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Abstract

Cell competition is a widely conserved, fundamental biological quality control
mechanism. The cell competition assay of MDCK wild-type versus mutant
MDCK Scribble-knockdown (ScribKD ) relies on a mechanical mechanism
of competition [1], which posits that the emergence of compressing stresses
within the tissue at high confluency drive the competitive outcome. Ac-
cording to this mechanism, proliferating wild-type cells out-compete mutant
ScribKD cells, resulting in their apoptosis and apical extrusion. Previous
studies show that there is an increased division rate of wild-type cells in
neighbourhoods with high numbers of ScribKD cells [2], but what still remains
a mystery is whether this is a cause or consequence of increased apoptosis in
the “loser” cell population. This project also interrogated the competitive
assay of wild-type versus RasV 12 , which is hypothesized to operate on a bio-
chemical mechanism and results in the apical extrusion (but not apoptosis)
of the loser RasV 12 population. For both these mechanisms of competition
it is still unknown which population of cells are driving the winner/loser
outcome. Is the winner cell proliferation prompting the loser cell demise?
Or is an autonomous loser elimination prompting a subsequent winner cell
proliferation?

In my research, I have employed multi-modal, time-lapse microscopy to
image competition assays continuously for several days. These data were then
segmented into wild-type or mutant instances using a Convolutional Neural
Network (CNN) that can differentiate between the cell types, after which
they were tracked across cellular generations using a Bayesian multi-object
tracker. A conjugate analysis of fluorescent cell-cycle indicator probes was
then utilised to automatically identify key time points of cellular fate com-
mitment using deep-learning image classification. A spatio-temporal analysis
was then conducted in order to quantify any correlation between wild-type
proliferation and mutant cell demise.

For the case of wild-type versus ScribKD , there was no clear evidence for
the wild-type cells mitoses directly impacting upon the ScribKD cell apop-
totic elimination. Instead, a subsequent analysis found that a more subtle
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mechanism of pre-emptive, local density increases around the apoptosis site
appeared to be determining the eventual ScribKD fate. On the other hand,
there was clear evidence of a direct impact of wild-type mitoses on the sub-
sequent apical extrusion and competitive elimination of RasV 12 cells. Both
of these conclusions agree with the prevailing classification of cell competi-
tion types: mechanical interactions are more diffuse and occur over a larger
spatio-temporal domain, whereas biochemical interactions are constrained
to nearest neighbour cells. The hypothesized density-dependency of ScribKD

elimination was further quantified on a single-cell scale by these analyses, as
well as a potential new understanding of RasV 12 extrusion. Most interest-
ingly, it appears that there is a clear biophysical mechanism to the elimina-
tion in the biochemical RasV 12 cell competition. This suggests that perhaps
a new semantic approach is needed in the field of cell competition in order
to accurately classify different mechanisms of elimination.
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Impact Statement

Our research will provide a new understanding about the mechanism of cell
competition from a single-cell perspective. This will be achieved by using
bespoke, incubated imaging systems alongside cutting-edge image analysis
techniques to trace the emergent property of complete competitive elimina-
tion back to single-cell competitive interactions. Key competitive events,
such as loser cell death and winner cell proliferation, will be interrogated in
time and space to see if any correlations exist between the two. A thorough
statistical analysis of the relative clustering of these events will be conducted
to confidently assess the significance of any event patterning. These experi-
ments will take nascent deep learning technologies and use them to acquire
a “big data” set of individual cell trajectories, before using this data in so-
phisticated analysis, subsequently yielding conclusions about the underlying
biological mechanisms from cellular observations alone. It is this mix of in-
novative image analysis and thorough statistical investigation that will yield
a novel insight into the mechanisms of cell competition. This insight will
help to shape future understanding of cell competition and it’s therapeutic
consequences in cancer, development and tissue engineering.
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Chapter 1

Introduction

1.1 Cell Competition

Cell competition is broadly defined as a quality control mechanism wherein a
less-fit population of cells are eliminated from a tissue by neighbouring cells
with a superior fitness. Important to this definition is the understanding that
the less-fit “loser” population of cells are capable of growing and forming a
functional monolayer in the absence of the “winner” cells. This means that it
is the loser cell’s interactions with the neighbouring winner cells that results
in the competitive outcome. The definition of cellular fitness is still largely
open for interpretation and will depend on the specific assay of cell compe-
tition under examination. For example, a less fit population of cells could
feature a mutation that renders them sensitive to cellular crowding. This
mutated population would survive adequately in a homotypic environment
populated with just mutant cells, but would be eliminated from the tissue
when mixed with a wild-type population at a higher homeostatic density.

Cell competition as a means of quality control has been studied in several
different biological contexts, from development and homeostasis to tumuori-
genesis and tumour-suppression. In development, cell competition has been
implicated as a driving force behind progenitor populations. For example,
mammalian cell competition has been shown to promote pluripotency main-
tenance by elimination of premature lineages prior to gastrulation in mouse
ESCs [3]. In the context of cancer prevention, cell competition has been
shown to regulate and eliminate tumour growth, preventing the development
of neoplastic masses via the elimination of mutant cell types in Drosophila
imaginal discs [4]. Cell competition has also been shown to drive oncogenic
growth via the active elimination of wild-type intestinal cells [5]. These two
examples highlight how this fundamental quality control mechanism can be
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both advantageous to healthy tissue function and pathologically disadvanta-
geous when hijacked by mutated populations.

1.1.1 Competition & Super-Competition

Cell competition was first explored in Drosophila melanogaster Minute mu-
tants in 1975 by Morata and Ripoll [6]. The Minute genes encode a ribosomal
protein fundamental to protein synthesis. When flies composed of heterozy-
gous Minute mutants (M/+) are allowed to develop the overall rate of protein
translation and subsequent development of the Drosophila is slow. However,
these Minute mutant flies can still grow to to normal size and patterning.
It is only when the Minute mutant cells are mixed with the wild-type to
produce a heterotypic tissue that they are eventually completely eliminated.
The phenomena of cell competition was further characterised a few years
later in 1979. Simpson discovered a spatial dependency of this competitive
behaviour, showing that the mutant elimination was expedited by fragmenta-
tion of the population [7]. These subsequent observations were the first that

Figure 1.1: Schematic illustrating the two different types of outcome in a
“wild-type versus mutant” epithelial cell competition scenario. The mutant

cells, coloured magenta, are viable in a homotypic environment but will
either be eliminated or colonise the tissue in a heterogeneous environment.

The outcome of these scenarios depends on each cellular population’s
fitness: i.e. their capacity to thrive in the given tissue environment.

