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Introduction 1
1.1 Fluorescence Microscopy

Biological research is impossible to imagine without a microscope. Latest genera-
tions of microscopes, able to produce huge arrays of multidimensional data, only
distantly resemble Leeuwenhoek’s first microscope. Every advance in visualization
techniques and hardware brings us one step closer to understanding life, e.g., how
genome information gives identity to cells, how cells constitute organisms and how
errant cells cause disease [151]. Discovery of the green fluorescent protein (GFP)
[150] in the nineties of the previous century was definitely one of the most impor-
tant milestones on that path, giving new strong impulse to the field of fluorescence
microscopy.

Unlike other optical microscopy techniques, where images are formed by reflec-
tion and absorption, fluorescence microscopy, as its name suggests, is based on the
phenomenon of fluorescence. For visualizing an organic or inorganic structure of
interest, it is labelled with a fluorescent molecule called fluorophore. This molecule
has a special property, that, when illuminated with a laser light of a certain wave-
length, it is able to emit a light wave that can be detected by a charge-coupled device
(CCD) [91]. Modern CCD cameras can very successfully register the light of different
wavelength emitted by different fluorophores whose discovery quickly followed the
discovery of GFP [19,60]. This enables acquiring multi-spectral image data, in which
different structures of interest are visualized in different colors. Using optical sec-
tioning technique it is possible to obtain three-dimensional views of an object by
splitting the region occupied by the object in a number of slices, imaged by mov-
ing the focal plane of the microscope during acquisition [57]. Finally, fluorescence
microscopy allows producing multiple images of the same scene over time, resulting
in an image sequence that enables studying object dynamics [40, 74, 154].

All the mentioned properties quickly made fluorescence microscopy very popu-
lar for studying biological processes on different levels. From the molecular to the
whole organism level, fluorescence microscopy is capable to produce up to five-
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dimensional data. Spatial and temporal resolution ranges from 0.1 µm to 1 cm for
the lateral dimensions, 0.1 µm to 1 mm for the depth, and 0.1 µs to 104 s for the time.
Currently, none of the many other available imaging methods [151] can match fluo-
rescence microscopy in ability to provide such combinations of spatial and tempo-
ral resolution. At the same time, it is a highly dynamic field, with a considerable
amount of research being carried out to widen the mentioned ranges. For example,
new generations of fluorophores, like Alexa Fluors [118], are less prone to photo-
bleaching [17], thus enabling imaging with higher temporal resolution or/and over
a longer time period. The most recent developments in the field, such as photo-
activated localization microscopy (PALM) [11] or stochastic optical reconstruction
microscopy (STORM) [75] techniques, allow resolving two structures that are as
close to each other as 20–30 nm in the lateral and 50–60 nm in the axial dimension.
The ever-growing size and complexity of the acquired image data, as a consequence,
necessitates the increase of sophistication level of specialized computer tools and
techniques for analyzing the fluorescence microscopy time-lapse data. This thesis
addresses the need for efficient automated methods by employing several modern
mathematical computer vision concepts for performing such analysis.

1.2 Mathematical Methods for Image Analysis

The human vision system is a sophisticated system that is able to visually extract
necessary information from lower-level image features and group them into a mean-
ingful high-level structure. This phenomenon is referred to as perceptual grouping,
a term which includes grouping by proximity, similarity, continuation, closure, and
symmetry [96]. For simpler scenes, it is sometimes sufficient to use only one of the
mentioned groupings, for example, when structures of interest are extracted from
the images based on shape or intensity similarity. However, in most of the cases,
all those properties should be used in combination in order to provide the complete
picture. This is definitely the case when it comes to analysis of biological image
data in all its growing complexity. With ever-improving quality of the images, it is
not difficult, even for non-experts, to visually decompose a scene into meaningful
components. Unfortunately, visual analysis, though very useful in many situations,
cannot satisfy all the needs for being purely qualitative, whereas in most of the cases
quantitative measures can provide much more extensive and reliable information
about the data. This point appears to be the weakest link in the chain of image
analysis by humans. Manual measurements often appear to be error-prone, suffer
from low reproducibility and, especially, poor productivity. This calls for automated
image analysis. On the other hand, while being able to extract high-quality measure-
ments from the images, computers cannot completely substitute humans because of
one simple reason: they can only see what humans have programmed them to see.
Modern computer-based image analysis systems are already quite successful in spe-
cific tasks, performing equally to, or even better than humans, but reconstructing the
complete human vision system in all its complexity still remains a major challenge.

The trend in developing modern tools for image analysis, biological imaging
among others, lays in incorporating as much of the available information about the
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subject as possible. Usually this is quite a difficult task in itself, since the informa-
tion sources can be of very different nature: intensity, shape, texture, smoothness,
spatiotemporal relationships, etc. Especially for traditional, “naive”, image process-
ing methods, e.g. morphology or thresholding, it becomes an insuperable hurdle [6].
On the other hand, many examples from other disciplines, in particular physics,
demonstrate how effectively such complex problems can be resolved by formalizing
and reformulating them into purely mathematical problems. For the majority of
practical computer vision problems, solutions (or good approximations to them) of
the corresponding formalized problems are known. Although not every mathema-
tical theory can be directly applied to image analysis, the number of mathematical
concepts that have found their application in computer vision is constantly grow-
ing. In particular, applied to the problem of segmentation and tracking, the theories
of variational calculus and partial differential equations have proven to be very suc-
cessful [119]. Generally, a computer vision problem can in mathematical formulation
be cast into optimizing a function (or a functional) of a certain kind. As it is often
required to satisfy multiple optimization criteria at the same time, this is typically
achieved by combining all the mentioned criteria in one energy functional and solving
the corresponding energy minimization problem, for which, in turn, methods from
variational calculus [54] can be used. Because of the complexity of the most com-
puter vision problems, many corresponding mathematical problems are ill-posed
(have more than one solution) and/or cannot be solved analytically. For such cases,
effective algorithms from the fields of partial differential equations and numerical
calculus exist that can approximate the desired solution with the required precision.

Thus, no wonder that energy minimization methods [5,6,119] have become very
popular choice for object tracking and segmentation as they can readily combine
all the information from different sources and nature into one energy functional.
For example, extracting objects of target intensity I0 can be achieved by minimizing
the following energy [23]:

Eintensity(I) =
∫
Ω

(I(x)− I0)
2 dx, (1.1)

where I is the image intensity and Ω is the image region. The expected shape of
the object can be incorporated in a similar manner [121]. Smoothness of the object’s
boundary ϕ can be imposed by minimizing the absolute value of the gradient of its
Heaviside function H(ϕ):

Esmoothness(ϕ) =
∫
Ω

∣∣∇H(ϕ(x))
∣∣ dx, (1.2)

and so on. The total energy term to be minimized is in this case a composition (sum)
of several terms, where the impact of each of the constituents on the final result can
be adjusted by using proper weighting factors.

Finding the desired energy minimum requires, in general, usage of specialized
iterative methods since the obtained Euler-Lagrange partial differential equation
cannot be solved analytically. Typically, this is achieved by introducing an artifi-
cial time parameter and calculating the energy minimum via the gradient descent
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Figure. 1.1: Three levels of biological image data considered in this thesis: (A) cell level,
(B) intracellular level, (C) whole-organism level (Caenorhabditis elegans nematode worm).

method [23]. Alternatively, more efficient minimization methods, such as graph
cuts [15], exist for certain types of energy functionals.

The subject of this thesis is the development of mathematical methods to facili-
tate quantitative analysis of time-lapse fluorescence microscopy data. Such analysis
can be performed on three different levels: whole organism, cell and intracellular, all
of which are considered in this thesis (see Figure 1.1). Of these three levels, the cell-
level plays the most prominent role since it serves as a basis for analysis on the other
two levels. Specialized mathematical computer vision methods were customized for
addressing the challenges posed by the data on each of the three mentioned levels of
biological image analysis.

1.3 Thesis Outline

In Chapter 2 of this thesis an overview of the computer methods and techniques
used for analysis of time-lapse fluorescence microscopy data is given. Every afore-
mentioned level of analysis is considered separately, and for each of them the most
important challenges and requirements posed on the tools being developed are de-
scribed. From this perspective, all relevant methods, from the “classical” to the
most recent ones, and all the modern trends and research directions are discussed.
The key concepts and ideas presented in this chapter are illustrated with examples
on real microscopy data.

In Chapter 3 a new cell segmentation and tracking algorithm is presented.
Special attention is paid to the quality of the final segmentation and tracking re-
sults, since, as mentioned earlier, this step serves as a basis for further analysis on
the intracellular- and the whole-organism levels. Thus, even small quality improve-
ments at this stage may have considerable positive impact on the total performance
of the whole system. For performing segmentation and tracking, we make use of
the modern variational approach called model evolution. The main idea behind this
approach is that each object being tracked is represented by a model, which is fitted
to the data at every step, resulting in a segmentation of the object. Such “fitting”, at
the same time, also provides tracking of the object by mimicking the object’s motion
and deformation that occurred between two successive acquisitions, thus bridging
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the gap between two imaged discrete states. Level sets are chosen as the model for
yielding high-quality segmentation of complex and very inhomogeneous data, their
ability to work in arbitrary-dimensional spaces, and to naturally change their topolo-
gy. The algorithm is both evaluated by comparing it to human experts and publicly
available tools.

In Chapter 4 we further extend the framework presented in the previous chap-
ter for performing intracellular analysis. The processing starts with applying a mo-
tion correction step, which is shape-based and is implemented as a variational ener-
gy minimization problem for matching two signed distance functions. The energy
functional being minimized contains the following components: rigid-deformation,
non-rigid deformations, and smoothness of the deformation field, which results in
very accurate and realistic registrations. Fluorescent foci were chosen as the subject
of the analysis on this level. For segmenting foci, a very general algorithm is develo-
ped that uses as little of the prior information about the exact nature of the imaged
data as possible. The method is validated by comparing to human experts on real
fluorescence microscopy data. Finally, the performance of the complete framework,
from cell segmentation and tracking, to motion correction and foci segmentation,
is illustrated on the problem of detecting the cell phase in proliferating cell nuclear
antigen (PCNA) image data. An algorithm that is presented infers cell phase from
the obtained statistics about the foci population, including average size and intensity,
and spatial distribution.

Finally, Chapter 5 demonstrates how the model-evolution-based cell tracking
algorithm can be applied for analysis on the whole-organism level. The method pre-
sented in Chapter 2 was considerably extended and modified for performing seg-
mentation and tracking on C. elegans embryogenesis data. Using a model-evolution-
based method proves to be very beneficial in this case as it enables incorporating into
the segmentation of each time step all the information about the previous state of the
system. This property is very important for such data, whose complexity grows pro-
portionally to the number of cells constituting the organism at the given moment in
time. The method is validated on real time-lapse fluorescence microscopy sequences,
and is shown to be able to track C. elegans embryogenesis for more than 3 hours, from
the 4-cell to the 350-cell stage.
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Abstract — The past decade has seen an unprecedented data explosion in biology. It has become
evident that in order to take full advantage of the potential wealth of information hidden in the data
produced by even a single experiment, visual inspection and manual analysis are no longer adequate.
To ensure efficiency, consistency, and completeness in data processing and analysis, computational
tools are essential. Of particular importance to many modern live-cell imaging experiments is the
ability to automatically track and analyze the motion of objects in time-lapse microscopy images.
This chapter surveys the recent literature in this area. Covering all scales of microscopic observation,
from cells, down to molecules, and up to entire organisms, it discusses the latest trends and successes in
the development and application of computerized tracking methods in cell and developmental biology.

Based upon: E. Meijering, O. Dzyubachyk, I. Smal, W. A. van Cappellen. Tracking in Cell and Develop-
mental Biology. Seminars in Cell and Developmental Biology, vol. 20, no. 8, October 2009, pp. 894–902.

043530
Notitie
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2.1 Introduction

It has been increasingly recognized in recent times that life is a miraculous sym-
phony [106]. From fast metabolic pathways to the cell cycle, to the beating of the
heart, all the way to annually repeating seasonal behaviors, life is composed of a
multitude of interconnected oscillations, together constituting a gigantic orchestra
spanning at least 10 orders of time magnitude. Recent investigations seem to sug-
gest that careful coordination of these rhythms and their interactions is an important
precondition for the maintenance of normal development and health. Conversely,
a disturbance at any level of this intricate time network can be expected to result
in disease. Although it is not our purpose here to discuss the interesting findings
of chronobiological investigations, they do emphasize the importance of studying
life’s processes in both space and time [151], that is, to analyze their structure and
function.

The ability to visualize cells and subcellular dynamic processes in space and time
has been made possible by revolutionary developments in imaging technology in
the past two decades. Advances in molecular biology, organic chemistry, and ma-
terials science have resulted in an impressive toolbox of fluorescent proteins (GFP
and variants) and nanocrystals (quantum dots), and have enabled the study of pro-
tein expression, localization, conformation, diffusion, turnover, trafficking, and in-
teraction [60, 94]. On the hardware side, advances in optical systems design have
taken light microscopy from widefield to (multiphoton) confocal and spinning disk
microscopy [122, 142], and more recent efforts to break the diffraction barrier have
further extended the palette [55, 71]. Together, these developments have redefined
biological research by enabling the switch from fixed to living cells and from quali-
tative to quantitative imaging [151, 156].

As was to be expected, the new possibilities offered by these developments to
image (sub)cellular processes in space, time, and at multiple wavelengths, have re-
sulted in a true data explosion. It has now become evident that in order to ensure
efficiency, consistency, and completeness in handling and examining the wealth of
image data acquired in even a single experiment, computational image manage-
ment, processing, and analysis methods are indispensable [1,43,50,108,123,124,145,
146, 173]. Thus, it seems that the bottleneck in putting modern imaging technolo-
gies to high-throughput use, has shifted from the “wetware” and the hardware to
the development of adequate software tools and data models. While the need for
such tools has been recognized for a long time in the medical imaging communities,
and advanced image processing, computer vision, and pattern recognition methods
have been developed in the past 30 years to enable computer assisted diagnosis in
various clinical applications [9, 45, 144], it is only since relatively recently that simi-
lar methods are being explored to facilitate automated image analysis in biological
imaging [129, 166].

This chapter briefly surveys the latest trends and successes in the endeavor to
take full advantage of the vast amounts of image data acquired in biological ima-
ging experiments. The emphasis is on tracking and motion analysis of objects in
time-lapse microscopy images. Updating previous surveys, aimed at engineers
[1, 103, 176] or biologists [43, 58, 78] from different perspectives, we cover tracking at
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all scales of microscopic observation, from molecules, to cells, to organisms. In view
of the rapid developments in the field, and because of space limitations in the present
chapter, we consider only (a subset of) works published since the year 2000. First, we
give an overview of recent cell segmentation and tracking algorithms, which in many
experiments constitute the basis for further analyses. In the subsequent sections, we
shift focus in two possible directions: from cells down to molecules (capturing the
trajectories of intracellular particles), and from cells up to organisms (following em-
bryogenesis and adult locomotory behavior). The chapter hopefully serves as a use-
ful source of pointers to the relevant (mostly methodological) literature on tracking
for a wide variety of applications in cell and developmental biology.

2.2 Cell Tracking

Being the fundamental units of life, cells are the key actors in many biological pro-
cesses. Cell proliferation, differentiation, and migration are essential for the concep-
tion, development, and maintenance of any living organism. These processes also
play a crucial role in the onset and progression of many diseases. Understanding
physiological processes in health and disease and developing adequate drugs re-
quires the imaging and analysis of the (morpho)dynamic behavior of single cells or
cells in tissues under normal and perturbed conditions [42]. This typically involves
the tracking and quantification of large numbers of cells in time-lapse fluorescence,
phase-contrast, or intravital microscopy data sets consisting of hundreds to many
thousands of image frames, making manual analysis no option, especially in 3D.

The automation of these tasks faces several challenges, including the generally
poor image quality (low contrast and high noise levels), the varying density of cell
populations due to division and cells entering or leaving the field of view, and the
possibility of cells touching each other without showing sufficient image contrast.
Many computerized methods for cell tracking have already been proposed, and
some of these have found their way to commercial and open-source software tools
(summarized in [67]), but the consensus arising from the literature seems to be that
any specific tracking task requires dedicated (combinations of) algorithms to obtain
optimal results. Nevertheless, several trends can be observed in the development of
new cell tracking methods, suggesting the superiority of particular algorithms.

2.2.1 Segmenting Individual Cells

Cell tracking methods generally consist of two main image processing steps: 1) cell
segmentation (the spatial aspect of tracking), and 2) cell association (the temporal
aspect). Segmentation is the process of dividing an image into (biologically) mean-
ingful parts (segments), resulting in a new image containing for each pixel a label in-
dicating to which segment it belongs (such as “foreground” versus “background”).
One approach to segmentation is to compare the value of each image pixel to a pre-
set threshold value and to label pixels with values above (below) the threshold as
foreground (background) [166]. Due to its simplicity, thresholding is one of the
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most commonly used segmentation methods, but it is also one of the most error-
prone [104]. It will be successful only if cells are well separated and their intensities
differ sufficiently and consistently from the background—a condition hardly ever
met in live cell imaging due to severe noise, autofluorescence and photobleaching
(in the case of fluorescence microscopy), or strongly varying intensities and halos (in
the case of phase- or differential interference contrast microscopy).

More sophisticated methods for cell segmentation include fitting predetermined
cell intensity profiles (templates) to the image data. This template matching ap-
proach works well for images showing consistent cell shape [77], but fails in the case
of significant variations in cell morphology (between cells per image, or per cell over
time, or both). A more popular approach is to use the so-called watershed transform.
In this case, an image is considered a topographic relief, and “flooding” this relief
from the local intensity minima completely subdivides the image into regions and
delimiting contours, by analogy termed “catchment basins” and “watersheds”, re-
spectively. The most important drawbacks of this method are its sensitivity to noise
and its tendency to yield too fragmented results (oversegmentation). Nevertheless,
by combination with carefully designed pre- and postprocessing strategies, such as
marking and model-based segment merging, the method has been successfully ap-
plied to cell segmentation in microscopy [92, 157, 170, 172].

Recent years have shown an increasing interest in the use of deformable models
for cell segmentation [24, 35, 37, 41, 44, 90, 107, 115, 128, 135, 174]. These are defined
either explicitly as parametric contours (mostly for 2D applications) or implicitly as
the zero-level of a so-called level-set function (a mathematical concept that can be
applied to image data of any dimensionality). The latter approach is often preferred,
as it can naturally capture topological changes, such as cell division. Starting from a
coarse, initial segmentation, deformable models are iteratively evolved in the image
domain to minimize a predefined energy functional (Figure 2.1). The modeling as-
pect lies primarily in the definition of this energy functional. Typically it consists of
image-related terms (based on image features such as intensity, gradients, and tex-
ture) and image-independent terms (based on shape properties such as boundary
length or surface area, curvature, and similarity to reference shapes). This mixture
of terms enables the incorporation of both image information and prior knowledge
about the biological application [176]. In contrast with the watershed transform,
model-evolution approaches have the tendency to yield undersegmentation of the
images (the contours or surfaces of neighboring cells may easily merge in the pro-
cess), and usually require postprocessing steps to refine the results.

2.2.2 Connecting Cells Over Time

After segmentation, the second step in achieving cell tracking is cell association.
This refers to the process of identifying and linking segmented cells from frame to
frame in the image sequence to obtain cell trajectories. The simplest approach to ac-
complish this is to associate each cell in any frame to the spatially nearest cell in the
next frame (for example according to centroid position) within a predefined range.
However, when dealing with many cells or rapid cell movements, this may easily
lead to mismatches. In order to allow for better discrimination of potential matches,
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Figure. 2.1: Cell tracking. (A) Three frames from a time-lapse fluorescence microscopy image,
illustrating the concept of model-evolution based cell segmentation and association. Cell con-
tours or surfaces can be defined parametrically or as the zero-level of a higher-dimensional
function. In each image frame, the final contour of a cell (solid line) is obtained by mini-
mization of an energy functional, typically consisting of image-based and shape-based terms.
The initial cell contour (dotted line) for each frame is usually taken to be the final contour from
the previous frame. Cell divisions can be detected by monitoring the shape of the contour
function during energy minimization. (B) Depending on the type of labeling, the appearance
of cells (or in this case their nuclei) may vary greatly, within one frame as well as over time.
(C) Thresholding usually results in a very noisy (at low thresholds) or fragmented (at high
thresholds) segmentation. (D) Model-based segmentation (in this case using level sets) can
yield much more sensible results.

the definition of “nearest” may be extended to include similarity in (average) in-
tensity, area or volume, perimeter or surface area, orientation of major and minor
axes, boundary curvature, estimated displacement, and other features. Increasing
the number of features used for comparison reduces the risk of ambiguity. A similar
argument applies when using so-called mean-shift processes to iteratively compute
cell positions [28, 36].

Several of the discussed methods for cell segmentation can naturally be extended
to also perform cell association. The concept of template matching, for example, can
serve as a basis for image registration between time points. Registration refers to the
process of (global or local) alignment of images, using intensity- or geometry-based
features. This can be done at the cell level [165], at the level of feature points [100],
or down to the pixel level, reminiscent of optic-flow schemes [67, 169]. In the case
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of deformable models, cell association can be performed “on the fly”, by using the
segmentation results in any frame as initialization for the segmentation process in
the next frame (Figure 2.1). Essentially, this is again a nearest-neighbor linking ap-
proach, which works well if the population density is not too high and the rate at
which images are acquired is such that cells do not move more than at most their
diameter between consecutive frames. If these conditions are not met, or they need
to be compromised for practical reasons, more sophistication is required, such as
the use of gradient-vector flows [127, 174], estimated cell dynamics [35, 135], and
special procedures to handle cell contacts, divisions, appearances, and disappear-
ances [44,167]. Another trend in the attempt to achieve more robustness is the use of
probabilistic schemes [32, 77, 90, 135].

