97. 

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. 2017. “Faster R-CNN: Towards Real-Time 
Object Detection with Region Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine 
Intelligence 39 (6): 1137–49. 

Reyes, José, Jia-Yun Chen, Jacob Stewart-Ornstein, Kyle W. Karhohs, Caroline S. Mock, and Galit 
Lahav. 2018. “Fluctuations in p53 Signaling Allow Escape from Cell-Cycle Arrest.” Molecular Cell 71 (4): 
581–91.e5. 

Ridley, Anne J. 2012. “Historical Overview of Rho GTPases.” In Rho GTPases: Methods and Protocols, 
edited by Francisco Rivero, 3–12. New York, NY: Springer New York. 

Roerdink, Jos Btm, and Arnold Meijster. 2000. “The Watershed Transform: Definitions, Algorithms 
and Parallelization Strategies.” Fundamenta Informaticae 41 (1, 2): 187–228. 

http://paperpile.com/b/w4tVdv/sk40c
http://paperpile.com/b/w4tVdv/sk40c
http://paperpile.com/b/w4tVdv/sk40c
http://paperpile.com/b/w4tVdv/HEyfx
http://paperpile.com/b/w4tVdv/HEyfx
http://paperpile.com/b/w4tVdv/89ghY
http://paperpile.com/b/w4tVdv/89ghY
http://paperpile.com/b/w4tVdv/j4UKA
http://paperpile.com/b/w4tVdv/j4UKA
http://paperpile.com/b/w4tVdv/j4UKA
http://paperpile.com/b/w4tVdv/1SQey
http://paperpile.com/b/w4tVdv/1SQey
https://www.sciencedirect.com/science/article/pii/S0092867413001530
http://paperpile.com/b/w4tVdv/1SQey
http://paperpile.com/b/w4tVdv/orpxU
http://paperpile.com/b/w4tVdv/orpxU
http://paperpile.com/b/w4tVdv/ysXwv
http://paperpile.com/b/w4tVdv/ysXwv
http://paperpile.com/b/w4tVdv/JNlwR
http://paperpile.com/b/w4tVdv/JNlwR
http://paperpile.com/b/w4tVdv/rsBwA
http://paperpile.com/b/w4tVdv/rsBwA
http://paperpile.com/b/w4tVdv/A9zAZ
http://paperpile.com/b/w4tVdv/A9zAZ
http://paperpile.com/b/w4tVdv/A9zAZ
http://paperpile.com/b/w4tVdv/A9zAZ
http://paperpile.com/b/w4tVdv/wa4Wm
http://paperpile.com/b/w4tVdv/wa4Wm
http://paperpile.com/b/w4tVdv/wa4Wm
http://paperpile.com/b/w4tVdv/K4o6O
http://paperpile.com/b/w4tVdv/K4o6O
http://paperpile.com/b/w4tVdv/K4o6O
http://paperpile.com/b/w4tVdv/rWy20
http://paperpile.com/b/w4tVdv/rWy20
http://paperpile.com/b/w4tVdv/rWy20
http://paperpile.com/b/w4tVdv/gIkVe
http://paperpile.com/b/w4tVdv/gIkVe
http://paperpile.com/b/w4tVdv/u2Jb2
http://paperpile.com/b/w4tVdv/u2Jb2


 

173 

Rohatgi, R., H. Y. Ho, and M. W. Kirschner. 2000. “Mechanism of N-WASP Activation by CDC42 and 
Phosphatidylinositol 4, 5-Bisphosphate.” The Journal of Cell Biology 150 (6): 1299–1310. 

Rohatgi, R., L. Ma, H. Miki, M. Lopez, T. Kirchhausen, T. Takenawa, and M. W. Kirschner. 1999. “The 
Interaction between N-WASP and the Arp2/3 Complex Links Cdc42-Dependent Signals to Actin 
Assembly.” Cell 97 (2): 221–31. 

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net: Convolutional Networks for 
Biomedical Image Segmentation.” In Medical Image Computing and Computer-Assisted Intervention – 
MICCAI 2015, 234–41. Springer International Publishing. 

Rousseeuw, Peter J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of 
Cluster Analysis.” Journal of Computational and Applied Mathematics 20 (November): 53–65. 

Rudner, A. D., and A. W. Murray. 1996. “The Spindle Assembly Checkpoint.” Current Opinion in Cell 
Biology 8 (6): 773–80. 

Ruprecht, Verena, Stefan Wieser, Andrew Callan-Jones, Michael Smutny, Hitoshi Morita, Keisuke 
Sako, Vanessa Barone, et al. 2015. “Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid 
Cell Motility.” Cell 160 (4): 673–85. 

Sachs, Norman, and Hans Clevers. 2014. “Organoid Cultures for the Analysis of Cancer Phenotypes.” 
Current Opinion in Genetics & Development 24 (February): 68–73. 

Sadok, Amine, and Chris J. Marshall. 2014. “Rho GTPases: Masters of Cell Migration.” Small GTPases 
5 (June): e29710. 

Sahai, Erik, and Christopher J. Marshall. 2003. “Differing Modes of Tumour Cell Invasion Have 
Distinct Requirements for Rho/ROCK Signalling and Extracellular Proteolysis.” Nature Cell Biology 5 (8): 
711–19. 

Sailem, Heba, Vicky Bousgouni, Sam Cooper, and Chris Bakal. 2014a. “Cross-Talk between Rho and 
Rac GTPases Drives Deterministic Exploration of Cellular Shape Space and Morphological 
Heterogeneity.” Open Biology 4 (January): 130132.  