Another type of cell competition, called super-competition, results in the
mutant cells eliminating the wild-type and colonising the tissue.
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depicted a key aspect of the context dependency of cell competition: the elim-
ination of viable yet sub-optimal cells from a mixed population. However,
it was not immediately clear if this elimination was a result of inter-cellular
interactions between the two different populations or whether it was due to
sub-optimal cells being located in a non-optimal environment. This question
is fundamental to any enquiry into cell competition. It is important to iden-
tify the exact contribution of the winner population in the elimination of the
loser cells, otherwise the definition of competition may be applied incorrectly.
This question was further answered by work in 1981 by Simpson and Morata
that showed that cell competition occurred only in the immediate local envi-
ronment of the wild-type and mutant cells, outlining a much clearer pattern
of competitive interactions between different cell types [8].

The study of cell competition then fell into a period of relative neglect
for 20 years. A couple of reasons have been mooted for this period of decline,
but common amongst them is a lack of appreciation for the mechanistic basis
of competition from a single-cell perspective [9]. Indeed, the phenomenon of
apoptosis was only defined in the early-nineties, initiating the process of link-
ing tissue-wide elimination to the origins of single-cell demise [10, 11]. The
reemergence of this field coincided with the discovery of a viable Drosophila
homolog (dMyc) to mammalian oncogene Myc [12]. Proteins encoded by the
Myc oncogene are transcription factors that play roles in cell proliferation,
apoptosis and cellular transformation [13]. In a competitive context, mutant
dMyc flies were viable but smaller than their wild-type counterparts, and
when isolated mutant dMyc clones were grown in a mixed wild-type tissue
they were eliminated. This discovery hinted that the phenomenon of cell
competition may not be constrained to a curious observation in a fly model
and that there may be a wider conservation with mammalian implications.
This conserved nature of cell competition was confirmed by Oliver et al. in
2004 [14] and by Oertal et al. in 2006 [15] showing competitive interactions
fitting the previous definition in both mouse and rat models, respectively.

Due to the semantic framing of cell competition as a quality control mech-
anism, there lies a general assumption that the winner population of cells are
always wild-type and that the loser population are always mutants. This as-
sumption was disproved in 2004 in two separate accounts of wild-type cells
becoming the loser population [16, 17]. These findings further cemented cell
competition as a distinct biological phenomenon, not limited to the prevailing
paradigm of mutated cells failing to integrate within a wild-type tissue. If the
mutant cell populations aren’t always conscripted into a losing side then cell
competition becomes a phenomenon with pathological outcomes, rather than
just a homeostatic mechanism of controlling tissue growth. This new form
of competition, dubbed “super-competition”, has a clear analogy to cancer
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development, in which a mutated population of tumorigenic cells colonise
a tissue at the expense of their wild-type neighbours. A recent example of
super-competition implicated human cancer cells as possessing a winner-like
identity that conferred their proliferative advantage at the expense of neigh-
bouring wild-type cells. This identity took the form of a specific isoform
of membrane protein Flower (Fwe) [18], which is proposed to be a Ca2+
channel in Drosophila neurons [19]. In Drosophila studies, the Fwe locus
has three isoforms: ubiquitous (Fweubi), loser-A (FweLose−A) and loser-B
(FweLose−B). Basal levels of Fweubi are constantly produced whereas in com-
petition the two loser isoforms, FweLose−A and FweLose−B, are upregualated
in loser cells. A cell interface comparison of relative levels of FweLose−∗ and
Fweubi will be enough to determine the competitive elimination of single
cells and the subsequent expansion of tumour-like winner cells. This exam-
ple highlights an interesting mechanism in which the competitive statuses
are communicated between two distinct populations: the winner population
possesses a fitness fingerprint that gives them a competitive advantage over
the resident wild-type population. However, this fitness fingerprint method
of competitive communication is not always present and there are many dif-
ferent theories of how cell competition operates and whether it depends on
an easily identifiable competitive identity or not.

1.1.2 Theories of Competitive Mechanisms

Fitness fingerprints expressed as transmembrane surface proteins may be
one mechanism of winner/loser identification, but it does not fully explain
how the winner population impacts upon and out-competes the loser popula-
tion. This highlights the two different aspects of understanding competitive
mechanisms: firstly, how the different population of cells identify each other;
and secondly, how the competitive elimination actually occurs. A popular
approach to characterising cell competition studies has been to classify the
mechanisms of competition as broadly belonging to one of two categories:
biochemical competition and mechanical competition. Mechanical competi-
tion involves a mechanism of mutant elimination that is best characterised
by biophysical factors. These factors could involve compression, strain, cell
migration, mitotic forces and tissue relaxation due to apoptosis or extru-
sion. Biochemical competition on the other hand operates via mechanisms
of cellular signalling, cell identity recognition and competition for resources
such as growth factors. Importantly, there is nothing to suggest that these
two categories are mutually exclusive. Given that any cellular process will
inherently involve biochemical signalling pathways, it is harder to define a
purely mechanical competition. The aforementioned canonical example of
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Minute competition is typically classified as a mechanical cell competition
due to the differences in growth rates between cell populations. This assess-
ment of fitness seems to be relatively independent of biochemical signalling
pathways. However, other work has shown that loser cells express reduced
levels of Dpp, a member of the super-family of transforming growth factor-β
growth factors, and that artificially increasing the levels of signalling is suf-
ficient to stop the competitive elimination [20]. It remains unclear how the
relation between biophysical parameters and biochemical signalling results
in competitive elimination.

One key aspect used to differentiate biochemical from mechanical compe-
tition is the spatial extent of the competitive interactions. If there is evidence
of competitive interactions occurring only between neighbouring cells then
this is commonly accepted to be evidence for a biochemical system of commu-
nication, be it via competition for short-range trophic factors (ligand-capture
model) or cell surface markers expressing a loser cell identity. If the compet-
itive interactions are occurring over several cell diameters then it is far less
likely that cells are using surface markers to identify one another. Even the
competition for trophic factors will be less likely the further you get from
a focal competitive cell, as the diffusive concentration of such factors de-
creases. Thus, patterns of competitive interaction with larger spatial-extents
would likely be classified as mechanical. This distinction between competitive
mechanisms is illustrated in figure 1.2.

As well as the original Minute mutant competition experiments, one of
the clearest examples of mechanical cell competition is the MDCK wild-
type versus ScribKD system [21]. In this example, cells are competing for the
shared resource of space, with the success of the winner/wild-type population
dependent on it’s capacity to withstand a higher homeostatic density. It is
this biophysical basis for competition that then initiates an intracellular,
biochemical response within the loser population of ScribKD mutants that
eventually results in their elimination. This biochemical response, in the
form of elevated levels of p53, renders the ScribKD mutants hypersensitive
to further compaction, initiating a negative feedback cycle resulting in their
apoptosis.