2.2.3 Cell Tracking in Practice

Once the cells are properly segmented in all frames of a time-lapse image sequence,
and the correct associations have been established between successive frames, it is
relatively easy to compute (morpho)dynamic features that may reveal biologically
relevant phenomena. For example, variabilities in cell shape (within populations
or per cell over time) can be very effectively studied using statistical tools such
as principal component analysis (PCA) of the cell outlines [125]. Power spectrum
analysis of size changes over time have revealed the presence of regularities (perio-
dicities hinting at underlying biochemical clocks) in the membrane deformation of
crawling amoebae that were not obvious from visual inspection [176]. Automated
measurement of cell motility and proliferation have enabled the study of factors in-
fluencing osteoblast differentiation and growth, involved in the processes of bone
formation and maintenance, as well as the dysregulation of these processes lead-
ing to osteoporosis [8]. As a final example, computerized analysis of cell veloci-
ties, directional persistence, turning frequencies, and invasion profiles, have demon-
strated significant dependence of tumor cell infiltration and migration on cell type
and the microenvironment, suggesting that metastasis is not a completely random
phenomenon [39]. These examples clearly illustrate that computerized cell track-
ing not only provides objective numbers rather than subjective visual impressions,
but also offers a level of sensitivity and statistical power unattainable by human ob-
servers.

2.3 From Cells to Molecules

The capacity of cells to perform their fundamental roles in living organisms is the
product of a complex machinery of intracellular and intranuclear processes, involv-
ing thousands of proteins and other constructs. Spurred by the technological ad-
vances mentioned in the introduction, the quest to improve medicine is therefore in-
creasingly focussing on acquiring a deeper understanding of these processes.
In turn, this has boosted the demand for powerful image processing tools able to
automatically compute the location, distribution, and dynamics of large numbers of
macromolecules in (usually fluorescence) microscopy image sequences.
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2.3.1 Cell Motion Correction
In biological time-lapse studies cells usually manifest themselves as highly viable
objects that exhibit permanent change of position (motion), shape (deformation) and
appearance (see e.g. Figure 2.2). Such complex behavior, even when the cells are
segmented and tracked throughout the lifespan of the data sequence, still makes the
further intracellular analysis a rather difficult task. This problem can be greatly re-
duced by applying a motion correction step, which separates local deformations and
motions of the intracellular structures from the global motion of the cell. Formally
speaking, the latter means switching from the global coordinates to the local coor-
dinate system “frozen” in each of the cells. Transferring the data to such “frozen”
coordinate system is not only a very convenient starting point for further automated
intracellular analysis, but it also greatly facilitates understanding of the biological
processes within the cell even by simple visual observation (see Figure 2.2).

The mentioned transformation of the coordinate system is on itself a complex
task, whose main difficulty lays in the impossibility to unambiguously separate the
motion and deformation [171]. The separation of the two mentioned processes is
usually achieved by imposing additional constraints on them (for example, assum-
ing the motion to be rigid, etc.). In practice, the transformation of all the segmented
regions occupied by the same cell at different time points is performed via image
registration. In this case, the coordinate system is fixed on the reference frame (usu-
ally the first time point at which the cell is present) and the rest of the time points
are brought to that coordinate system by registering each cell’s region either to its
predecessor or to the region corresponding to the reference time point.

The alignment of the two regions can be performed using any suitable image
registration algorithm. The latter can be divided into two large groups: intensity-
based and shape-based, named after the type of information used for performing
the registration. The intensity-based methods perform alignment of two regions us-
ing image intensity or (and) features derived from it (in this case the segmentation
of the regions being aligned is generally speaking not required), whereas the shape-
based registration completely relies on the result of the segmentation [177]. The al-
gorithms representing both groups were successfully applied for motion compensa-
tion in time-lapse flourescence microscopy studies using the point-based registration
scheme [100], quaternion-based registration scheme [82], demons algorithm [82,169],
or thin-plate splines [99] as the final implementation. The final choice of using one
or another registration method is determined by the underlying biological problem.

2.3.2 Foci Segmentation and Tracking
Fluorescent foci are a very representative example of a subject of the intracellular
analysis. Indicating the presence of large concentrations of the protein that they
are tagging, they can appear on the image as blobs ranging from a couple of pi-
xels large diffraction-limited spots to huge conglomerates of proteins occupying a
significant part of the cell body. Typically, foci-based analysis is performed in or-
der to get statistical measures (e.g. total number, average size, intensity, distance to
the nuclear envelope, velocity, etc.) of the foci population through the lifespan of
the sequence. For example, it is known [52] how the number, appearance and spa-
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Figure. 2.2: Example of cell motion correction. (A) One cell followed through the time-lapse
fluorescence microscopy image data set (outlined). During its lifetime the cell undergoes com-
plex changes: movement, deformations, rotations, etc. (B) Cell segmentation and tracking en-
ables extraction of each of the cells separately at every moment of time and bringing all the
extracted regions occupied by the same cell to the “frozen” coordinate system by applying
motion correction. Marked time points correspond to the time points shown in panel (A).
In this case only the global motion of the nucleus is subtracted. (C,D) Appearance and result
of segmentation of the PCNA foci for each stage of the cell cycle: G1, early-S, mid-S, late-S
and G2 correspondingly (magnified).

tial distribution of the foci formed by the proliferating cell nuclear antigen (PCNA),
which is involved in DNA replication, changes through the cell cycle (see Figure 2.2).
Thus, being able to segment the foci and to measure all the mentioned distributions
enables recognition of the cell phase, which, in its turn, might serve as a marker in
further cell-cycle-related studies.

Modern fluorescence microscopy imaging techniques provide excellent oppor-
tunities for the foci-related intracellular analysis by the possibility to visualize mul-
tiple proteins simultaneously in different colors. However, similar to the cell seg-
mentation and tracking algorithms, in practice it is necessary to develop specialized
analysis tools for every particular application. For example, in fluorescence in situ
hybridization (FISH) experiments [64, 83, 113, 126], the image data usually contains
a low number of high-contrast foci of similar size that can be relatively easily seg-
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mented. Thus the problem of “overlapping foci” is the main difficulty for quantifica-
tion of such data, effective solutions for which were presented for both 2D [113] and
3D [64] cases. Particle tracking methods [138] are another example of intracellular
time-lapse studies. Here, the foci are very small in size (thus called particles), so that
they can only be detected rather than segmented. In many other studies, unlike the
two mentioned cases, the size or appearance (or both) of the foci varies in time and
between different foci in the same image.

Detection of fluorescent foci is performed by extracting peaks of the intensity
profile. In case of larger-sized foci (e.g. FISH dots) this is usually achieved by apply-
ing a top-hat filer [64, 83, 113, 126]. Extracted intensity maxima are used as markers
for subsequent foci segmentation. The latter is performed locally in the vicinity of
each of the detected markers in order to handle closely positioned foci. The actual
segmentation is achieved by thresholding, which can be applied directly [64, 126] or
used as a basis for more advanced methods [83,113]. Such approach typically results
in large amount of false positives that can be removed by applying a specially built
selection procedure. The location of subresolution particles is usually estimated by
fitting the point-spread function of the microscope to the intensity profile. Usually,
the image data containing such particles is obtained with high temporal sampling
rate, which enables analysis of the foci dynamics by tracking each object separately.
In this case, tracking is achieved by linking detected particles between two con-
secutive time points, for which probabilistic methods have proven their efficiency.
Such methods allow predicting particle state (position, speed, etc.) by accumulat-
ing all available information about its previous states. This approach, in particular,
allows resolving ambiguous matching situations when the trajectories of two parti-
cles intersect at a certain moment of time. The quality of tracking results is naturally
strongly dependent on the temporal sampling rate of the acquired data. The choice
of the latter for foci analysis is completely determined by the underlying biological
application and can range from seconds to hours between two consecutive acquisi-
tions. Smaller time intervals provide more precise tracking, allowing better estima-
tion of foci dynamics, but higher sampling rates are restricted by the photobleaching
effect [93, 142].

2.4 From Cells to Organisms

One of the major goals of biological research in our postgenomic era is to gain full
understanding of the processes by which the genome directs the development of
a single-cell zygote into a multicellular organism. Complete knowledge of the gene
regulatory networks giving rise to specific phenotypes will dramatically advance the
discovery of drugs and, ultimately, the development of clinical therapies. Model or-
ganisms such as the nematode worm Caenorhabditis elegans and the zebrafish are now
widely used to study developmental phenomena efficiently. However, the imaging
and quantification of every cell cleavage and every cell-cell interaction in an entire
developing organism, as well as the phenotypical characteristics and behaviors of
adult organisms, pose enormous challenges in terms of both image acquisition and
image analysis [65, 79, 109, 154]. Concerning the latter, it is safe to say that such
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studies constitute the ultimate test cases for automated tracking and motion analysis
methods. Nevertheless, recent literature has shown first successes in the develop-
ment and application of new methods for this purpose.

2.4.1 Tracking Embryogenesis

The indispensability of computational tools for studying embryogenesis quantita-
tively has already been recognized for some time. Interactive computer-assisted sys-
tems facilitated the segmentation, reconstruction, visualization, and motion analysis
of every cell and nucleus in a developing embryo [70, 147], but required substantial
manual effort in tracing and editing contours, limiting the practical use of these sys-
tems to the very early stages of embryogenesis. Automation of cell tracking in these
stages is possible by applying basic image filtering techniques for cell segmentation
and using spatial distance or the degree of cell overlap between image frames for cell
association [65]. However, problems easily occur at later stages, due to the rapidly
increasing number of cells and the cell density (Figure 2.3).

In the endeavor to track embryogenesis much further down the line, alternative
methods have been developed, based on fitting spherical models for segmentation
and using heuristics about the shape and size of the nuclei at the various stages
of the cell cycle to disambiguate potential matches between time frames [10, 110].
The use of additional cues is of crucial importance when tracking densely packed
cells through mitosis, when the telophase daughter nuclei are sent to the distal ends
of the cell, and the two newborn cells may easily end up being closer to neighboring
cells than to the mother cell in the previous frame. Several methods were recently
developed for tracking and lineage construction of cultured cell populations [2, 90]
which may also prove useful for tracking embryogenesis. In line with the forego-
ing sections, especially the use of contour models, motion models, and probabilistic
filtering schemes [90] can be expected to add considerably to the much-needed ro-
bustness of cell tracking for this application.

2.4.2 Tracking Organism Behavior

In order to get a full picture for genotype-phenotype mapping, quantitative studies
of the development of an organism from the single cell stage to maturity must be
complemented by analyses of the behavioral (ab)normalities of the adult subjects.
This brings us to yet another (and in this chapter final) level of spatial and temporal
observation, with its own peculiarities requiring special attention (Figure 2.3). In the
case of C. elegans tracking, on which we will focus in the sequel, a large (inter- and
intra-subject) variability in appearance and behavior may be observed. For robust
geometric modeling, it has been proposed [131] to make a distinction between the
principal shape (the resting width-profile, length, and body orientation), and the
conformation (bending patterns or curvature profiles) of the worms.

The use of standard stereo dissecting microscopes for worm tracking usually
results in fairly high-contrast images, so that simple intensity thresholding can be
used to segment the subjects from the background. Convenient centerline repre-
sentations of the worms can then be easily obtained by applying “skeletonization”
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Figure. 2.3: Organism tracking. (A-C) Volume renderings of three time points (3D image
stacks) from a time-lapse fluorescence microscopy data set, showing C. elegans embryogenesis
from the four-cell stage to approximately one and two hours later, respectively. The rapidly
increasing number of cells and cell density pose a real challenge for automated cell track-
ing. (D) Result of 3D segmentation (only one plane is shown here) obtained by applying
a level-set based model-evolution algorithm and morphological postprocessing to the stack
rendered in (C). (E) Tracking results can be conveniently summarized and presented (after
completion or even in the process) using lineage trees, which give a clear picture of mother-
daughter relations of cells, division times, and symmetry breaking events. (F) Single frame
from time-lapse image data acquired using a dissecting microscope and showing the morpho-
logical and behavioral phenotypes of an adult worm. (G) Owing to the high contrast in the
image, the worm body can be accurately segmented using intensity thresholding, and simple
morphological operations subsequently yield the outer contour and centerline (“skeleton”).
(H) Finally, a variety of morphological features, such as body diameter and curvature, can be
easily computed at any position along the extracted centerline.

algorithms from mathematical morphology [31, 56, 73] or by using curve fitting pro-
cedures [131]. The segmentation and association tasks become more difficult, how-
ever, when studying multiple worms simultaneously for social behavior, where sub-
ject interactions, overlaps, or complex entanglements may occur. In addition, to be
able to distinguish forward from backward movement, the head and tail need to
be identified. Here too, similar to cell and particle tracking, the trend in the deve-
lopment of more robust tracking methods is in the direction of model-based and
probabilistic estimation approaches [131].
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2.4.3 Organism Tracking in Practice

For the presentation of the deluge of information resulting from exhaustive cell
tracking during embryogenesis, cell lineage trees (Figure 2.3) can be very helpful.
Such trees not only offer a convenient visual impression of mother-daughter rela-
tions of cells, they also give a clear picture of division times, (a)synchronous di-
visions, symmetry breaking events, and even (by color coding) of gene expression
levels, for which quantitative metrics can be computed straightforwardly. However,
in order for lineage related analyses to make biological sense, the reconstructed trees
need to be flawless. Since a single tracking error will invalidate the entire corre-
sponding subtree, this imposes extremely high demands on the accuracy and ro-
bustness of cell tracking algorithms. Because even state-of-the-art algorithms are not
quite error-free, careful manual curation and postediting of the resulting trees will
always be necessary. Several software tools for visualizing, editing, and comparing
cell lineage trees are publically available [16, 18].

For the quantification of adult morphological phenotypes, geometrical features
such as body length, area, thickness, symmetry, and curvature can be easily extracted
upon successful segmentation [56]. As for behavioral phenotypes, C. elegans locomo-
tion can be roughly classified into forward movement, backward movement, rest,
and curl, the duration and change-rates of which are important parameters [73].
Automated tracking systems have been successfully used for quantifying a variety
of morphological and behavioral patterns under controlled conditions (summarized
in [56]). The statistical clustering of phenotypic patterns and their matching with
genotypic classes and environmental conditions will yield new insights into the dif-
ferent mechanisms driving organism development and how to influence them bene-
ficially.

2.5 Conclusions

In concluding this chapter, we summarize the most important observations and their
implications for future research. First, in view of the data explosion that is currently
taking place in cell and developmental biology, it is increasingly realized that power-
ful software tools are now essential on the road to discovery and breakthrough.
The massive change in scale of biological investigations not only calls for efficient
solutions for data management, but also requires computational methods for ob-
jective and reproducible processing, analysis, and interpretation of the data. While
the first challenge has already resulted in open standards for storing and sharing im-
age and meta data, the problem of how to best automate the actual “data crunching”
is still being vigorously researched by many groups worldwide, and in this chapter
we have attempted to provide the reader with a good overview of recent efforts in
the field to develop methods for tracking and motion analysis of objects in time-lapse
microscopy image data.

Second, the exponential growth of publications in the past few years on bio-
image informatics related problems is not just a testimony of the utter need for and
the development of computational tools, but also of the fact that the field is still
very much in an exploratory phase. The general conclusion emerging from the cur-
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rent body of literature seems to be that there are no universal solutions to tracking
problems in cell and developmental biology, and that tools pretending the existen-
ce of such solutions (such as many commercial software packages) generally show
mediocre performance. This is understandable by realizing that, especially in de-
velopmental experiments, one must be concerned with the analysis of events at the
molecular level (nanometer scale), the cellular level (micrometer scale), up to the or-
ganism level (millimeter scale), that is at least six orders of spatial (not to mention
temporal) detail, each with its own idiosyncrasies. However, the advent of whole-
body scanners for fluorescence and bioluminescence tomography imaging, and the
desire to be able to quantify (sub)cellular processes within intact organisms, will
push the demand for integrated methods capable of tracking motion at all relevant
scales simultaneously. Currently, several trends can be observed in the development
of new tracking methods, including the increasing use of models (of object shape
and dynamics as well as image formation) and probabilistic (Bayesian) estimation
methods, which are known from other fields to yield improved robustness.

Finally, since every specific tracking problem currently requires its own dedica-
ted solutions to optimally extract and exploit the information contained in the data,
investigators are constantly faced with the challenge to develop their own software
tools. This is increasingly possible, even for users without expertise in computer
programming, by means of commercial and open-source tools facilitating the assem-
bly of existing image processing algorithms and the integration of custom-designed
algorithms. However, biology has by now unquestionably developed into a multi-
disciplinary field, and it seems that the joint optimization of all aspects of biological
experimentation (sample preparation, image acquisition, image analysis, data mo-
deling, and statistics) is best achieved by a close collaboration between biologists,
chemists, physicists, mathematicians, statisticians, as well as computer scientists,
all the way from experiment planning to the ultimate interpretation of the results.
Academic environments and research programs fostering this collaboration will like-
ly prove to be the main contributors to progress in biology.
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Abstract — Cell segmentation and tracking in time-lapse fluorescence microscopy images is a task
of fundamental importance in many biological studies on cell migration and proliferation. In recent
years, level sets have been shown to provide a very appropriate framework for this purpose, as they are
well suited to capture topological changes occurring during mitosis, and they easily extend to higher-
dimensional image data. This model evolution approach has also been extended to deal with many cells
concurrently. Notwithstanding its high potential, the multiple-level-set method suffers from a number
of shortcomings, which limit its applicability to a larger variety of cell biological imaging studies. In this
chapter we propose several modifications and extensions to the coupled-active-surfaces algorithm, which
considerably improve its robustness and applicability. Our algorithm was validated by comparing it
to the original algorithm and two other cell segmentation algorithms. For the evaluation, four real
fluorescence microscopy image data sets were used, involving different cell types and labelings that are
representative of a large range of biological experiments. Improved tracking performance in terms of
precision (up to 11 percent), recall (up to 8 percent), ability to correctly capture all cell division events,
and computation time (up to 9 times reduction) is achieved.
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Set Based Cell Tracking in Time-Lapse Fluorescence Microscopy. IEEE Transactions on Medical Imaging,
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22 Advanced Level-Set Based Cell Tracking

3.1 Introduction

Many cell biological studies rely on the analysis of large cell populations by means
of microscopy imaging [30, 42, 50, 123, 163, 176]. Especially when the goal is to (also)
study intracellular phenomena, fluorescence (confocal) microscopy is often used for
such studies, as it allows biologists to perform live cell experiments with high sen-
sitivity and specificity [122, 142, 151, 156]. The earliest applications of cell tracking
included the fields of immunobiology and hematopoiesis, answering questions of
how stem cells, progenitor cells and various leukocyte subtypes migrate through-
out the body, and how their states of differentiation and activation vary depending
upon their location or interaction with each other and, in the case of immune cells,
with antigen and antigen presenting cells [158]. Nowadays, tracking techniques are
applied to a variety of cell types, including tumor cells [117,149,159], embryonic stem
cells [10], endothelial and epithelial cells [80]. Time-lapse studies of live cells have
aimed at studying cell migration, cell cycle [115, 149, 159] and growth control [117],
proliferation [2, 10, 90], adhesion [80], and many other functions, under various con-
ditions.

Analyses of cell populations as a whole provide information about average cell
characteristics and (morpho)dynamic behavior. The ability to perform analyses on
individual cells would not only refine that information, but also enable detection
of rare events, which can lead to better understanding of the cell’s functionality.
In many of the applications, the identification of each cell and the precise delineation
of its boundaries are tasks of equal importance. The complexity of performing these
tasks is increasing with growing size of the image data being analyzed. Manual pro-
cessing of such data is not only subjective (possibly biased) and error prone, it is also
very laborious and in many cases simply impossible, creating a strong demand for
automated techniques.

The use of fluorescence microscopy for live cell analysis poses a number of addi-
tional challenges to automated segmentation and tracking. First, the variety of flu-
orescent proteins and labeling techniques used in practice for different experiments
leads to considerable differences in the appearance of cells in the images (Figure 3.1
shows some typical examples of fluorescent microscopy images where different la-
belings were used). Second, the intensities of the fluorophores (and their distribu-
tion) may change over time during an experiment, and may temporarily even dis-
appear completely. Third, since cells are sensitive to photodamage, the (laser) light
intensity needed to excite the fluorescent proteins is often reduced to a minimum,
leading to very low signal-to-noise ratios (SNR) [104, 142]. Fourth, for the same
reason, the temporal and spatial sampling rates are often reduced as well, some-
times causing large jumps from one frame to the next. Fifth, fluorescence microscopy
images may contain autofluorescence [98], interfering with the signal of interest.
Sixth, in the case of 3D imaging over time, the characteristics of the system (point-
spread function) are different for slices close to the coverslip compared to slices situ-
ated deeper in the specimen [59]. Finally, the usage of any classic computer vision
tracking methods for this application would be hampered by the necessity to also
track dividing targets.
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Figure. 3.1: Sample images from the data sets used in this study. From top-left to bottom-right:
Hoechst-labeled HeLa cells, H2B-GFP labeled HeLa cells, RAD18-YFP labeled HeLa cells, and
PCNA-GFP labeled CHO cells (see Section 3.4 for abbreviations and experimental details).

3.1.1 Related Work

Over the past decade, a number of cell tracking algorithms have been developed.
These algorithms concentrate on a variety of cell types, and are based on different
visual tracking methods. In general, they can be divided into two categories, with
respect to the tracking paradigm being used. The first consists of algorithms based
on the “first detect, then track” principle. These algorithms first perform detection
of all cells in the whole image sequence and then establish links between detected
cells from frame to frame based on certain criteria. Examples of such algorithms
include [2,27,68,116,168,170]. The main characteristic of this approach is its compu-
tational efficiency with respect to segmentation, but the algorithms often encounter
problems during the temporal data association stage [133]. Especially, this is the case
for tracking data with high cell densities, large numbers of cell division events, and
cells entering and leaving the imaging frame, i.e. when it is difficult to determine the
exact number of interacting cells in the current frame [81, 139, 140, 164]. Every case
where one-to-many or many-to-one correspondence is established requires a special
treatment procedure for splitting or merging some of the tracks. Usually such cases
are resolved by using information from the adjacent frame(s). Development of an
efficient splitting/merging procedure often requires training on large numbers of
features, thus making such approach inconvenient in practice. Another weakness of
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this type of algorithms is that during the segmentation step, usually no information
about the segmentation of previous frames is used.

The second category of algorithms uses an integrated segmentation and track-
ing scheme, which, when combined with contour models, is often referred to as the
model evolution approach [176]. The idea behind this type of tracking is that for each
object a model is created that describes the object being tracked. In this case, segmen-
tation and tracking are performed simultaneously by fitting the model to the image
data and using the end result in one frame as the starting point for segmentation in
the next frame. One example of this type of tracking is the mean-shift process [36],
which works well in case of tracking cells of known shape showing relatively small
displacements between frames. Another option for the model is active contours,
which in the past few years became the first choice for model evolution based cell
tracking [41, 44, 107, 115]. In practice, active contours can be implemented explicit-
ly, via a parametrization (e.g. snakes), or implicitly, using the level set framework.
Active contours can in principle perform tracking on any type of cell image se-
quences, but they can also be tailored to a specific application by putting, for exam-
ple, size or shape constraints.

