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ABSTRACT

The computer-aided analysis in the medical imaging field has attracted a lot of

attention for the past decade. The goal of computer-vision based medical image analysis is

to provide automated tools to relieve the burden of human experts such as radiologists and

physicians. More specifically, these computer-aided methods are to help identify, classify

and quantify patterns in medical images. Recent advances in machine learning, more

specifically, in the way of deep learning, have made a big leap to boost the performance

of various medical applications. The fundamental core of these advances is exploiting

hierarchical feature representations by various deep learning models, instead of handcrafted

features based on domain-specific knowledge.

In the work presented in this dissertation, we are particularly interested in exploring

the power of deep neural network in the Circulating Tumor Cells detection and mitosis

event detection. We will introduce the Convolutional Neural Networks and the designed

training methodology for Circulating Tumor Cells detection, a Hierarchical Convolutional

Neural Networks model and a Two-Stream Bidirectional Long Short-Term Memory model

for mitosis event detection and its stage localization in phase-contrast microscopy images.
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1. INTRODUCTION

Over the past few decades, medical imaging techniques, such as computed tomog-

raphy (CT), magnetic resonance imaging (MRI), positron emission tomography (PET),

mammography, ultrasound, and X-ray, have been used for the early detection, diagnosis,

and treatment of diseases. In the clinic, medical images are interpreted mostly by human

experts such as radiologists and physicians. However, given wide variations in pathology

and the potential fatigue of human experts, researchers and doctors have begun to benefit

from computer-aided interventions.

In the early stage of medical image analysis, from the 1970s to 1990s, low-level

pixel processing (e.g., edge and line detector filters, region growing) and mathematical

modeling (e.g., fitting lines, circles and ellipses) are used to construct rule-based systems

to solve particular tasks. Later on at the end of the 1990s, supervised methods, where

training data are used to build a system, became increasingly popular in medical image

analysis. The feature extraction and statistical classifiers form the concept of pattern

recognition and machine learning. Thus the systems that are completely designed by

humans shifted to systems that are trained by computers using training data from which the

feature representations are extracted. A key point of the design of such systems is finding

or learning informative features that well describe the patterns in images or videos. Those

handcrafted features are only able to find informative patterns inherent in data at a shallow

level, thus limiting their representational power.

The optimal features representations should not be designed by human, but auto-

matically learned by the models. Deep learning has overcome the drawbacks of handcrafted

features by discovering the high-level representative features in a self-taught manner. One

of the most successful types of models for image analysis so far is convolutional neural

networks (CNNs). A typical CNNs model consists of several layers with convolution filters
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which extract features from low level to high level. The first successful real-world applica-

tion is LeNet by [1] for hand-written digit recognition. One ground-breaking work is the

contribution of Krizhevsky et al. (2012) to the ImageNet challenge. In subsequent years

after that, CNNs have become the an effective model for different tasks in computer vision.

The medical image analysis community has noticed these developments. Systems

designed to solve particular problems in the medical field have transited from handcrafted

features to deep learned features. Bengio et al. [2] provide a thorough review of previously

handcrafted-feature based techniques. They include principal component analysis, cluster-

ing of image patches, dictionary approaches, and many more. Shen et al. [3] provide a

review on application of deep learning to medical image analysis. Litjens et al. [4] offer

a comprehensive overview of almost all fields in medical imaging. Among all the tasks

in medical image analysis, this dissertation focuses on developing deep learning methods

to detect specimens in microscopy images and understand their behavior with two case

studies:: (1) Circulating Tumor Cell detection, and (2) mitosis cell detection and its stage

localization, with the power of deep learning.

1.1. CIRCULATING TUMOR CELL DETECTION

The number of Circulating Tumor Cells (CTCs) in blood provides an indication

of disease progression and tumor response to chemotherapeutic agents. Hence, routine

detection and enumeration of CTCs in clinical blood samples have significant applications

in early cancer diagnosis and treatmentmonitoring. During the process of cancermetastasis,

malignant cells may break away from the primary tumor, enter the blood or lymphatics

system, and then form a secondary tumor at a distant organ site. A number of studies

have shown that in the early stages of solid tumor progression, before overt clinical signs,

malignant cells are found circulating in blood [5, 6, 7, 8]. The number of Circulating

Tumor Cells (CTCs) in blood is a predictor of disease progression and an indicator of tumor

response to chemotherapeutic agents [7, 8]. Thus, there is much interest in the development
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of routine techniques for detection and enumeration of CTCs in clinical blood samples. An

automated technique for enumeration of CTCs may aid in the early diagnosis of cancer even

before tumors are visible using traditional imaging approaches and may help avoid the use

of more invasive techniques such as tumor biopsy.

1.2. MITOSIS DETECTION

Analyzing the proliferative behavior of stem cells in vitro plays an important role in

many biomedical applications, such as stem cell manufacturing, drug discovery and tissue

engineering. Accurate enumeration and localization of the occurrences of mitosis, which is

the process whereby the genetic material of a eukaryotic cell is equally divided, resulting

in daughter cells, are critical to monitor the health and growth rate of cells. For small scale

research studies, manually enumeration and localization of mitosis event by histologists may

be considered. However, when it comes to large-scale research, analysis of these images

becomes an arduous process which involve many hours of human inspection. Traditional

methods for measuring cell proliferation have been developed for many years. Most of the

analysis methods use fluorescent, luminescent or colorimetric microscopy images which

are acquired by invasive methods, such as staining cells with fluorescent dyes and radiating

them with the specific wave-length light. The invasive method damages cells’ viability

or kills cells, which does not allow continuously monitoring the cell proliferation process.

Phase-contrast microscopy, as a non-invasive imaging modality, offers the possibility to

persistently monitor cells’ behavior in the culturing dish without altering them [9]. Thus

mitosis detection in microscopy images is the direction of cell behavior analysis.

In fact, the computer vision based mitosis detection contains two tasks: (1) mitosis

event localization and (2) mitosis stage localization. Given a microscopy image sequence,

the mitosis event localization refers to identify where and when mitosis happen in the

sequence. For the mitosis stage localization, we are trying to identify different mitotic
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phases within the mitotic sequences. Accurately localizing the time of each stage will

facilitate the quantification of biological metrics, allowing biologists to assess different

factors that impact the length of time a cell spends in each stage of the mitosis.

1.3. MOTIVATIONS AND CONTRIBUTIONS

Methods that use antibodies against tumor cells require prior knowledge of the

markerswhich varywidely according to different types and stages of cancer. These antibody-

based systems that efficiently detect carcinomas will miss many other types of malignancies

including leukemia, lymphoma and non-epithelial tumors. Svensson et al. [10] use a

Bayesian classifier based on a probabilistic generative mixture model to detect CTCs.

However, their system is based on fluorescent microscopy images which is an invasive

approach. There is a great interest in the CTC community to develop an noninvasive method

that is not dependent on tumor cell markers and capable of detection across a wide range

of cancer types.

A phase contrast microscopy image containing some CTCs is shown in Fig.1.1(a).

The CTCs exhibit large variations in shape and size and they overlap with each other

(Fig.1.1(b)). Some non-CTC background has similar appearance to the CTCs (Fig.1.1(c)).

It is very hard to distinguish CTCs from the background by simple intensity thresholding

or morphological operation.

Therefore, reliable image features are needed to detect CTCs. Deep Convolutional

Neural Network (DCNN) has shown its effectiveness on object detection and classification

in recent years [11, 12]. It has been proved to be an effective tool in several biomedical

applications such as mitosis cell detection [13, 14]. In a DCNN architecture, it has several

layers of convolutional filters with each layer followed by either max or mean pooling

operations to produce abstract and useful representations of the input object. The parameters



5

Figure 1.1. Visualize Circulating Tumor Cells using phase contrast microscopy imaging.

of kernals are automatically learned without any human effort. The learned convolutional

kernels are more effective feature extractors compared to other human-designed feature

descriptors.