Another example of how the mechanics of a system drive the competitive
outcome is present when considering the extent of the shared cell-cell inter-
face. Cells expressing low levels of Myc in the Drosophila pupal notum are
at a higher probability of elimination if they share more surface contact with
cell expressing high levels of Myc [22]. Following on from this, if the Myclow

clones have a compact shape and reduced contact area with the winners then
this is sufficient to slow down their competitive elimination. Whilst this phe-
nomenon involves competition specific surface markers in the form of Flower

5



Figure 1.2: A schematic illustration showing a way of differentiating
mechanisms of cell competition based on spatial scope of intra-cellular

interactions. As time progresses, from left to right, the mutants are
eliminated from the tissue by either mechanical or biochemical insults,

taking place across a range of distances.

isoforms, the elimination mechanisms fundamentally depend on differential
rates of tension at the cell interfaces. Lower tensions at the winner-loser cell
interface promote cell mixing, which which results in the competitive elimina-
tion due to the loser cells sharing more surface contact with the winner cells.
This example highlights the mutually inclusive nature of both classifications
of cell competition. There is a biochemical method of cell identification which
results in a mechanical sorting of cell populations. This mechanical sorting
then results in the triggering of biochemical pathways that eventually results
in competitive elimination for the loser population of cells.

In contrast to these examples, some forms of cell competition are far eas-
ier to define based on the variety of biochemical interactions they involve.
Amongst these are the aforementioned fitness fingerprint and the ligand cap-
ture models. As well as the Flower model of comparative fitness identifi-
cation, the gene azot has been implicated in conferring a loser status upon
a population of cells [23]. When azot is not present then the population of
suboptimal cells persists. However, the same cells will be eliminated from the
tissue if azot is present. The ligand capture model posits that cells compete
for trophic factors and it is this competition via a third party biomolecule
that determines the fate of the tissue. As well as the aforementioned competi-
tion for Dpp [20], evidence for the ligand capture model exists in studies that
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show diminished BMP signalling in the losers of Minute and Myc induced
competition [20, 17, 24].

The model system of MDCK wild-type versus RasV 12 has been proposed
to have biochemical underpinnings that differentiate it from mechanical com-
petition, yet also possesses a mechanism of cell elimination, apical extrusion,
that is fundamentally mechanical in nature [25]. A 2021 paper by Jebri et
al. suggests that competitive interactions between wild-type and RasV 12 are
mediated by proteins that are a part of or interact with the ECM, such as
integrins and laminins [26]. At the same time, this paper also posits that the
confined space existing within the epithelia may contribute to the behaviour
of the RasV 12 cells. Indeed, the fate of the RasV 12 cells is determined via
apical and basal extrusion from the wild-type monolayer, an inherently me-
chanical process. This example serves to highlight the difficulty in defining
a form of cell competition along a binary “biochemical versus mechanical”
classification.

1.1.3 Model Systems of Cell Competition

As previously discussed, the mammalian epithelial system of Madin-Darby
Canine Kidney (MDCK) cells is well established in the field of cell com-
petition. Epithelial systems are widely used within the field of biomedical
research. Many different cell types fall under the classification of epithelia
but common amongst them is the capacity to form tight intercellular junc-
tions that result in continuous sheets of tissue. These cellular monolayers
act as barriers around organs, forming an elementary line of defence against
foreign pathogens or toxins, regulating the passage of nutrients in and out of
the organ and managing the emergence of aberrant mutant cells via a pro-
cess termed epithelial defence against cancer (EDAC) [27]. Therefore, their
integrity and correct orientation is of the utmost importance when it comes
to healthy tissue development. It is crucial that epithelial cells possess the
correct apicobasal polarity and are capable of forming strong junctions, lest
the threat of pathogenic invasion or cancer metastasis increase, especially
considering that 90% of cancers originate from epithelia [28, 29].

MDCK cells were first isolated in 1958 from the kidney tubule of a Cocker
Spaniel dog as a means for studying viral infection of mammalian cells [30].
It was not until the 1970s that the cell line was established as a model ep-
ithelial system, demonstrating an ability to self-organise into hollow, cyst-like
spheres, form monolayers with apical-basal polarity, regulate fluid transport
activities and grow microvilli on their apical surface [31]. It is this histo-
typic expression of tissue functionality that led the authors to suggest that
the MDCK cell line is a suitable model system. Even though MDCK cells
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are capable of growing into 3D structures, their 2D monolayer formation is
commonly used in biological assays as it allows for the full scope of tissue
dynamics to be captured on standard microscope systems, with well-defined
cell junctions, a rapid growth rate and contact inhibition of proliferation [32].

In this project, two forms of MDCK epithelial cell competition are stud-
ied. The first is a competition between the wild-type population and a pop-
ulation of mutant cells depleted in the polarity protein scribble (ScribKD ).
The second is a competition between wild-type and a population of mutant
cells expressing oncogenic Ras (RasV 12 ). Both of these types of competi-
tion appear to invoke a broadly mechanical mechanism of elimination, with
ScribKD cells succumbing to higher densities and RasV 12 cells being apically
extruded, but whether there is a biochemical recognition remains a question.
Further to this, the majority of studies into these forms of cell competition
do not characterise the competitive interactions on a single-cell scale, so the
exact spatio-temporal extent of competitive insults is not well known. It is
this spatio-temporal extent that is key to defining the mechanism of compe-
tition as either biochemical or mechanical, as shown in 1.2. Knowing more
about the single-cell contribution to the wider competitive fate of the tissue
will result in a clarified definition of both forms of competition and lead to
new insight into the broad phenomena of cell competition.

Wild-Type versus ScribKD

One of they key prerequisites of a functional epithelium is the maintenance
of apicobasal polarity. Without this polarity, MDCK cells would not be
able to carry out vital functions that depend on having the correct cellular
orientation, such as the secretion and re-absorption of nutrients. The location
of these junctions is crucial for the ability to form an organised MDCK
monolayer infrastructure that can be subsequently shaped into the tissue-
level tubules, with the apical side forming the luminal circumference. Loss
of this cellular polarity is a key characteristic of malignant carcinomas [33].

The scaffold protein Scribble (Scr) is located on the basolateral mem-
brane as a part of the Lethal Giant Larvae (lgl)/Discs Large (Dlg)/Scribble
(Scr) conserved polarity complex [34, 35]. This polarity complex has also
been linked to cell proliferation in Drosophila studies and is known as a key
neoplastic tumour suppressor implicated in human colon and breast cancers
[33, 36]. When the expression of Scr is knocked down the cells lose their
apicobasal polarity and exhibit a distinct morphology changes [1], illustrated
in figure 1.3. When Drosophila Scr -silenced mutants are grown in a ho-
mozygous population there is excessive cell proliferation in the larval wing
imaginal discs and brain lobes, resulting in the formation of neoplastic tu-
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Figure 1.3: Diagram showing a lateral view of the intracellular, basolateral
localisation of Scr , along with the ScribKD morphology change when Scr is

silenced.

mors [34, 37]. When mammalian ScribKD mutants are grown in an MDCK
heterozygous population with wild-type cells a competition takes place and
the Scr mutants are eliminated from the tissue [37].