The main advantage of the model evolution approach is that each object being
tracked preserves its identity, and events changing the total number of objects (mi-
tosis, apoptosis, cells entering or leaving the frame) can be handled more easily.
The other advantage is that all available information from the previous time step
can be directly incorporated into the segmentation of the current image frame. This
leads to much more realistic results in comparison to algorithms based on separated
segmentation and tracking. The main drawback of the model evolution approach is
that it is often rather expensive from a computational point of view. In addition, each
type of model used within this framework has its own pros and cons (in Section 3.3
we will elaborate on these for the case of coupled active surfaces).

Finally, we mention one important subclass of algorithms within the model evo-
lution approach paradigm. In probabilistic contour tracking algorithms, presented
e.g. in [135] and [153], the Bayesian framework is used to complement the active
contours method. The idea behind this type of algorithms applied to cell tracking
is that they try to predict in a probabilistic way the global motion of the object and
its characteristic parameters. To this end, the Kalman filter or related methods (e.g.
particle filters) can be used. In this case, the deformation of the tracked object is
assumed to be small, which, unfortunately, does not hold for dividing cells. To our
knowledge, none of the existing probabilistic contour tracking methods is able to
deal with such cases, which strongly limits their application to cell tracking.

3.1.2 Our Method

In this chapter we present a considerably extended version of the cell tracking algo-
rithm that was previously presented at a conference [48], which in turn is based on
the coupled active surfaces framework [44, 111, 175]. Specifically, we modify the ori-
ginal algorithm to make cell segmentation and tracking both faster and more robust.
The modifications concern most of the shortcomings of the original algorithm, such
as its sensitivity to the energy weights and how it handles (initially) touching cells,
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and cells entering the observation frame. Also, we suggest several improvements for
implementation of the algorithm, and perform an extensive evaluation.

Our algorithm is based on the model evolution approach. Level sets were cho-
sen for the model because of their ability to segment objects of varying intensity
and shape, to handle topological changes naturally, and to deal with both 2D and
3D image sequences. In our algorithm, each level-set function represents one object
(cell or nucleus), and the evolution equation for each level-set function is derived
using the variational approach, replacing the original weights from the energy func-
tional by more meaningful parameters that can be computed automatically from the
data. The initial position of the level-set function in any frame is its final position
in the previous frame. In the first frame, the initial position is found via segmenta-
tion with one level-set function and splitting the function according to the number
of connected components. Since this step is crucial for further tracking, and the
single-level-set approach tends to lump closely positioned cells together, we apply
the watershed transform to refine the results. To improve the separation of level-set
functions corresponding to closely positioned cells, we apply the Radon transform,
which “decouples” the active surfaces by means of separating planes, making it pos-
sible to apply the stopping criterion to each level-set function separately. The effi-
ciency of the algorithm is improved by introducing a new stopping criterion. Also,
we incorporate a modified non-PDE based energy minimization scheme, which sug-
gests a different way of treating the image-based and the smoothness-based energy
terms. To further speed-up this scheme, we approximate contour length using the
so-called cut metric. In addition, we suggest a different way of detecting cells enter-
ing the observation frame. Finally, we perform more economical recomputation of
the algorithm’s parameters.

3.1.3 Chapter Outline

The remainder of this chapter is organized as follows. First, in Section 3.2, we give
an overview of the coupled active surface framework, which constitutes the basis
of our algorithm. Next, in Section 3.3, we present our advanced cell segmenta-
tion and tracking algorithm, and discuss in detail the modifications compared to
the original algorithm. The performance of our algorithm in comparison with the
original algorithm and two publicly available specialized software packages was
evaluated on four real biological image data sets obtained with different fluorescent
labelings and/or cell types. The experimental setups and results are presented in
Section 3.4. Finally, the main conclusions following from our work are summarized
in Section 3.5.

3.2 Segmentation With Coupled Active Surfaces

In this section we provide a brief overview of the tracking algorithm by Dufour
et al. [44], which is an extension of the classical segmentation algorithm of Chan and
Vese [23]. This framework was chosen as the starting point for the development of
our algorithm because for our opinion it is the most elegant and promising method
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for simultaneous cell segmentation and tracking currently available. It is based on
the level-set representation, which makes it easily extendable from the original for-
mulation in 2D to 3D and, if necessary, to higher dimensions. The energy functional
for the 3D case is

E(S, cI , cO) =
∫∫
S

αgdS + λI

∫∫∫
inside(S)

(I − cI)
2dxdydz

+ λO

∫∫∫
outside(S)

(I − cO)
2dxdydz, (3.1)

where S is the set of surfaces defining the image partition, cI and cO are scalar vari-
ables related to average intensities inside and outside S, I = I(x, y, z; τ) is the image
intensity at time τ at location (x, y, z) ∈ Ω , with Ω ⊂ R3 the image domain, and α,
λI , and λO are fixed weights. The use of function g allows accounting for possible
presence of edge information.

Representing the set of surfaces S as the zero-level of a three-dimensional em-
bedding function, we arrive at the following implicit formula for S:

S = ϕ−1(0) =
{
(x, y, z) ∈ Ω | ϕ(x, y, z) = 0

}
, (3.2)

where ϕ is the scalar level-set function defined on Ω and index “-1” denotes function
inversion. We define ϕ such that ϕ > 0 inside the surfaces and ϕ < 0 outside the
surfaces. The representation (3.2) allows us to rewrite the energy functional (3.1) in
terms of the level-set function ϕ:

E(ϕ, cI , cO) =
∫∫∫

Ω

[
αgδε(ϕ) |∇ϕ|+ λI Hε(ϕ)(I − cI)

2

+ λO

(
1 − Hε(ϕ)

)
(I − cO)

2
]

dxdydz, (3.3)

where Hε and δε are the regularized Heaviside and the regularized Dirac function,
respectively. Applying to (3.3) the Euler-Lagrange equation, we derive the following
evolution equation for the function ϕ:

∂ϕ

∂t
= δε(ϕ)

[
αg∇ · ∇ϕ

|∇ϕ| + α∇g · ∇ϕ

|∇ϕ| − λI(I − cI)
2 + λO(I − cO)

2
]
, (3.4)

where t is an artificial (evolution) time parameter. The Euler-Lagrange equation for
the parameters cI and cO can be directly solved, resulting in those parameters being
equal to the average intensity of the voxels outside and inside the active surface,
respectively (corresponding expressions can be found in [23]).

In order to be able to track each cell separately, the concept of multiple coupled
active surfaces is introduced [44]. The tracking algorithm is based on assigning one
level-set function, ϕi, to each cell, i = 1, . . . , n. Disregarding the cases of dividing
cells and cells entering or leaving the observation frame makes it possible to keep
the number of level-set functions n fixed during segmentation of the current frame.



Segmentation With Coupled Active Surfaces 27

Going from one frame to the next, all biological events that may change the num-
ber of cells are handled after the frame is segmented, leading to disappearance of
existing level-set functions or to creation of new ones. Defining the background as
Ω0 = {(x, y, z) | ϕi(x, y, z) < 0, ∀i = 1, . . . , n} we write the total energy of the set of
functions ϕi as

E(ϕ1, . . . , ϕn, cO, cI,1, . . . , cI,n) =
∫∫∫

Ω

n

∑
i=1

[
αgδε(ϕi) |∇ϕi|+ λI Hε(ϕi)(I − cI,i)

2

+
λO
n

n

∏
j=1

(
1 − Hε(ϕj)

)
(I − cO)

2 + γ ∑
i<j

Hε(ϕi)Hε(ϕj)
]
dxdydz, (3.5)

which amounts to the sum of energies (3.3) plus a coupling term weighted by γ.
The purpose of the coupling term is to minimize the pair-wise intersections of the
interiors of active surfaces. Applying to (3.5) the Euler-Lagrange equation, we obtain
the mean values cO and cI,i for each level-set function (for analytical expressions
see [44]) and the equivalent of the evolution equation (3.4):

∂ϕi
∂t

= δε(ϕi)

[
αg∇ · ∇ϕi

|∇ϕi|
+ α∇g · ∇ϕi

|∇ϕi|
− λI(I − cI,i)

2

+ λO ∏
j ̸=i

(
1 − Hε(ϕj)

)
(I − cO)

2 − γ ∑
j ̸=i

Hε(ϕj)

]
. (3.6)

Using the above concepts, we can summarize the main steps of the tracking al-
gorithm as follows:

1. Segment the first frame with one level set using the algorithm of Chan and
Vese [23] and determine the number of connected components n.

2. Assign one level-set function, ϕi, to each component, i = 1, . . . , n, and set it to
the signed distance function of the boundaries of the component.

3. Evolve each level-set function according to (3.6) updating cO and cI,i every
iteration (until convergence).

4. Determine whether existing level-set functions need to be terminated or new
functions introduced.

5. If there is a next frame, pass the converged level-set functions on to that frame
and go to Step 3).

The algorithm inherits the strong points of the level-set framework, namely the abili-
ty to segment objects of strongly varying intensity and shape, and to handle changes
in topology. However, the level-set formulation has a number of shortcomings,
which limit the algorithm’s performance.

One of the problems that makes this framework inconvenient to use in practice
is its dependence on the weighting parameters α, λO, λI,i, and γ. Since these lack
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physical meaning, the only way to obtain sensible values for them is by trial and
error. But even then, the problem remains that the performance of the algorithm
is very sensitive to these weights, requiring very careful tuning to each new data
set. Another drawback of any level-set framework, and hence of this tracking al-
gorithm, is that it is computationally very expensive. To our knowledge, no good
criterion for stopping the curve evolution process has been suggested in the litera-
ture. The convergence speed is also strongly influenced by good initialization and by
re-initialization of the level set to the signed distance function for preventing numeri-
cal instabilities. The final difficulty that we encountered is not related to the level-set
framework as such, but to the considered algorithm [44]: even though the algorithm
was able to separate closely positioned cells, the resulting separating surfaces were
not always biologically correct (see Figure 3.9 for illustration).

3.3 Proposed Algorithm

In this section we present our level-set based segmentation and tracking algorithm
in detail. We start (Section 3.3.1) with an outline of the general flow of the algorithm.
Then we describe all the different aspects of the algorithm, for which we propose
new approaches. These include non-PDE based energy minimization for obtain-
ing a good initial segmentation (Section 3.3.2), separation of initially touching cells
(Section 3.3.3), handling cell division events (Section 3.3.4), the stopping criterion
(Section 3.3.5), a new “internal” energy of the level-set function (Section 3.3.6), se-
paration of closely positioned or even touching cells (Section 3.3.7), re-initialization
of the level sets (Section 3.3.8), and detection of cells entering the observation frame
(Section 3.3.9).

3.3.1 Algorithm Outline

The general flow of our cell tracking algorithm is similar to that described in the
previous section. The improvements that we introduce in the original algorithm can
be classified into two parts: 1) related to the quality of segmentation and tracking,
and 2) related to the performance of the algorithm in terms of computation time.
Some of the changes have strong impact on both issues.

Our algorithm is based on the representation of every object of interest by its own
level-set function. Their positions in the first frame are determined by segmenting
the frame using one level-set function by the method of Rousson and Deriche [132].
Non-PDE based energy minimization (Section 3.3.2) is used to obtain a good ini-
tialization, which significantly reduces the computation time. The watershed seg-
mentation algorithm combined with the flood-level threshold (Section 3.3.3) is used
to separate initially touching cells and to extract connected components from the
image segmented using one level-set function. For each of the n detected compo-
nents, a level-set function, ϕi, is created. Optimal segmentation of the current frame
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is then obtained by minimizing

E(ϕ1, . . . , ϕn) =
n

∑
i=0

∫∫∫
Ωi

− log P (I(x)|Ωi)dxdydz + α · Length(∂Ω), (3.7)

where Ω0 is the background, Ωi = {x | ϕi(x) > 0}, i = 1, . . . , n, are the regions such
that Ω =

∪n
i=0 Ωi, ∂Ω is the boundary between regions, P (I(x)|Ωi) is the conditional

probability that voxel x = (x, y, z) with intensity I(x) belongs to the region Ωi [120].
We assume here that this distribution is Gaussian (Section 3.3.6). Notice that here
we use a region-based formulation of the coupled active surfaces framework only,
since when experimenting with the region-based formulation on real biological data,
we did not observe any improvement of quality of the results in comparison with
using both region- and boundary-based formulations. Using the multiple level-set
representation we rewrite (3.7) as

E(ϕ1, . . . , ϕn) =
∫∫∫

Ω

n

∑
i=1

[
αδε(ϕi)|∇ϕi|

+ Hε(ϕi)e1,i +
1
n

n

∏
j=1

(
1 − Hε(ϕj)

)
e0

]
dxdydz, (3.8)

which is equivalent to (3.5) for the case of modified “internal" energies e0(x) and
e1,i(x) (Section 3.3.6) and absent coupling term. Applying to (3.8) the Euler-Lagrange
equation, we derive the evolution equation for each level-set function:

∂ϕi
∂t

=δε(ϕi)

[
α∇· ∇ϕi

|∇ϕi|
+∏

j ̸=i

(
1 − Hε(ϕj)

)
e0 − e1,i

]
. (3.9)

Every level-set function ϕi evolves according to (3.9), starting from its initial posi-
tion, which is defined as the result of segmentation using one level-set function (for
the first frame) or the final result of the segmentation of the previous frame (for the
second and subsequent frames). Evolution stops when the convergence condition is
met (Section 3.3.5), which is applied to each level-set function separately, indepen-
dently of the other n − 1 level-set functions.

The number of the level-set functions remains constant during the tracking pro-
cedure, unless cells divide (Section 3.3.4), or when cells leave or enter the observation
frame (Section 3.3.9). The first two events are treated at the end of segmentation pro-
cess of each frame, after all the level-set functions have converged. The cells entering
the frame, however, require a special detection procedure.

In summary, our algorithm consists of the following steps, refining those of the
original algorithm (Section 3.2):

1. Segment the first frame with one level set using the algorithm of Rousson
and Deriche [132], using non-PDE based segmentation as initialization (Sec-
tion 3.3.2), and watersheds to separate initially touching cells and extract n
connected components (Section 3.3.3).
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2. Create one level-set function, ϕi, for each component, i = 1, . . . , n, and set it to
the signed distance function of the boundaries of the component.

3. Only for mitotic cells in case DNA-bound staining is used: check if the corre-
sponding cell has divided (Section 3.3.4). If true, extend the active contour to
capture both daughter cells and recompute the narrow band.

4. Find the first level set ϕi in the queue for which the stopping criterion (Sec-
tion 3.3.5) does not hold, otherwise skip to Step 7).

5. Calculate the energies e1,i and e0 (Section 3.3.6), and evolve ϕi during ni ite-
rations according to (3.9) within a narrow band around the zero-level, while
applying separation masks to functions whose zero-levels come into close con-
tact (Section 3.3.7).

6. Re-initialize ϕi to the signed distance function (Section 3.3.8) and recompute
the narrow band, then move ϕi to the end of the queue and go to Step 4).

7. Determine which level-set functions correspond to dividing or leaving cells, or
whether new cells are entering the observation frame, and take proper actions
on the level sets (Section 3.3.9).

8. If there is a next frame, pass the converged level-set functions on to that frame
and go to Step 4).

3.3.2 Non-PDE Based Energy Minimization

The non-PDE based energy minimization algorithm of Song [141] is a simple and
efficient technique for image segmentation if the image consists of only two classes
(“foreground” and “background”). The idea behind this scheme is to start from an
initial partition and see what happens if each of the voxels changes its label from
“foreground” to “background” and vice versa. This relabeling is performed only if
it decreases the total energy, and generally produces partitions close to the optimal,
especially for images with a small amount of noise. In [44], it has been used during
the segmentation of the first frame using a single level-set function. The result of
the non-PDE based energy minimization is then used as a good initialization for the
level-set evolution.

The main problem of this non-PDE based scheme is the way it acts on smooth-
ness- and image-based energy terms. The image-based energy term is much easier
to incorporate into this scheme. Moreover, it is possible to prove theoretically that,
if only the image-based term is used, the scheme converges under certain condi-
tions. Including the smoothness-based term, however, often leads to very slow con-
vergence, thus drastically reducing the biggest advantage of this scheme: its speed.
On the contrary, running the algorithm without this term produces very undesi-
rable results, strongly influenced by the noise level. The reason is that in this case,
every voxel with intensity differing from the background intensity will most likely
be labeled as part of the foreground. Another problem when using both energy
terms together is the need to use the weight α, which strongly influences the final
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result and currently can be determined only experimentally (automatic calculation
of the optimal value of α is the subject of ongoing research). In order to overcome
these problems, the two energy terms are often treated separately. In the original
algorithm [44], the non-PDE based scheme is executed in two steps: 1) without the
smoothness-based term (for a few iterations only), and after that 2) with that term
(also for a few iterations only).

In our algorithm we use a slightly different approach. Within one iteration, we
first relabel voxels using only image-based energy, and after that we perform relabel-
ing using the smoothness-based energy term only. If necessary, the second relabeling
can be performed more than one time. This approach has the advantage that, instead
of setting a predefined number of iterations, here it is possible to establish conver-
gence. Moreover, by treating two energy terms of different nature separately, as pro-
posed, we avoid the need of using the parameter α. Notice that in these calculations,
we are also using different region statistics compared to the original algorithm, thus
a different image-based energy term (Section 3.3.6). The expressions that are used to
calculate the energy differences, together with their derivation, can be found in our
earlier conference report [47].

An additional modification that we used for this scheme concerns the computa-
tion of the smoothness-based energy term. In the original scheme [141], this energy
term was approximated by finite differences on the grid.

In order to reduce the number of operations required to calculate the smooth-
ness-based energy, we suggest using the cut metric introduced by Boykov and Kol-
mogorov [15]. This metric is based on the Cauchy-Crofton formula, which relates
the Euclidean length of a plane curve C to the number of straight lines that C crosses.
Thus we can write down the following approximation for the Euclidean length of
curve C on the grid:

|C|E =
nG

∑
k=1

nc(k) · wk, wk =
δ2

G · △φk

2 · |ek|
, (3.10)

where nc(k) is the number of lines belonging to the family of edge lines that C crosses,
nG is the total number of lines in the family, |ek| is the length of the k-th line in the
family, △φk is the angle between lines k and k+ 1, and δG is the distance between the
nodes of the grid. Since the value of wk depends only on the chosen family of edge
lines and hence is known in advance, the only parameter in (3.10) that depends on
curve C is nc(k), which can be easily calculated. This idea can be directly extended
to the 3D case [15].

3.3.3 Separation of Initially Touching Cells

As mentioned in Section 3.2, the total number of level-set functions remains constant
if no cell division occurs and no cells enter or leave the observation frame. Thus, in
order to perform correct cell tracking, it is vitally important to have a good seg-
mentation of the first frame. This requirement is not always fulfilled when cells are
positioned close to each other or touch. The level-set based segmentation tends to
lump such cells together. Fully automated separation of such cells is hardly possible,
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since there is no obvious automatic way to distinguish between a cell with unusual
appearance and two cells lumped together.

For data sets containing such cases, we apply the watershed segmentation to
the level-set function obtained from the pre-segmentation of the initial frame with
one level-set function. This approach has the advantage that except for separating
lumped cells, it also extracts the connected components, which is necessary for the
tracking algorithm. It is well known that the classical watershed segmentation often
produces oversegmentation. One of the possible ways to correct this is to use, for
example, marker-controlled watersheds [170]. Our approach to this problem is to
use region merging based on the flood-level threshold (sometimes referred to as the
H-minima transform) [126].

3.3.4 Capturing Cell Division

In addition to cells that (nearly) touch each other, we found that cell division events
form another important source of tracking errors, especially for level-set based track-
ing algorithms that use narrow-banding. In practice it often happens that the tem-
poral sampling rate is rather low (for reasons described in the introduction). In such
cases, particularly when DNA-bound labeling is used (which implies that the images
of the cell nuclei become very condensed during division), the distance between the
mother nucleus in one frame and the two daughter nuclei in the next frame may be
too large for the tracking algorithm to make the correct association, as there is no
overlap between the initial contour and the final region to be detected by the corre-
sponding level-set function (Figure 3.2). This phenomenon is a problem when using
the narrow-banding technique: if a cell (or nucleus) in a next frame is not covered
by at least a part of the narrow band of the corresponding level-set function from the
previous frame, it will not be segmented. Moreover, even if the narrow band is wide
enough to intersect with the expected object region, this case also requires evolu-
tion of the corresponding level-set without re-initialization, until the moment when
its zero-level contour captures a part of the cell. In practice these two issues seri-
ously limit the performance of the tracking algorithm on the data with DNA-bound
labeling. It has to be pointed out that usage of such data for biological research is
quite common: two out of four data sets selected for the validation of this algorithm
(Hoechst and H2B-GFP; see Section 3.4.1) were of this type.

To overcome this difficulty, we used the following strategy based on the typi-
cal appearance of the mitotic and after-mitotic cells under DNA-bound labeling
(Figure 3.5). More specifically, mitotic cells in this case were detected by the de-
creased total volume and pronounced elongated shape (Figure 3.2). Analyzing the
intensity profile in the direction perpendicular to the major axis we can identify the
division events as the moment when this profile becomes essentially bimodal in the
region of interest. Thus, we extend the corresponding cell region in such a way
that it includes both peaks of the mentioned bimodal profile. In practice the latter
can be easily performed by rising the corresponding level-set function by adding to
it a positive constant (illustrated in Figure 3.2). Using this method, our algorithm
was able to correctly handle almost all cell divisions in the experiments (Table 3.2 in
Section 3.4.4).
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Figure. 3.2: Example of cell division at low temporal sampling. Two successive frames of a
sequence are shown. The first (left image) shows three mitotic cells (indicated by the dashed
rectangles) that are about to divide. Segmentation results for this frame are also shown (over-
laid white contours). The next frame (right image) shows the telophase daughter nuclei right
after division. For reference, the segmentation results for the previous frame are also overlaid
here (white contours), as they are the initial contours of the level-set functions for this frame.
Since there is no overlap between these contours and the daughter nuclei, the latter will not be
segmented. Extending the contours as shown (described in Section 3.3.4) yielded the correct
segmentation in all three cases.