Sailem, Heba Z., Sam Cooper, and Chris Bakal. 2016. “Visualizing Quantitative Microscopy Data: 
History and Challenges.” Critical Reviews in Biochemistry and Molecular Biology 51 (2): 96–101. 

Sanz-Moreno, Victoria, Gilles Gadea, Jessica Ahn, Hugh Paterson, Pierfrancesco Marra, Sophie 
Pinner, Erik Sahai, and Christopher J. Marshall. 2008. “Rac Activation and Inactivation Control Plasticity 
of Tumor Cell Movement.” Cell 135 (3): 510–23. 

Sanz-Moreno, Victoria, Cedric Gaggioli, Maggie Yeo, Jean Albrengues, Fredrik Wallberg, Amaya 
Viros, Steven Hooper, et al. 2011. “ROCK and JAK1 Signaling Cooperate to Control Actomyosin 
Contractility in Tumor Cells and Stroma.” Cancer Cell 20 (2): 229–45. 

Scandura, Joseph M., Piernicola Boccuni, Joan Massagué, and Stephen D. Nimer. 2004. “Transforming 
Growth Factor β-Induced Cell Cycle Arrest of Human Hematopoietic Cells Requires p57KIP2 up-
Regulation.” Proceedings of the National Academy of Sciences of the United States of America 101 (42): 
15231–36. 

Schultz, L. B., N. H. Chehab, A. Malikzay, and T. D. Halazonetis. 2000. “p53 Binding Protein 1 (53BP1) 
Is an Early Participant in the Cellular Response to DNA Double-Strand Breaks.” The Journal of Cell Biology 
151 (7): 1381–90. 

http://paperpile.com/b/w4tVdv/dzRGI
http://paperpile.com/b/w4tVdv/dzRGI
http://paperpile.com/b/w4tVdv/LOei3
http://paperpile.com/b/w4tVdv/LOei3
http://paperpile.com/b/w4tVdv/LOei3
http://paperpile.com/b/w4tVdv/EF991
http://paperpile.com/b/w4tVdv/EF991
http://paperpile.com/b/w4tVdv/EF991
http://paperpile.com/b/w4tVdv/vR6bU
http://paperpile.com/b/w4tVdv/vR6bU
http://paperpile.com/b/w4tVdv/dFpFj
http://paperpile.com/b/w4tVdv/dFpFj
http://paperpile.com/b/w4tVdv/wC01V
http://paperpile.com/b/w4tVdv/wC01V
http://paperpile.com/b/w4tVdv/wC01V
http://paperpile.com/b/w4tVdv/9UHeG
http://paperpile.com/b/w4tVdv/9UHeG
http://paperpile.com/b/w4tVdv/oWA8h
http://paperpile.com/b/w4tVdv/oWA8h
http://paperpile.com/b/w4tVdv/ZOPWJ
http://paperpile.com/b/w4tVdv/ZOPWJ
http://paperpile.com/b/w4tVdv/ZOPWJ
http://paperpile.com/b/w4tVdv/YZ3nU
http://paperpile.com/b/w4tVdv/YZ3nU
http://paperpile.com/b/w4tVdv/YZ3nU
http://paperpile.com/b/w4tVdv/y9Zw4
http://paperpile.com/b/w4tVdv/y9Zw4
http://paperpile.com/b/w4tVdv/v6rpE
http://paperpile.com/b/w4tVdv/v6rpE
http://paperpile.com/b/w4tVdv/v6rpE
http://paperpile.com/b/w4tVdv/O2XlK
http://paperpile.com/b/w4tVdv/O2XlK
http://paperpile.com/b/w4tVdv/O2XlK
http://paperpile.com/b/w4tVdv/QqVef
http://paperpile.com/b/w4tVdv/QqVef
http://paperpile.com/b/w4tVdv/QqVef
http://paperpile.com/b/w4tVdv/QqVef
http://paperpile.com/b/w4tVdv/NsOVb
http://paperpile.com/b/w4tVdv/NsOVb
http://paperpile.com/b/w4tVdv/NsOVb


 

174 

Schulze, Christopher J., Walter M. Bray, Marcos H. Woerhmann, Joshua Stuart, R. Scott Lokey, and 
Roger G. Linington. 2013. “‘Function-First’ Lead Discovery: Mode of Action Profiling of Natural Product 
Libraries Using Image-Based Screening.” Chemistry & Biology 20 (2): 285–95. 

Schwarz, Clayton, Amy Johnson, Mardo Kõivomägi, Evgeny Zatulovskiy, Carolyn J. Kravitz, Andreas 
Doncic, and Jan M. Skotheim. 2018. “A Precise Cdk Activity Threshold Determines Passage through the 
Restriction Point.” Molecular Cell 69 (2): 253–64.e5. 

Schwarz, Gideon. 1978. “Estimating the Dimension of a Model.” Annals of Statistics 6 (2): 461–64. 

Sero, Julia E., and Chris Bakal. 2017. “Multiparametric Analysis of Cell Shape Demonstrates That β-
PIX Directly Couples YAP Activation to Extracellular Matrix Adhesion.” Cell Systems 4 (1): 84–96.e6. 

Sero, Julia E., Heba Zuhair Sailem, Rico Chandra Ardy, Hannah Almuttaqi, Tongli Zhang, and Chris 
Bakal. 2015. “Cell Shape and the Microenvironment Regulate Nuclear Translocation of NF‐κB in Breast 
Epithelial and Tumor Cells.” Molecular Systems Biology 11 (3): 790. 

Shamir, Ohad, and Naftali Tishby. 2008. “Model Selection and Stability in K-Means Clustering.” 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.1429&rep=rep1&type=pdf#page=375. 