The mechanism of this competition depends on the apoptotic elimination
of the mutant population, which precedes and is independent of extrusion
from the monolayer [1]. Apoptotic elimination (apoptosis) is a form of pro-
grammed cell death that is strictly regulated and a fundamental aspect of
tissue homeostasis [38]. This is in contrast to other forms of cell death,
such as necrosis, that result in the sudden rupture of the cell membrane in
response to external traumas, such as infection [39]. The fact that the elim-
ination of ScribKD cells occurs via apoptosis highlights the fact that there
is a context dependent reaction to the competition: ScribKD cells seemingly
recognise their non-optimal local neighbourhood and autonomously decide
to remove themselves from it. This results in an eliminated loser cell that or-
ganises it’s own disposal, with the trademark structural changes of apoptosis
such as nuclear fragmentation and segregation of the organelles into several
apoptotic bodies [40]. This apoptotic organisation is not harmful to the host
tissue and does not induce any inflammatory reaction, further highlighting
cell competition’s role as a fundamental quality control mechanism [41].
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Another study has shown that the outcome of MDCK wild-type versus
ScribKD competition is primarily a result of mechanical insults, with the
ScribKD elimination driven by their preference for a lower homeostatic den-
sity [21]. This preference is dictated by the ScribKD cells’ higher basal levels
of the pro-apoptotic factor, p53. The ScribKD cells are rendered hyper-
sensitive to compaction by their p53 levels, which results in elimination from
the tissue when surrounded and crowded out by neighbouring wild-type cells.
This compaction is achieved via activation of Rho-associated kinase (ROCK)
and the stress kinase p38, which induces an increase in p53 expression re-
sulting in widespread ScribKD apoptosis. A recent study has shown that this
compaction is promoted by Fibroblast Growth Factor 21 (FGF21) secreted
by the ScribKD population, which attracts wild-type cells to the local envi-
ronment of a ScribKD population, further increasing their compaction [42].
Despite it being widely accepted that this competitive outcome is the result
of mechanical insults, the exact spatio-temporal extent of these competitive
interactions is not currently known.

Further work from this laboratory utilised time-lapse incubator microscopy
to image MDCK wild-type versus ScribKD cell competition over 4 days.
These images were then segmented, localised and tracked in order to build
a quantitative analysis of single-cell competitive behaviour. The net growth
per cell per frame was then defined as:

Net growth = pdiv − papo (1.1)

pdiv/apo =

∑
f(div/apo)∑

f
(1.2)

where pdiv/apo is the probability of division or apoptosis, f(event) is an
observed competitive event (division or apoptosis) and f is an observation
of a cell, both summed over all instances for a given spatial region and time
period. The results showed that ScribKD cell density increases threefold
when in a wild-type neighbourhood [2]. This subsequently increases the
probability of ScribKD apoptosis, the density-dependency of which is shown
in figure 1.4b.

The probability of ScribKD division is an order of magnitude higher than
the probability of ScribKD apoptosis. Therefore, any mechanism that im-
pacts upon division rates will have the dominant effect on the outcome of
this competition. At the higher tissue densities found in the wild-type ver-
sus ScribKD environment, the division rate for ScribKD is higher than that
of the wild-type and of pure populations of ScribKD . However, because of
the concomitant increase in the probability of ScribKD apoptosis, the overall
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(a) Net growth for different
neighbourhood configurations

(b) Density dependency of probability
of mitosis or apoptosis

Figure 1.4: Two figures from the work of Bove et al. [2]. 1.4a depicts the
growth rate of a single MDCK wild-type cell when surrounded by varying

configurations of local cellular neighbourhoods. The growth rate of a
wild-type cell is the highest when surrounded by 0 wild-type neighbours
and 4 ScribKD neighbours. The value within each box of the plot is the

number of cell observations used to calculate the net growth. Figure 1.4b
shows the idealised density dependency of the probability of division or

apoptosis for both populations of MDCK wild-type and ScribKD .

net growth of ScribKD still remains lower. This means that there were no
densities where the ScribKD cells had a higher net growth rate than their
wild-type counterparts. An asymmetry between the two different apoptotic
rates of ScribKD cells with mostly wild-type neighbours and with mostly
ScribKD neighbours indicated that it was not solely the higher densities that
determined the elimination of the ScribKD population. Instead, this evi-
dence pointed towards the identity of the wild-type neighbours as playing a
pivotal role in the ScribKD cell demise. If it was just density alone that de-
termined ScribKD fate, then there would be similar apoptosis rates between
these two local environmental configurations, but that is not the case. Com-
paring the ScribKD apoptosis rates to wild-type apoptosis rates reveals that
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ScribKD cells are far more sensitive to neighbourhood configuration. The
most striking result from this study showed that wild-type division rates
increased significantly in neighbourhoods with mostly ScribKD cells. In a
separate study, wild-type cells have also been observed to compact ScribKD

cells as a possible mechanism of elimination [21]. This poses the question of
whether the increase in wild-type density was due to higher rates of wild-type
mitoses near ScribKD cells, or perhaps it was due to migration of wild-type
cells towards ScribKD cells.

In order to clarify the nature of this competition, the role of homeostatic
density was explored in a model by Gradeci et al. [43]. This cellular Potts
model integrated mechanical features such as cell-cell affinity, cell-substrate
adhesion, cellular velocity and cell compressibility, as well as cell decision
conditions that decided whether a cell proliferated (due to reaching a critical
size or contact inhibition) or went through cell death/extrusion (due to falling
below a threshold size or reaching a critical density). The first step in this
investigation was to recreate the dynamics of monolayer growth, ensuring
that homogeneous populations of both cell types reach their experimentally-
observed homoestatic density, where the number of cell divisions matches
the number of cell deaths. Maintaining a homeostatic density is a vital func-
tion of a healthy monolayer, as it requires consistent population numbers to
form an effective epithelial barrier [44]. Once the homeostatic density was
modelled, the same parameters where then implemented to initiate a compe-
tition between the ScribKD and wild-type populations, placing both cells in
a heterotypic environment replicating competition experiments. Using the
aforementioned mechanical features, the model was able to accurately recre-
ate the temporal evolution of cell number, division rate and death rate for
both populations of cells. This suggested that the mechanical features are suf-
ficient to define the evolution and outcome of the wild-type versus ScribKD

competition. The two main parameters that contributed the most to the
competitive outcome were found to be the difference in homeostatic density
between the two populations and the relative compressibility of the cells.
The fact that differences in tissue organisation did not affect the modelled
competitive outcome also further confirms that this competition is largely
defined by mechanical inputs rather than biochemical signalling or cell-type
recognition.

MDCK Wild-Type versus RasV 12

Ras is an evolutionarily conserved family of proteins linked to cell prolifer-
ation, cytoskeletal integrity and other functions such as cell differentiation,
apoptosis and cell migration [45]. Ras proteins act as membrane-bound bi-
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nary switches. In their “off” state they are bound to GDP until a signal is
relayed from a nearby receptor that expels this GDP. The GDP is immedi-
ately replaced by GTP, resulting in a reconfiguration of the Ras protein as
“on”. The active version of Ras then triggers a cascade of signalling that
results in the phosphorylation of a target which could be, for example, a
transcription factor involved in cell growth or division [46].