3.3.5 Stopping Criterion

A good stopping criterion is an important component of every level-set based algo-
rithm. Being able to determine the moment at which the zero-level of the level-set
function effectively stops changing is very important, as it allows avoiding unneces-
sary computations. Few practical solutions to this problem are available in the spe-
cialized literature. Most implementations use a maximum number of iterations as a
stopping criterion. Alternatively, it has been proposed to use the rate of change of
the contour length during iteration as an indicator for stopping or continuing [25].
If, after a required minimum number of iterations, this rate is less than some pre-
scribed value, the convergence condition is met.

In practice it turns out that the latter approach has a number of drawbacks.
One of them is that it is rather sensitive to the limiting value for the rate of change of
the contour length. The optimal value for this parameter has to be tuned for every
image data set separately. Another inconvenience concerns the use of a minimal
number of iterations after which the stopping criterion is applied. This condition
seems to be rather artificial, as there are no mathematical or physical reasons for
using it. Since the mentioned condition is based on the curve length, the length has
to be recomputed every iteration, which slows down the algorithm.

Our solution to the problem is to check the rate of sign change by every voxel,
and to use that information for deciding to continue or to stop evolving the level set.
This criterion is very convenient when using the narrow banding technique, since in
this case only the voxels inside the narrow band have to be considered. In practice,
we are using not the whole narrow band, but exclude from it one layer of voxels
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closest to the contour, on both sides (motivated below). Every change of the voxel’s
sign means that this voxel changes its label from “foreground” to “background” or
vice versa. For each of the evolving level sets, the stopping criterion is established as
follows: if during a prescribed number of iterations, nconv, the total number of sign
changes by all voxels in the “cropped” narrow band does not exceed the given value,
nε, the process stops. In practice, even for nε = 0, the criterion is met quite quickly
for typical numbers of iterations, nconv = 40.

The need to exclude the layers of voxels closest to the contour from the narrow
band is dictated by practical reasons. Analyzing the behavior of the contour close to
its final position, we found that for the voxels belonging to the layers adjacent to the
noisy object’s boundary it is not always possible to determine whether they belong
to the object or to the background. Consequently, such voxels tend to change their
label constantly between object and background, which is the reason to disregard
them.

3.3.6 Internal Energy

One of the issues that makes the original level-set framework of Chan and Vese [23]
problematic in use is its sensitivity to the energy weights α, λO, and λI .
Different values of these parameters may produce very different segmentations, and
there is no good way to calculate these weights in advance, thus requiring tuning
to each application. To tackle this problem, we used the approach of Rousson and
Deriche [132], which gives physical meaning to the weights λO and λI , if we make
the reasonable assumption that the intensity distributions of each object and of the
background are Gaussian:

P(I|Ω0) =
1

(2π)d/2σO
exp

(
− (I − cO)

2

2σ2
O

)
,

P(I|Ωi) =
1

(2π)d/2σI,i
exp

(
− (I − cI,i)

2

2σ2
I,i

)
. (3.11)

In these equations, cO, σ2
O, cI,i and σ2

I,i are the intensity means and variances of the
corresponding regions, and d is the number of image dimensions. Consequently, the
internal energy of the background e0 and that of each object e1,i are (up to a constant)
defined as the negative logarithm of (3.11):

e0 = log
(

σ2
O

)
+

(I − cO)
2

σ2
O

,

e1,i = log
(

σ2
I,i

)
+

(I − cI,i)
2

σ2
I,i

. (3.12)

From (3.12) it turns out that under these assumptions, λO and λI are inversely pro-
portional to the intensity variances of the corresponding regions. For the segmenta-
tion algorithm, this is a great advantage, since, instead of tuning the energy weights
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λO and λI , it was shown in [132] that the Euler-Lagrange equation for the variances
can now be solved directly.

Another advantage of this approach reveals itself when tracking cells with vary-
ing intensities between frames (Figure 3.5), as well as between individual cells within
one frame (Figure 3.1). The original scheme (3.6), which contains a constant weight
λO for the background and a constant weight λI (one for all level sets), is not always
able to find the desired energy minimum. In case of using the approach from [132],
instead of the energy weights one now deals with the background variance σ2

O and
the variances σ2

I,i of each cell being tracked. These variances are updated in a similar
way to cO and cI,i, which considerably improves the quality of segmentation under
strongly varying foreground and background intensity distributions.

The internal energies of the objects, e1,i, and of the background, e0, should, in
principle, be re-evaluated after each iteration, which is computationally expensive.
It has been proposed [44] to avoid re-evaluation of these energies, by assuming the
corresponding intensity distributions of the objects and of the background to be
equal to the ones obtained from the previous frame, implying that the energies will
also be equal to the ones calculated from the segmentation result of the previous
frame. In order to improve the algorithm’s performance, we suggest to assume the
image-based energy of each level set to be constant during a number of iterations,
ni (usually ni = 20 to 40 iterations). This allows to perform the surface evolution
during ni iterations with only recomputing the smoothness-based energy.

3.3.7 Separation of Touching Cells

The problem of properly separating closely positioned objects is one of the most
difficult issues in automated cell tracking. Therefore, some authors have proposed
manual or semi-automatic solutions [101], but the challenge remains to find fully
automated solutions. In [44], the repulsive coupling term was used to prevent the
positive parts of different active surfaces from overlapping. Since this term is not
based on the image data, it does not favor any particular position of the separating
surface. This often leads to incorrect segmentation of touching objects, especially
in the case when their movement is relatively large (for example see Figures 3.9A
and 3.9B). In order to account for this, a volume conservation constraint was intro-
duced [44], which improves the object separation but, unfortunately, this also does
not solve the problem completely. We observed that incorporating this constraint
into the cell tracking algorithm decreases its performance because of two reasons.
The main reason is that this constraint is quite strong, meaning that the assumption
that a cell’s (imaged) volume remains approximately constant does not always hold.
Especially this is not true in 3D, since usually only a few slices are imaged, not co-
vering the whole cell. If the cell moves in the vertical direction, the volume constraint
will most likely be violated. The other reason is that this constraint does not hold for
dividing cells. Detecting the moment when a cell starts dividing is problematic when
using the volume conservation constraint, since volume change is often indicative of
mitosis.

In our algorithm we use a different strategy. It is based on the observation that
the boundary between touching cells usually can be approximated by a straight line
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(or a plane in 3D). In this case, the Radon transform is a natural choice for locating
the exact position of the separating surface. Originally this idea was suggested for
segmenting mammospheres [66]. Our version of this idea consists of two main steps.
First, we calculate the Radon transform for each pair of closely located objects (the
latter are detected by overlapping narrow bands). The position of the optimal sepa-
rating plane (line in 2D case) corresponds to a local minimum of the Radon trans-
form. This minimum is automatically found based on certain criteria (see below).
Next, we constrain the evolution of the level-set functions corresponding to the two
objects to the regions on either side of this separating plane.

The Radon transform of a function [34] gives values of its projections along the
various planes:

R0(ρ, φ, θ) =
∫∫∫

f (x, y, z)δR(x; ρ, φ, θ)dxdydz, (3.13)

where

δR = δ(ρ − x cos φ cos θ − y sin φ cos θ − z sin θ), (3.14)

ρ is the shortest distance from the origin to the plane, φ is the azimuth around the
z axis, and θ is the elevation angle around the y axis. Applying (3.13) to the image
intensity I(x), we find the correct local minimum of the function

R(ρ, φ, θ) =

∫∫∫
I(x, y, z)δR(x, y, z; ρ, φ, θ)dxdydz∫∫∫

δR(x, y, z; ρ, φ, θ)dxdydz
, (3.15)

as the plane separating two seeds (we used the centers of the two objects). In addi-
tion, information about the position of the optimal separating plane from the previ-
ous frame is used for limiting the set of feasible solutions. The Radon transform is
applied only locally, for each pair of closely positioned cells, and is calculated within
the window containing two regions currently occupied by them. In addition, each
object’s region is extended with a band a couple of voxels wide around it, in or-
der to account for possible cell movement. Restricting the calculation of the Radon
transform to a small window also has a positive impact on the computation time.
We calculate the separating plane for each pair of closely positioned cells only once,
using the current states of their active surfaces. It is done either before segmentation
of the frame if the corresponding objects are already in contact, or at a later stage, as
the cells come close to each other. Since in this case we are not performing the sepa-
ration of the final regions occupied by the cells in the given frame, but of the current
ones, this approach can be regarded only as an approximation. Nevertheless, it is
valid when cell movement is relatively small compared to its size.

The next step after the optimal separating plane is found is to create a “mask”,
mi, for each object, i = 1, . . . , n. This mask defines the image part in which the
corresponding level-set function is allowed to evolve (Figure 3.3). In cases where
there are more than two cells close to each other, we apply the Radon-transform
based separation for every pair of these cells. The mask for any object in these cases
is obtained as the intersection of all the masks found for that object.
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Figure. 3.3: Two closely positioned cells separated using the Radon transform. The transform
is computed in a small region around the two cells (indicated by the dashed rectangles in the
images), and a separating plane is obtained by finding the correct local minimum in the trans-
form, which is used to construct evolution masks for the level-set functions corresponding to
the two cells (one mask is shown as a shaded area in the right image).

Finally, we point out one more benefit of searching for the separating surface in
the form of a plane. Namely, since a plane can be easily parameterized, there is no
need to store the mask as a binary image in memory. Instead, only the coefficients
of the separating plane are stored, from which the mask can be easily recomputed at
any moment when needed. This is especially advantageous when dealing with large
images containing large number of cells.

3.3.8 Re-Initialization of the Level Sets

Re-initialization of each level-set function after a number of iterations is necessary to
prevent numerical instabilities. There are two main approaches to re-initialization.
The approach of Osher and Fedkiw [114] suggests using a special kind of differen-
tial equation. In order to solve that equation, the gradient descent method is used.
Another approach is to use the distance transform [84]. This is often favored, as
it is faster than the one based on the differential equation: it uses only two passes
through the image to calculate the whole distance transform. Since in practice all
3D microscopy images have an axial resolution that is different from the in-plane
resolution, we use the weighted distance transform [137].

3.3.9 Capturing Entering Cells

Cases of cells entering the observation frame require special attention, since they can
strongly influence the tracking result. For example, when a cell enters the frame close
to an existing one, it may cause the level-set function of the existing cell to engulf the
newcomer. Another problem is that if an entered cell is not properly assigned to a
corresponding level set function, it will be considered part of the background, which
can drastically change the background statistics and lead to incorrect segmentation
results.

To deal with entering cells, it has been suggested [44] to use an additional level-
set function located at the boundaries of the frame, to capture cells crossing these
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boundaries. However, with this approach, problems may occur around existing cells
that are already located at the boundary. The level-set function that targets entering
cells may capture parts of existing cells as well, producing incorrect segmentations,
and causing two parts of the same cell to be represented by multiple level set func-
tions (illustrated in Figure 3.9). The errors propagate and deteriorate in subsequent
frames. Moreover, we noticed that dividing cells sometimes leave the observation
frame via the upper boundary, and enter it again at a later stage. Using an additional
level-set function is absolutely undesirable for detection of cells entering the frame
from the top, since often almost all cells are actually located at the upper boundary.

Our alternative strategy for the detection of entering cells is the following. After
the current frame has been segmented without taking entering cells into conside-
ration, non-PDE based segmentation (Section 3.3.2) is applied to determine possible
“candidates” for entering cells. The candidates are those connected components that
i) are located at the boundary of the image (including, if necessary, the upper boun-
dary) and ii) do not intersect with any of the existing cells. For each candidate, a
level-set function is created, and the level-set segmentation process is started again
from the current positions of the level sets. Since the level sets of all cells except
the “newcomers” have already converged, this process takes relatively short time to
complete.

3.4 Experimental Results

The proposed level-set based cell segmentation and tracking algorithm was com-
pared to the original algorithm by evaluation on real fluorescence microscopy image
data sets acquired for different biological studies. Here we first describe the data
sets (Section 3.4.1) and the algorithm parameter settings used in the experiments
(Section 3.4.2). Then we present the experiments and the results, which demon-
strate the improved performance of the proposed algorithm in terms of segmenta-
tion quality (Section 3.4.3), tracking quality (Section 3.4.4), and computation time
(Section 3.4.5).

3.4.1 Image Data Sets
Four raw 3D time-lapse fluorescence microscopy image data sets were selected by
expert biologists to evaluate the proposed algorithm under different experimen-
tal conditions. The data sets were chosen to be representative of data acquired in
everyday biological imaging practice, each of them containing a single layer of cells.
All images were acquired with a Zeiss LSM-510 laser-scanning confocal microscope.
A summary of the features and microscope settings for acquiring each of the four
data sets is given in Table 3.1. A sample image from each of the data sets is shown in
Figure 3.1.
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Figure. 3.4: Comparison of segmentation quality on the test image (A) between our algo-
rithm (B) and a number of commonly used thresholding algorithms: (C) Huang’s, (D) Li’s,
(E) Kapur-Sahoo-Wong’s (Maximum Entropy), (F) Tsai’s, (G) Otsu’s, and (H) Yen’s [134].
The chosen test image is the first slice (z = 1) of the first stack from the PCNA-GFP sequence.

The main cause of difference in appearance of cells in fluorescence microscopy
images is the type of labeling used. Each data set was made using a different type of
labeling, resulting in cell appearance of different complexity for automated cell seg-
mentation and tracking. The first, Hoechst (in this case we used Hoechst 33342), is
harmful for cells when excited, especially at the optimal UV-wavelength of 360 nm.
Therefore, we used 2-photon excitation (with a Ti:Sapphire laser of coherent light) at
800 nm and kept the Hoechst concentration and the laser power as low as possible,
leading to noisy images (Figure 3.5). In the second data set [53], we used H2B-GFP
labeling (green fluorescent protein linked to one of the histone types that form the
protein backbone around which the DNA winds). Histone-2B is expressed quite high
in most cells and therefore yields a somewhat higher SNR. However, during mitosis,
the H2B-GFP shows the equatorial plate of condensed chromosomes, which has a
completely different appearance than the staining patterns seen during interphase
(the time between cell divisions), and makes tracking during mitosis quite different
and more difficult (Figure 3.5). In the third and fourth data set, we used RAD18-
YFP (yellow fluorescent protein linked to RAD18 proteins) and PCNA-GFP (green
fluorescent protein linked to “proliferating cell nuclear antigens” proteins) labeling,
respectively. RAD18 is a DNA-binding protein involved in postreplication repair of
UV-damaged DNA, while PCNA has a role in DNA synthesis, DNA repair, and cell
cycle progression [52]. The labeling patterns of RAD18 and PCNA are quite diffe-
rent: the former starts with a few foci in G1-phase, many foci in the S-phase and early
G2-phase, and nucleolar staining in the late G2-phase (Figure 3.5), while PCNA
forms clear foci during the S-phase but is more or less homogeneous during both
the G1- and G2-phase. These time-varying labeling patterns make automated seg-
mentation and tracking very challenging (Figure 3.4 and Figure 3.5).
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Figure. 3.5: Typical appearance of the nuclei through the cell cycle under different staining:
Hoecht (first row), H2B-GFP (second row), RAD18-YFP (third row) and PCNA-GFP (fourth
row). These images clearly indicate the difficulty connected with tracking mitosis events
caused by dramatic change of nuclei shape and intensity during cell division.

3.4.2 Algorithm Parameter Settings

For all data sets, the parameters of our proposed algorithm (Section 3.3) were fixed
to the following values: α = 20, ni = 40, nconv = 40, nε = 0. The parameters of
the other algorithms used in the evaluations were optimized to obtain the best pos-
sible results per data set. We note that this may positively bias the results of the
latter algorithms relative to our algorithm, but at the same time it allows us to fur-
ther demonstrate the improved robustness of our algorithm. For the original level-
set based segmentation and tracking algorithm [44] we experimentally determined
the following parameter values: α = 20 (weight of the smoothness-based term),
η = 0.001 (weight of the volume conservation constraint), and γ differing per data
set (ranging from 20 to 100) to obtain optimal results. The parameters λ1 and λ2
were chosen as the inverse values of the foreground and background intensity vari-
ances in the first frame, which yields the optimal segmentation of this frame in case
these intensities are normally distributed. Since for using the volume constraint this
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algorithm requires knowledge of whether a cell is dividing or not at the given time
point, this information was provided in advance, before the algorithm was executed.
For both algorithms, the evolution time step was fixed to ∆t = 0.1.

3.4.3 Segmentation Evaluation
Since ground-truth segmentations were not available for the data sets, the segmen-
tation results of both algorithms were compared with manual segmentations by four
expert human observers. Whereas the algorithms segmented and tracked all data
sets completely, manual segmentation of all data would be an extremely laborious
and time-consuming task. Therefore, we restricted the manual segmentations (and
thus the comparisons) to 10 randomly selected images (slices) per data set. Due to
the randomness of image selection, all temporal positions (time frames) of the se-
quences, as well as all depth positions (slices), were more or less equally represented
in the experiments.

A reference segmentation for each image was calculated from the manual seg-
mentations using the STAPLE algorithm [161]. The reference segmentations also
allowed us to calculate estimates for the local SNR per object in each of the four test
data sets. The average SNR for each of the images is shown in Figure 3.6. Here, SNR
is defined as the ratio of the difference between the mean intensity of the foreground
and of the background to the standard deviation of intensity in the foreground re-
gion, which is appropriate in our case of signal-dependent (Poisson) noise [22, 26].

For further comparison, we have also chosen two publicly available specialized
software packages: CellProfiler [21, 85] and DCellIQ (based on [88, 160]). Both pack-
ages were created for performing high-throughput/high-content screening of cell
populations, involving cell segmentation (CellProfiler) or both cell segmentation and
cell tracking (DCellIQ). The drawback of these software packages is that they are es-
sentially 2D, which limits the value of any comparisons with our algorithm. Never-
theless, it does give an impression of the relative segmentation performance of our
algorithm in 2D, even though our algorithm operates in 3D.

Precision (or positive predictive value) and recall (or sensitivity) are two com-
mon measures for evaluating the quality of results [3, 152]. Let X denote the seg-
mentation result by one of the considered methods and let Y be the ground truth.
The precision and recall are defined as

precision =
|X
∩

Y|
|X| , recall =

|X
∩

Y|
|Y| . (3.16)

These can be combined into a single measure of performance, by taking the harmonic
mean, resulting in the F-score:

F =
2 · precision · recall
precision + recall

. (3.17)

Precision and recall values for the four expert human observers were obtained
from the STAPLE algorithm.
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Figure. 3.6: Average SNRs within the 10 test images selected randomly from each of the four
data sets. The profiles give an impression of the behavior over time of the SNR in the data
sets, caused by the time-varying appearance of the fluorescent labels.

The segmentation performance of each of the methods and four human obser-
vers in terms of the precision and recall is shown in Figure 3.8, where our algorithm
is denoted as “DZ09” and the original algorithm on which it is based as “DUF05”.
Several important observations can be made here. First, the quality of segmentation
is strongly correlated with SNR (compare Figure 3.6). Second, the original algorithm
(DUF05) has the tendency to show decreased performance closer to the end of the
sequences (recall that in the graphs the images are sorted such that increasing image
numbers correspond to increasing time). Third, the performance of our algorithm
(DZ09), contrary to the original (DUF05), remains fairly constant throughout the se-
quences and is mostly dependent on the SNR. Fourth, for all four image sequences,
our algorithm shows a segmentation quality that is better than or comparable to the
other three methods. The only exception here is the PCNA-GFP data set, where for
images 5 and 10 our method performed worse than CellProfiler and DCellIQ. This is
likely a consequence of the fact that the appearance of the PCNA-GFP data set varies
strongly between slices, which negatively affected our 3D segmentation in compari-
son with the 2D methods. Nevertheless, the overall performance of our method is
superior, which was confirmed by using a paired Student t-test. For all four test data
sets the mean F-score of our algorithm was higher than that of the other three algo-
rithms. For all four data sets the significance level of the performance improvement
was p < 0.1, except for CellProfiler on the H2B-GFP (p < 0.2) and the PCNA-GFP
(p < 0.38) sequences and DCellIQ on the PCNA-GFP (p < 0.33) sequence. In parti-
cular, comparing only the DZ09 and DUF05 algorithms, we obtained the significance
level p < 0.02 for all four test sequences.

In addition, we tested all four algorithms on presence of systematic bias. This
was done by using a similar measure to the bias index [20], which is the measure
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Figure. 3.7: Average bias of the four considered methods on four test data sets.

that is commonly used in epidemiology. We define the bias index for a single object
as

BIobject =

∣∣X∩YC
∣∣− ∣∣Y∩XC

∣∣
|Ω| , (3.18)

where the letter "C" next to the region’s name denotes its complement, and the sets X,
Y and Ω were described earlier in the text. In order to obtain a meaningful measure
for performance of a particular method on the given data set, we divide its average
bias index by the average bias index of all four observers on all objects of this data
set:

BImethod =
sign(BIobjects) · mean(

∣∣∣BIobjects

∣∣∣)
mean(

∣∣∣BIobjects,observers

∣∣∣) . (3.19)

The sign factor in the last formula was used for indication of the oversegmenta-
tion (BI > 0) or undersegmentation (BI < 0). Here we restricted ourselves only
with those objects for which at least one pixel was segmented by all four methods.
The result of the systematic bias analysis is shown in Figure 3.7. From this figure
we can observe that the maximal absolute bias value of our method is less than 1.5,
which is comparable with the average bias rate of four human observers. The ma-
ximal absolute bias value for the DCellIQ algorithm is close to ours (approximately
1.6), while for the DUF05 and the CellProfiler methods this value is relatively higher
(3.0 and 1.9 respectively). Also it can be observed that the DCellIQ and the Cell-
Profiler algorithms tend to oversegment objects in all four test data sets, while our
method and the original one show more balanced performance.
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3.4.4 Tracking Evaluation
For estimation of the tracking performance, two expert biologists independently
checked all the results of both our algorithm and the original algorithm, by care-
fully scrolling through the data sets with the tracking results overlaid as color-coded
regions. In this process, they visually detected false positives or negatives, and false
or missed cell divisions. From these observations, the following three quantitative
measures of tracking performance were obtained:

• Tracking accuracy: The quality of cell identification over time in terms of preci-
sion and recall, defined as (3.16), but now with a different meaning of variables
X and Y: here, the ground truth Y is the presence or absence of a cell in current
frame (a binary variable), while X is the tracking result (“true” if the active
contour of interest covered the corresponding cell region, or a part of it, and
“false” otherwise). The average precision and recall rates over all time frames
were calculated.