The balance between the number of positive and negative samples is quite important

in the DCNN training. However, CTCs in blood are infrequent so that it is hard to acquire a

large amount of CTC image patches for DCNN training. Meanwhile, there are much more

negative samples from the background with redundancies so that it is infeasible to include

every possible negative sample in training. Thus, a training methodology which is able to

collect the most representative training samples from limited training images is needed to

avoid the class imbalance problem.

The above three needs (noninvasive microscopy imaging, image feature extraction,

and training with representative samples) motivate us to develop a CTC detection system.
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As for themitosis detection, most of the previousmitosis detection approaches either

use handcrafted features or consider a single image as the input ofDCNNarchitectures. If we

attempt to detect mitosis events by a single image, wemay lose the visual appearance change

context during the whole process of a mitosis event. Furthermore, motion information

hidden in the continuous image sequence can also aid the detection of mitosis event. In the

work of Su et al. [15], 3D objects recognition is achieved by a multi-view CNN. Each single

CNN in the first layer takes an image of the object captured in one aspect as input. After

the first-layer CNNs, and a pooling operation and a single CNN is adopted to converge the

features to predict the label of object. Inspired by their work, we propose a Hierarchical

Convolutional Neural Network (HCNN) for the task of mitosis event detection, which

utilizes the temporal appearance change information and motion information in continuous

microcopy images.

Furthermore, another task in mitosis detection is to localize each stage of a mitosis

process. The HCNN take fixed-size input and output one label for the patch sequence while

the length of extracted sequences varies, it is not able to perform the task of localization of

different mitosis stages. Long-term Short Memory (LSTM) [16], which is able to address

variant-length input, is widely used in natural language processing. It can be adapted to

many-to-many, many-to-one, and one-to-many models according to different tasks [17].

Hence, to conquer to drawback of HCNN, we further propose a LSTM-based model which

take the entire patch sequences as the input to detect mitosis in the input sequence.

In this dissertation, we are solving the problems of Circulating Tumor Cells (CTCs)

detection and mitosis event detection. Our contributions are summarized below.

• We propose an image-based CTC detection system based on DCNN. The proposed

system is non-invasive without staining markers that damage the viabilities of CTCs.

• An effective training methodology is proposed. It finds the most representative

samples to better define the classification boundary between positive and negative

samples.
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• We propose a Hierarchical Convolutional Neural Network (HCNN) to classify each

candidate patch sequence based on its temporal appearance and motion information.

• We design a Two-stream Bidirectional Long-Short Term Memory (TS-BLSTM)

which is able to localize four stages of the mitosis sequence patches.

1.4. ORGANIZATION OF DISSERTATION

The rest of the dissertation is organized as follows. In Section 2, related work is

discussed. In Section 3, a Convolutional Neural Network is designed to detect the CTCs.

An iteratively training algorithm is proposed to reduce the training time. A round-based

training method is proposed to further improve the performance of detection by finding and

training on themost representative samples. Section 4 presents aHierarchical Convolutional

Neural Networks model to solve the problem of mitosis detection. To solve the mitosis event

detection and its stage localization, Section 5 introduces a Two-Stream Bidirectional Long

Short-Term Memory model to solve these two problem simultaneously. Finally Section 6

concludes the work.
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2. LITERATURE REVIEW

2.1. TRADITIONAL CTC DETECTION

Because CTCs in blood are infrequent, 1 per 1 billion normal cells found in the blood

[5], routine detection of CTCs poses a significant challenge. Several methods have been

developed to quantify and capture CTCs from human blood. Many of these approaches

depend on surface markers expressed on tumor cells which can be exploited for use in

positive selection. One widely used marker for detection of carcinoma cells in the blood is

epithelial cell adhesion molecule (epCAM) [18]. In some enrichment techniques magnetic

beads with immobilized anti-epCAM [19], and other anti-tumor antibodies [20], are used

for immunomagnetic separation of malignant cells from the normal blood cell population.

Immunomagnetic-based selection of CTCs is attractive because of its simplicity and the

availability of the needed tools and reagents. Commercially available systems, based

on epCAM-positive selection, have been successfully implemented in CTC evaluation in

certain types of carcinoma. Other approaches exploit differences in tumor cell physical

properties such as size, density or adhesiveness [21]. To the best of our knowledge, little

work has been done on image-based CTC detection.

2.2. TRADITIONAL MITOSIS DETECTION

Several tracking-basedmitosis detection on phase-contrastmicroscopy imagesmeth-

ods have been proposed in the past decade. Debeir et al. [22] combined several model-based

mean-shift processes to track migrating cells. In [23], Padfiled et al. segment the nuclei

with a shape/size constraint and use an Euclidean distance metric to link different phases

of the cell cycle. AL-Kofahi et al. [24] segment cells in each image of the sequence, and

adopt a multiple-object matching method which measures a number of cell attributes such
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as size, shape and location to track cells. Li et al. [25] exploit a geometric active contour

model to track detected cells. Liang et al. [26] segmented the cell nuclei from background,

tracked the nuclei as cell sequences and then utilized a conditional random field (CRF)

model [27] with shape and texture features of the segmented nuclei to identify mitosis

event. The problem of mitosis detection in these papers is solved based on volumetric

image segmentation or object tracking algorithms with the goal of tracking cell movements

over time. The mitoses are identified based on the temporal progression of cell features or

the connection between the segmented mother and daughter cells. However, these mitosis

event detection approaches heavily depend on the long-range object tracking performance,

which itself is a very challenging task.

Considering the drawback of tracking-based mitosis detection, tracking-free ap-

proaches detect mitosis directly in an image sequence. Huang et al. [28] propose an

algorithm called eXclusive Independent Component Analysis (XICA) which focuse on the

components of differences between two classes of training patterns rather than the major

components. They classify the given testing pattern by computing the residual of the rela-

tive exclusive basis set. Since the mitosis is a dynamic process, the performance of mitosis

detection would benefit from taking advantage of the temporal dynamic information in the

evolution of visual patterns. These methods usually consist of three steps: candidate de-

tection, feature extraction and classification. In candidate detection, which aim to produce

image patches which contain mitosis event, thresholding and/or morphological operations

are typically applied. Gallardo et al. [29] adopted a hidden Markov model (HMM) to

classify candidates based on temporal patterns of cell shape and appearance features. Li et.

al [25] apply a cascade classifier framework [30] to classify volumetric sliding windows of

an image sequence based on 3D haar-like features [31]. The proposed method is efficient

since it only needs one sequential scan through the image sequence with a trained classifier.

However, the coarse resolution of the sliding temporal window may limit the localization

precision.
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Liu et al. [32] proposed an approach based on Hidden Conditional Random Fields

(HCRF) [33] in which mitosis candidate patch sequences are extracted through a 3D seeded

region growing method, then HCRF is trained to classify each candidate patch sequence.

This method does not rely on object tracking algorithms and achieves good performance on

C3H10T1/2 stem cell datasets. Since only one label is assigned to a patch sequence, this

HCRF-based approach is able to identify if a patch sequence contains mitosis or nor, but it

can not accurately localize the birth moment of the mitosis event in the patch sequence.

A few extensions have been made on the HCRF-based approach. Huh et al. [34]

proposed an Event-Detection CRF (EDCRF) in which each patch in a candidate sequence

is assigned with one label. The birth moment of the mitosis event is determined based on

the observation that if there exists a change from “before mitosis” to “after mitosis” label.

Liu et al. [35] utilized a maximum-margin learning framework for training the HCRF and

proposed a semi-Markovian model to localize mitosis events.