D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, 2009.  “On the Reliability of Clustering Stability 
in the Large Sample Regime.” In Advances in Neural Information Processing Systems 21, edited by 1465–
72. Curran Associates, Inc. 

Shan, Jing, Robert E. Schwartz, Nathan T. Ross, David J. Logan, David Thomas, Stephen A. Duncan, 
Trista E. North, Wolfram Goessling, Anne E. Carpenter, and Sangeeta N. Bhatia. 2013. “Identification of 
Small Molecules for Human Hepatocyte Expansion and iPS Differentiation.” Nature Chemical Biology 9 
(8): 514–20. 

Sha, Wei, Jonathan Moore, Katherine Chen, Antonio D. Lassaletta, Chung-Seon Yi, John J. Tyson, and 
Jill C. Sible. 2003. “Hysteresis Drives Cell-Cycle Transitions in Xenopus Laevis Egg Extracts.” Proceedings 
of the National Academy of Sciences of the United States of America 100 (3): 975–80. 

Sherr, C. J. 1993. “Mammalian G1 Cyclins.” Cell 73 (6): 1059–65. 

Sherr, C. J., and J. M. Roberts. 1999. “CDK Inhibitors: Positive and Negative Regulators of G1-Phase 
Progression.” Genes & Development 13 (12): 1501–12. 

Shieh, S. Y., M. Ikeda, Y. Taya, and C. Prives. 1997. “DNA Damage-Induced Phosphorylation of p53 
Alleviates Inhibition by MDM2.” Cell 91 (3): 325–34. 

Shi, Jianbo, and J. Malik. 2000. “Normalized Cuts and Image Segmentation.” IEEE Transactions on 
Pattern Analysis and Machine Intelligence 22 (8): 888–905. 

Simm, Jaak, Günter Klambauer, Adam Arany, Marvin Steijaert, Jörg Kurt Wegner, Emmanuel Gustin, 
Vladimir Chupakhin, et al. 2018. “Repurposing High-Throughput Image Assays Enables Biological 
Activity Prediction for Drug Discovery.” Cell Chemical Biology 25 (5): 611–18.e3. 

Simpson, C. M., and C. Bakal. 2018. “The Dynamics of ERK Signaling in Melanoma, and the Response 
to BRAF or MEK Inhibition, Are Cell Cycle Dependent.” bioRxiv.  
https://www.biorxiv.org/content/early/2018/04/23/306571.abstract. 

Singh, Dinesh Kumar, Chin-Jen Ku, Chonlarat Wichaidit, Robert J. Steininger 3rd, Lani F. Wu, and 
Steven J. Altschuler. 2010. “Patterns of Basal Signaling Heterogeneity Can Distinguish Cellular 
Populations with Different Drug Sensitivities.” Molecular Systems Biology 6 (May): 369. 

http://paperpile.com/b/w4tVdv/zKGiQ
http://paperpile.com/b/w4tVdv/zKGiQ
http://paperpile.com/b/w4tVdv/zKGiQ
http://paperpile.com/b/w4tVdv/Voig8
http://paperpile.com/b/w4tVdv/Voig8
http://paperpile.com/b/w4tVdv/Voig8
http://paperpile.com/b/w4tVdv/ofUA0
http://paperpile.com/b/w4tVdv/BYDxg
http://paperpile.com/b/w4tVdv/BYDxg
http://paperpile.com/b/w4tVdv/QpXSo
http://paperpile.com/b/w4tVdv/QpXSo
http://paperpile.com/b/w4tVdv/QpXSo
http://paperpile.com/b/w4tVdv/vnD6c
http://paperpile.com/b/w4tVdv/vnD6c
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.1429&rep=rep1&type=pdf#page=375
http://paperpile.com/b/w4tVdv/vnD6c
http://paperpile.com/b/w4tVdv/UNMHD
http://paperpile.com/b/w4tVdv/UNMHD
http://paperpile.com/b/w4tVdv/UNMHD
http://paperpile.com/b/w4tVdv/UNMHD
http://paperpile.com/b/w4tVdv/0D92t
http://paperpile.com/b/w4tVdv/0D92t
http://paperpile.com/b/w4tVdv/0D92t
http://paperpile.com/b/w4tVdv/0F92E
http://paperpile.com/b/w4tVdv/VK8RC
http://paperpile.com/b/w4tVdv/VK8RC
http://paperpile.com/b/w4tVdv/GcDtO
http://paperpile.com/b/w4tVdv/GcDtO
http://paperpile.com/b/w4tVdv/skWnL
http://paperpile.com/b/w4tVdv/skWnL
http://paperpile.com/b/w4tVdv/JtzLf
http://paperpile.com/b/w4tVdv/JtzLf
http://paperpile.com/b/w4tVdv/JtzLf
http://paperpile.com/b/w4tVdv/KJTUO
http://paperpile.com/b/w4tVdv/QrPyx
http://paperpile.com/b/w4tVdv/QrPyx
http://paperpile.com/b/w4tVdv/QrPyx


 

175 

Singh, S., M-A Bray, T. R. Jones, and A. E. Carpenter. 2014. “Pipeline for Illumination Correction of 
Images for High-Throughput Microscopy.” Journal of Microscopy 256 (3): 231–36. 

Singh, Shantanu, Xiaoyun Wu, Vebjorn Ljosa, Mark-Anthony Bray, Federica Piccioni, David E. Root, 
John G. Doench, Jesse S. Boehm, and Anne E. Carpenter. 2015. “Morphological Profiles of RNAi-Induced 
Gene Knockdown Are Highly Reproducible but Dominated by Seed Effects.” PloS One 10 (7): e0131370. 