• Number of true divisions: The number of division events in which both daugh-
ter cells (nuclei) were correctly identified and associated with the mother cell
(nucleus), relative to the real number of divisions.

• Number of false divisions: The number of cases in which two cells (nuclei) were
incorrectly associated with one cell (nucleus) in the previous frame.

In order to perform better validation of cell division events the corresponding
measures were tested on a larger number of image sequences from the four data sets
mentioned above: Hoechst (11), H2B-GFP (21), PCNA-GFP (5) and RAD18-YFP (4).
For performing this kind of analysis, whenever it was necessary to determine the
precise moment of cell division, the biologists also used the transmission channel
images that were recorded along with the fluorescence images. The tracking re-
sults of the original algorithm and our proposed algorithm are listed in Table 3.2.
The numbers clearly indicate the superiority of our method for all data sets and for
all criteria. The false divisions in the results of our algorithm are mostly caused
by mitotic cell breaking up or by rare events in the vicinity of the existing cell: the
presence of an apoptotic cell or a new cell entering the observation frame. The some-
what lower recall value of our algorithm (93.8 %) for the RAD18-YFP data set can
be explained by the typical division pattern of cells stained that way: a couple of
frames before and after division, the fluorescence can be observed all over the cy-
toplasm and is no longer concentrated in the nucleus. Consequently, our method
tends to separate the daughter cells from each other with a delay of a couple of
frames, thus lowering their recall rate (see Figure 3.10). The very high false division
rate for the DUF05 algorithm for the H2B-GFP sequence can be explained by consi-
derable cell movement between consecutive frames and by the high variation of the
intensity distribution within the cell which results in level-set function segmenting
intracellular structures rather than the cell body. Though some part of these division
errors might potentially be corrected by putting additional constraints on divided
cells, it was not done here in order to demonstrate the robustness of our algorithm
with respect to handling cell division events.
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Figure. 3.8: Average precision and recall values showing the segmentation performance of
four human observers and the four methods: our algorithm (DZ09), the original level-set
based algorithm (DUF05), CellProfiler, and DCellIQ. The scores are shown for a subset of
10 images selected from the four different image data sets: Hoechst (first row), H2B-GFP
(second row), RAD18-YFP (third row), and PCNA-GFP (fourth row).
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Table. 3.3: Computation times (in hh:mm) of both algorithms.

Method Hoechst H2B-GFP RAD18-YFP PCNA-GFP

DUF05 21:37 17:53 11:02 13:19

DZ09 2:26 2:24 2:12 2:38

The improved tracking and segmentation quality of our algorithm in comparison
with the original algorithm is illustrated with a number of examples in Figure 3.9.
Some cases when our algorithm fails to produce the optimal results are shown in
Figure 3.10.

Figure. 3.9: Typical examples of errors produced by the original multiple-level-set tracking
algorithm (top row) in comparison with improved performance by our modified algorithm
(bottom row): (A,B) incorrect separation of two touching cells; (C,D) contour splitting as a re-
sult of such incorrect separation (this may lead to detection of cell division that in reality did
not occur); (E,F) incorrect segmentation of objects with complex foreground intensity distribu-
tion; (G) the same, which leads to breaking of the contour into a number of sub-contours seg-
menting intracellular structures instead of the whole nucleus; (H) disability to handle rapid
shape change; (I–K) difficulty with properly handling the correct moment of cell division,
which may cause a significant delay of detection of this event; (L) incorrect identification of a
part of an existent object located at image’s boundary as a new object.

Figure. 3.10: Typical examples of segmentation and tracking errors produced by our algo-
rithm: (A) incorrect segmentation after rapid change of objects’s shape and contrast (correct
segmentation was recovered after the next time step); (B) delayed detection of cell division
event (separation of daughter nuclei); (C) false cell division event due to rare event (appeared
apoptotic cell) in the vicinity of the object.
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3.4.5 Computation Time
Both the original and our proposed algorithm were implemented in the same experi-
mental programming environment (Matlab version R14). This allows for a fair com-
parison of computation times. Both algorithms were implemented in a similar fa-
shion and optimized from the programming perspective. In addition, the modifica-
tions introduced in Section 3.3 enabled the incorporation of several simplifications in
our algorithm (approximation of the regularized Heaviside function, re-initialization
limited to the region of interest, etc.), which significantly reduced computational
times. The times required by the algorithms to segment and track each data set are
given in Table 3.3. These numbers show a reduction in execution time of 5 to almost
9 times when using our algorithm. We note that further optimization of the code is
still possible, as well as conversion to a faster programming or even hardware envi-
ronment [86]. While this will likely reduce the required absolute computation times
by a considerable amount, our proposed algorithm will remain substantially faster
than the original algorithm. In general, the main factors that influence the total com-
putation time of our algorithm are: number and size of cells (approximately linear
dependence), amount of cell clustering, and SNR of the processed data.

3.5 Conclusions

In this chapter we have presented an advanced algorithm for multi-cell segmen-
tation and tracking, based on the coupled active surfaces framework. A number of
shortcomings of the original algorithm were discussed, and new solutions proposed.
These concerned the segmentation and tracking accuracy, robustness, and computa-
tional cost. Specifically, we redefined the energy functional to be minimized, thereby
reducing the number of energy weights. Also, we introduced the use of the Radon
transform for improved separation of touching cells. To obtain a better segmenta-
tion of the first frame, which is crucial to avoid initial error propagation, we incor-
porated the watershed algorithm. In addition, we developed improved schemes for
capturing cell division events and cells entering the observation frame. Finally, a
number of implementational improvements were proposed, to make the algorithm
computationally faster, or more accurate, or both. These include an efficient criterion
for stopping the level-set evolution process, a modified non-PDE based energy mi-
nimization algorithm, the use of the cut metric for computing the smoothness-based
energy term, and the weighted distance transform for regular re-initialization of the
active surfaces. Evaluation experiments were performed on four time-lapse fluores-
cence microscopy image data sets, where different cell types and/or labelings were
used, so as to be representative of a large variety of biological experiments. The re-
sults clearly showed the improved tracking performance of our new algorithm, with
improved precision (up to 11 percent) and recall (up to 8 percent), as well as perfect
detection of true positive cell divisions, and reduced false positive detections. Final-
ly, the new algorithm was found to be computationally much more efficient (up to
9 times faster).
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Intracellular Foci 4

Abstract — Complete, accurate, and reproducible analysis of intracellular foci from fluorescence mi-
croscopy image sequences of live cells requires full automation of all processing steps involved: cell
segmentation and tracking followed by foci segmentation and pattern analysis. Integrated systems for
this purpose are lacking. Extending the work in cell segmentation and tracking presented in the pre-
vious chapter, a new system for performing fully automated analysis of fluorescent foci in single cells
was developed. The system was validated by applying it to two common tasks: intracellular foci count-
ing (in DNA damage repair experiments) and cell phase identification based on foci pattern analysis
(in DNA replication experiments). Experimental results show that the system performs comparably to
expert human observers. Thus, it may replace tedious manual analyses for the considered tasks, and
enables high-content screening. The described system was implemented in MATLAB (The MathWorks,
Inc., USA) and compiled to run as a stand-alone program. It is publicly released, free of charge for non-
commercial use.

Based upon: O. Dzyubachyk, J. Essers, W. A. van Cappellen, C. Baldeyron, A. Inagaki, W. J. Niessen,
E. Meijering. Automated Analysis of Time-Lapse Fluorescence Microscopy Images: From Live Cell
Images to Intracellular Foci. Bioinformatics, vol. 26, no. 19, October 2010, pp. 2424–2430.
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4.1 Introduction

The ability to perform analyses on individual cells presents evident advantages over
the traditional averaging over the whole cell population [62]. In many studies, such
analyses are mainly performed manually, which is very tedious and often lacks accu-
racy, completeness, and reproducibility. To improve this, automated methods are es-
sential. In this chapter, we present a new system for performing intracellular analysis
in time-lapse fluorescence microscopy image data of cell colonies. The system con-
sists of two main modules: cell analysis and foci analysis. The first is more generic
and can be applied to a large variety of biological data acquired for cell analysis.
The second is naturally a more application dependent step and requires specialized
methods depending on the structures of interest.

A number of cell segmentation and tracking algorithms have been presented in
the recent literature [2, 44, 51, 90, 115]. However, very few can potentially satisfy
the requirements imposed by live cell imaging and analysis at the individual cell
level. Specifically, a candidate algorithm should have capability to handle 3D time-
lapse image data sets, it should provide full segmentation (detection only is insuf-
ficient) and tracking, be able to handle cell divisions, and show good performance
even in the presence of significant noise and inhomogeneous intensity distributions
(whether in the background or within cells). Here we use our robust level-set based
cell segmentation and tracking algorithm [49] for this purpose. We also present an
extension of the algorithm that allows registration of each cell to a common coordi-
nate system by applying motion correction after segmentation and tracking. This is
necessary to study the true relative dynamics of intracellular processes.

As for the subsequent step of intracellular analysis, we focus here on fluorescent
foci, which appear in many biological studies. Representing high concentrations of
the corresponding fluorescently labeled protein, foci are usually the main indica-
tor of an underlying biological process occurring at these locations [57, 87]. Conse-
quently, this makes foci analysis the main tool for studying protein-related processes
by means of fluorescence microscopy. Examples of biological research based on foci
analysis include fluorescent in situ hybridization (FISH) experiments [64,83,112,126],
analysis of DNA replication and repair [53, 76, 105], and classification of cell cycle
phases [51]. In this chapter, we present a novel foci segmentation algorithm, and
evaluate its robustness in segmenting foci of different size and intensity, as well as
clustered foci.

In addition to presenting the algorithms used in the different steps, we also va-
lidate the complete system by showing its ability to reproduce findings from two
biological studies that were based on expert manual analyses. In the first experi-
ment, we investigate the time course of nuclear foci formation and disappearance
upon treatment with ionizing radiation of the 53BP1 DNA repair protein. In the
second experiment, we employ the system for identifying cell phases in time-lapse
images of PCNA-GFP stained cells. PCNA or “proliferating cell nuclear antigen” is a
central protein in DNA replication and PCNA foci mark the sites of active DNA syn-
thesis. Thereby, automated cell phase identification is an important application that
will facilitate further research of cell-cycle related studies [136], in particular cancer
drug discovery [160]. To this end, as part of the second step of the system, we de-
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veloped a simple yet effective algorithm for cell phase detection based on observed
typical PCNA foci patterns through the cell cycle [87]. The results of the validation
experiments clearly show the potential of the system for performing screening of
high-content cell-based assays in applications involving the considered tasks.

4.2 Methods

The developed system processes images in a top-down fashion: 1) cell analysis and
2) foci analysis. Here we present the methods developed for performing these tasks.

4.2.1 Cell Analysis

To prepare for analysis of intracellular structures it is necessary to first determine the
position and outline of each cell in the image data. Often it is also useful to transform
the found cells to a common coordinate system to analyze intracellular changes free
of global cell motion. This requires two processing steps: 1) cell segmentation and
tracking, and 2) cell motion correction.

Cell Segmentation and Tracking

Segmentation and tracking of cells in image sequences is a difficult task. Especially
in live cell imaging experiments it is hampered by low signal-to-noise ratio, cell clus-
tering (unclear cell boundaries), inhomogeneous intensity distributions (in the back-
ground or within the cells), and intensity decay (due to photobleaching). In this
system we have adopted our recently developed level-set based cell segmentation
and tracking algorithm [49]. The algorithm performs simultaneous segmentation
and tracking by means of a model evolution approach, employing level sets as the
underlying model. In the cited paper we have shown that such approach guarantees
a high quality of segmentation under strongly varying intensities (whether spatially
or temporally), the ability to handle data of any dimensionality (2D, 3D, or even
higher) without requiring fundamental changes to the algorithm, and natural hand-
ling of topological changes, which is a prerequisite when dealing with dividing cells.
A detailed description of this algorithm can be found in the cited paper.

Cell Motion Correction

Motion correction methods can be roughly divided into two groups: feature-based
and shape-based (or area-based) [177]. The former use information about image fea-
tures (usually related to image intensity) whereas the latter use shape information
only. The choice for one type or the other is dependent on the underlying biological
application. Both types of methods have been applied successfully for motion cor-
rection of segmented cells [82, 99, 100, 169]. However, none of these methods can be
applied directly to our problem. First, since our ultimate aim is to perform analy-
sis of intracellular structures, only shape-based registration can be used. Second, the
method should be able to separate global cell motion from local deformations, which
is an ill-posed problem [171].
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Figure. 4.1: Example of motion correction using the proposed approach. The two top rows
show the motion of one cell extracted from a time-lapse fluorescence microscopy image data
set (outlined in white). One slice (z = 1) is shown for time steps 1, 11, 21, 31, 41, 51, 61,
71, 81, and 84. The third row shows (magnified) the result of cell motion correction after
segmentation and tracking. In this case only the global motion of the nucleus is subtracted.

To solve this problem, we have adapted the approach of Paragios et al. [121],
where a shape is described by a signed distance function. This perfectly fits our
needs, as the output of the cell segmentation and tracking step are level-set functions
using the same representation. Shape registration is then performed via energy mi-
nimization, using an energy functional that contains terms representing both global
motion and local deformation. Since normally cells do not change shape dramati-
cally between two consecutive time steps, we register each image to its predecessor.
The only exception is cell mitosis, during which a cell undergoes considerable (and
quite typical) shape change. To deal with such cases, we consider the newly-born
daughter cells as new objects, and initiate a new registration sequence for each of
them. Thus, registration is performed on the full lifespan of a cell: from the moment
after division (or from the first frame in the sequence) until the moment when the
cell divides (or until the last frame).

Another issue arises from the typical sparseness of microscopy data along the z
axis in 3D. As pointed out by [100], the rotation of cells in a typical assay is virtually
limited to rotation around the z axis only, and since vertical displacement is practi-
cally absent too, the registration task essentially becomes a 2D problem. Therefore,
we perform registration on the maximum intensity projection of the 3D cell region,
and apply this transformation to each slice of the 3D image.

In our algorithm, the deformation of a 2D cell region is described by rotation
angle θ, shift T = (Tx, Ty), scaling factor s, and local deformation field (U, V). Shape
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registration is then achieved by minimization of the following energy functional:

E(s, θ, T, (U, V)) = α
∫∫
Ω

Nδ1

(
sΦD − ΦS(A)

)2 dΩ

+ (1 − α)β
∫∫
Ω

Nδ2

(
sΦD − ΦS(A − (U, V))

)2 dΩ (4.1)

+ (1 − α)(1 − β)
∫∫
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x + V2
y

)
dΩ,

where ΦD and ΦS are the signed distance functions corresponding to the source and
the target shapes, Ω is the image region, Nδ1 = Nδ1(ΦD, ΦS) and Nδ2 = Nδ2(ΦD, ΦS)
are narrow bands around the shape contours, α, β ∈ [0, 1] are balancing weights,

A(x, y) =
(
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)
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)(
x
y

)
+

(
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)
(4.2)

is the image transformation, and (x, y) are the Cartesian coordinates on Ω. Here, the
non-rigid deformation field (U, V) serves as a complement to the transformation A
to ensure better fitting and convergence. For generating the warped image, either
only rotation and shift, or all the registration parameters are used, depending on the
application. This way, the global motion of the object (in the first case) or the whole
deformotion (in the second case) can be removed, while retaining the local motion
of intracellular structures (see Figure 4.1 for an example).

4.2.2 Foci Analysis
The next step after all cells are extracted from the image data is to analyze their
content. For our applications, which involve the analysis of fluorescent foci, this
requires two processing steps: 1) foci segmentation, and 2) foci pattern recognition.

Foci Segmentation

Similar to cell segmentation, the foci segmentation process is a challenging task,
due to imperfections in the imaging and the fact that foci may vary considerably
in size (from subresolution to large regions), as well as in local contrast, total num-
ber, and degree of clustering. For example, in the case of PCNA, foci may be com-
pletely absent in both G phases of the cell cycle (Figure 4.1K,R–T and Figure 4.2),
or appear as small spots in the early-S (Figure 4.1L–N and Figure 4.2) and mid-
dle-S (Figure 4.1O and Figure 4.2) phases, or as a large bright blob in the late-S phase
(Figure 4.1P,Q and Figure 4.2). Existing algorithms for foci segmentation were de-
veloped mostly for the analysis of FISH dots [64, 83, 112, 126], which are easier to
deal with due to their high contrast, regular spherical shape, uniform size, relatively
small number, and thus relatively small degree or even complete absence of clus-
tering. More involved methods for foci segmentation have also been proposed [12]
but these require a large number of measurements to properly handle overlapping
foci regions. Here we present a novel method for segmentation of fluorescent foci,
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Figure. 4.2: Example of foci segmentation using our algorithm: (A) images of the same nucleus
in five different time steps (1, 9, 46, 65, 71), each representing one of the phases of the cell cycle
(G1, early-S, middle-S, late-S, G2); (B) results of applying patch-based reconstruction to each
image; (C) initially detected foci markers (dots in different colors); (D) results of the graph-cut
based segmentation algorithm; (E) final results after foci selection. All images are the first slice
(z = 1) of the corresponding 3D image stack.

which uses a similar “local” strategy as that of Netten et al. [112], but includes addi-
tional steps that also enable segmentation of heavily clustered cells of varying sizes
and shapes. The segmentation pipeline consists of three steps: 1) detection of foci
markers, 2) foci segmentation, and 3) foci selection.

In the first step of the pipeline, a marker is identified for each potential focus, to
be used as seed for the actual segmentation in the second step. All local maxima of
the intensity landscape are initially selected as markers. In order to lower the number
of false positives (local maxima that do not represent actual foci) in this stage, we first
perform patch-based image reconstruction [13]. Since foci may appear as relatively
small structures, we use patches of size 3 × 3 pixels. Using larger patches may blur
the boundary between two neighboring foci so that it will become impossible to
recognize them as two separate objects. Additionally, since we aim to perform the
segmentation in 3D, we apply depth correction of intensity such that the mean and
the variance of the intensity distribution of each slice within the cell (or nucleus)
region are equal to those of the chosen reference slice. Example results after applying
patch-based reconstruction and foci marker detection are shown in Figure 4.2B and
Figure 4.2C respectively.
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In the second step, foci segmentation is started by predicting the size of each
focus, which is accomplished by calculating the average intensity in a window cen-
tered around its corresponding marker. Specifically, for each focus, the local avera-
ge intensity is calculated for different sizes of the window (from unity to a prede-
fined maximum value of expected foci sizes), and the estimated radius is taken to
be the position of the maximum gradient of the resulting curve. In most cases, this
procedure allows correct segmentation of neighboring foci, even if their sizes dif-
fer significantly, and it helps to segment large conglomerates of clustered foci (see
Figure 4.2 for the late-S phase). Segmentation is then performed in a window Ω0
corresponding to the estimated size of the focus and centered around its marker, by
energy minimization using the graph-cuts method [15], which allows to combine
both image-based and smoothness-based energies:

E = Eimage + Esmoothness. (4.3)

The latter is especially important in the case of noisy fluorescence microscopy
images, where the boundaries of the foci are very weak. In order to calculate the
image-based energy, we first perform fitting of the intensity histogram in Ω0, thereby
obtaining two classes: foreground (foci) and background. The image-based energy
of the foreground and of the background is defined as the negative logarithm of the
corresponding intensity histogram, and the total image-based energy is obtained as:

Eimage = ∑
x∈Ω0

− ln
hf(I(x))
hb(I(x))

, (4.4)

where I(x) is the image intensity of the voxel x, and hf and hb are the smoothed
intensity histograms of the foreground and of the background, respectively. The re-
gularization energy term is defined as the sum of a certain form functional over the
set N of all the neighboring voxel pairs (p, q):

Esmoothness = λ ∑
(p,q)∈N

exp

(
−
∥Ip − Iq∥2

2σ2

)
1

∥p − q∥ , (4.5)

where λ is a real-valued weight, and the parameter σ is calculated from the data.
The result of the foci segmentation step is shown in Figure 4.2D.

The third and final step is the selection of segmented foci in order to reject false
positives. This process is guided by two parameters, which can be determined em-
pirically: the expected minimum focus size and the expected minimum contrast (the
difference between the mean intensities of a focus region and its local background).
In addition, the Grubbs test [63] for detection of statistical outliers is applied. The test
is performed on the intensity distribution of a local window around each segmented
focus. Specifically, all voxels belonging to a segmented focus are added one-by-one
to the mentioned local background distribution, and the Grubbs test is performed
to detect which of these are outliers. If the number of outliers detected this way is
less than the provided minimum focus size threshold, the focus is rejected. Apply-
ing all three criteria (minimum foci size, minimum contrast, and the statistical test)
together, we obtain the final result of the foci segmentation algorithm, examples of
which are shown in Figure 4.2E.
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Foci Pattern Recognition

The analysis of foci patterns is relevant to many biological studies. In this chapter
we consider the example of automatic identification of the cell cycle phase based on
PCNA-GFP foci. Most of the published methods for cell cycle phase identification
rely on machine learning techniques, which typically require large numbers of train-
ing data and/or the calculation of a large number of (static and dynamic) features
for classification [51, 68, 160]. Alternatively, cells may be labeled explicitly with cell
phase markers [115,148], giving them a characteristic appearance during each of the
cell cycle phases. In our applications, we aim to identify the cell phases directly from
the inherent labels used in the experiments. Our algorithm is based on the typical
behavior of PCNA foci through each of the phases of the cell cycle. Since in this
particular application we are interested in the duration of each of the phases of the
cell cycle (see the experimental section), we approach the problem by finding transi-
tions between different phases in the complete sequence rather than trying to classify
each of the images as belonging to one of the cell phases regardless of the rest of the
images in the sequence. A set of simple techniques is used to distinguish the moment
at which some cell goes from one stage to another.

The algorithm starts with detecting the presence of the G1 and the G2 phases by
the absence of foci (in practice this is done by checking the number of segmented
foci against a predefined threshold), keeping in mind that G1 is always the first and
G2 the last phase in the sequence. Then, it detects possible transitions between the
early-S and the middle-S phase, and between the middle-S and the late-S phase,
using K-means clustering. Since different features are discriminative for different
sub-phases of the S phase, we found it convenient to perform the clustering twice
(once for the early-S and the middle-S and once for the middle-S and the late-S
phases) rather than trying to classify all three sub-phases in one step. The clustering
is achieved by using only two features (time step and percentage of foci located at
the boundary) in the first case, and three features (time step, average focus size, and
average distance from the foci to the upper boundary) in the second case. For both
cases, seeds are provided for the K-means algorithm, which are calculated based on
the number of foci features (such as average size, number, percentage of foci located
at the boundary). Since in some of the sequences not all the phases are imaged, the
missing phases should be disregarded during the cell phase classification. In the
algorithm the decision about the existence of some of the sub-phases of S is done
automatically by analyzing the range of the values of the two features: the number
of foci located at the boundary (for the transition from the early-S to the middle-S)
and the number of foci in the upmost slice that contains foci (for the transition from
the middle-S to the late-S). The corresponding transition is disregarded if the maxi-
mal and the minimal value of a feature are on the same side of an empirically set
threshold.
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4.3 Validation

The developed system was validated by comparing its performance to expert human
observers in two experiments: 1) foci counting, and 2) foci-pattern based cell phase
identification.