2.3. DEEP-LEARNING BASED MITOSIS DETECTION

The previous approaches rely on handcrafted image features. Deep Convolutional

Neural Network (DCNN) which is capable of learning feature representations from big data

and modeling the large variation among the data, has shown its effectiveness on object

detection and classification. The learned kernels in DCNN are very effective feature ex-

tractors compared with handcrafted feature extractors. In order to improve the performance

of DCNN on the challenging ImageNet dataset, Yan et al. [36] propose a hierarchical deep

convolutional neural network which classify the input images with several components

within the architecture. The low-level features of input image are extracted through the

lower layers, and then the classification of input image is done followed by a coarse-to-fine

approach. Wang et al. [37] proposed a hybrid deep learning network for the task of face

verification. The input to their deep model is multiple pairs of different subregions in

the two original images to be compared. The final output will be binary which indicates
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whether the two original images come from the same person. Cireşan et al. [13] utilized

the DCNN as a pixel classifier for mitosis detection in individual breast cancer histology

images. During the histology, the histologic specimens are stained and sandwiched between

a glass microscope slide and coverslip. So this DCNN method is not suitable for detecting

a continuous mitosis event in the time-lapse phase-contrast microscopy image sequences.

The latest CNN-based methods [38, 39] achieve good performance on the task of mitosis

event detection. Mao et al. build a hierarchical convolutional neural networks in which

both appearance and motion temporal information are utilized to detect the birth moment

of a mitosis sequence. Compared with traditional CNN which only take one single image

as input, 3D CNN [40, 41] extract temporal features though its 3D convolutional kernels.

Wei et al. [39] design several different 3D CNN architecture and demonstrate that 3D CNN

outperform the 2D CNN features and other hand-crafted features.

The previous CNN-based methods only accept a fixed-size vector as input and

produce a fixed-size vector as output, e.g. probabilities of different classes. However,

the length of extracted sequences varies. Furthermore, since their models take fixed-size

input and output one label for the patch sequence, they are not able to perform the task of

localization of different mitosis stages. Long-term Short Memory (LSTM) [16], which is

able to address variant-length input, is widely used in natural language processing. It can

be adapted to many-to-many, many-to-one, and one-to-many models according to different

tasks [17]. For the task of mitosis stage localization, the many-to-many model can be

utilized to output one label for each image in the candidate sequence to label its stage.
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3. CIRCULATING TUMOR CELLS DETECTION

3.1. DATA ACQUISITION

We labeled MCF-7 breast cancer cells with a red fluorescence cell-tracker dye for

30 minutes. The MCF-7 cells were mixed with purified sheep red blood cells at a ratio

of 1:10,000. Then the CTC samples were mounted onto glass slides using an 18x18 mm

coverslip. Fluorescence and phase contrast image sets were acquired using a Leica DMIRE2

epifluorescence microscope equipped with a 10X objective and 12-bit monochrome CCD

camera as shown in Fig.3.1((a) A phase contrast microscopy image containing two CTCs;

(b) Corresponding fluorescence image shows the location of CTCs). The bright regions in

fluorescence image indicate where are the CTC cells. Note that, the staining process and

fluorescence imaging are used as ground truth for training and evaluating our computational

algorithms. In non-invasive CTCdetection, the CTC cells will not be stained so fluorescence

imaging will not be used.

Figure 3.1. A phase contrast microscopy image and its corresponding fluorescence image.
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3.2. SVM-BASED CLASSIFIER

In order to exploit the shape information of CTCs, we extract HoG features from

samples in our dataset to train a SVM classifier. Since the size of CTCs varies, we normalize

image patches to 64× 64 pixels.

3.3. CNN-BASED CLASSIFIER

We adopt a CNN similar to [42] as shown in Fig.3.2. The input image patch to CNN

is normalized to 40× 40 pixels. In the first layer, 6 different convolutional filters with size

5× 5 are applied over the input images. The convolution operation is formulated as

yj = sigm(bj +
i
kij ∗ xi) (3.1)

where xi and yj are the i-th input map and j-th output map, respectively. bj is the bias term

and kij is the convolutional kernel between xi and yj. The sigmoid function maps output

value from -1 to 1.

The first layer is followed by a max-pooling layer which extracts local signal in every

2× 2 region. Max-pooling function is expressed as

zj
p,q = max

0≤m,n ≤2
{yi

2×p+m,2×q+n} (3.2)

where the pixel at (p, q) of the output map zj pools over a 2× 2 region in yi. The third

and fourth layers are another set of convolutional and max-pooling layers, and the number

of kernels is 12 for both layers. The last layer is fully connected to the output layer by

performing the classical dot product between their weight vector and input vector. The

weighted sum is then passed to a sigmoid function.

All the parameters in kernels, bias terms and weight vectors are automatically

learned by back propagation with learning rate equal to 0.1.
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Figure 3.2. The architecture of CNN for CTC detection.

3.4. ITERATIVE TRAINING ALGORITHM

The locations of positive training samples are automatically obtained around the

bright regions in fluorescence images. To consider the local context of a training sample in

phase contrast microscopy image, some background pixels are cropped into the rectangular

image patch as part of the positive training sample. In order to generate more positive

samples for convolutional neural network and to enhance the tolerance to variations of

intensity and rotation, we rotate the phase contrast microscopy images every 30 degrees and

crop positive samples from them.

To find the accurate classification boundary between positive and negative samples,

it is necessary to build a comprehensive negative training dataset. But collecting negative

samples which cover every possible variation in the background will result in a tremendous

number of negative samples, increasing the time for training. Thus, how to collect a

representative set of negative samples becomes crucial.

We propose an iterative bootstrapping method to collect representative negative

samples from limited training images. Compared to other training methodologies which

require a large number of initial negative samples, our approach speeds up the process of

training as well as refines the variation in negative samples thus improves the performance

of classifiers. The proposed bootstrapping training method is summarized in Algorithm 1.
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Algorithm 1 Our proposed iterative training.
Require:

Initial training dataset: D;
Ensure:

The classifier of the i-th iteration: Ci;
1: Initialization: i = 0, N−1 = ∞;
2: repeat
3: Train Ci on D;
4: Perform Ci on ROIs of training images.
5: Gather all false alarms as Di with its number Ni;
6: D = D ∪ Di;
7: i = i + 1;
8: until |Ni−2 − Ni−1| < ε

In Algorithm 1, we define a Region-of-Interest (ROI) to reduce the search space

of negative samples. An observable characteristic of CTCs is that the centers of them

are always black. Negative samples around the classification boundary should share the

similar features. Therefore, it is unnecessary to add samples without such kind of features

to the training dataset, such as samples which are full of white blood cells. We apply a box

filter on the input image (Fig.3.3(a)). Locations with low responses indicate they are dark

regions, thus we consider them as negative sample regions (black in Fig.3.3(b)). There are

two benefits from the ROI detection: (1) reduce the number of negative training samples,

resulting in shorter training time; (2) reduce the variations in negative training samples,

which makes classifiers more effective to classify hard samples.

In Algorithm 1, the initial negative samples for training are randomly cropped from

ROIs of training images. In each iteration, classifiers are applied on ROIs to generate false

positives. The proposed training method stops when there is no significant number of false

positive samples reduced. Note that some of false positive samples in Di may appear in

the existing D. We consider these samples as important ones and we still add them to D,

which increases their weights in the next training iteration to refine the decision boundaries

between positive and negative samples.
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Figure 3.3. Region-of-Interest.

3.5. ROUND TRAINING ALGORITHM

Figure 3.4. The overview of our proposed framework.

The diagram of our framework is shown in Fig. 3.4. In the ith iteration, DCNN

detector Di is trained from positive and negative training dataset plus the false positives

generated from detectors D1 to Di−1, and the ith detector Di generates a set of false positives

FPi. FPi is added to the training dataset to train the detector Di+1 in the i + 1 iteration. The
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iteration stops when the performance converges. This sequence of iterations is defined as

one ROUND of training in the paper. Then, we apply all Di’s (i ∈ [1, N]) in one ROUND

of N iterations to all the collected false positive samples during N iterations. The confident

scores Si are the output values of Di to label the false positive samples as positive. Since

we have N iterations in one ROUND, each false positive will have a N × 1 feature vector.

K-mean clustering method is applied to classify these false positives based on their feature

vectors into two groups: easy samples and hard samples. Only hard samples are added to

the original negative training dataset to start another ROUND of iteratively training. We

obtain one DCNN detector eventually after multi-ROUNDs of training (each ROUND has

multi-iterations), i.e., the final trained detector is the DCNN in the last iteration of the last

ROUND.