Skardal, Aleksander, Thomas Shupe, and Anthony Atala. 2016. “Organoid-on-a-Chip and Body-on-a-
Chip Systems for Drug Screening and Disease Modeling.” Drug Discovery Today 21 (9): 1399–1411. 

Smith, Carl, Andrew Pomiankowski, and Duncan Greig. 2014. “Size and Competitive Mating Success 
in the Yeast Saccharomyces Cerevisiae.” Behavioral Ecology: Official Journal of the International Society 
for Behavioral Ecology 25 (2): 320–27. 

Smith, George E. 2010. “Nobel Lecture: The Invention and Early History of the CCD.” Reviews of 
Modern Physics 82 (3): 2307–12. 

Snijder, Berend, and Lucas Pelkmans. 2011. “Origins of Regulated Cell-to-Cell Variability.” Nature 
Reviews. Molecular Cell Biology 12 (2): 119–25. 

Snijder, Berend, Raphael Sacher, Pauli Rämö, Eva-Maria Damm, Prisca Liberali, and Lucas Pelkmans. 
2009. “Population Context Determines Cell-to-Cell Variability in Endocytosis and Virus Infection.” Nature 
461 (7263): 520–23. 

Snijder, Berend, Raphael Sacher, Pauli Rämö, Prisca Liberali, Karin Mench, Nina Wolfrum, Laura 
Burleigh, et al. 2012. “Single-Cell Analysis of Population Context Advances RNAi Screening at Multiple 
Levels.” Molecular Systems Biology 8 (April): 579. 

Sommer, Christoph, Christoph N. Straehle, Ullrich Koethe, Fred A. Hamprecht, and Others. 2011. 
“Ilastik: Interactive Learning and Segmentation Toolkit.” In ISBI, 2:8. 

Soos, T. J., H. Kiyokawa, J. S. Yan, M. S. Rubin, A. Giordano, A. DeBlasio, S. Bottega, B. Wong, J. 
Mendelsohn, and A. Koff. 1996. “Formation of p27-CDK Complexes during the Human Mitotic Cell Cycle.” 
Cell Growth & Differentiation: The Molecular Biology Journal of the American Association for Cancer 
Research 7 (2): 135–46. 

Spencer, C. C., and R. C. Bostrom. 1962. “Performance of the Cytoanalyzer in Recent Clinical Trials.” 
Journal of the National Cancer Institute 29 (August): 267–76. 

Spencer, Sabrina L., Steven D. Cappell, Feng-Chiao Tsai, K. Wesley Overton, Clifford L. Wang, and 
Tobias Meyer. 2013. “The Proliferation-Quiescence Decision Is Controlled by a Bifurcation in CDK2 
Activity at Mitotic Exit.” Cell 155 (2): 369–83. 

Stewart-Ornstein, Jacob, and Galit Lahav. 2016a. “Dynamics of CDKN1A in Single Cells Defined by an 
Endogenous Fluorescent Tagging Toolkit.” Cell Reports 14 (7): 1800–1811. 

Süel, Gürol M., Jordi Garcia-Ojalvo, Louisa M. Liberman, and Michael B. Elowitz. 2006. “An Excitable 
Gene Regulatory Circuit Induces Transient Cellular Differentiation.” Nature 440 (7083): 545–50. 

Swedlow, Jason R., Ilya Goldberg, Erik Brauner, and Peter K. Sorger. 2003. “Informatics and 
Quantitative Analysis in Biological Imaging.” Science 300 (5616): 100–102. 

Swedlow, Jason R., Ilya G. Goldberg, Kevin W. Eliceiri, and OME Consortium. 2009. “Bioimage 
Informatics for Experimental Biology.” Annual Review of Biophysics 38: 327–46. 

http://paperpile.com/b/w4tVdv/Esr01
http://paperpile.com/b/w4tVdv/Esr01
http://paperpile.com/b/w4tVdv/lXOqr
http://paperpile.com/b/w4tVdv/lXOqr
http://paperpile.com/b/w4tVdv/wE64H
http://paperpile.com/b/w4tVdv/wE64H
http://paperpile.com/b/w4tVdv/wE64H
http://paperpile.com/b/w4tVdv/mUSnT
http://paperpile.com/b/w4tVdv/mUSnT
http://paperpile.com/b/w4tVdv/ON62S
http://paperpile.com/b/w4tVdv/ON62S
http://paperpile.com/b/w4tVdv/AUM8R
http://paperpile.com/b/w4tVdv/AUM8R
http://paperpile.com/b/w4tVdv/AUM8R
http://paperpile.com/b/w4tVdv/VoiPt
http://paperpile.com/b/w4tVdv/VoiPt
http://paperpile.com/b/w4tVdv/VoiPt
http://paperpile.com/b/w4tVdv/DyyU0
http://paperpile.com/b/w4tVdv/DyyU0
http://paperpile.com/b/w4tVdv/4SbNH
http://paperpile.com/b/w4tVdv/4SbNH
http://paperpile.com/b/w4tVdv/4SbNH
http://paperpile.com/b/w4tVdv/4SbNH
http://paperpile.com/b/w4tVdv/n2QsW
http://paperpile.com/b/w4tVdv/n2QsW
http://paperpile.com/b/w4tVdv/QTKEE
http://paperpile.com/b/w4tVdv/QTKEE
http://paperpile.com/b/w4tVdv/QTKEE
http://paperpile.com/b/w4tVdv/Ry4f9
http://paperpile.com/b/w4tVdv/Ry4f9
http://paperpile.com/b/w4tVdv/RoOvV
http://paperpile.com/b/w4tVdv/RoOvV
http://paperpile.com/b/w4tVdv/lT7am
http://paperpile.com/b/w4tVdv/lT7am
http://paperpile.com/b/w4tVdv/so5Wv
http://paperpile.com/b/w4tVdv/so5Wv


 

176 

Swinney, David C., and Jason Anthony. 2011. “How Were New Medicines Discovered?” Nature 
Reviews. Drug Discovery 10 (7): 507–19. 