One example of a Ras-activated signalling pathway is the Mitogen-Activated
Protein Kinase (MAPK) cascade. This signal is initiated by an extracellular
mitogen binding to a receptor on the cell surface. A Ras protein is then
“switched on”, swapping a GDP molecule for a GTP molecule, which sub-
sequently activates 3 MAPKs in sequence: MAP3K, MAP2K and MAPK.
The final step of the cascade is MAPK regulating the activity of several
transcription factors, resulting in the expression of genes that are involved in
cell growth and division [46]. Another example is the involvement of Ras in
the PI3K/AKT/mTOR signalling pathway. In this scenario, Ras will acti-
vate PI3K which, in turn, will phosphorylate and activate AKT, stimulating
its kinase activity and resulting in the phosphorylation of a collection of
other proteins, including mTOR, that influence cell growth, cell prolifera-
tion, cell motility, cell survival, protein synthesis, autophagy, transcription
and apoptosis inhibition [47, 48, 49]. These examples serve to highlight the
fundamental role Ras proteins play in the control of cell growth.

After Ras has been activated, it will then rapidly switch off again by
hydrolysing the GTP back into GDP. This quick process ensures that the
signal transduction facilitated by Ras is time-limited and not continually
activating the downstream processes. However, mutations in the structure
of Ras can affect the capacity to switch off, rendering Ras “constitutively
active” without the need for specific upstream Ras activation. Oncogenic
Ras is frequently mutated to an active form in a variety of human cancers
[50], where a lack of control over growth and apoptosis inhibition is a common
trait on a cellular level. An example of this constitutively active Ras is the
oncogenic mutation of RasV 12 , which features a point mutation of amino
acid 12 in the Ras protein structure [51]. This mutation has been implicated
in mitochondrial metabolism increases, increased levels of cellular peroxides
and DNA damage and tumour cell apoptosis resistance [52, 53, 54]. When
MDCK cells expressing RasV 12 are seeded at low densities it induces cell
scattering and down-regulation of cell-cell contact [25]. This morphological
change is illustrated in figure 1.5.

A 2009 study by Hogan et al. showed that there is a context-dependent
interaction between MDCK wild-type and cells expressing constitutively ac-
tive oncogenic RasV 12 [25]. When RasV 12 cells were seeded in ratios of 1:100
with their wild-type counterparts, frequent apical extrusions of the RasV 12
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Figure 1.5: Schematic illustration of an apical view of normal MDCK cells
undergoing the induction to express constitutively active RasV 12 , the same

cluster of cells appearing with a scattered morphology and reduced
intercellular contact.

population were observed. No apical extrusions were observed in either pure
population of RasV 12 or wild-type, highlighting the fact that there must be
a recognition of cell type from either the wild-type or RasV 12 . The recently
extruded cells were alive before, during and immediately after the extrusion,
seemingly resisting any form of cell death. This outcome ran counter to the
possibly expected outcome of anoikis, a form of programmed cell death that
occurs when adherent cells lose their anchorage to the extracellular matrix.
Anoikis can be autonomously triggered, like apoptosis, and depends upon
integrin-mediated cell adhesion signals [55]. However, this quality control
mechanism of cell death was evidently absent from the observed extrusion of
the RasV 12 cells by Hogan et al. In a separate study, cells stably expressing
constitutively active H-Ras were shown to facilitate survival by regulating
the metabolism of effector pathways and subsequently blocking anoikis [56].
A similar mechanism of anoikis evasion could be at play in the RasV 12 sys-
tem, as Hogan et al. observed the extruded cells continuing to proliferate
and form multicellular aggregates that were loosely attached to the underly-
ing wild-type cells. An in-vivo collection of extruded yet live mutated cells
could present a threat of epithelial to mesenchymal transition, a common
cancer development pathway [57]. This highlights the fact that even in a
seemingly competitive elimination of mutant cells, there is still a threat of
mutagenic invasion of normal tissues. This competitive outcome differs from
the wild-type versus ScribKD system, where the mutant elimination method
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was independent of extrusion and relied on the induction of apoptosis.
Further to this, not every RasV 12 cell ended up with a fate of apical

extrusion. Non-extruded RasV 12 cells were observed extending large basal
protrusions underneath several diameters of wild-type cell. This protrusion
behaviour was also observed to be highly context dependent; it did not occur
in pure populations of either wild-type or RasV 12 cells. When cultured for
longer periods on a collagen gel, these basal protrusions were observed to
extend beneath the neighbouring wild-type cells and invade into the collagen.
An illustration of both of these competitive outcomes is shown in figure 1.6.

Figure 1.6: Diagram of MDCK wild-type versus RasV 12 competitive
outcomes, as viewed from a lateral perspective. The basal protrusion of a
mutant cell is shown on the left and a cluster of apically extruded mutant

cells is shown on the right.

The approach employed by Hogan et al. was successful in establishing
the wild-type versus RasV 12 interactions as context dependent and therefore
competitive, and in defining two outcomes of that competition: apical ex-
trusions and basal protrusions. It also revealed that the extrusion process
depends upon E-cadherin cell-cell adhesion between wild-type and RasV 12

cells. However, it did not attempt to define these phenomena as explicitly
competitive, instead focusing on categorising this behaviour as a potential
pre-cancerous epithelial development. Referring to the two aspects of com-
petition characterisation (cell type recognition and elimination mechanism),
this study suggested that there is a cell-interface recognition of mutant RasV 12

cells and that this is followed by a mechanistic ejection of mutants via apical
extrusion. This was confirmed in a later study featuring a cell collision as-
say, where a population of wild-type and RasV 12 cells were seeded separately
before growing to meet at a newly established wild-type/RasV 12 population
interface. This resulted in the immediate and rapid repulsion of the RasV 12

population, followed by an active migration away from the wild-type [58].
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This repulsion was confirmed to be mediated by cell-cell interactions between
the two populations involving the EPH receptor A2 (EphA2), as depletion of
EphA2 promoted intermingling of both cell populations as well as a loss of
RasV 12 contractility. Specifically, the cell-cell interactions between wild-type
and RasV 12 cells involve the ephrin-A ligand presented on the surface of the
normal wild-type cells. However, the RasV 12 cells immediately behind the
wild-type interface of the collision assay also rounded up, bringing the hy-
pothesis of ligand recognition into question. In order to answer this question,
the role of ephrin-A ligands located on RasV 12 cells was explored in a later
study by Hill and Hogan [59]. They found that ephrin-A ligands expressed
on RasV 12 cells are not required to induce contractility and repulsion between
between neighbouring RasV 12 cells following interaction with wild-type cells.
This indicates that it is specifically the differential levels of eprin-A ligands on
the surface of the wild-type cells that triggers the repulsion and contraction
of the RasV 12 cells.