Figure 3.5. Iteratively training results.

The locations of positive training samples are automatically obtained around the

bright regions in fluorescence images. In order to enhance the tolerance to variations of

intensity and rotation, we rotate the phase contrast microscopy images every 30 degrees and

automatically crop positive samples from them.

It is important to build a comprehensive negative training dataset in order to precisely

define the classification boundary between positive and negative samples. But collecting

negative samples which cover every possible location in the background may introduce a

lot of repetitive samples and cause a large class imbalance between positive and negative

samples. Thus, how to collect a representative set of negative samples becomes crucial.
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Figure 3.6. Confidence scores of false positive samples in each ROUND.

We propose a bootstrapping method to collect representative negative samples from

limited training images. Unlike other training methodologies which train classifiers with

all the found false positives until the performance converges, our approach continues to

refine the classification boundary by training with the most representative samples among

the false positives.

Traditional boosting training method trains the detector iteratively. After one itera-

tion, the detector will collect false positives and add them to negative training dataset, and

then start a new training iteration. As shown in Fig. 3.5(a), the traditional iterative training

ends when the performance converges. However, the detector after the iterative training

still contains quite some false positives (Fig.5(d)).

When we apply the trained detector of each iteration on all the false positives, a

large amount of false positives generate low responses as shown in the first ROUND training

in Fig. 3.6, which means they can be classified as negative samples relatively easily. As

shown in Fig. 3.7, these relatively easy false positive samples are close to the classification
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Figure 3.7. Illustration of easy and hard false positive samples.

boundary. But the rest small amount of false positive samples with relatively high responses

are hard samples far away from the classification boundary. To train a classifier to better

classify those hard samples, they should gain more weights in the training.

Suppose we have N iterations in one ROUND of iterative training, then we apply

these N detectors on all the false positives collected from all iterations. For each false

positive sample, it has a N × 1 confidence score feature vector. The confidence score is

the output of a classifier which indicates how likely a false positive sample is classified as

positive. The higher the confidence score is, the more likely the false positive sample is

classified as positive. We simply apply k-mean clustering method to classify these false

positives based on confidence score feature vectors into two groups: easy samples which

have low confidence scores and hard samples which have high confidence scores. To

enhance the influence of these hard samples on the training, we start another ROUND of

iterative training by only adding these hard samples to the previous negative training dataset.

By this iterative training, only a small number of false positives will be collected. As shown
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in Fig. 3.6, the number of false positive samples reduces from 11000 in the first ROUND to

2500 in the second ROUND. The proportion of samples with relatively high scores in the

second ROUND is larger than that in the first ROUND. Thus hard false positive samples

gain more weights in the new training ROUND.

3.6. EXPERIMENTAL RESULTS

In this section, we will evaluate the performance of our proposed DCNN and the

effectiveness of our training method.

3.6.1. Evaluation Metric. We acquired 45 phase contrast microscopy images, each

of which has its corresponding fluorescence image as the ground truth. We randomly select

35 images for training and the rest 10 for testing. To avoid bias, we repeat this random

experiment 5 times. The evaluation result is based on the average performance of 5 trials.

As defined in PASCAL [43], a detection is a True Positive (TP) if the area of the intersection

between the detection window and the ground truth exceeds 50 percent of their union area,

otherwise it is a False Positive (FP). If one cell is not detected, it is missed (False Negative,

FN).Wedefine precision as P = |TP|/(|TP|+ |FP|), recall asR = |TP|/(|TP|+ |FN|),

and F score as the Harmonic mean of precision and recall.

Figure 3.8. The convergence of DCNN and SVM.
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Table 3.1. Evaluation on the proposed training method.

F Score
1st Round HoG + HoC 75.4 %
1st Round DCNN 91.2 %
2nd Round HoG + HoC 78.4 %
2nd Round DCNN 97.0 %

3.6.2. Comparison of Hand-Crafted Features and Features Learned by DCNN.

The Histogram-of-Gradient (HoG, [44]) feature can be used to extract regional gradient

information, capturing the shape of objects. The Histogram of Color (HoC) of image

patches may be considered as an feature to separate cells from the background. We

distribute the color of image patches into 32 bins. In the experiment we feed the HoG +

HoC to Support Vector Machine (SVM, [45]) to compare with DCNN.

The average number of positive training samples during the five trials is 1400.

Training DCNN classifier takes 2 hours and training SVM takes around 0.5 hour. Note: we

only use fluorescence images as ground truth. No information from fluorescence image is

extracted as image features for CTC detection.

As shown in Tab. 3.1, the F score of SVM+HoG +HoC is 78.4% and that of DCNN

is to 97%. The F score of DCNN is larger than that of SVM + HoG by 18.6 percentage

points in the second ROUND. This result indicates that DCNN finds the better feature than

HoG + HoC to detect CTCs. Some detection examples of DCNN are shown in Fig.3.9.

3.6.3. Validation of the Proposed Training Method. We evaluate our training

methodology for both SVM and DCNN classifiers. Fig.3.8 shows the F score in every

iteration of 2 ROUNDS. Both the SVM and DCNN classifiers converge in 5 iterations

in each ROUND. The performance of both DCNN and SVM + human-designed feature

improve after the first ROUND, which shows that our training method is effective in finding
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representative samples. Without our trainingmethod, the DCNN achieves F score of 91.2%.

The F score of SVM + HoG + HoC is 75.4%. The F scores increase to 97% and 78.4%

respectively with our training method, as summarized in Table 1.
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Figure 3.9. Samples of CTC detection.
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4. HIERARCHICAL CONVOLUTIONAL NEURAL NETWORKS FOR MITOSIS
DETECTION

Our proposed method takes a video sequence as the input, and detects when and

where mitosis events occur in the sequence. It consists of two steps: first, candidate patch

sequences that possibly contain mitosis events are extracted from the image sequences;

then, each candidate patch sequence is classified by our Hierarchical Convolutional Neural

Network (HCNN).

The first step of mitosis detection is to extract mitosis candidate sequences from

the input time-lapse image sequence. The mitosis candidate extraction aims to find region-

of-interest (ROI) in which are highly like to contain mitotic cells and retrieve all spatial-

temporal patch sequences, while retrieving as small a number of sequences not containing

mitosis patch sequences as possible. This step serves to reduce the search space. As a

result, the subsequent steps can be more efficiently conducted, while maintaining mitosis

detection accuracy. Fig. 4.1 shows some examples of candidate patch sequences ourmethod

automatically extracted. Our proposed mitosis candidate extraction consists of two steps:

(1) salient region detection, (2) image patches retrieving.

Figure 4.1. Samples of extracted candidate sequence.
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4.1. SALIENT REGION DETECTION

Traditional search schemes adopt a sliding window fashion, by which the detectors

need to search and classify image patches at all location. This increase the search space and

potentially increase the possibility of error. Phase contrast microscopes convert the minute

phase shifts caused by transparent specimens to the illuminating light source into variations

in light amplitudes that can be observed by naked eyes or captured by cameras. Due to the

optical principle and the inherent imperfections of the conversion process, phase contrast

images contain artifacts such as halos and shade-off. If we are able to only focus on regions

where mitotic cells are highly like to appear, we will be able to reduce the search space.

In [34, 38], they compute the average image of original or illumination-corrected images

in the given sequence, and then the average image is subtracted from each image. By this

procedure, they aim to remove stationary bright artifacts. In fact, the previous procedure is

only able to remove stationary artifacts. Furthermore, since the intensity values of mitotic

cells are decreased when each image is subtracted from the average image, it may potentially

harm the performance of later classification. The process of mitosis contain large intensity

and shape change in the observed microscopy images, thus in this section we are interested

in find salient regions with large intensity and shape change while maintaining the intensity

values of the original images.