4.3.1 Foci Counting

The protein 53BP1 forms foci in response to genotoxic stress, particularly agents in-
ducing DNA double strand breaks [4]. Moreover, these foci are thought to represent
actual sites of DNA breaks [130] and their disappearance is related to the DNA dou-
ble strand break repair kinetics. For example, we found in normal mouse embryonic
stem (ES) cells (IB-10) that the percentage of positive cells (containing at least 5 foci
per cell) drastically increased just 5 min after treatment by 8 Gy ionizing radiation
(IR) and decreased at 3 h to reach the normal situation in untreated cells at 24 h after
IR (data not published; see Figure 4.3).

Data

ES cells were fixed at selected time points after IR treatment (8 Gy) and 53BP1 foci
were imaged by indirect immunofluorescence using anti-53BP1 antibodies and con-
focal microscopy (Zeiss LSM-510) with a Plan-Apochromat 63×/1.4 oil-immersion
objective lens. The data set consisted of in total 49 images of size 512× 512 pixels (re-
solution 146.2× 146.2 µm/pixel) or 1024× 1024 pixels (resolution 73.1× 73.1 µm/pi-
xel). Each image contained two channels: the DNA channel and the protein channel.
The DNA channel was used for the segmentation of the cells because of its more
homogeneous signal distribution in the cell regions (see Figure 4.4).

Results

The sample images in Figure 4.4 illustrate that the cell colonies were densely clu-
stered and that some of the nuclei showed very irregular shapes (as imaged).
Together with the relatively low and inhomogeneous contrast, and a considerable
amount of noise, this makes automated segmentation challenging. Nevertheless, in
all the images our system was able to yield satisfactory segmentations for subse-
quent foci analysis. Next, automatic foci counting was performed, and the results
were compared to manual counts by an expert human observer. In order to make a
fair comparison, for each image we selected the same number of segmented cells as
considered by the human expert in the manual analysis, by applying a size threshold.
In total, 858 cells were selected for automatic foci counting, 685 of which contained
foci, and 435 were identified as positive (≥ 5 foci). Two measures were calculated for
each time point: the percentage of positive cells and the average number of foci per
cell. The results (Figure 4.3) clearly show that the automatically obtained results are
in good agreement with the results obtained by manual analysis, both qualitatively
and quantitatively. In particular, for both measures, the calculated general trend is
virtually the same.
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Figure. 4.3: Comparison between manual (orange) and automated (blue) 53BP1 foci counting
for normal embryonic stem cells (IB-10) in terms of (A) the percentage of the positive cells and
(B) the average number of foci per cell at various time points. For each of the measures the
corresponding values and the obtained polynomial trend lines are shown.

Figure. 4.4: Sample results from the automated foci counting experiment: (A) DNA channel
with segmented cell boundaries overlaid (contours of various colors); (B) protein channel;
(C) region masks (red) extracted from (A) together with the foci of interest (white) segmented
from (B). Each of the images has been cropped from its original size and on the images (A)
and (B) contrast enhancement was performed for better visualization.

4.3.2 Cell Phase Identification

The DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA)
is central in DNA replication. We analyzed the temporal localization pattern of green
fluorescent protein (GFP) tagged PCNA in living CHO cells during the different
cell cycle phases (G1, early-S, middle-S, late-S, G2). Replication of the mammalian
genome starts at thousands of origins activated at different times during S phase.
By tracking the individual sites of replication foci represented by PCNA, we can in-
vestigate how this replication program is coordinated. In a previous study [52] we
showed that the average times needed to progress through one complete cell cycle
varies greatly in individual cells, with the largest variation in the duration of the
G1 phase. Here we aim to perform similar analysis in a fully automatic fashion
using our system.
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Figure. 4.5: Comparison between manual and automated detection of phase transition mo-
ments in PCNA-stained cells. The four plots correspond to the four possible phase transitions:
(A) G1 to early-S (21 cases), (B) early-S to middle-S (29 cases), (C) middle-S to late-S (26 cases),
and (D) late-S to G2 (22 cases). In each case, the difference in detection times between the auto-
mated method and each of the two observers is plotted. A missing point on one of the curves
in (C) means that the corresponding phase transition was not detected by the corresponding
observer.

Data

Five fluorescence microscopy image data sets were acquired as described by
Essers et al. [52] using a confocal microscope (Zeiss LSM-510) with a Plan-Apochro-
mat 63×/1.4 oil-immersion objective lens. The images consisted of 92 time steps
(≈ 10 min intervals) each having 5 slices (1 µm apart) of size 512× 443 pixels (103.4×
89.5 µm). All cell nuclei were automatically segmented, tracked, and motion cor-
rected (for retrospective visual examination; see sample results in Figure 4.6), and
for each of the nuclei the PCNA foci were segmented. The subsequent analysis was
restricted to cells passing through at least one whole phase of the cell cycle during
the time span of the sequence. In addition, cells partly falling outside the field of
view at any time point were also disregarded, as these cannot be reliably analyzed
due to incomplete information. This selection procedure resulted in 29 cells suitable
for analysis. Two expert biologists independently marked the transition moments
between the different phases of the cell cycle for each of the selected cells in the raw
image data to serve as the ground truth.

Results

The plots in Figure 4.5 show the differences in the phase transition times as found
by our system versus both observers for each of the four possible phase transitions.
The results clearly confirm, in agreement with Ersoy et al. [51], that it is much easier
to distinguish the G1 and G2 phases from the S phase (Figure 4.5A,D and Figure 4.6)
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Figure. 4.6: Sample results from the cell phase identification experiment. Shown from top left
to bottom right are cropped images of 84 successive time points of a single, motion-corrected
cell nucleus, going from the G1 phase, through the early-S, middle-S, late-S, to the G2 phase
(indicated by bars in different colors below the images), as automatically recognized by our
system based on characteristic foci patterns for each of these phases. The example also illu-
strates the observation that it is easier (also visually) to distinguish the G phases from the S
phases than to distinguish between the different S phases.

than to distinguish between the different sub-phases of the S phase (Figure 4.5B,C
and Figure 4.6). For the transitions from G1 to early-S, and from late-S to G2, the
absolute differences in the times detected by our system versus any of the two ob-
servers did not exceed 2 time points, which is less than the maximum difference
found between the two observers. For the transitions from early-S and middle-S,
and from middle-S to late-S, the maximum absolute difference between our system
and any of the observers was 17 time points, which is equal to the maximum differ-
ence found between the two observers. In most cases, the differences with respect
to the two observers showed opposite signs (meaning that the automatically de-
tected transition time was in between the times indicated by the observers), or one
of the differences was relatively small (indicating that the automatically detected
time point was close to that found by one of the observers). However, there were
also several cases where our algorithm showed considerable difference with both
observers, while their results were in good agreement. An important observation
following from these cases is that the results were much better (closer to those of
the observers) for sequences where more transitions (ideally all four) were present.
And vise versa, for sequences where only two or three out of four transitions were
present, our algorithm encountered difficulties in correctly detecting the time mo-
ments of those transitions.

4.4 Conclusions

In this work we have presented our fully automated system for performing intracel-
lular analysis at the individual-cell level. The system consists of two main parts: cell
analysis (including cell segmentation, tracking, motion correction), and foci analysis
(foci segmentation and pattern analysis). The experimental results presented in this
chapter show that the system performs comparably to manual analysis by expert
biologists for the tasks of foci counting and foci-pattern based cell phase identifi-
cation. The main contribution of the work is that the different analysis tasks are
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combined into an integrated, fully automated system, which does not require any
user interaction (apart from inevitable initial parameter setting). An additional ad-
vantage of the system compared to some other advanced methods is that it does not
involve an explicit (machine-)learning stage, which would require large amounts
of training data. Instead, it uses features derived directly from the segmented foci.
Direct comparisons with experimental results reported in other papers on automated
foci counting and cell phase identification methods could not be made, either be-
cause these experiments focused on different applications than ours, or they were
based on different quantitative measures and/or imaging protocols. However, our
primary goal was to develop a system that would allow upscaling of experiments
that are normally performed manually by expert human observers. Being able to re-
produce their findings, our system can indeed replace tedious manual analyses, and
thus enables high-content screening.

The current version of the system (as used in the presented experiments) was
coded in MATLAB (The MathWorks, Inc., USA) and compiled for use as a stand-
alone software tool. On a standard PC (Intel Pentium 4-CPU, 3.6 GHz, 3 GB RAM,
running Windows XP), full cell segmentation and tracking currently takes about
3.5 hours per sequence of 92 time steps which contain 20 cells on average (that is,
about 7 seconds per cell, per time point), optional cell motion correction takes about
35 seconds per cell per time point, foci segmentation about 15 seconds per cell per
time point, and finally the calculation of foci-related measures and cell phase iden-
tification about 0.5 seconds in total per time point. Considerably higher speeds can
be expected after conversion to a full C++ implementation and further optimiza-
tion of the source code. Also, parts of the system allow a parallel implementation,
which would further increase performance. This is envisaged for near-future work.
The software will be made publicly available, free of charge for non-commercial use,
after publication of this chapter.
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Elegans Embryogenesis in
Fluorescence Microscopy 5

Abstract — Fluorescence microscopy has become a primary tool for studying embryogenesis of the
Caenorhabditis elegans (C. elegans) nematode worm. It enables imaging of individual embryos from
the single cell to the adult stage with good spatial and temporal resolution. There is a great need
for improved tools that allow fully automated analysis of the resulting large and complex image data
sets. A novel automated system for analyzing C. elegans embryogenesis image data was developed.
The system is based on a model evolution approach to cell nuclei segmentation and tracking, and is able
to follow C. elegans embryogenesis until at least the 350-cell stage with high accuracy, as confirmed by
validation experiments on four data sets originating from two different laboratories. Calculated error
rates indicate the superiority of the presented approach over state-of-the-art algorithms for tracking of
C. elegans embryogenesis. The proposed system proves to be both effective and efficient in performing
simultaneous segmentation and tracking (lineage reconstruction) of C. elegans embryogenesis fluo-
rescence microscopy data. Apart from initial parameter setting, it requires no (or very limited) user
interaction, which allows to completely substitute (at the early stages of embryogenesis) or complement
(at the later stages) expert human observers.

Based upon: O. Dzyubachyk, R. Jelier, A. Krüger, W. J. Niessen, B. Lehner, E. Meijering. Model-Evolution
Based Tracking of Caenorhabditis Elegans Embryogenesis in Fluorescence Microscopy, prepared for submis-
sion.
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5.1 Background

The nematode Caenorhabditis elegans (C. elegans) is a widely used model organism
in molecular and developmental biology due to its relative simplicity (the adult or-
ganism consists of only 959 cells), known genome and ease of genetic manipula-
tion [72,162], invariant lineage tree [143], fast reproduction (the development from a
single zygote to a complete adult worm takes only a couple of hours), and its trans-
parency. Usage of modern fluorescence microscopy techniques enable imaging of
C. elegans embryogenesis from the single cell to the adult stage with good spatial
and temporal resolution. However, further progress in this field is greatly hampered
by the lack of reliable tools for (semi-)automated analysis of the resulting image se-
quences. The 4D data sets typically consist of many thousands of images, showing
hundreds of cell divisions, and on the order of 10,000 cell nuclei at different time
points [7], precluding fully manual processing.

Up till now, only few attempts have been made to perform automated segmen-
tation and tracking on C. elegans embryogenesis image data. In [89] the authors used
gradient flow tracking to segment stacks of (on average) 187.75 nuclei with over-
and under-segmentation error rates of, respectively, 1.59 % and 0.39 %. In [95] the
authors used a cascade of simple image processing techniques to segment nuclei on
the images of straightened C. elegans embryos at the 558-cell stage. They selected
357 that could be reliably distinguished from all nuclei present at that time point
and used their method to segment these, reaching an overall success rate of 86 %.
In [29] a specialized tracking segmentation algorithm for automated construction of
C. elegans lineages was presented. Nuclei were segmented by the 3D watershed al-
gorithm [155] and tracking was performed by linking the segmented nuclei between
consecutive time points. The algorithm was able to reach the 90-cell stage with 68 %
tracking accuracy.

A state-of-the-art tool for lineage tracking in developing C. elegans embryos is
StarryNite [10]. It performs frame-by-frame detection of the nuclei by fitting a sphe-
rical model to the image, and subsequently links the found nuclei between conse-
cutive frames. Using this tool, reliable tracking can be performed until at least the
180-cell stage, after which its performance drops rapidly, requiring excessive manu-
al curation of the results after the 350-cell stage, for which various visualization and
editing tools exist [16, 18, 110]. The underlying algorithms have a number of short-
comings that hamper wider usage, namely the need to carefully tune a large number
of (time-dependent) parameters, and poor robustness across data sets acquired with
(even slightly) different imaging settings. Specific errors (such as movements erro-
neously labeled as divisions) can be significantly reduced by postprocessing using
machine learning [7]. However, the 350-cell stage remains challenging, and im-
proved methods for fully automated lineage reconstruction up to and beyond that
stage are still very much needed.

Here we present a novel, fully automated method for reconstructing cell linea-
ges of developing C. elegans embryos from time-lapse fluorescence microscopy image
data. The work considerably extends our preliminary conference report [46].
The presented method performs both segmentation (rather than mere detection) of
cell nuclei and their tracking over time. In order to be as little imaging-protocol de-
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pendent as possible, we designed the algorithm such that it uses only a few input
parameters, with clear physical meaning, and without the need to (re)set them to
different values during processing, for different stages of development. In addition,
relevant image and cell features are continuously monitored over time, and their
values in previous time steps are used to automatically adapt corresponding para-
meters to the current time step. Experiments on sample data sets from two different
laboratories demonstrate the robustness of the method.

5.2 Methods

The method we propose is based on the so-called model-evolution approach [102,
176], which performs both segmentation and tracking. Recently we have presented
an algorithm applying this approach to cell segmentation and tracking, using level
sets as the main model [49]. In application to tracking C. elegans embryogenesis,
this approach has several advantages, including (i) incorporation of information of
the current state of the system (accumulated from previous time steps) into the seg-
mentation of the next image stack in the sequence, which is especially useful when
segmenting densely packed cell colonies, (ii) the ability to naturally handle cell divi-
sions, and (iii) robustness to noise and varying foreground and background intensity
distributions. However, a major disadvantage of the algorithm is its computational
cost, which prohibits direct application to tracking C. elegans embryogenesis, due to
the very large number of images and objects to be processed. In the present chap-
ter, we propose a specialized algorithm for segmentation and tracking in C. elegans
embryogenesis image data, which is still based on the idea of model evolution, but
differs considerably in implementation. The general flow of the new algorithm can
be divided into four main steps (Figure 5.1): 1) initial segmentation, 2) division and
motion assessment, 3) multi-cell segmentation and tracking, and 4) correction and
output. The following subsections describe each of these steps.

5.2.1 Initial Segmentation

The first image stack in the sequence is relatively simple to segment, as it usually
contains only a small number of objects (typically four nuclei as in Figure 5.2), and
therefore does not require a very sophisticated method. For this initial segmenta-
tion, which is performed only once, we use a non-PDE based energy minimization
method [141] refined by level-set segmentation. More details on the implementation
of the described approach can be found in [49]. The output of this step is the start-
ing point for the segmentation and tracking of the subsequent image stacks in the
sequence, performed by iterating the steps described in the next subsections.

5.2.2 Division and Motion Assessment

The processing of each next image stack in the sequence commences with the detec-
tion and handling of divided cells, and the initial motion estimation of all other cells,
which are considerably adapted (the former) or newly added (the latter) operations
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Figure. 5.1: Flow diagram of the method. The diagram lists all the important steps of the
algorithm (described in detail in the methods section of the main text) and the order in which
they are executed.

compared with our general-purpose algorithm [49]. Both operations rely on mea-
surements obtained from the images. Specifically, we extract markers representing
the new (center) positions of nuclei, by filtering each slice of the image stack with a
disk of radius equal to the estimated average radius of the nuclei at the given time
point. The peaks of the resulting surface I f = I f (t) are taken as the markers.

The first operation, detection and handling of divided cells, is necessary to cap-
ture the daughter cells that move away from the mother cell after the moment of
division. Since the actual cell division often occurs between two time points (image
stacks), and the displacement of the two daughter cells with respect to the mother
cell can be relatively large compared to the regular cell motion, evolving the model
in the close vicinity of its previous state is usually insufficient. To tackle this, we de-
veloped a specialized procedure that analyzes the set of found markers in the neigh-
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Figure. 5.2: Sample image data. For each data set (the identification number of which is shown
at the top) used for the evaluation of our method, one slice (z index) is shown from the image
stacks at five different time points (corresponding to the 4, 51, 102, 180, and 350-cell stage):
z = 8 (100809 and 060809), z = 16 (081505), z = 14 (20090505).

borhood of each mitotic cell (our algorithm for detection of mitotic cells is described
later in the text and illustrated in Figure 5.3).

For a cell to be labeled as divided, the following natural conditions must be satis-
fied: 1) the profile connecting the markers of the potential daughter cells should be
bi-modal (as determined with the Hartigan dip test [69]), 2) no other object should
intersect the line connecting both markers, and 3) the daughters should be close to
the mother:

max
(

d(1)i , d(2)i

)
< Dmax, (5.1)

where d(1)i and d(2)i are the distances of the markers of the potential daughters to the
center position of the mother cell i in the previous time point and Dmax is the maxi-



68 Model-Evolution Based Tracking of Caenorhabditis Elegans Embryogenesis

Figure. 5.3: Detection of cell division. The panels show (A) a cell in one time point, with
its segmentation (overlaid colored contour), (B) the line connecting markers P and Q of the
potential daughter cells, (C) the seeds and (D) final segmentation of the two daughter nuclei.

mum allowed distance. If a set of markers is found satisfying all these conditions,
the cell is labeled as possibly divided. In case there is more than one pair of feasible
markers, we choose the one with the highest score si:

si =
bi + 1

2
+

wi
maxi wi

−
8
(

d(1)i + d(2)i + d(12)
i

)
+ d(1)i d(2)i |sin β|

16Dmax
, (5.2)

with

wi = ai +
min

(
mn(1)

i , mn(2)
i

)
2 max

(
mn(1)

i , mn(2)
i

) +
min

(
mj(1)i , mj(2)i

)
2 max

(
mj(1)i , mj(2)i

) ,

where bi is the ratio between lengths mni and mji of, respectively, the minor and
major axes of the mother cell nucleus, β is the angle between the lines connect-
ing the markers of the potential daughters with the center of the mother cell, ai ∈
[−π/2, π/2] is the angle between the expected (along the minor axis of the mother
cell) and the calculated division direction, mn(1,2)

i and mj(1,2)
i are the estimated mi-

nor and major axes of the potential daughter cells, while d(12)
i is the distance between

the latter. The values of mn(1,2)
i and mj(1,2)

i are obtained by analyzing the intensity
profile along the division direction and perpendicular to it, where the width of each
peak is calculated using the D’Agostino K2 test [33].

Since the number of divisions occurring at the same time can be quite high in
C. elegans data (especially in the later stages of development), it may happen that
some of the cells labeled as possibly divided share the same potential daughter.
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We resolve such situations by jointly analyzing the set of all potential division con-
figurations to find the most probable configuration of divided cells using the fol-
lowing steps: 1) choose the one with the highest si score (i0) and label it as a true
division, 2) remove from the list of all the potential divisions those pairs who share
one of the markers with i0, and 3) remove i0 from the list and go back to Step 1.
In case a wrong decision has been made at this step because of the bad estimate of
mn(1,2)

i and mj(1,2)
i , it can later be corrected after the segmentation is obtained and

the real values of those parameters are known.
The second operation, estimation of the motion of each cell with respect to the

previous time point, is applied for its positive effect on the execution time of the
segmentation and tracking step (described in the next subsection) as well as on its
performance. The motion is estimated by analyzing the detected markers in the
vicinity of a cell’s previous position. The potential candidates (markers) of the cell’s
new position are scored based on two measures: goodness of fit, which incorporates
both the object’s size and its intensity, and the distance di between the candidates
and the cell’s position. The final motion estimate for each cell is obtained by jointly
optimizing the whole set of objects on the calculated scores according to the nearest
neighbor rule:

argmaxi

min
(

g(t)i , g(t−1)
i

)
max

(
g(t)i , g(t−1)

i

) − di
maxi(di)

, (5.3)

where g(t)i and g(t−1)
i are, respectively, the values of the filtered intensity I f (t) cal-

culated in the candidate point and the maximal value of I f (t − 1) within the region
covered by cell i. If after this procedure one of the daughter cell markers of a cell
labeled as dividing is found to belong to another object, this cell is removed from the
list of divided cells.