1.2 Quantitative Single-Cell Imaging

Cell competition is an emergent biological phenomenon, a consequence of
myriad interactions between thousands of autonomous cells, eventually re-
sulting in a tissue-wide reconfiguration that is phenotypically distinct from
the pre-competitive cellular landscape. Whilst the evolution of cell competi-
tion may be clearly visible at the tissue level, the single-cell interactions that
result in the competitive elimination are more subtle and far less easy to pin-
point. As a result, analyses of cell competition have been typically limited to
bulk readouts of population numbers at the onset and outcome of competi-
tion [9]. However, over the past two decades there has been an emergence of
technologies which have made a deeper interrogation possible, revealing the
properties and interactions of single-cells in large dynamic populations [60].
One of the key approaches is the single-cell analysis of long-term imaging
data, made possible by advances in the field of high-throughput microscopy
and computer vision [61]. Microscopy has arguably always contained single-
cell information within detailed images of tissue, however the capacity to
leverage this information into meaningful analyses is relatively new. It is
this utilisation of microscopy images to reveal spatially and temporally re-
solved data for single-cell interactions that this project utilises to study cell
competition.
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1.2.1 High-Throughput Microscopy

Biological reproducibility and experimental scale are two key considerations
when assessing whether any experimentally-observed phenomenon is repre-
sentative of in-vivo behaviour. Simply put, the more cells in any one analy-
sis, the more statistical confidence will ensue, especially when observing rare
events [62, 63]. Observing one key single-cell observation in a neighbour-
hood of thousands of other cells will serve to contextualise the significance of
this event. If it is not observed frequently, then the event can be described
as a rare occurrence. However, if there are other observations across the
FOV then this event will begin to garner more significance. Repeating ex-
periments to acquire more data of the same condition will further embolden
the importance of any key observations, helping to guarantee that a set of
events weren’t unique to a particular idiosyncrasy of that experimental set-
up. These considerations will result in a solid foundation of confidence for
any downstream quantitative assessment of statistical relevance, such as a
Coefficient of Variation (CV) calculation.

Further to this, ensuring that the in-vitro experimental conditions mimic
the in-vivo reality is vitally important experimental practice [64]. These con-
siderations are central to the approach of live-cell, long-term, high-throughput
microscopy. In order to acquire large volumes of image data, automated mi-
croscopy infrastructure is a necessity, with recent technological developments
allowing for reliable stage and focus control [65]. The advent of low-power
LEDs, especially in the blue spectral range, has ushered in new illumination
approaches that avoid damaging photobleaching and toxicity [66, 67, 68].
Ensuring that the temperature and CO2 levels are at a steady physiological
condition is of critical importance too, something that can be guaranteed by
employing suitable incubation chambers or even using a microscope inside a
standard incubator [2].

1.2.2 Fluorescent Probes

Imaging with a focus on single-cell resolution is a well-suited experimental
approach for capturing the dynamics of a complex biological system such as
cell competition. Central to the visualisation of cellular structures in image-
based approaches are the use of fluorescent molecules to illuminate spatial
regions and temporal patterns of interest. For example, to localise a single-
cell a fluorescent probe that targets nucleic acids could be utilised. Common
fluorescent dyes such as DAPI [69] and Hoechst 33342 [70] rely on permeat-
ing the cell membrane and directly binding to the the adenine-thymine-rich
regions of DNA. This approach is frequently used for fixed samples as the
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staining becomes unstable beyond a period of several hours or days. This,
coupled with the fact that these two dyes require 405nm excitation, which
would prove phototoxic over longer time periods, means that they are not
best suited for time-lapse assays. For longer live-cell imaging occurring over
several days and generations of cells, a better approach is to engineer cells
lines to stably express fluorescent reporters. This can be achieved by tagging,
for example, the core histone proteins such as H2A, H2B, H2 and H4 [71],
which bind to DNA to form chromatin, a higher order of DNA structure. By
fusing a fluorescent tag such as GFP with H2B the temporal evolution of sin-
gle cell nucleus can be visualised over many generations without a noticeable
degradation in fluorescence [72]. The visualisation of H2B also gives insight
into two key competitive events: the onset of mitosis, visible from the sepa-
ration of sister pairs of chromatids during anaphase; and the completion of
apoptosis, visible from the nuclear fragmentation during karyorrhexis. The
different phases of mitosis will also be visible as distinct morphologies when
using a H2B marker, as depicted in figure 1.7, where examples of interphase,
prometaphase, metaphase and anaphase as well as apoptotic nuclear frag-
mentation are shown using a H2B-GFP marker.

Figure 1.7: Examples of the different H2B-GFP morphologies of interphase,
prometaphase, metaphase, anaphase, interphase and apoptosis are shown.

Scale bar in left apoptotic frame is 5µm.

For a more detailed depiction of cell cycle progression, fluorescent tech-
niques such as FUCCI and PCNA markers could be used.
Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) distinguishes
each phase of the cell cycle by utilising green Monomeric Azami-Green (mAG)
and orange/red mKusabira-Orange2 (mkO2) fluorescent conjugates of two
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ubiquitin ligases. These ligases, Geminin and Cdt1, are active at different
times throughout the cell cycle, resulting in a nucleus that fluctuates be-
tween several spectral profiles throughout it’s life, each one corresponding to
a different cell cycle phase [73, 74]. FUCCI fluoresces red/orange throughout
G1 phase as Cdt1 accumulates. Then, there is a brief overlap at the onset
of S-phase where there is a fluorescence expression of both markers. Then
finally, the Cdt1 is downregulated and Geminin is upregulated, resulting in
a green fluorescence profile. This cycle is illustrated in figure 1.8.

Figure 1.8: Diagram showing the FUCCI nuclear fluorescence profile
throughout the cell cycle. After mitosis there is a brief period of no

fluorescence expression, followed by a continuous RFP signal (coloured
magenta in this diagram) during G1 phase, then a short overlap of RFP and

GFP expression, resulting in a mixed signal, then the cycle is completed
with an expression of GFP (coloured green) during the S and G2 phases.

For a detailed picture of cell cycle progression using a single imaging
channel, a fluorescent marker tagged to Proliferating Cell Nuclear Antigen
(PCNA) can be used. This indicates cell cycle progression based on distinct
morphological clustering and dispersion rather than colour changes, as with
FUCCI. Finally, cell fate can also be visualised by using a Kinase Translo-
cation Reporter (KTR) such as JNK-KTR, which relies on the activation of
the JNK pathway that is upstream of apoptotic commitment, resulting in
an early marker indicating a potential later apoptosis [75, 76]. KTRs are
composed of a fluorescently-tagged substrate that is fused to two phospho-

19



rylatable components: a Bipartite Nuclear Localization Signal (bNLS) and a
Nuclear Export Signal (NES). Prior to phosphorylation, the KTR is localised
in the nucleus, but after phosphorylation the bNLS activity is supressed and
the NES activity upregulated which leads to a cytoplasmic translocation of
the KTR. Thus, the nuclear to cytoplasmic ratio of KTR fluorescence can be
used as an indicator for kinase activity and subsequent apoptotic commiment
(in the case of JNK-KTR). In the context of cell competition, fluorescent
probes also allow for a demarcation of cell type. When seeding cells at low
densities, a mutant phenotype is sometimes visible as an aberrant cellular
morphology, as depicted in figures 1.3 and 1.5. However, at more confluent
densities, this morphology becomes difficult to discern as cells pack together
in higher densities and lose their distinct appearances. Therefore, it is hugely
beneficial for downstream analyses to have distinguishable fluorescent mark-
ers (such as GFP and RFP) that indicate whether the cell is wild-type or
mutant.