4.1.1. Problem Formulation. Given a time-lapse phase-contrast microscopy im-

age data, which contains non-mitotic cells, mitotic cells, and artifacts, we are trying to find

regions where are most likely to contain mitotic cells from the phase-contrast microscopy

images first. This image data can be modeled as:

M = L+ S +N (4.1)
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Figure 4.2. Formulation of Casorati matrix.

whereM ∈ Rm×n×p is the time-lapse phase-contrast microscopy image, L ∈ Rm×n×p

is the image containing stationary artifacts and non-mitotic cells, N ∈ Rm×n×p is the

Gaussian noise image, and S ∈ Rm×n×p is the image containing mitosis candidates. m

and n are the number of rows and columns of the microscopy image, and p is the number

of images in this dataset.

We first transfer the image data matricesM, L, S , and N to the corresponding

Casorati matrices (a matrix whose each column is a vectorized image of the image data),

M ∈ Rmn×p, L ∈ Rmn×p, S ∈ Rmn×p, and N ∈ Rmn×p. As shown in Fig. 4.2. Now,

from Eqn.1 we have

M = L + S + N (4.2)

From the phase-contrast microscopy images, we can see that only a small portion of

the image contain the mitosis candidates, therefore, the matrix S is sparse, i.e., only a few

elements of S are nonzero. In order to get the images which only contain mitosis candidates,

we need to estimate the image S from the observed microscopy image M.

4.1.2. Low-Rank Property of Artifact Image. As shown in Fig. 4.2 (c), the Ca-

sorati matrix of the phase-contrast microscopy image data has two dimensions, the spatial

domain of each image and spectral domain of all the images. From the phase-contrast

microscopy images we can see that the stationary artifacts and non-mitotic cells appear at

the same location of all the images. Accordingly, there exists high correlations among the
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spectral signatures of the artifact image data (rows of L), and each spectral signature can be

represented by a linear combination of a very small number of pure spectral endmembers,

which is known as the linear spectral mixing model [46] [47]. Suppose the number of pure

spectral endmembers for the artifact image data L is upper bounded by r, then the rank of

L is also bounded by r, i.e., rank(L) 6 r. Usually, this upper bound value of the number

of endmembers r is significantly smaller than the column number and row number of L,

which suggests the low-rank property of the Casorati matrix L.

Based on the low-rank property of matrix L and sparsity of matrix S, the low-rank

matrix recovery (LRMR) model can be used to estimate the image L from the original

phase-contrast microscopy image M.

4.1.3. LRMR Model and RPCA Problem. The low-rankmatrix recovery (LRMR)

model is first proposed in [48] and is considered as an idealized Robust Principal Compo-

nent Analysis (RPCA) problem. For our problem, the RPCA can be formulated as follows:

Given the original phase-contrast microscopy image data matrix M, the low-rank artifact

and non-mitotic image data matrix L and sparse mitosis candidate matrix S are unknown,

and we are trying to estimate L. This optimization problem can be formulated as

min
L,S

rank(L) + λ‖S‖0 s.t. M = L + S (4.3)

where rank(·) denotes the rank of a matrix, and λ is a positive weighting parameter.

However, this is a nonconvex optimization problem, and to our best knowledge, there is

no efficient solution available. A feasible solution is relaxing this problem by replacing

the rank with the nuclear norm and the `0-norm with the `1-norm to obtain a tractable

optimization problem [49]-[50].

min
L,S
‖L‖∗ + λ‖S‖1 s.t. M = L + S (4.4)
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The augmented Lagrangian multiplier (ALM) function of problem (4.4) is

L(L, S, Y, µ)=‖L‖∗+λ‖S‖1+〈Y, M−L−S〉+µ

2
‖M−L−S‖2

F (4.5)

This ALM function can be solved by applying the Alternating Splitting Augmented La-

grangian Method (ASALM) [51] and the Iterative Thresholding (IT) approach [48]. More

specifically, the ALM function is decomposed into two smaller subproblems which solve

the variables L and S separably in the consecutive order and in an iterative way. Given

(L(k), S(k), Y(k)), the ASALM update the optimal solution via the following scheme until

convergence: 

L(k+1) = arg min
L

L(L(k), S(k), Y(k), µ)

S(k+1) = arg min
S

L(L(k+1), S(k), Y(k), µ)

Y(k+1) = Y(k) + λ(M− L(k+1) − S(k+1))

(4.6)

The first subproblem in (4.6) can be written into a more specific form:

L(k+1) = arg min
L

L(L(k), S(k), Y(k), µ)

= arg min
L

(‖L‖∗ + 〈Y(k), M− L− S(k)〉

+
µ

2
‖M− L− S(k)‖2

F)

= arg min
L

(‖L‖∗ + 〈Y(k), M− L− S(k)〉

+
µ

2
‖M− L− S(k)‖2

F +
(Y(k))2

2µ
)

=arg min
L

(‖L‖∗+
µ

2
‖L−(M−S(k)+

Y(k)

µ
)‖2

F)

(4.7)

According to Lemma 2.2 in [51], we can obtain the optimal solution of this function as

follows:

L(k+1) = Ψ 1
µ
(M− S(k) +

Y(k)

µ
) (4.8)



29

The second subproblem in (4.6) can be written into the following form:

S(k+1)= arg min
S

L(L(k+1), S(k), Y(k), µ)

= arg min
S

(‖L(k+1)‖∗ + 〈Y(k), M− L(k+1) − S〉

+
µ

2
‖M− L(k+1) − S‖2

F)

= arg min
S

(‖L(k+1)‖∗ + 〈Y(k), M− L(k+1) − S〉

+
µ

2
‖M− L(k+1) − S‖2

F +
(Y(k))2

2µ
)

=arg min
S

(‖L(k+1)‖∗+
µ

2
‖S−(M−L(k+1)+

Y(k)

µ
)‖2

F)

(4.9)

According to Lemma 2.1 in [51], we can obtain the optimal solution of this function as

follows:

S(k+1) = Φ λ
µ
(M− L(k+1) +

Y(k)

µ
) (4.10)

We summarize this method in the following form:

The k-th iteration of ASALM for problem (4.6)

Given (L(k), S(k), Y(k)), we update them as follows:

1. L(k+1) = Ψ 1
µ
(M− S(k) + Y(k)

µ )

2. S(k+1) = Φ λ
µ
(M− L(k+1) + Y(k)

µ )

3. Y(k+1) = Y(k) + λ(M− L(k+1) − S(k+1))

The low-rank matrix recovery (LRMR) model is able to remove the stationary

artifacts from the phase-contrast microscopy images. Moreover, as most of the cells almost

stay stationary in many consequent images, they will be regarded as the low-rank component

and fall into the matrix L. So a byproduct of the LRMRmodel is that most of the stationary
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cells are removed, and only the mitotic and migrating cells are picked out as the mitosis

candidates, which are separated into matrix S. This can reduce the number of negative

samples greatly, and as a result, the searching space and time can be decreased heavily.

However, some parts of the mitotic cells may be separated into matrix L because of the

absence of an appropriate spatial constraint in the LRMR model, which may cause the loss

of the intensity of mitotic cells.

4.1.4. Total Variation. The total variation (TV) model has been introduced by

Rudin-Osher and Fatemi in [52] as a regularization approach capable of removing noise in

a given image. This model has shown great success in removing noise while at the same

time significantly preserving the edge information and piecewise smooth structure. The

mitosis and some abnormal cells, e.g., cells appear much brighter than normal cells, show

quite different appearance from the normal cells, which can be regarded as image noise.

Accordingly, the TV model can be an appropriate spatial constraint of the phase-contrast

microscopy images for further extracing the edge information of the mitosis candidates.

This problem can be formulated as follows:

L = X + P (4.11)

After obtaining the artifacts and non-mitotic cells image L with LRMR model, we want to

further separate it into two parts by means of the TV model: the final artifacts and non-

mitotic image X which contains no mitosis candidates edge information, and the mitosis

candidate image P which contains the edge of mitosis and some abnormal cells. Then we

add P back to S to get our final mitosis candidate image.