Tabor, Daniel P., Loïc M. Roch, Semion K. Saikin, Christoph Kreisbeck, Dennis Sheberla, Joseph H. 
Montoya, Shyam Dwaraknath, et al. 2018. “Accelerating the Discovery of Materials for Clean Energy in 
the Era of Smart Automation.” Nature Reviews Materials 3 (5): 5–20. 

Tape, Christopher J., Stephanie Ling, Maria Dimitriadi, Kelly M. McMahon, Jonathan D. Worboys, Hui 
Sun Leong, Ida C. Norrie, et al. 2016. “Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal 
Reciprocation.” Cell 165 (7): 1818. 

Tenenbaum, J. B., V. de Silva, and J. C. Langford. 2000. “A Global Geometric Framework for Nonlinear 
Dimensionality Reduction.” Science 290 (5500): 2319–23. 

Terada, Y., S. Inoshita, O. Nakashima, M. Kuwahara, S. Sasaki, and F. Marumo. 1999. “Regulation of 
Cyclin D1 Expression and Cell Cycle Progression by Mitogen-Activated Protein Kinase Cascade.” Kidney 
International 56 (4): 1258–61. 

Thomas, A. D., T. Davies, and A. R. Luxmoore. 1992. “The Hough Transform for Locating Cell Nuclei.” 
Analytical and Quantitative Cytology and Histology / the International Academy of Cytology [and] 
American Society of Cytology 14 (4): 347–53. 

Thorburn, A. L. 1974. “Alfred François Donné, 1801-1878, Discoverer of Trichomonas Vaginalis and 
of Leukaemia.” The British Journal of Venereal Diseases 50 (5): 377–80. 

Tibshirani, Robert, Guenther Walther, and Trevor Hastie. 2001. “Estimating the Number of Clusters 
in a Data Set via the Gap Statistic.” Journal of the Royal Statistical Society. Series B, Statistical Methodology 
63 (2): 411–23. 

Tiscornia, Gustavo, Erica Lorenzo Vivas, and Juan Carlos Izpisúa Belmonte. 2011. “Diseases in a Dish: 
Modeling Human Genetic Disorders Using Induced Pluripotent Cells.” Nature Medicine 17 (12): 1570–76. 

Toettcher, Jared E., Orion D. Weiner, and Wendell A. Lim. 2013. “Using Optogenetics to Interrogate 
the Dynamic Control of Signal Transmission by the Ras/Erk Module.” Cell 155 (6): 1422–34. 

Topley, G.I., Okuyama, R., Gonzales, J.G., Conti, C. and Dotto, G.P., 1999. p21WAF1/Cip1 functions as 
a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell 
potential. Proceedings of the National Academy of Sciences, 96(16), pp.9089-9094. 

Towne, Danli L., Emily E. Nicholl, Kenneth M. Comess, Scott C. Galasinski, Philip J. Hajduk, and Vivek 
C. Abraham. 2012. “Development of a High-Content Screening Assay Panel to Accelerate Mechanism of 
Action Studies for Oncology Research.” Journal of Biomolecular Screening 17 (8): 1005–17. 

Toyoshima, H., and T. Hunter. 1994. “p27, a Novel Inhibitor of G1 Cyclin-Cdk Protein Kinase Activity, 
Is Related to p21.” Cell 78 (1): 67–74. 

Tozluoğlu, Melda, Alexander L. Tournier, Robert P. Jenkins, Steven Hooper, Paul A. Bates, and Erik 
Sahai. 2013. “Matrix Geometry Determines Optimal Cancer Cell Migration Strategy and Modulates 
Response to Interventions.” Nature Cell Biology 15 (June): 751. 

Tyson, John J., Katherine C. Chen, and Bela Novak. 2003. “Sniffers, Buzzers, Toggles and Blinkers: 
Dynamics of Regulatory and Signaling Pathways in the Cell.” Current Opinion in Cell Biology 15 (2): 221–
31. 

http://paperpile.com/b/w4tVdv/NfaAF
http://paperpile.com/b/w4tVdv/NfaAF
http://paperpile.com/b/w4tVdv/cAyKh
http://paperpile.com/b/w4tVdv/cAyKh
http://paperpile.com/b/w4tVdv/cAyKh
http://paperpile.com/b/w4tVdv/knkYN
http://paperpile.com/b/w4tVdv/knkYN
http://paperpile.com/b/w4tVdv/knkYN
http://paperpile.com/b/w4tVdv/KBBLG
http://paperpile.com/b/w4tVdv/KBBLG
http://paperpile.com/b/w4tVdv/rTM8N
http://paperpile.com/b/w4tVdv/rTM8N
http://paperpile.com/b/w4tVdv/rTM8N
http://paperpile.com/b/w4tVdv/GrtO7
http://paperpile.com/b/w4tVdv/GrtO7
http://paperpile.com/b/w4tVdv/GrtO7
http://paperpile.com/b/w4tVdv/yRosI
http://paperpile.com/b/w4tVdv/yRosI
http://paperpile.com/b/w4tVdv/bu0WP
http://paperpile.com/b/w4tVdv/bu0WP
http://paperpile.com/b/w4tVdv/bu0WP
http://paperpile.com/b/w4tVdv/o0QK5
http://paperpile.com/b/w4tVdv/o0QK5
http://paperpile.com/b/w4tVdv/o0QK5
http://paperpile.com/b/w4tVdv/Zkbzy
http://paperpile.com/b/w4tVdv/Zkbzy
http://paperpile.com/b/w4tVdv/gcmWM
http://paperpile.com/b/w4tVdv/gcmWM
http://paperpile.com/b/w4tVdv/gcmWM
http://paperpile.com/b/w4tVdv/6CJsp
http://paperpile.com/b/w4tVdv/6CJsp
http://paperpile.com/b/w4tVdv/6CJsp


 

177 

Tyson, John J., Attila Csikasz-Nagy, and Bela Novak. 2002. “The Dynamics of Cell Cycle Regulation.” 
BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 24 (12): 1095–1109. 