5.2.3 Multi-Cell Segmentation and Tracking

The key idea behind multi-cell segmentation and tracking by means of the model-
evolution approach is that each cell i is represented by a function ϕi (also called the
model), which is iteratively optimized (evolved) to fit the true cell region in the image
stack at one time point, and then used as initial guess for the fitting procedure in the
next stack in the sequence. Using level sets as a model, ϕi can be set to the signed
distance function of the region, which is positive inside, negative outside, and zero
on the boundary of the region. In this work, we chose ϕi to be the binary function
that is true inside the region and false outside, as motivated below. The fitting proce-
dure consists in the iterative (and simultaneous for all cells) minimization of an ener-
gy functional computed within a narrow band around the current cell boundaries.
The resulting transformation of each ϕi mimics the displacement and deformation
that the corresponding cell underwent between the previous and the present time
point.
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In our work, the energy functional consists of an image-based term and a
smoothness constraint:

E = ∑
p∈Nb

Rp( fp) + α ∑
p,q∈N

Bp,q( fp ̸= fq), (5.4)

where p and q are voxels in the narrow band Nb, N is the set of neighbor pairings, α
is a scalar that controls the smoothness of the detected boundary of the cell, and fp
and fq are labels indicating the class (foreground fg or background bg) to which the
corresponding voxels belong. The region energy Rp is set to the difference between
the probabilities of voxel p to belong to the foreground or the background:

Rp( fp = fg) = −Rp( fp = bg) = − ln P(Ip|fg) + ln P(Ip|bg). (5.5)

Here we have chosen to use the non-parametric probability density function P,
which is calculated via the kernel density estimation [14] of the image intensities
I within the corresponding region with a Gaussian kernel (the width of which is de-
termined from the data). The boundary term Bp,q is set to be the function of image
contrast in the form:

Bp,q = exp

(
−
∥Ip − Iq∥2

2σ2

)
1

∥p − q∥ , (5.6)

where σ is calculated from the data as in [97].
For the minimization of the energy functional (5.4) we use the graph-cut algo-

rithm [15], which turned out to be a much more efficient and effective technique
for our application than level-set evolution, and guarantees finding the global mini-
mum. Performing the energy minimization only in a narrow band around the cell
regions, and restricting the solution space by applying nuclei separation (described
next), makes the graph-cut algorithm (which is intrinsically a global method) suit-
able for multi-cell tracking. The use of graph-cuts instead of level-sets also enables a
very efficient implementation of the algorithm. This is because, contrary to level-set
evolution, there is no need to perform costly re-initializations of the ϕi to the signed
distance function. Moreover, we can simply use a binary mask (“active mask”) that
is positive inside the cell region and negative outside. Since the energy is minimized
in a narrow band around the current cell boundary, the size of each mask stored in
memory can be limited to only a small window containing the cell region and a nar-
row band around it, together with the position of the window relative to the image
stack.

During tracking, possible collisions of cells should be resolved, to prevent the
incorrect situation that a cell is captured by multiple ϕi. This becomes increasingly
challenging in later stages, as the number of cells grows rapidly, causing increased
cell density and clustering. We resolve all potential collisions by a cell separation
procedure, which is one of the cornerstones of our algorithm. Two main require-
ments for this procedure are that it should yield very accurate separation of all pos-
sible configurations of colliding cells and be computationally efficient. Here we use
an improved version of the Radon-based separation algorithm that we presented
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earlier [49]. The basic idea (illustrated in Figure 5.4) is to find a separating surface
between each pair of adjacent nuclei in the form of a plane (justified by the typical
spherical shape of a nucleus) based on the minimum of the Radon transform [34] of
the image in the collision region. Two nuclei are considered “adjacent” if their corre-
sponding narrow bands have at least one common voxel. The evolution of each ϕi is
then constrained by its separating planes.

Several important improvements were introduced to make the separation algo-
rithm more computationally efficient and robust to all possible configurations of
clustered cell nuclei. First, the number of separations to be performed was consi-
derably decreased by applying Delaunay triangulation [38] to the set of adjacent
nuclei using their markers, and limiting the separation only to those pairs of adjacent
nuclei belonging to the same Delaunay triangle, as illustrated in Figure 5.4E. Second,
the space of possible solutions was restricted by employing the gradient information
between the cells to be separated to find the point of minimal intensity on the line
connecting their markers, and constraining the separation plane to pass though this
point (Figure 5.4B). Third, the typical sphere-like shape of a C. elegans nucleus was
exploited, by prohibiting the separation plane to be closer to any of the cell’s markers
than some predefined distance (we used a value of half the major axis length).

5.2.4 Correction and Output

The correction of possible errors in the segmentation results consists in a search for
false negatives (missed cell nuclei). To this end, the image foreground is estimated
by thresholding, where the threshold value is chosen such that the size of the fore-
ground (the number of voxels) is as close as possible to the total segmented volume
in the previous time point (this value can be easily obtained from the cumulative
histogram of the image intensity distribution). Next, the estimated foreground is
divided into regions by applying the marker-controlled watershed algorithm [61]
(using the markers extracted as explained earlier), and regions that intersect with
at least one of the already known cell regions are excluded. Resulting candidates
of false negatives with size exceeding the minimal nucleus size (computed from the
previous time point) are added to the list of cell objects, and their corresponding ϕi
are refined by energy minimization as described in the previous section. Those of
the newly-found objects whose size after energy minimization falls below the mini-
mal object size threshold are removed from the list. The rest of the objects is either
labeled as “new” or as a division product (if a successful matching combination of
the mitotic mother cell and the second daughter cell is found).

The preparation for segmenting the next image stack in the sequence includes
updating several parameters, among others the minimal nucleus size parameter, and
detecting mitotic nuclei. The minimal nucleus size is an important parameter that
plays a crucial role in distinguishing real nuclei from noise. In our method, we pro-
vide an initial value for this parameter, after which its value is automatically updated
after each time step based on the sizes of the segmented nuclei, subject to the phy-
sically realistic constraint that it can only decrease, and at most by 5 % between two
consecutive time points. Detection of mitotic nuclei is based on their pronounced
elongated shape and is performed in order to increase the computational efficiency
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Figure. 5.4: Radon-transform based cell separation. The panels show (A) the initial position of
the contours (red and blue curves) of two adjacent cells (P and Q with their markers indicated
by dots) for t = 16 with corresponding overlapping narrow bands (green and red areas), (B)
the intensity profile along the line connecting the markers of the two cells to find the position
of minimum intensity (indicated by the dashed vertical line and point M), (C) the separating
plane (white line in this single slice) computed from the Radon transform around that posi-
tion, (D) the final segmentation (colored contours) for t = 16, and (E) the selection procedure
for adjacent cells that need to be separated. In the latter, all cell nuclei that need to be sepa-
rated from at least one other cell are shown in shades of green (with the exception of the two
cells in panel (A) shown in red), and all remaining cells (not adjacent to any other cell) are
shown in shades of blue. All nuclei are shown with smaller size for visualization purposes.
The lines connecting the markers of the cell nuclei are the edges of the Delaunay triangula-
tion calculated on the set of adjacent (red and green) objects. Only the edges (highlighted in
red) connecting actually adjacent cells are selected for performing Radon-transform based cell
separation.
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of the algorithm. Specifically, we make use of the observation that the majority of
the divisions occurs (nearly) in the plane perpendicular to the z-axis, in the following
manner: 1) we detect the reference slice of the region currently occupied by the given
object as the one having the highest average intensity, 2) the lengths of the minor and
the major axes and the orientation of the minor axis are calculated from the shape
corresponding to the found reference slice, and 3) we label the corresponding cell as
mitotic if the ratio of the lengths of the major to the minor axis bi is greater than a
user-defined threshold Ab. In addition, to simplify the distinction between mitotic
nuclei and the newly-born nuclei that did not obtain a spherical shape yet, we use
the natural restriction that a newly-born cell needs some time (more than a couple of
minutes) before it can divide.

The software implementation of our method provides several different forms of
output: textual, binary, and graphical. The segmentation results are saved in a bi-
nary image file format. Also, to facilitate visual inspection, the results per time point
can be saved in the form of a 3D rendering, which can be subsequently combined
into a movie (Figure 5.6). Tracking results are exported to the AceTree format [110].
In addition, information about important events (cell divisions and deaths) is stored
in a human-readable log file. To further reduce (the propagation of) errors, we imple-
mented the possibility to restart the program at any time point in the sequence, after
expert manual curation of results (creation of new objects, deletion of existing ones,
correction of cell divisions), which can be done using AceTree or our home-made
tools.

5.3 Results and Discussion

5.3.1 Test Data Sets
The presented method was evaluated on four C. elegans embryogenesis image se-
quences, two from the EMBL Center for Genomic Regulation (Lehner lab), Barcelona,
Spain, and two from the University of Washington (Waterston lab), Seattle, WA,
USA. The reason for using data from different laboratories using different imaging
protocols was to test the robustness of our method. Details of the data sets are listed
in Table 5.1 and a sample image (before preprocessing) from each of the data sets is
shown in Figure 5.2. Before segmentation and tracking, each image stack from each
sequence was preprocessed by smoothing it with a disk kernel, with radius equal to
half the expected nucleus radius.

Embryo preparation for the data from the Waterston lab is described in full detail
in [110]. For the data from the Lehner lab, worms with GFP labeled histones (strain
RW10029 [109]) were grown on OP50-seeded NGM plates and maintained by trans-
ferring the worms daily to maintain a healthy population with high-quality eggs.
For embryo extraction, young adult worms were picked and placed into a drop
of Boyd’s buffer/methyl cellulose in a clean, prechilled watch glass. Prechilling
the watch glass and solutions to 4 oC temporarily slows the rate of development,
leaving more time for microscope setup later. Worms were cut open with syringe
needles, placing the cuts at the boundary between the uterus and the gonad, which
released embryos of different stages. 1–4 cell embryos were selected from older ones
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and transferred with a 10 µl pipette onto a microscope slide with 4 µl of 20 µm
polystyrene beads (Polysciences) in Boyd’s buffer/methyl cellulose (beads diluted
1:30 in buffer to reduce the diameter of the eggs to obtain a better fluorescence signal
at the upper planes but without damaging the eggs with the cover slip). 22 × 22 mm
cover slips were gently lowered onto the bead mount to avoid the liquid touching
the edge of the cover slip. Edges were sealed with molten paraffin to prevent the
mountant from drying out during imaging.

5.3.2 Algorithm Parameters
A number of parameters need to be specified for our method. All of the parame-
ters have a clear physical meaning and most of them are determined from the data.
However, some of the input parameters, such as the weight of the smoothness-based
energy term, can be determined only empirically, and setting a proper value for
them may require some fine-tuning for each data set. As mentioned earlier, some
parameters used in our algorithm, such as the minimal nucleus size, are intrinsically
time-dependent. For these parameters, the user needs to specify only a suitable ini-
tial value, and for each time point the value is then automatically updated by the
method based on the current state of the system. All relevant parameters and their
values used for the different data sets are specified in Table 5.2. Notice that only
minimal parameter changes (if any) were made to achieve optimal results for each
data set, demonstrating the robustness of the algorithm.

5.3.3 Segmentation and Tracking Errors
A sample segmentation result produced by our algorithm is shown in Figure 5.6.
The colored surfaces overlaid on the image data represent the segmented bounda-
ries of each cell nucleus. Since ground truth data was not available, and manu-
ally creating a full segmentation was not feasible, only visual evaluation of the seg-
mentation quality was possible. From the latter we concluded that, even at later
stages of embryogenesis, with approximately 350 cells, the segmentations produced
by our method are very realistic: in general the surfaces follow the shape of the
object (spherical or elongated) and the separation surfaces between adjacent cells
are positioned where they are naturally expected to be.

For the evaluation of the tracking performance of our algorithm, ground truth
reference data was available (the well-known C. elegans lineage tree), and we used
the same error measures as in [10] (all calculated per cell stage): the number of false
positives (FP), false negatives (FN), mismatches (MM) per thousand nuclei, and the
rate of erroneous divisions (ED). Since propagation of errors may have dramatic
effects, errors were corrected (but counted) immediately after they occurred, and
tracking was restarted after correction. Thus, all error measures directly correspond
to the number of operations required to transform the tracked lineage into the re-
ference one: adding (FN and ED) or removing (FP and ED) a branch and relinking
(MM and ED) two branches of the tree.
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Figure. 5.5: Tracking performance of our method. The top plot shows the tracking perfor-
mance of our method for the four test data sets in terms of false positives, false negatives,
and mismatches, while the bottom plot shows the division errors. The results for the different
data sets are indicated by different shades of gray, but if the error is the same for all four data
sets, only one shade of gray is visible in the plots, as all symbols are plotted on top of each
other. Error bars indicate the range (from minimal to maximal) of error values reported in the
literature for StarryNite.

The error rates of our method and the corresponding maximal and minimal error
values by StarryNite [10] are shown in Figure 5.5. The plots clearly indicate the
superior performance of our method, especially in the earlier stages of embryonic
development. In terms of FP, FN, and MM, our algorithm is perfect or near perfect
until the 194-cell stage on all four data sets. From the 194-cell stage to the 350-cell
stage, the number of errors increases, but still remains considerably lower than in the
case of StarryNite. Of the three mentioned error measures, FN is the most significant:
the other two types of errors are virtually absent, which is a direct consequence of
using a model-evolution based approach. The ED rates of our method exhibit a
natural increase as the number of cells grows, which can be explained by the higher
cell density. Nevertheless, for all four test data sets, the ED rates until the 194-cell
stage are very small and considerably lower than the maximal value by StarryNite,
and between the 194-cell stage and the 350-cells stage even lower than the minimal
value by StarryNite. Finally, an example of a lineage tree produced by our method
for one of the data sets, is shown in Figure 5.7.
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Table. 5.3: Average processing time in minutes of one image stack per time point.

Stage 4-cell 51-cell 102-cell 194-cell 350-cell

Time 0.5 1 1 2 4

5.3.4 Implementation and Processing Times
The algorithm was developed in the MATLAB (The MathWorks, Inc., USA) envi-
ronment and the most computationally demanding operations were implemented
in C. Average processing times of one image stack per time point on a standard PC
(Intel(R) Xeon(R) CPU, 2.8 GHz, 6 GB RAM, running under Windows 7) are shown
in Table 5.3.

5.4 Conclusions

A new method was presented for segmentation and tracking of a developing C. ele-
gans embryo imaged by means of fluorescence microscopy. The algorithm uses a
model-evolution approach, which proves to be an effective framework for the con-
sidered application, as it allows to easily exploit information from the previous time
point for the segmentation of the current time point. Especially when segmenting
and tracking highly clustered cells, this gives an advantage over methods that use
completely separated cell detection and linking procedures. Experimental results
on four data sets from two different laboratories demonstrated the superior perfor-
mance of our method with respect to a current state-of-the art method. Our method
is fully automated, meaning that user interaction is limited to providing a number
of meaningful input parameters. However, intermediate manual error correction,
which is mostly required during later stages of analysis, make the overall tracking
more reliable. Our method can be used to replace a large amount of tedious human
labor and, with minimal intervention, can significantly improve the productivity of
the analysis of C. elegans embryogenesis fluorescence microscopy data.
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Figure. 5.6: Segmentation result for a sample data set. Original image stacks (A–E) from
the 081505 data set (volume renderings) and the corresponding segmentation results (F–J)
(surfaces rendered in arbitrary colors on top of the volume renderings) for the 4-cell (t = 1),
51-cell (t = 74), 102-cell (t = 115), 184-cell (t = 138), and 350-cell stage (t = 184).
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Summary 6
In this thesis the challenge to automate the analysis of biological microscopy time-
lapse image data is addressed. Three different levels of biological research: whole-
organism, cellular and intracellular, are considered. The main goal of the work is to
develop specialized methods for facilitating quantitative analysis of the fluorescence
microscopy image data on each of the three mentioned levels that would comple-
ment or even completely replace human expertise. In order to provide a description
of the imaged structure that is as realistic as possible, the developed tools make maxi-
mal use of the image information. For this purpose, several mathematical computer
vision concepts are employed and customized for the given application. In particu-
lar, energy minimization methods, that allow combining information from different
sources, are applied. Using mathematical methods not only helps to better analyze
fluorescence microscopy time-lapse data, but also provides a theoretical basis for this
kind of image analysis that would stimulate further biological research in this area.

In Chapter 2 an overview of the tracking and segmentation methods in fluo-
rescence microscopy is given. This chapter discusses time-lapse analysis on diffe-
rent scales: whole-organism-, cellular- and intracellular, and how the results of these
analyses can be combined. In particular, it is shown how information obtained from
cell tracking and segmentation triggers analysis on the other two levels. It is also
demonstrated that software tools for automated image analysis become now essen-
tial for performing research on fluorescence microscopy image data. The sophistica-
tion of these methods that is needed to be able to keep up with the growing comple-
xity of the acquired images is continuously increasing. The main conclusion drawn
from this chapter is that, even though many specialized computer tools for biologi-
cal image analysis have been developed during past years, almost every particular
application unavoidably requires creation of dedicated tools for analysis, processing
and interpretation of the acquired image data. Keeping these observations in mind,
a specialized framework for multi-level biological image analysis is developed in the
following chapters of this thesis.

In Chapter 3 a specialized cell tracking and segmentation algorithm is developed
and evaluated. This method belongs to the class of variational methods and allows
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incorporation of prior information on object location (previous state) and appearance
(intensity distribution, boundary smoothness) into one framework. The segmenta-
tion procedure at each time step is initialized with the result of the previous time
step. A model evolution approach is used to find the new region which is occupied
by the object. Hereto, an energy functional is minimized, which is built in such a way
that it combines both intensity and smoothness information. Since at each iteration
the energy minimization is performed only in a narrow band around the object, this
approach at the same time achieves object tracking since it can be seen as continuous
interpolation of the object’s motion and deformation in the time interval between
two successive acquisitions. Level-sets are used as the model because of their possi-
bility to segment highly inhomogeneous regions, ability to change topology (this is
especially useful for tracking dividing cells) and to work on data of arbitrary dimen-
sion.

During development of this algorithm, special attention was paid to quality im-
provement of both tracking and segmentation, since even small errors at this stage
of analysis may have significant influence on analysis at the whole-organism and
intracellular levels. Several important challenges that needed to be addressed in-
cluded: reducing the number of required input parameters, handling of touching
objects and of special division cases, improving initial segmentation, and conver-
gence control. In the developed framework, all those issues were addressed, and for
each of them novel or more efficient solutions were suggested. Considerable atten-
tion was also paid to computational aspects in order to make the methods suitable
for high-throughput analysis. The method was validated on four different types of
real time-lapse fluorescence microscopy sequences, and compared to both human ex-
perts (representing the gold standard) and other algorithms developed for the same
purpose. The results showed that the level-set-based method in general outperforms
all the other automated methods. Moreover, it is computationally efficient, unbiased,
and has low sensitivity to input parameters, which makes it suitable for usage in a
wide range of related biological applications.

As the next step in developing a system for multi-scale biological analysis, Chap-
ter 4 describes a framework for performing intracellular analysis. This framework
uses the results of the automated cell segmentation and tracking as input and per-
forms the following tasks: cell motion correction, foci segmentation and foci ana-
lysis. The motion correction step is an important link between cell segmentation
and tracking and intracellular analysis, as it allows separation of the intracellular
dynamics from the global cell motion. In this work, this is achieved by registering
all the regions occupied by the given object at different moments of time, which
can be achieved by using the results of the segmentation and tracking algorithm.
The potential to study intracellular dynamics is shown by analysis of fluorescent foci.
Studying these foci is a very wide research field in modern biology. For segmenting
foci, a multi-step scheme, including foci detection, segmentation, and selection based
on statistical criteria was developed. The method is rather generic, as it incorporates
only little prior information, so it can potentially be used for analysis of different
foci types. The method was validated by repeating one entire foci-counting experi-
ment that was earlier done manually. It is shown that both automated and manual
methods lead to the same biological conclusions, which proves the potential of our
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method in substituting human observers for performing such analyses. Finally, it
is demonstrated how the statistics obtained after foci segmentation can be used for
cell phase recognition of cells labeled with proliferating cell nuclear antigen (PCNA).
In this case, each of the phases of the cell cycle is related to the typical pattern exhibi-
ted by the PCNA foci. Thus, analyzing relevant foci statistics (number, average size,
intensity, distance to the nuclear envelope) enables recognition of the current phase
of the cell cycle. The approach is very different from traditional approaches for cell
phase recognition as it does not require prior training of the model.

Finally, in Chapter 5, the cell segmentation and tracking framework developed
in Chapter 2 is applied to a very challenging problem: lineage construction of C. ele-
gans embryogenesis. Using modern fluorescence microscopes, it is possible to follow
the development of C. elegans from the single zygote stage to the complete adult or-
ganism. The spatial and temporal image resolution is sufficient to resolve different
cells even at later stages of development and to be able to follow the same cell bet-
ween two consecutive acquisitions. This makes fluorescent microscopy an excellent
tool for C. elegans-related studies in developmental biology, where it is one of the
most popular model organisms due to invariance of its lineage tree. However, cre-
ation of such lineage tree is a highly complex task, which at the present moment,
except for the early stages of development, is mostly done manually, which is a te-
dious and error-prone procedure. Using the computer for performing these tasks
not only drastically increases the productivity, but it also provides additional ana-
lysis opportunities. For example, having a method that can not only track, but also
segment cells, enables analysis of expressions of different genes at each stage of the
embryogenesis.

Our method, which is based on an energy minimization approach, can perform
both the task of segmentation and tracking simultaneously. The level-set-based algo-
rithm from Chapter 2 was considerably modified and extended to be able to handle
these challenging data which contain more than 10000 cells in total at different mo-
ments of time. The complexity of the problem increases with cell stage (number of
cells present), which, together with deteriorating image quality due to photobleach-
ing and error propagation make tracking after a certain stage virtually impossible
(the 350-cell stage being used as the current standard). Replacing the energy mi-
nimization via level-sets by a much faster graph-cut algorithm made it possible to
perform segmentation of image stacks containing about 350 cells within reasonable
time. In this case, the graph-cuts are minimized, similar to the level-sets, in a narrow
band around the current region occupied by the object, which makes them suitable
for tracking. Additionally, the method has special built-in algorithms for handling
potential collisions between different objects and keeping track of dividing cells that
rely on the prior information about the characteristic spherical shape of C. elegans
nuclei and typical division pattern. Four data sets from two different laboratories
were used for validation of our method. The results demonstrated that, using the
suggested approach, it is possible to perform tracking and segmentation on the C. ele-
gans embryogenesis data till at least the 350-cell stage. The described algorithm is
fully automated, but using it in semi-automated mode, in which errors are corrected
right after they happened for prevention of error propagation, provides better re-
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sults. Thus, our method can already at this moment greatly simplify the work of
biologists for analysis of C. elegans embryogenesis image data.