One thing needs to be mentioned is that when we apply the LRMR model to the

original phase-contrast microscopy images, the output is a Casorati matrix, i.e., each image

is vectorized as a column vector, so we need to transfer the Casorati matrix L ∈ Rmn×p

into the normal format L ∈ Rm×n×p first, then we can apply the TV model to each image
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separately to further seperating the mitosis candidates from the phase-contrast microscopy

images. The TV model can be expressed as

min
X
{‖X−Li‖2

F + 2σTV(X)} (4.12)

where Li is the i-th image of L, i.e., the artifact images obtained with LRMR model, σ is

a positive regularization parameter, and TV(·) is a discrete total variation function. For a

matrix X ∈ Rm×n, two popular choices for the discrete TV are the isotropic TV defined

by [53] [54]

TVI(X) = m−1

i=1

n−1

j=1

√
(Xi,j − Xi+1,j)2 + (Xi,j − Xi,j+1)2

+ m−1

i=1
|Xi,n − Xi+1,n|+ n−1

j=1
|Xm,j − Xm,j+1|

(4.13)

and the `1-based, anisotropic TV defined by

TV`1(X) = m−1

i=1

n−1

j=1
{|Xi,j − Xi+1,j|+ |Xi,j − Xi,j+1|}

+ m−1

i=1
|Xi,n − Xi+1,n|+ n−1

j=1
|Xm,j − Xm,j+1|

(4.14)

in this paper, the `1-based, anisotropic TV function is adopted in the TV model. The Fast

iteration Shrinkage/Thresholding Algorithm (FISTA) introduced in [53] is applied to solve

problem (4.12).

In different phase-contrast microscopy image data, the mitosis candidate intensity,

i.e., the number of mitosis, is often different, so it is not suitable to use a constant regu-

larization parameter σ in the TV model, which does not take this fact into consideration,

to seperate the mitosis candidates with different mitosis candidate intensity. In order to

overcome this problem and improve the separating performance of the TV model, we adopt

an adjusted regularization parameter in our TV model to seperate images with different

mitosis candidate intensity. More specifically, if the mitosis candidate intensity of an image
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is large, we will select a relatively big σ for the TVmodel, and vice versa. In our experiment,

the image gradient is selected as a quantitative index of the mitosis candidate intensity in

this image.

4.2. IMAGE PATCHES RETRIEVING

After image pre-processing, we are able to generate images which only contain

mitosis cells, migrating cells and moving artifacts. We apply a small gaussian filter to

smooth the image and threshold it into a binary mask. We calculate the area of each

connected component (blob) in the binary mask. Only those blobs whose areas are above

a threshold are considered as potential mitotic regions. Finally we track each connected

component (blob) into candidate sequences by considering the tracking as an association

problem[55], and each image patch is extracted at the fixed size d× d around the center of

each connected component.

The time length of mitosis events may be quite different. However, the most salient

images during the mitosis are just a few images around the birth moment, so we choose a

fixed short temporal window to extract candidate patch sequences as the input to our HCNN.

As for the input of TS-BLSTM, the entire patch sequence can be taken as the input.

In our experiments, the Gaussian filter has standard derivation of 3, the threshold

in thresholding images is set to be 10, d = 52, and the minimum blob area is required

to be 400 pixels in the datasets. We set all the parameters here safely to ensure that the

recall of mitosis events is 100% before the classification step. The search space in the video

sequence is largely reduced but the precision of mitosis events by the candidate extraction

step is low (1.2%), thus we propose the HCNN in the next section to further improve the

performance.
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Figure 4.3. The overview of our proposed Hieratical CNN architecture

4.3. HIERARCHICAL CNN ARCHITECTURE

The overall architecture of our proposedHierarchical Convolutional Neural Network

(HCNN) is illustrated in Fig. 4.3. The first set of input contains five consecutive patches in

the candidate patch sequence, and the second set of input contains the five corresponding

motion images computed by the central finite difference. Each of the ten convolutional

neural networks in the first layer (CNNk
1 , k ∈ [1, 10]) takes a single image as the input. In

the second layer of our HCNN, we design two CNNs (CNN11
2 and CNN12

2 ) to learn joint

features at the patch-sequence level from original patch sequences and their motion patch

sequences separately. In the last layer of our HCNN, combined appearance and motion

features are fed into the last CNN (CNN13
3 ) to make the final prediction. In the notation of

CNNk
i , i denotes the layer in our HCNN and k indexes the CNN out of the total 13 CNNs

in our HCNN.

The design of such an architecture has twomotivations. First, mitosis is a continuous

event. Instead of detecting the mitosis events by single frame, leveraging several nearby

frames will be more reliable to detect the birth moments of mitosis events. Second, the

movement pattern of mitotic cells are different from that of migration cells, thus utilizing

the motion information should boost the classification performance.
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Figure 4.4. The architecture of CNNs in the first layer of our HCNN.

The first layer of our HCNN contains ten CNNs (CNNk
1 , k ∈ [1, 10]), each of

which classifies a single appearance or motion image at different time instants of a mitosis

event. The ten CNNs shares the same architecture as shown in Fig. 5.2. There are three

convolutional layers with each followed by a 2× 2 max pooling layer. We add one more

drop-out layer in case of over-fitting. The prediction layer outputs the label of the input

image, indicating if the input image is the image at the specific time instant of a mitosis

event.

Figure 4.5. The architecture of CNNs in the second and last layer of our HCNN.

The architecture of CNNs in the second and last layer our HCNN (CNN11
2 CNN12

2

and CNN13
3 ) is shown in Fig. 4.5. The input to CNN11

2 is the combined features from

the Fully-connection Layer 2 of CNNk
1 , k ∈ [1, 5], leading to a 5120 vector. The input to
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CNN12
2 is the combined features from the Fully-connection Layer 2 of CNNk

1 , k ∈ [6, 10],

and the input to CNN13
3 is the combined features from the Fully-connection Layer 3 of

CNN11
2 and CNN12

2 .

4.4. HIERARCHICAL CNN TRAINING

Since the overall HCNN has 13 CNNs, the number of parameters is quite large. If

we train the whole HCNN at once, this will increase the training complexity. Given the

limited amount of training data, this will also increase the risk of over-fitting. Therefore,

we divide the training process into two steps as below.

4.4.1. Pretraining Each CNN Independently. First, we train each CNN in three

layers independently. The input to the first-layer CNNs (CNNk
1 , k ∈ [1, 10]) is the five

original images and corresponding five motion images. For each input modality, we use the

trained weights of the first CNN (e.g., CNN1
1 ) as the initialization for the rest four CNNs

(e.g., CNNk
1 , k ∈ [2, 5]) to achieve faster convergence. After the training on CNNk

1(k ∈

[1, 10]) is completed, we retrieve the features from Fully-connection Layer 2 of each CNN

and concatenate them as the input to the seconde-layer CNNs (CNN11
2 and CNN12

2 ). The

input to the third-layer CNN (CNN113
3 ) is the concatenated features from Fully-connection

Layer 3 in the second-layer CNNs. When training the 13 CNNs, we set the batch size as

100 and the number of epochs as 20 with the learning rate gradually decreasing from 10−2

to 10−4. The drop-out rate is set to be 0.5 for all drop-out layers.

4.4.2. Fine-tuning Hieratical CNN. After each CNN is properly pretrained, we

fine-tune the complete HCNN. The prediction layers of CNNs in the first and second layers

are bypassed and the error from the third-layer CNN (CNN13
3 ) is back-propagated to all the

CNNs to updates the weights.
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4.5. EXPERIMENTS

In the experiments, we will validate the design of HCNN and evaluate its perfor-

mance.

4.5.1. Dataset. We evaluate our proposed method in five phase contrast video

sequences obtained from [35], with each containing 79, 94, 85, 120 and 41 mitosis cells,

respectively. Each sequence consists of 1436 images (resolution: 1392×1040 pixels). The

location and time of mitosis events in the video sequences are provided as the ground truth.

In order to train our HCNN, data expansion is performed to generate more positive

training data. For each positive mitosis sequence, we rotate the images every 45 degree

(8 variations), slightly translate the images (e.g., by 5 pixels) horizontally and/or vertically

(9 variations), which generates 72 times of the original positive training data. We retrieve

negative training sequences by our proposed candidate patch sequence extraction method.