1.2.3 Imaging Modalities

Different imaging modalities will allow for a wide range of insights into the
cellular mechanisms at play, with various benefits and drawbacks associated
to each approach. Widefield microscopy is the most generally applicable
approach due to its simplicity and subsequent ease of implementation [77].
It relies on a illumination of the whole biological sample with either bright-
field transmitted white light or laser excitation for fluorescence imaging. It
is especially suited to live-cell imaging due to the rapid image acquisition,
which can result in a high frame-rate, and the low intensity of illuminating
light. However, the resolution achieved can be insufficient for many sub-
cellular features and the general contrast of images can be obfuscated by out
of focus materials. This contrast can be increased by using phase contrast or
DIC approaches, which both utilise optical interference to enhance the clarity
of transparent or unstained biological samples. The Ralyleigh criterion [78],
shown in equation 1.3, can be used to find the smallest resolvable dimension
of a microscope.

d =
1.22λ

2NA
(1.3)

Where λ is the wavelength of light and NA is the numerical aperture of the
objective lens. For a typical widefield optical system, the magnification may
be 20x, with an NA of 0.5 and an illuminating wavelength of 530nm. This
would mean the smallest resolvable dimension would be 0.6µm. According to
the Nyquist-Shannon sampling theorem [79], in order to properly resolve this
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signal, a sampling rate of at least half this dimension is required, meaning
the effective pixel size of the camera sensor would be 0.3µm. These sizes
are sufficient to acquire a level of detail that allows for cell-scale changes to
be observed clearly, such as the transition between interphase and mitosis,
but are insufficient to resolve a finer level of detail that one might require if
looking to quantify intracellular protein localisation, for example.

One method of circumventing these issues is to employ confocal imaging.
Confocal imaging will yield highly spatially resolved images by filtering the
out-of-focus light with a pinhole aperture [80]. Even though only a small
region of the sample of imaged at any one time, a much larger volume of
biological matter will be illuminated with most of the light being filtered
out by the aperture. As a consequence, photobleaching effects and general
phototoxicity may build up over longer-term live cell confocal acquisitions
[80]. A major drawback of this approach is the subsequent imaging area is
spatially limited, meaning that to acquire larger areas of tissue a scanning
method is required that consumes precious time in a live-cell imaging context.
This can be partially circumvented spinning disk confocal microscopy [81],
which utilises an array of apertures placed on a spinning disk to rapidly
increase the speed of image acquisition. Both of these confocal techniques
allow for acquisition across multiple z-planes to yield a volumetric image of
the tissue. However, due to the scanning nature of confocal approaches this
3D acquisition will be slow and the resolution not as well-defined.

In order to significantly increase the z resolution, an alternative approach
such as light sheet microscopy can be employed [82]. This method utilises
cylindrical lenses to focus the incident beam of light into a 2D plane of illu-
mination that can excite a field of fluorescence throughout a tissue sample.
This plane of illumination can then be scanned throughout the entire volume
of biological matter, resulting in a rapid acquisition across a large 3D cellular
structure at a high spatial resolution [83]. As only the regions that are illu-
minated are also being imaged, this approach is comparatively efficient with
regards to phototoxicity and photobleaching. It is subsequently a favoured
approach for comprehensive live-cell imaging of entire tissue volumes. How-
ever, the optical infrastructure is complex and costly and it also relies on
having a fluorescently tagged biological sample, which can be a prohibitive
factor for many live-cell samples as it takes time and expertise to bio-engineer
a stable fluorescent tag.

Label-free approaches can be considered amongst the earliest of microscopy
techniques, as fluorescence tagging of biomolecules for live-cell imaging was
not commonplace until after the turn of the millennium [84]. As popular as
fluorescence microscopy has been over the past two decade, in recent years
there has been a renaissance in label-free approaches. This has been abetted
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by technological advances that allow for the previously unachievable levels
of cellular and molecular specificity, such as the identification of specific or-
ganelles, that is unfeasible with widefield or phase-contrast/DIC approaches
[85]. Subsequently, label-free microscopy has begun to garner quantitative
credentials that were previously only achievable with fluorescence-based tech-
niques. This approach carries the implicit advantage of not requiring complex
and time-consuming biological engineering of fluorescent labels to visualise
detailed cell dynamics. There are many different ways a quantitative analysis
can be achieved using label-free microscopy, such as utilising a broadband
polarisation-resolved detector to visualise the spatial and angular organisa-
tion of biomolecules in live cells [86], or coopting the principle of optical inter-
ference to measure the refractive index of live cells in Quantitative Phase Mi-
croscope (QPM) [87]. In QPM, a quantitative measure of cellular refractive
index is directly correlated to the density of biological matter at that pixel
location [88], meaning that given a consistent image quality and a reliable
post-acquisition image analysis pipeline, QPM images could be used to trace
the dynamics of single-cell dry mass over multiple generations. This direct
measure of cellular activity does not suffer from phototoxic effects and can
be multiplexed with fluorescence channels to create a multicoloured, detailed
picture of live cell protein synthesis dynamics coupled with, for example, flu-
orescent markers for the aforementioned cell fate reporters. However, this
label-free method requires complex optical infrastructure that necessitates
constant upkeep and detailed knowledge of the system before an acquisition
can be initiated. A table of the advantages and disadvantages of the discussed
imaging modalities is shown in table 1.1.

1.2.4 Image Analysis

The post-acquisition image analysis pipeline is of crucial importance for ob-
taining a meaningful analyses from the raw image data, not only for QPM,
but for any imaging modality. There are several key challenges associated
with the generation of a corpus of detailed single-live-cell data from mi-
croscopy images. For a quantitative analysis of cells, one of the most im-
portant steps is the extraction of single-cell trajectories over the full time
period of image acquisition. In order to reliably comment on the temporal
evolution of any one cell, there needs to be a degree of high certainty that
one is following the same cell over the full course of the time-lapse. For this
to be achieved, a reliable object localisation of each and every cell needs to
be accomplished for all frames in the time-lapse microscopy movie.
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Imaging modality Advantages Disadvantages

Widefield

- Fast acquisition, resulting
in high temporal resolution
- Simple infrastructure,
easy to implement
- Multichannel fluorescence
allows for labelling of
subcellular entities

- Indiscriminate illumination,
resulting in phototoxicity
- Low resolution in the z axis

DIC/Phase-contrast
- Better contrast and resolution
(than when compared to widefield)

- No distinction of subcellular
features (as is possible
with fluorophores)
- Low resolution in the z axis

Confocal
- High spatial resolution
- Low background fluorescence
- Non-invasive optical sectioning

- Slow acquisition, resulting in
low temporal resolution
- Smaller field of view
- Low resolution in the z axis
- High phototoxicity

Light sheet

- Fast acquisition, resulting in
high temporal resolution
- 3D images of large volumes
- Selective illumination, resulting
in less phototoxicity

- Complex optical infrastructure
- Raw data output is very large

Label free
- No need for complex and time-
consuming biological engineering
- No phototoxicity

- Complex imaging infrastructure
- Requires engineering expertise to
set up and maintain the system

Table 1.1: A table comparing the advantages and disadvantages associated with various
microscopy imaging modalities.