Ubersax, Jeffrey A., Erika L. Woodbury, Phuong N. Quang, Maria Paraz, Justin D. Blethrow, Kavita 
Shah, Kevan M. Shokat, and David O. Morgan. 2003. “Targets of the Cyclin-Dependent Kinase Cdk1.” 
Nature 425 (6960): 859–64. 

Urbani, L., S. W. Sherwood, and R. T. Schimke. 1995. “Dissociation of Nuclear and Cytoplasmic Cell 
Cycle Progression by Drugs Employed in Cell Synchronization.” Experimental Cell Research 219 (1): 159–
68. 

Vassilev, Lyubomir T. 2004. “Small-Molecule Antagonists of p53-MDM2 Binding: Research Tools and 
Potential Therapeutics.” Cell Cycle  3 (4): 419–21. 

Veta, Mitko, Paul J. van Diest, Stefan M. Willems, Haibo Wang, Anant Madabhushi, Angel Cruz-Roa, 
Fabio Gonzalez, et al. 2015. “Assessment of Algorithms for Mitosis Detection in Breast Cancer 
Histopathology Images.” Medical Image Analysis 20 (1): 237–48. 

Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. 
2010. “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a 
Local Denoising Criterion.” Journal of Machine Learning Research: JMLR 11 (Dec): 3371–3408. 

Vogelstein, Bert, Nickolas Papadopoulos, Victor E. Velculescu, Shibin Zhou, Luis A. Diaz Jr, and 
Kenneth W. Kinzler. 2013. “Cancer Genome Landscapes.” Science 339 (6127): 1546–58. 

Waga, S., G. J. Hannon, D. Beach, and B. Stillman. 1994. “The p21 Inhibitor of Cyclin-Dependent 
Kinases Controls DNA Replication by Interaction with PCNA.” Nature 369 (6481): 574–78. 

Waldman, T., K. W. Kinzler, and B. Vogelstein. 1995. “p21 Is Necessary for the p53-Mediated G1 
Arrest in Human Cancer Cells.” Cancer Research 55 (22): 5187–90. 

Wang, Lijun, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. 2015. “Visual Tracking with Fully 
Convolutional Networks.” In Proceedings of the IEEE International Conference on Computer Vision, 3119–
27. 

Wan, Paul T. C., Mathew J. Garnett, S. Mark Roe, Sharlene Lee, Dan Niculescu-Duvaz, Valerie M. Good, 
C. Michael Jones, et al. 2004. “Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic 
Mutations of B-RAF.” Cell 116 (6): 855–67. 

Weinberg, R. A. 1995. “The Retinoblastoma Protein and Cell Cycle Control.” Cell 81 (3): 323–30. 

Wettersten, Hiromi I., Sung Hee Hwang, Cuiwen Li, Eunice Y. Shiu, Aaron T. Wecksler, Bruce D. 
Hammock, and Robert H. Weiss. 2013. “A Novel p21 Attenuator Which Is Structurally Related to 
Sorafenib.” Cancer Biology & Therapy 14 (3): 278–85. 

Woehrmann, Marcos H., Walter M. Bray, James K. Durbin, Sean C. Nisam, Alicia K. Michael, Emerson 
Glassey, Joshua M. Stuart, and R. Scott Lokey. 2013. “Large-Scale Cytological Profiling for Functional 
Analysis of Bioactive Compounds.” Molecular bioSystems 9 (11): 2604–17. 

Wolf, Steffen, Lukas Schott, Ullrich Köthe, and Fred A. Hamprecht. 2017. “Learned Watershed: End-
to-End Learning of Seeded Segmentation.” In ICCV, 2030–38. 

Wollman, Roy, and Nico Stuurman. 2007. “High Throughput Microscopy: From Raw Images to 
Discoveries.” Journal of Cell Science 120 (Pt 21): 3715–22. 

http://paperpile.com/b/w4tVdv/rFFxD
http://paperpile.com/b/w4tVdv/rFFxD
http://paperpile.com/b/w4tVdv/DaAl7
http://paperpile.com/b/w4tVdv/DaAl7
http://paperpile.com/b/w4tVdv/DaAl7
http://paperpile.com/b/w4tVdv/vtKE4
http://paperpile.com/b/w4tVdv/vtKE4
http://paperpile.com/b/w4tVdv/vtKE4
http://paperpile.com/b/w4tVdv/dChEz
http://paperpile.com/b/w4tVdv/dChEz
http://paperpile.com/b/w4tVdv/I1yJP
http://paperpile.com/b/w4tVdv/I1yJP
http://paperpile.com/b/w4tVdv/I1yJP
http://paperpile.com/b/w4tVdv/lzNk0
http://paperpile.com/b/w4tVdv/lzNk0
http://paperpile.com/b/w4tVdv/lzNk0
http://paperpile.com/b/w4tVdv/t8Dmg
http://paperpile.com/b/w4tVdv/t8Dmg
http://paperpile.com/b/w4tVdv/MioEz
http://paperpile.com/b/w4tVdv/MioEz
http://paperpile.com/b/w4tVdv/5e1gO
http://paperpile.com/b/w4tVdv/5e1gO
http://paperpile.com/b/w4tVdv/DDk1M
http://paperpile.com/b/w4tVdv/DDk1M
http://paperpile.com/b/w4tVdv/DDk1M
http://paperpile.com/b/w4tVdv/DjzAI
http://paperpile.com/b/w4tVdv/DjzAI
http://paperpile.com/b/w4tVdv/DjzAI
http://paperpile.com/b/w4tVdv/n0I0X
http://paperpile.com/b/w4tVdv/p9c3o
http://paperpile.com/b/w4tVdv/p9c3o
http://paperpile.com/b/w4tVdv/p9c3o
http://paperpile.com/b/w4tVdv/CRiFc
http://paperpile.com/b/w4tVdv/CRiFc
http://paperpile.com/b/w4tVdv/CRiFc
http://paperpile.com/b/w4tVdv/CVT3A
http://paperpile.com/b/w4tVdv/CVT3A
http://paperpile.com/b/w4tVdv/aXpRT
http://paperpile.com/b/w4tVdv/aXpRT