At last, the training data are balanced by randomly duplicating some positive data so that

the numbers of positive samples and negative samples are even.

4.5.2. Evaluation Metric. We adopt leave-one-out policy in the experiment, i.e.,

using four sequences for training and the rest one for testing. For testing, we use maximum-

suppression to converge all the detection results based on their spatial and temporal locations

and confidence scores. We use two evaluationmetrics in our experiments. First, we evaluate

the performance ofmitosis occurrence detection in terms of themean and standard deviation

of precision, recall and F score on the five leave-one-out tests, without examining the timing

of birth events. In this case, we define True Positive (TP) as a patch sequence contains a

mitosis event, False Positive (FP) as it does not contain a mitosis event, and False Negative

as a true positive is classified as negative. Second, the performance of mitosis detection is

strictly evaluated in terms of the timing error of birth moments, i.e., those aforementioned

true positive patch sequences will be considered as true positive only if the timing error of

the mitosis event is equal or less than a certain threshold. The timing error is measured as

the frame difference between the detection result and the ground truth.
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4.5.3. Evaluation on the Hierarchical Architecture. In this section, we show

the effectiveness of each module in the proposed architecture design. We compare the

performance of a single-appearance CNN (CNN3
1 ) targeted at the detection of the birth

moment, a multi-appearance HCNN with the 5 original image patches as input (CNN1
1 to

CNN5
1 + CNN11

2 ), a simple CNNwhich takes 10-channel images as input and our complete

HCNN.As shown in Table 5.1, because single-appearanceCNNcannot capture the temporal

appearance change, the F-Score of single-appearance CNN is 5 percentage points lower than

that of the multi-appearance HCNNwhich classify the whole patch sequence. With only the

appearance information as input, the F-Score of multi-appearance HCNN is 10 percentage

points lower than that of our HCNN that further incorporates the motion information. As

proven in [12], fusing the temporal information in feature level is better than in input pixel

level, thus our HCNN performs better than a simple CNN with 10-channel images as the

input.

Table 4.1. Mitosis occurrence detection accuracy of different designs.

Model Precision
(%) Recall(%) F score (%)

Our HCNN 99.1 ± 0.8 97.2 ± 2.4 98.2 ± 1.3
CNN with multi-channel

input 97.6 ± 1.2 94.0 ± 1.9 95.8 ± 1.2

Multi-Appearance HCNN 90.9 ± 3.8 85.6 ± 3.3 88.1 ± 1.4
Single Appearance CNN 85.9 ± 4.7 80.5 ± 8.1 82.9 ± 4.7

4.5.4. Comparisons. We compare our method with six state-of-the-arts: Max-

Margin Hidden Conditional Random Fields+Max-Margin Semi-Markov Model (MM-

HCRF + MM-SMM) [35], EDCRF [34], HCRF [32], Hidden Markov Models (HMMs)

[56], and Support Vector Machine (SVM) [57]. As shown in Table 5.2, our HCNN achieves

an average precision of 99.14%, recall of 97.21 and F score of 98.15%, which outperforms

the state-of-the-arts by a large margin. When evaluating the mitosis detection in term of

the timing error of birth event, we use four different thresholds th (1, 3, 5 and 10) to
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Table 4.2. Comparison of mitosis detection accuracy.

Model Precision
(%) Recall(%) F score (%)

Our HCNN 99.1 ± 0.8 97.2 ± 2.4 98.6 ± 1.3
MM-HCRF+MM-

SMM 95.8 ± 1.0 88.1 ± 3.1 91.8 ± 2.0

MM-HCRF 82.8 ± 2.4 92.2 ± 2.4 87.2 ± 1.6
EDCRF 91.3 ± 4.0 87.0 ± 4.8 88.9 ± 0.7
CRF 90.5 ± 4.7 75.3 ± 9.6 81.5 ± 4.4
HMM 83.4 ± 4.9 79.4 ± 8.8 81.0 ± 3.4
SVM 68.0 ± 3.4 96.0 ± 4.2 79.5 ± 1.7

Table 4.3. Comparison of mitosis event timing accuracy.

Precision Recall F score

th Our
HCNN [35] Our

HCNN [35] Our
HCNN [35]

1 92.8± 1.4 79.8± 3.4 93.1± 1.1 73.3± 2.4 93.0± 0.4 76.4± 2.7
3 96.6± 1.1 91.1± 2.2 94.9± 2.0 83.8± 3.7 95.8± 0.8 87.3 ±2.8
5 98.3± 1.2 94.7± 0.5 96.9± 1.6 87.1± 2.8 97.6± 0.9 90.8 ±1.7
10 99.1± 0.8 95.8± 1.0 97.2± 2.4 88.1± 3.1 98.2± 1.3 91.8 ±2.0

report the precision, recall. As shown in Table 4.3, our HCNN achieves better performance

than (MM-HCRF + MM-SMM) [35]. The reason for that is two-fold. First, in [35], they

extract hand-crafted SIFT features [58] from patch images, which is not the most suitable

features descriptor compared with CNN; Second, their method labels each patch in the

whole progress of mitosis, but the early frames and last frames may introduce noise in the

model since the appearance representation of them are not clear. While we only focus on

consecutive frames near the birth event, the appearance representations of these frames are

clear and easy to be captured.
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5. TWO-STREAM BIDIRECTIONAL LONG SHORT-TERM MEMORY FOR
MITOSIS DETECTION

5.1. TWO-STREAM BIDIRECTIONAL LONG-SHORT TERM MEMORY

The overall architecture of our proposed TS-BLSTM is illustrated in Fig. 5.1. Sup-

pose we have N appearance images Xi, i ∈ [1, N] and their corresponding motion images

Mi in one sequence. The motion images are computed simply by the frame difference.

We design a CNN, as shown in Fig. 5.2, to extract the feature representation from the last

fully-connected layer. Hence, appearance image Xi and motion image Mi will have feature

vector f x
i and f m

i , respectively. Then the features of appearance images and motion images

are fed into BLSTMs and generate the label lx
i and lm

i , respectively.

For each image, its label lx
i predicted by appearance BLSTM and label lm

i predicted

by motion BLSTM are concatenated to make the final prediction Li for each image in the

sequence, i.e. solving the mitosis stage localization problem. To solve the mitosis detection

problem, we add one more BLSTM on top of the prediction result of each image to generate

the sequence label LS. The joint objective function of our TS-BLSTM is formulated as

below:

min
Lj

i ,LS

{−TS log(LS)− (1− TS) log(1− LS)−
i∈[1,N] j∈[1,C]

T j
i log Lj

i} (5.1)

TS is the label for the sequence. T j
i and Lj

i are the label and prediction of the jth

image in the ith sequence. C is the number of classes (i.e. C = 4 stages).

The two tasks we try to solve here are: (1) mitosis event detection, which is a

many-to-one, binary classification problem. This requires the model to take a sequence

of images as input and output one label for the whole sequence. And (2) mitosis stage

localization, in which each image of one sequence is labeled to indicate which stage it
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Figure 5.1. The overview of our proposed TS-BLSTM.

belongs to, can be considered as a many-to-many problem. This demands our model to be

able to produce multiple types of outputs based on its multiple inputs. We unify the mitosis

detection and stage localization in one architecture by combining the many-to-one model

and many-to-many model in LSTMs.

Furthermore, the key to precisely label each stage in the input sequence is to locate

the transition frame between two consecutive stages. When we annotated the ground truth

of different stages, human experts need to look back and forth to determine which frame

is exactly the transition frame between two stages. This motivates us that stage labeling

should consider two directions. In our architecture, the proposed bidirectional LSTM offers

the ability to unify information in both directions to label one image in the sequence.
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Figure 5.2. The architecture of CNN we used to extract features from the input images.

We utilize not only the appearance information, but also the motion information over

time since the movement pattern of mitotic cells during different stages are different from

that of migration cells. Unifying both appearance and motion cues provides rich features to

describe the data thus boosts the classification performance.