In conclusion, the work presented in this thesis demonstrates the potential of
specialized software tools for the automated and quantitative analysis of biological
time-lapse fluorescence microscopy data. In particular, such mathematical computer
vision concepts as variational calculus, energy minimization, and partial differential
equations have been employed and tailored to perform segmentation and tracking
on different levels of biological research. The algorithms presented in this work were
developed for solving a number of important practical problems rising during ana-
lysis of fluorescence microscopy data: cell tracking and segmentation, motion cor-
rection, intracellular analysis on fluorescent foci, and lineage construction of deve-
loping C. elegans embryos. Although the underlying techniques are quite generic, the
methods were optimized for maximally extracting information from the given type
of data, which may limit their direct application to other similar data types. Another
potential drawback of the variational energy minimization methods is that they are
in general rather slow, thus, for every particular application, the right balance bet-
ween the precision of the results and the processing time has to be found. Resolving
these issues will greatly increase the applicability of such methods to modern bio-
logical problems and potentially make them the main tool for high-throughput time-
lapse image analysis.
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Samenvatting

Het thema van dit proefschrift is de ontwikkeling en evaluatie van automatische
methoden voor de analyse van beeldseries van biologische processen verkregen met
behulp van fluorescentie microscopie. Daarbij worden drie schaalniveaus onder-
scheiden: het hele organisme, het cellulaire niveau, en het intracellulaire niveau.
Het voornaamste doel van het beschreven werk is het vergemakkelijken van de
kwantitatieve analyse van beelden op elk van de drie genoemde niveaus, ter on-
dersteuning of zelfs volledige vervanging van de analyse door menselijke experts.
Om te komen tot een zo nauwkeurig mogelijke beschrijving van de relevante biolo-
gische structuren, dienen automatische methoden optimaal gebruik te maken van
de beschikbare beeldinformatie. Om dit te bewerkstelligen worden in dit proef-
schrift verschillende wiskundige concepten ontwikkeld en verfijnd. In het bijzon-
der wordt gekeken naar zogenaamde energieminimalisatiemethoden, welke het mo-
gelijk maken om verschillende soorten informatie te combineren. Het gebruik van
wiskundige modellen ondersteunt niet alleen de analyse in microscopische beeld-
series, maar verschaft ook een theoretische basis voor dergelijke analyses, die verder
biologisch onderzoek kan stimuleren.

In Hoofdstuk 2 wordt een overzicht gegeven van methoden voor het volgen en
segmenteren van objecten in fluorescentie microscopie beelden. Het hoofdstuk be-
spreekt de analyse van beeldseries op de drie genoemde schaalniveaus, en hoe de
resultaten van deze analyses kunnen worden gecombineerd. In het bijzonder wordt
duidelijk gemaakt dat het volgen van cellen van cruciaal belang is voor analyses op
zowel het cellulaire niveau alsook op het niveau van het hele organisme en van in-
tracellulaire processen. Tevens wordt gewezen op de toenemende noodzaak van het
ontwikkelen van automatische methoden en software tools voor dergelijke analyses.
De groeiende omvang en complexiteit van biologische beelddata vraagt om steeds
intelligentere methoden en steeds efficiëntere implementaties van deze methoden.
De belangrijkste conclusie van dit hoofdstuk is dat, hoewel er al verschillende me-
thoden zijn ontwikkeld voor biologische beeldanalyse, bijna elke specifieke toepass-
ing vraagt om meer gespecialiseerde methoden voor een optimale analyse, verwerk-
ing, en interpretatie van de beeldinformatie. In de volgende hoofdstukken van het
proefschrift worden daartoe nieuwe methoden voorgesteld en geëvalueerd.

Hoofdstuk 3 beschrijft en evalueert een gespecialiseerd algoritme voor het seg-
menteren en volgen van cellen in beeldseries. Het behoort tot de klasse van varia-
tionele methoden en is in staat om vooraf bekende informatie over de locatie en an-
dere eigenschappen van cellen te benutten. In elk beeld van een tijdsopname wordt
de segmentatieprocedure geïnitialiseerd met de resultaten uit het vorige beeld.
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De contour van elke cel in het beeld wordt vervolgens gevonden door evolutie van
het contourmodel vanuit de initiële positie. Dit wordt bereikt door minimalisatie van
een energiefunctionaal die beeldinformatie (intensiteiten in en rondom de cellen)
combineert met contourinformatie (de gladheid van het model). Het iteratieve mi-
nimalisatieproces wordt slechts uitgevoerd in een smalle band rondom de celcon-
touren en levert een interpolatie op van de beweging en deformatie van elke cel
in het tijdsinterval tussen elke twee opeenvolgende beelden. Hiermee wordt auto-
matisch het volgen van alle cellen bewerkstelligd. Voor het modelleren van cellen
maakt het algoritme gebruik van zogenaamde level-sets, vanwege hun vermogen
om sterk inhomogene gebieden te segmenteren, hun topologie te veranderen (wat
vooral handig is in het geval van delende cellen), en om toegepast te worden op
data met een willekeurig aantal dimensies.

Bij de ontwikkeling van het algoritme is bijzondere aandacht besteed aan de ver-
betering van de kwaliteit van zowel de segmentatie als van het volgen van de cellen,
omdat zelfs kleine fouten in dit stadium aanzienlijke invloed kunnen hebben op
vervolganalyses. Belangrijke uitdagingen omvatten het verminderen van het aantal
benodigde parameters, een correcte behandeling van elkaar rakende cellen en van
delende cellen, het verbeteren van de initiële segmentatie, en de convergentie van
het algoritme. Voor elk van deze aspecten zijn nieuwe of verbeterde oplossingen ont-
wikkeld. Met het oog op mogelijke toepassingen in zogenaamde high-throughput
experimenten is ook veel aandacht besteed aan computationele efficiëntie. Het al-
goritme is gevalideerd op vier verschillende typen fluorescentie microscopie beeld-
series, door vergelijking met zowel menselijke experts (die als referentie worden ge-
bruikt) en andere algoritmes ontwikkeld voor hetzelfde doel. De resultaten tonen de
superioriteit aan van het in het hoofdstuk beschreven algoritme. Bovendien is het
algoritme efficiënt, onbevooroordeeld, en weinig gevoelig voor parameterwaarden,
waardoor het geschikt is voor gebruik in een breed scala van gerelateerde biologi-
sche toepassingen.

Als volgende stap in de ontwikkeling van een systeem voor multischaal bio-
logische analyse, beschrijft Hoofdstuk 4 een algoritme voor het uitvoeren van in-
tracellulaire analyse. Dit algoritme gebruikt als input de resultaten van de geauto-
matiseerde cel segmentatie en volging, en voert de volgende taken uit: celbeweg-
ingscorrectie, segmentatie van intracellulaire foci, en de analyse daarvan. De be-
wegingscorrectiestap is een belangrijke schakel tussen de segmentatie en volging
enerzijds, en de intracellulaire analyse anderzijds, aangezien daarmee intracellulaire
bewegingen gescheiden worden van de globale beweging van een cel. In het gepre-
senteerde algoritme wordt dit bereikt door per cel alle betreffende gebieden in de
opeenvolgende beelden in een serie te registreren ten opzichte van het eerste beeld.
De mogelijkheid om vervolgens intracellulaire dynamische processen te bestuderen
wordt aangetoond door de analyse van foci, kleine fluorescente gebieden die de aan-
wezigheid van specifieke proteïnen aangeven, en die beeldstructuren vormen die
zeer vaak voorkomen in biologische studies. Voor de segmentatie daarvan is een al-
goritme ontwikkeld dat potentiële foci detecteert, segmenteert, en tenslotte selecteert
op basis van statistische criteria. Het algoritme is vrij generiek, doordat het slechts
weinig a priori informatie vereist, en kan dus worden gebruikt voor de analyse van
verschillende soorten foci. Het algoritme is gevalideerd door herhaling van een ex-
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periment dat eerder handmatig is uitgevoerd, waarbij het ging om het meten van
aantallen foci. Uit de resultaten blijkt dat de automatisch en handmatig verkregen
waarden leiden tot dezelfde biologische conclusies, hetgeen aantoont dat de automa-
tische methode de handmatige methode kan vervangen in het uitvoeren van derge-
lijke analyses. Tenslotte wordt aangetoond hoe de statistieken verkregen uit de foci
analyse (aantallen, gemiddelde grootte, intensiteit, en afstand tot de celkernmem-
braan) kunnen worden gebruikt voor de automatische herkenning van de fase van
cellen gelabeld met een specifiek antigen (PCNA). Elk van de bestudeerde fasen van
de celcyclus vertoont namelijk een kenmerkend patroon van PCNA foci. Deze aan-
pak is heel anders dan traditionele methoden voor dynamische celfaseherkenning,
die voorafgaande training van een model vereisen.

Tenslotte wordt in Hoofdstuk 5 het in Hoofdstuk 2 ontwikkelde algoritme voor
cel segmentatie en volging toegepast op een zeer uitdagend probleem: de recon-
structie van de afkomst van alle cellen in C. elegans embryogenese. Met behulp
van moderne fluorescentie microscopen is het mogelijk om de ontwikkeling van
C. elegans te volgen vanaf het zygote stadium tot een volledig volwassen organisme.
De ruimtelijke en temporele beeldresolutie is voldoende om de afzonderlijke cellen
in het organisme te onderscheiden, zelfs in latere stadia van de ontwikkeling, en om
eenzelfde cel te volgen tussen twee opeenvolgende beelden in een serie. Dit maakt
fluorescentie microscopie een uitstekend hulpmiddel in de ontwikkelingsbiologie,
waar C. elegans een van de meest populaire modelorganismen is, dankzij de invari-
antie van de afkomstboom van de cellen. De reconstructie van deze afkomstboom
uit de beeldinformatie is echter een zeer complexe taak, die op dit moment, met uit-
zondering van de vroege stadia van de ontwikkeling, meestal handmatig wordt uit-
gevoerd, wat niet alleen tijdrovend maar ook foutgevoelig is. De automatisering van
deze taak met behulp van computeralgoritmes resulteert niet alleen in een drastische
verhoging van de productiviteit, maar biedt ook aanvullende analysemogelijkheden.
Bijvoorbeeld, een methode die cellen niet alleen kan volgen maar ook segmenteren,
maakt een analyse mogelijk van de expressie van verschillende genen in elk stadium
van de embryogenese.

De gepresenteerde methode, welke gebaseerd is op energieminimalisatie, kan
cellen tegelijkertijd segmenteren en volgen. Het algoritme uit Hoofdstuk 2 is aan-
zienlijk aangepast en uitgebreid om deze geschikt te maken voor het analyseren van
in totaal meer dan 10.000 cellen op verschillende tijdstippen in C. elegans beelddata.
De toenemende complexiteit van het probleem (het groeiend aantal cellen in de tijd),
samen met de afnemende beeldkwaliteit (ten gevolge van blekingsprocessen), en de
propagatie van segmentatiefouten (door beperkingen van het algoritme), maken het
volgen na een bepaalde fase (doorgaans het stadium van 350 cellen) vrijwel onmo-
gelijk. De vervanging van de energieminimalisatie met level-sets door een veel effi-
ciëntere aanpak gebaseerd op het zogenaamde graph-cut algoritme, maakt het mo-
gelijk om de segmentatie van een beeld met ongeveer 350 cellen binnen een redelijke
tijd uit te voeren. Net als met level-sets worden de graph-cuts geminimaliseerd in
een smalle band rondom de celcontouren, waardoor ze geschikt zijn voor het volgen
ervan. Daarnaast heeft de methode speciale ingebouwde algoritmen voor het afhan-
delen van mogelijke botsingen tussen de cellen en het bijhouden van delende cellen.
Deze zijn afhankelijk van a priori informatie over de karakteristieke vorm van C. ele-
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gans kernen en hun delingspatroon. Vier beeldseries van twee verschillende labora-
toria zijn gebruikt voor de validatie van de methode. De resultaten tonen aan dat het
met behulp van de voorgestelde methode mogelijk is om C. elegans embryogenese
goed te volgen tot ten minste het stadium van 350 cellen. Het beschreven algoritme
is volledig geautomatiseerd, maar het gebruik in semi-automatische modus, waarbij
fouten direct na het optreden worden gecorrigeerd ter voorkoming van foutpropa-
gatie, geeft betere resultaten. Hoewel er dus nog ruimte is voor verdere verbetering,
biedt de methode op dit moment al een sterke vergemakkelijking van het werk van
biologen bij de analyse van C. elegans embryogenese.

Samenvattend toont dit proefschrift de mogelijkheden van gespecialiseerde me-
thoden voor de automatische en kwantitatieve analyse van biologische beeldseries
gemaakt met fluorescentie microscopie aan. In het bijzonder worden verschillende
wiskundige concepten zoals variationele calculus, energieminimalisatie, en partiële
differentiaalvergelijkingen toegepast en afgestemd op de segmentatie en het volgen
van objecten in beelden op verschillende schaalniveaus van biologisch onderzoek.
De gepresenteerde algoritmen zijn ontwikkeld voor het oplossen van een aantal be-
langrijke praktische problemen die zich voordoen bij de analyse van fluorescentie
microscopie beelden: het segmenteren en volgen van cellen, bewegingscorrectie, in-
tracellulaire analyse van fluorescente foci, en de reconstructie van de afkomst van
cellen in C. elegans embryogenese. Hoewel de onderliggende technieken vrij gene-
riek zijn, zijn de ontwikkelde algoritmen specifieker gemaakt voor optimale extrac-
tie van informatie uit de gegeven typen beelden, waardoor hun directe toepassing
op andere data typen beperkt kan zijn. Een ander potentieel nadeel van de varia-
tionele energieminimalisatie methoden is dat ze in het algemeen veel rekenkracht
vereisen. Voor elke specifieke toepassing dient daarom de juiste balans te wor-
den gevonden tussen de nauwkeurigheid van de resultaten en de vereiste reken-
tijd. Het oplossen van deze problemen zal leiden tot een verdere verbetering van de
toepasbaarheid van deze methoden in biologische studies, en zal de gepresenteerde
methoden uiteindelijk maken tot belangrijke instrumenten in high-throughput ex-
perimenten.
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Figure. 2.1 (see page 11): Cell tracking. (A) Three frames from a time-lapse fluorescence
microscopy image, illustrating the concept of model-evolution based cell segmentation and
association. Cell contours or surfaces can be defined parametrically or as the zero-level of a
higher-dimensional function. In each image frame, the final contour of a cell (solid line) is
obtained by minimization of an energy functional, typically consisting of image-based and
shape-based terms. The initial cell contour (dotted line) for each frame is usually taken to
be the final contour from the previous frame. Cell divisions can be detected by monitoring
the shape of the contour function during energy minimization. (B) Depending on the type
of labeling, the appearance of cells (or in this case their nuclei) may vary greatly, within one
frame as well as over time. (C) Thresholding usually results in a very noisy (at low thresholds)
or fragmented (at high thresholds) segmentation. (D) Model-based segmentation (in this case
using level sets) can yield much more sensible results.
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Figure. 2.2 (see page 14): Example of cell motion correction. (A) One cell followed through
the time-lapse fluorescence microscopy image data set (outlined). During its lifetime the cell
undergoes complex changes: movement, deformations, rotations, etc. (B) Cell segmentation
and tracking enables extraction of each of the cells separately at every moment of time and
bringing all the extracted regions occupied by the same cell to the “frozen” coordinate system
by applying motion correction. Marked time points correspond to the time points shown in
panel (A). In this case only the global motion of the nucleus is subtracted. (C,D) Appearance
and result of segmentation of the PCNA foci for each stage of the cell cycle: G1, early-S, mid-S,
late-S and G2 correspondingly (magnified).
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Figure. 2.3 (see page 17): Organism tracking. (A-C) Volume renderings of three time points
(3D image stacks) from a time-lapse fluorescence microscopy data set, showing C. elegans em-
bryogenesis from the four-cell stage to approximately one and two hours later, respectively.
The rapidly increasing number of cells and cell density pose a real challenge for automated
cell tracking. (D) Result of 3D segmentation (only one plane is shown here) obtained by ap-
plying a level-set based model-evolution algorithm and morphological postprocessing to the
stack rendered in (C). (E) Tracking results can be conveniently summarized and presented
(after completion or even in the process) using lineage trees, which give a clear picture of
mother-daughter relations of cells, division times, and symmetry breaking events. (F) Single
frame from time-lapse image data acquired using a dissecting microscope and showing the
morphological and behavioral phenotypes of an adult worm. (G) Owing to the high contrast
in the image, the worm body can be accurately segmented using intensity thresholding, and
simple morphological operations subsequently yield the outer contour and centerline (“skele-
ton”). (H) Finally, a variety of morphological features, such as body diameter and curvature,
can be easily computed at any position along the extracted centerline.
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Chapter 3

Figure. 3.1 (see page 23): Sample images from the data sets used in this study. From top-
left to bottom-right: Hoechst-labeled HeLa cells, H2B-GFP labeled HeLa cells, RAD18-YFP
labeled HeLa cells, and PCNA-GFP labeled CHO cells (see Section 3.4 for abbreviations and
experimental details).

Figure. 3.3 (see page 37): Two closely positioned cells separated using the Radon transform.
The transform is computed in a small region around the two cells (indicated by the dashed
rectangles in the images), and a separating plane is obtained by finding the correct local mini-
mum in the transform, which is used to construct evolution masks for the level-set functions
corresponding to the two cells (one mask is shown as a shaded area in the right image).
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Figure. 3.5 (see page 40): Typical appearance of the nuclei through the cell cycle under diffe-
rent staining: Hoecht (first row), H2B-GFP (second row), RAD18-YFP (third row) and PCNA-
GFP (fourth row). These images clearly indicate the difficulty connected with tracking mitosis
events caused by dramatic change of nuclei shape and intensity during cell division.

Figure. 3.9 (see page 47): Typical examples of errors produced by the original multiple-level-
set tracking algorithm (top row) in comparison with improved performance by our modified
algorithm (bottom row): (A,B) incorrect separation of two touching cells; (C,D) contour split-
ting as a result of such incorrect separation (this may lead to detection of cell division that
in reality did not occur); (E,F) incorrect segmentation of objects with complex foreground in-
tensity distribution; (G) the same, which leads to breaking of the contour into a number of
sub-contours segmenting intracellular structures instead of the whole nucleus; (H) disability
to handle rapid shape change; (I–K) difficulty with properly handling the correct moment
of cell division, which may cause a significant delay of detection of this event; (L) incorrect
identification of a part of an existent object located at image’s boundary as a new object.
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Figure. 3.10 (see page 47): Typical examples of segmentation and tracking errors produced by
our algorithm: (A) incorrect segmentation after rapid change of objects’s shape and contrast
(correct segmentation was recovered after the next time step); (B) delayed detection of cell
division event (separation of daughter nuclei); (C) false cell division event due to rare event
(appeared apoptotic cell) in the vicinity of the object.

Chapter 4

Figure. 4.1 (see page 52): Example of motion correction using the proposed approach. The two
top rows show the motion of one cell extracted from a time-lapse fluorescence microscopy
image data set (outlined in white). One slice (z = 1) is shown for time steps 1, 11, 21, 31, 41,
51, 61, 71, 81, and 84. The third row shows (magnified) the result of cell motion correction after
segmentation and tracking. In this case only the global motion of the nucleus is subtracted.
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Figure. 4.2 (see page 54): Example of foci segmentation using our algorithm: (A) images
of the same nucleus in five different time steps (1, 9, 46, 65, 71), each representing one of
the phases of the cell cycle (G1, early-S, middle-S, late-S, G2); (B) results of applying patch-
based reconstruction to each image; (C) initially detected foci markers (dots in different co-
lors); (D) results of the graph-cut based segmentation algorithm; (E) final results after foci
selection. All images are the first slice (z = 1) of the corresponding 3D image stack.

Figure. 4.3 (see page 58): Comparison between manual (orange) and automated (blue) 53BP1
foci counting for normal embryonic stem cells (IB-10) in terms of (A) the percentage of the
positive cells and (B) the average number of foci per cell at various time points. For each of
the measures the corresponding values and the obtained polynomial trend lines are shown.
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Figure. 4.4 (see page 58): Sample results from the automated foci counting experiment:
(A) DNA channel with segmented cell boundaries overlaid (contours of various colors);
(B) protein channel; (C) region masks (red) extracted from (A) together with the foci of in-
terest (white) segmented from (B). Each of the images has been cropped from its original size
and on the images (A) and (B) contrast enhancement was performed for better visualization.

Figure. 4.5 (see page 59): Comparison between manual and automated detection of phase
transition moments in PCNA-stained cells. The four plots correspond to the four possible
phase transitions: (A) G1 to early-S (21 cases), (B) early-S to middle-S (29 cases), (C) middle-S
to late-S (26 cases), and (D) late-S to G2 (22 cases). In each case, the difference in detection
times between the automated method and each of the two observers is plotted. A missing
point on one of the curves in (C) means that the corresponding phase transition was not de-
tected by the corresponding observer.
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Figure. 4.6 (see page 60): Sample results from the cell phase identification experiment. Shown
from top left to bottom right are cropped images of 84 successive time points of a single,
motion-corrected cell nucleus, going from the G1 phase, through the early-S, middle-S, late-
S, to the G2 phase (indicated by bars in different colors below the images), as automatically
recognized by our system based on characteristic foci patterns for each of these phases. The ex-
ample also illustrates the observation that it is easier (also visually) to distinguish the G phases
from the S phases than to distinguish between the different S phases.

Chapter 5

Figure. 5.3 (see page 68): Detection of cell division. The panels show (A) a cell in one time
point, with its segmentation (overlaid colored contour), (B) the line connecting markers P and
Q of the potential daughter cells, (C) the seeds and (D) final segmentation of the two daughter
nuclei.
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Figure. 5.4 (see page 72): Radon-transform based cell separation. The panels show (A) the
initial position of the contours (red and blue curves) of two adjacent cells (P and Q with their
markers indicated by dots) for t = 16 with corresponding overlapping narrow bands (green
and red areas), (B) the intensity profile along the line connecting the markers of the two cells
to find the position of minimum intensity (indicated by the dashed vertical line and point M),
(C) the separating plane (white line in this single slice) computed from the Radon transform
around that position, (D) the final segmentation (colored contours) for t = 16, and (E) the
selection procedure for adjacent cells that need to be separated. In the latter, all cell nuclei
that need to be separated from at least one other cell are shown in shades of green (with the
exception of the two cells in panel (A) shown in red), and all remaining cells (not adjacent
to any other cell) are shown in shades of blue. All nuclei are shown with smaller size for
visualization purposes. The lines connecting the markers of the cell nuclei are the edges of
the Delaunay triangulation calculated on the set of adjacent (red and green) objects. Only
the edges (highlighted in red) connecting actually adjacent cells are selected for performing
Radon-transform based cell separation.
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Figure. 5.6 (see page 78): Segmentation result for a sample data set. Original image stacks (A–
E) from the 081505 data set (volume renderings) and the corresponding segmentation results
(F–J) (surfaces rendered in arbitrary colors on top of the volume renderings) for the 4-cell
(t = 1), 51-cell (t = 74), 102-cell (t = 115), 184-cell (t = 138), and 350-cell stage (t = 184).
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