 

178 

Xiong, Y., G. J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and D. Beach. 1993. “p21 Is a Universal 
Inhibitor of Cyclin Kinases.” Nature 366 (6456): 701–4. 

Yamazaki, D., S. Kurisu, and T. Takenawa. 2009. “Involvement of Rac and Rho Signaling in Cancer 
Cell Motility in 3D Substrates.” Oncogene 28 (13): 1570–83. 

Yang, Hee Won, Mingyu Chung, Takamasa Kudo, and Tobias Meyer. 2017. “Competing Memories of 
Mitogen and p53 Signalling Control Cell-Cycle Entry.” Nature 549 (7672): 404–8. 

Yang, Qiong, and James E. Ferrell Jr. 2013. “The Cdk1-APC/C Cell Cycle Oscillator Circuit Functions 
as a Time-Delayed, Ultrasensitive Switch.” Nature Cell Biology 15 (5): 519–25. 

Yan, Y., J. Frisén, M. H. Lee, J. Massagué, and M. Barbacid. 1997. “Ablation of the CDK Inhibitor 
p57Kip2 Results in Increased Apoptosis and Delayed Differentiation during Mouse Development.” Genes 
& Development 11 (8): 973–83. 

Yin, Zheng, Amine Sadok, Heba Sailem, Afshan McCarthy, Xiaofeng Xia, Fuhai Li, Mar Arias Garcia, et 
al. 2013. “A Screen for Morphological Complexity Identifies Regulators of Switch-like Transitions 
between Discrete Cell Shapes.” Nature Cell Biology 15 (7): 860–71. 

Yin, Zheng, Xiaobo Zhou, Chris Bakal, Fuhai Li, Youxian Sun, Norbert Perrimon, and Stephen T. C. 
Wong. 2007. “Online Phenotype Discovery in High‐Content RNAi Screens Using Gap Statistics.” AIP 
Conference Proceedings 952 (1): 86–95. 

Young, Daniel W., Andreas Bender, Jonathan Hoyt, Elizabeth McWhinnie, Gung-Wei Chirn, Charles 
Y. Tao, John A. Tallarico, et al. 2008. “Integrating High-Content Screening and Ligand-Target Prediction 
to Identify Mechanism of Action.” Nature Chemical Biology 4 (1): 59–68. 

Yu, Fang, Judit Megyesi, Robert L. Safirstein, and Peter M. Price. 2005. “Identification of the 
Functional Domain of p21WAF1/CIP1 That Protects Cells from Cisplatin Cytotoxicity.” American Journal 
of Physiology-Renal Physiology 289 (3): F514–20. 

Zachariae, W., and K. Nasmyth. 1999. “Whose End Is Destruction: Cell Division and the Anaphase-
Promoting Complex.” Genes & Development 13 (16): 2039–58. 

Zanella, Fabian, James B. Lorens, and Wolfgang Link. 2010a. “High Content Screening: Seeing Is 
Believing.” Trends in Biotechnology 28 (5): 237–45. 

Zerjatke, Thomas, Igor A. Gak, Dilyana Kirova, Markus Fuhrmann, Katrin Daniel, Magdalena 
Gonciarz, Doris Müller, Ingmar Glauche, and Jörg Mansfeld. 2017. “Quantitative Cell Cycle Analysis Based 
on an Endogenous All-in-One Reporter for Cell Tracking and Classification.” Cell Reports 19 (9): 1953–
66. 

Zernike, von F. 1934. “Beugungstheorie Des Schneidenver-Fahrens Und Seiner Verbesserten Form, 
Der Phasenkontrastmethode.” Physica 1 (7): 689–704. 

Zhang, Jin, and Michael D. Allen. 2007. “FRET-Based Biosensors for Protein Kinases: Illuminating the 
Kinome.” Molecular bioSystems 3 (11): 759–65. 