When training the CNN, only the starting frame of Stage 3 is considered positive,

and others are labeled as negative. Two individual CNNs are trained for the appearance

input and motion input, respectively. For the training of CNN with MatConvNet, we set the

patch size as 100 and the number of epoch as 20 with the learning rate gradually decreasing

from 10−2 to 10−4. The drop-out rate is set to be 0.5. When training the TS-BLSTM with

Keras, we pad each training sequence to be the length of 50. The number of epoch is set as

10, and learning rate is 10−3 with decay rate as 10−6.

5.2. EXPERIMENTS

In the experiments, we will validate the design of our proposed TS-BLSTM and

evaluate its mitosis detection and stage localization performance.

5.2.1. Dataset. We use the same dataset as the HCNN. The location and time of

different stages in mitosis sequences in the video are provided as the ground truth.
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In order to train our CNN and TS-BLSTM, data expansion is performed to generate

more positive training data to avoid the problem of overfitting. For each positive mitosis

sequence, we rotate the images every 45 degree (8 variations), slightly translate the images

horizontally and/or vertically (9 variations), which generates 72 times of the original pos-

itive training data. Negative sequences are extracted by the proposed candidate sequence

extraction method.

5.2.2. Evaluation Metric. We adopt leave-one-out policy in the experiment, i.e.,

using four sequences for training and the rest one for testing. Since other competingmethods

classify the sequence only based on the detection of starting time of stage 3, a sequence is

defined as a mitosis sequence only if it contains the starting frame of stage 3. In this case,

we define True Positive as a mitosis sequence that is classified as positive, False Positive

as a non-mitosis sequence that is mistakenly labeled as positive, and False Negative as a

mitosis sequence that is mistakenly classified as negative.

Two evaluations are used in our experiments. First, we evaluate the performance of

mitosis detection in terms of the mean and standard deviation of precision, recall and F score

on the five leave-one-out tests. Second, we evaluate the performance of stage localization

strictly in terms of the localization error of the starting frame of each stage. The localization

error is defined as the frame difference between the detection result and the ground truth.

Table 5.1. Mitosis event detection accuracy of different designs.

Model Precision
(%) Recall(%) F score (%)

TS-BLSTM 98.4 ± 1.0 97.0 ± 1.8 97.7 ± 1.2
D-TS-BLSTM 94.5 ± 4.7 89.8 ± 3.8 91.8 ± 2.1
A-BLSTM 90.4 ± 6.8 95.2 ± 2.2 92.5 ± 3.2
M-BLSTM 94.4 ± 5.0 95.8 ± 4.1 95.0 ± 2.6
TS-LSTM 90.2 ± 5.3 93.0 ± 4.6 91.5 ± 2.5
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5.2.3. Validation on the Proposed Architecture. In this section, we show the ef-

fectiveness of each module in the proposed architecture. We compare the performance of

(1) the proposed TS-BLSTM, (2) D-TS-BLSTM (detection-only TS-BLSTM, in which only

the label of sequence is predicted and the objective function does not take the classification

error of each image into consideration), (3) A-BLSTM (TS-BLSTM without incorporating

the motion BLSTM), (4) M-BLSTM (TS-BLSTM without incorporating the appearance

BLSTM) and (5) TS-LSTM (replacing the BLSTMs in TS-BLSTM with LSTMs). As

shown in 5.1, the proposed TS-BLSTM outperform other models, which shows each mod-

ule (unifying mitosis event detection and stage classification, motion feature, appearance

feature, and bidirectional LTSM) in the architecture of TS-BLSTM is necessary and helps

boosting the performance.

Table 5.2. Comparison of mitosis event detection.

Model Precision
(%) Recall(%) F score (%)

Our TS-BLSTM 98.4 ± 1.0 97.0 ± 1.8 97.7 ± 1.2
HCNN 96.6 ± 1.1 94.9 ± 2.0 95.8 ± 0.8

MM-HCRF+MM-
SMM 95.8 ± 1.0 88.1 ± 3.1 91.8 ± 2.0

EDCRF 91.3 ± 4.0 87.0 ± 4.8 88.9 ± 0.7
MM-HCRF 82.8 ± 2.4 92.2 ± 2.4 87.2 ± 1.6

HCRF 90.5 ± 4.7 75.3 ± 9.6 81.5 ± 4.4
HMM 83.4 ± 4.9 79.4 ± 8.8 81.0 ± 3.4
SVM 68.0 ± 3.4 96.0 ± 4.2 79.5 ± 1.7

5.2.4. Comparisons on the Mitosis Event Detection. We compare our method

with seven state-of-the-arts on the performance of mitosis event detection: HCNN, Max-

Margin Hidden Conditional Random Fields+Max-Margin Semi-Markov Model (MM-

HCRF + MM-SMM) [35], EDCRF [34], Max-Margin Hidden Conditional Random Fields

[35], HCRF [32], HiddenMarkovModel (HMM) [56], and Support Vector Machine (SVM)

[57]. As shown in Table 5.2, our TS-BLSTM achieves an average precision of 98.4%, recall

of 97.0 and F score of 97.7%, which outperforms existing models. HCNN classifies the
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candidate sequence by only considering several frames nearby the starting frame of stage

3. While our model takes the whole sequence into consideration, the performance does not

heavily rely on the detection of stage 3. MM-HCRF + MM-SMM [35] finishes the tasks of

mitosis detection and stage localization in two separate steps, the solution cannot be jointly

optimal.

Table 5.3. Comparison of stage localization accuracy.

Model Stage 2 Stage 3 Stage 4

Our TS-BLSTM 0.78 ±
0.40

0.62 ±
0.62

0.06 ±
0.06

MM-HCRF+MM-
SMM

0.82 ±
1.69

0.73 ±
1.29

1.06 ±
1.72

HCNN N/A 0.69 ±
0.91 N/A

EDCRF N/A 0.83 ±
1.34 N/A

5.2.5. Comparisons on the Mitosis Stage Localization. To label one mitosis

sequence into the four stages, we only need to localize the starting frame of stage 2, 3, and

4. In previous work, only MM-HCRF+MM-SMM [35] is able to localize different stages

while others only focus on the localization of the starting frame of stage 3. We summarize

the comparison of each mitosis stage localization accuracy in Table 5.3. The results in Table

5.3 demonstrate that our method not only performs different stage localization with better

performance than [35], but also achieves better accuracy for locating the starting frame of

Stage 3, which is a critical point of analyzing mitosis events, than other methods.
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6. CONCLUSIONS

We proposed an image-based CTC detection by two detectors: the SVM and DCNN

classifiers. We also proposed an iterative training algorithm which targets at reducing

the training time. To further refine the decision boundary between positive and negative

samples, we proposed an effective round-based training method. Comparison of DCNN

and SVM classifiers shows that our DCNN classifier works better and the proposed training

method is able to improve the performance of classifiers by reducing the redundancy

in negative samples. Our image-based CTC detection is not dependent on cell marker

expression, and is not limited to any particular cancer type.

Further, to address the problem of mitosis event detection in phase-contrast micro-

copy images, we propose aHierarchical Convolutional Neural Network (HCNN).We extract

candidate patch sequences from the image sequence as the input to HCNN. In our HCNN

architecture, we utilize both the appearance information and temporal cues hidden in patch

sequences to identify the birth event of mitotic cells. Given the complex HCNN structure,

we propose an efficient training methodology to learn the parameters inside HCNN and

prevent the risk of over-fitting. In the experiments, we prove that the design of our HCNN

is sound and our method outperforms other state-of-the-art by a large margin.

Considering the drawbacks of HCNN, further we propose a Two-Stream Bidirec-

tional Long Short-Term Memory (TS-BLSTM) to tackle the two problems of mitosis event

detection and stage localization jointly in phase-contrast microscopy images. Both appear-

ance and motion information are utilized to provide rich feature description. Bidirectional

LSTM helps to utilize information in both directions. In the experiments, we validate the

proposed architecture and that our model outperforms other state-of-the-arts in both two

tasks.
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