Zhang, Pumin, Nanette J. Liegeois, Calvin Wong, Milton Finegold, Harry Hou, Janet C. Thompson, 
Adam Silverman, J. Wade Harper, Ronald A. DePinho, and Stephen J. Elledge. 1997. “Altered Cell 
Differentiation and Proliferation in Mice Lacking p57KIP2 Indicates a Role in Beckwith--Wiedemann 
Syndrome.” Nature 387 (6629): 151–58. 

http://paperpile.com/b/w4tVdv/LIq50
http://paperpile.com/b/w4tVdv/LIq50
http://paperpile.com/b/w4tVdv/Oc4Bq
http://paperpile.com/b/w4tVdv/Oc4Bq
http://paperpile.com/b/w4tVdv/odGca
http://paperpile.com/b/w4tVdv/odGca
http://paperpile.com/b/w4tVdv/kRrLS
http://paperpile.com/b/w4tVdv/kRrLS
http://paperpile.com/b/w4tVdv/rFFBP
http://paperpile.com/b/w4tVdv/rFFBP
http://paperpile.com/b/w4tVdv/rFFBP
http://paperpile.com/b/w4tVdv/64SqU
http://paperpile.com/b/w4tVdv/64SqU
http://paperpile.com/b/w4tVdv/64SqU
http://paperpile.com/b/w4tVdv/4nwab
http://paperpile.com/b/w4tVdv/4nwab
http://paperpile.com/b/w4tVdv/4nwab
http://paperpile.com/b/w4tVdv/JVfQV
http://paperpile.com/b/w4tVdv/JVfQV
http://paperpile.com/b/w4tVdv/JVfQV
http://paperpile.com/b/w4tVdv/5n6VJ
http://paperpile.com/b/w4tVdv/5n6VJ
http://paperpile.com/b/w4tVdv/5n6VJ
http://paperpile.com/b/w4tVdv/i46SL
http://paperpile.com/b/w4tVdv/i46SL
http://paperpile.com/b/w4tVdv/R7MoF
http://paperpile.com/b/w4tVdv/R7MoF
http://paperpile.com/b/w4tVdv/IJSMB
http://paperpile.com/b/w4tVdv/IJSMB
http://paperpile.com/b/w4tVdv/IJSMB
http://paperpile.com/b/w4tVdv/IJSMB
http://paperpile.com/b/w4tVdv/4XL0o
http://paperpile.com/b/w4tVdv/4XL0o
http://paperpile.com/b/w4tVdv/fgwoZ
http://paperpile.com/b/w4tVdv/fgwoZ


 

179 

Zielke, N. and Edgar, B.A., 2015. FUCCI sensors: powerful new tools for analysis of cell 
proliferation. Wiley Interdisciplinary Reviews: Developmental Biology, 4(5), pp.469-487. 

Zou, Lee, and Stephen J. Elledge. 2003. “Sensing DNA Damage through ATRIP Recognition of RPA-
ssDNA Complexes.” Science 300 (5625): 1542–48. 

 

 

 

 

http://paperpile.com/b/w4tVdv/o3h5e
http://paperpile.com/b/w4tVdv/o3h5e


 

180 

7 Contributions 

First/joint first author publications 

Cooper, S., Sadok, A., Bousgouni, V., & Bakal, C. (2015). Apolar and polar transitions drive the 
conversion between amoeboid and mesenchymal shapes in melanoma cells. Molecular biology of the cell, 
26(22), 4163-4170. 

Barr, A. R.*, Cooper, S.*, Heldt, F. S.*, Butera, F., Stoy, H., Mansfeld, J., ... & Bakal, C. (2017). DNA 
damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 
expression. Nature communications, 8, 14728. [Top 5% cited new paper in Nature Communications 
2017] 

Cooper, S., Barr, A. R., Glen, R., & Bakal, C. (2017). NucliTrack: An integrated nuclei tracking 
application. Bioinformatics, 33(20), 3320-3322. 

Cooper, S., & Bakal, C. (2017). Accelerating live single-cell signalling studies. Trends in 
biotechnology, 35(5), 422-433. 

Additional publications 

Heldt, F. S., Barr, A. R., Cooper, S., Bakal, C., & Novák, B. (2018). A comprehensive model for the 
proliferation–quiescence decision in response to endogenous DNA damage in human cells. Proceedings 
of the National Academy of Sciences, 201715345. 

Caicedo J.C., Cooper S., Heigwer F., Warchal S., Qiu P., Molnar C., Vasilevich A.S., Barry J.D., Bansal 
H.S., Kraus O., Wawer M. (2017). Data-analysis strategies for image-based cell profiling. Nature methods. 
849. 

Pascual-Vargas, P., Cooper, S., Sero, J., Bousgouni, V., Arias-Garcia, M., & Bakal, C. (2017). RNAi 
screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast 
cancer. Scientific data, 4, 170018. 

Sailem, H. Z., Cooper, S., & Bakal, C. (2016). Visualizing quantitative microscopy data: History and 
challenges. Critical reviews in biochemistry and molecular biology, 51(2), 96-101. 

Sailem, H., Bousgouni, V., Cooper, S., & Bakal, C. (2014). Cross-talk between Rho and Rac GTPases 
drives deterministic exploration of cellular shape space and morphological heterogeneity. Open biology, 
4(1), 130132. 

Hoffman, A.F., Nolan, J., Gebhard, D.F., Nickischer, D., Omta, W., Cooper, S., Presnell, S., Wardwell-
Swanson, J. and Fennell, M., 2018. Society of Biomolecular Imaging and Informatics High-Content 
Screening/High-Content Analysis Emerging Technologies in Biological Models, When and Why?. Assay 
and drug development technologies, 16(1), pp.1-6. 

Lu A., Kraus Z. O., Cooper S., Moses A. M., Learning unsupervised feature representations for single 
cell microscopy images with paired cell inpainting bioRxiv 395954 [Preprint, Under Review] 

Hansel C. S., Crowder S. W., Cooper S., Gopal S., Pardelha da Cruz J. M., Martins, L. O., Keller D., 
Rtoehry S., Becce M., Cass A. E. G., Bakal C., Chiappini C., Stevens M. M., Nanoneedle-mediated stimulation 
of individual organelles reveals non-canonical regulation of mechanotransduction machinery 
[Submitted] 