Image Segmentation

Image segmentation is the process of defining the spatial extent of objects in
an image. In the context of biological imaging, this could mean segmenting
an image into regions that are classified as either tissue/cells/organs against
a background. When collections of objects are classified under a single la-
bel, without differentiation between individual instances, this is known as
semantic segmentation. For a true single-cell analysis, a more sophisticated
instance-based segmentation is required. Instance segmentation takes classi-
fication of objects/background and further classifies each object as a distinct
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entity, separate from the neighbouring objects, a step which is of crucial
importance in achieving a single-cell analysis. Further to this, sub-cellular
instance segmentation could be employed to classify the regions within single-
cell as perhaps belonging to the nuclear area, or even finer details of organelle
structure. The difference between semantic and instance segmentation is
shown in figure 1.9.

(a) Semantic segmentation (b) Instance segmentation

Figure 1.9: (1.9a) An example of semantic segmentation map of a collection
of cell nuclei. (1.9b) The same segmentation map, but instance-based

segmentation, with each cell having a unique pixel value, corresponding to
a label identity.

There are broadly two approaches to cell segmentation: a classical ap-
proach and a newer, deep-learning based approach. The classical approach
has existed since the first microscopy images were digitised and can involve
any number of histogram-based methods in order to extract desired features
from an image. For example, given a highly-contrasted image, a classical
approach would be to employ an Otsu segmentation [89], which is applica-
ble over large data sets as it automatically measures the variance of image
intensity to threshold the background from the foreground cells. A simple
water-shedding feature could be employed to improve the output by sepa-
rating the background from the pertinent features with bright pixel values
[90]. However, these approaches would only work for a semantic segmenta-
tion as the cellular boundaries are unlikely to be as clearly contrasted as the
background. This shortcoming is illustrated in figure 1.10b, where groups of
cells are merged together due to their close proximity and indistinct cellular
boundary.

For a more rigorous instance-based segmentation, sophisticated deep-
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(a) QPM input image (b) Classic segmentation (c) Sobel edge detection

Figure 1.10: A Quantitative Phase Microscope image of MDCK cells
(1.10a), with a histogram-based threshold process applied (1.10b) and with
a Sobel edge detection process applied (1.10c). Scale bar in 1.10a is 40µm.

learning approaches have recently become the primary choice for a range
of different scientists, aided by a new generation of easy-to-implement al-
gorithms that require minimal computing experience. The innovation of
deep-learning lies in the fact that it does not require a manual adjustment
for each instance of segmentation, instead “learning” from data samples to
find the correct solution by relying on general inference [91, 92]. The ability
to incorporate context into automated analyses of images has propelled the
usage of deep-learning techniques into the mainstream. This versatility and
effectiveness of implementation means that a single algorithm can be applied
over morphologically diverse time-lapse data where several key aspects will
naturally change over time, such as the tissue confluency or image Signal to
Noise Ratio (SNR).

There are two categories of deep-learning based image analysis: unsuper-
vised learning and supervised learning. Unsupervised learning assumes no
input knowledge of the biological system and instead will attempt to iden-
tify clusters within the image data without prior, user-designated outputs.
An example of this is could be utilising unsuperverised learning to discern
the most pertinent image features for predicting cell fate in a competitive
scenario [93, 94]. Counter to this, supervised learning requires the desired
output of the deep-learning algorithm to be clearly defined as a set of dis-
tinct, user-selected classes. Examples of supervised learning include: using
a Convolutional Neural Network (CNN) for classification of cell cycle phase
based on chromosomal morphology [72], for which one must provide examples
of single-cell images in a variety of cell cycle phases; and the aforementioned
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cellular segmentation [95], in which the user must have clearly labelled im-
ages of cells and background. These clearly labelled images are known as
”ground-truth” examples, which are typically generated by a manual anno-
tation of a representative range of images, with the versatility of application
dependent on the variance of cellular morphology within the images. This
corpus of ground-truth data is then used in a learning (training) phase of
the neural network to automatically infer a method to discriminate regions
of the image that belong to each class.

Figure 1.11: U-Net neural network architecture [95]. Each image operation
within the network is represented by a different coloured arrow, with the

colour key is in the bottom left corner. Dimensionality of each image
transformation is shown bordering each image rectangle.

U-Net

The most popular implementation of deep-learning based biomedical image
segmentation is the U-Net, first proposed in 2015 by Ronneberger et al. [95].
U-Net is a fully Convolutional Neural Network that is designed to perform
biomedical image segmentation with far fewer training examples than the
contemporary algorithms of the time. The naming of U-Net comes from “U”
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shaped structure of the algorithm, shown in figure 1.11. The ground-truth
data set used to train a U-Net will consist of pairs of input microscopy im-
ages with corresponding manually-annotated, binary labels showing regions
of cells and background. The binary labels are considered to be the “gold-
standard” desired output of the segmentation process. During the training
phase of U-Net optimisation, a ground-truth microscopy image is passed
through the neural network which then initiates an iterative tweaking of the
internal parameters until the output segmentation maps reach a comparable
level of accuracy to their ground-truth examples. This “back-propagation”
process aims to minimise the loss which is defined as the error between the
model output and the ground truth training example. As can be gleaned
from the diagram in figure 1.11, these internal parameters are numerous and
complex. As the CNN name suggests, one of the primary operations that
occurs during a U-Net segmentation is a series of image convolutions. In
the first step of the U-Net, the input image undergoes a series of convolu-
tions with randomly generated kernel filters. The process of convolution is
fundamental to many image analysis techniques and is akin to a matrix mul-
tiplication, where the two matrices involved are the input image and a kernel
used to extract a latent feature. The resultant product of this convolution
will be a 2D feature map, where regions of interest pertinent to the chosen
feature are highlighted. A classical example of a kernel filters are the Sobel
edge detectors. The Sobel edge kernels for the x and y direction are shown
in equation 1.4 as Gx and Gy, respectively.

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 Gy =

+1 2 +1
0 0 0
−1 −2 −1

 (1.4)

The exact implementation of an image convolution involves adding each
element (corresponding to a pixel) of the input image to it’s local neighbours
and weighting that addition by the kernel elements. This mathematical pro-
cess is defined in equation 1.5, where the x matrix corresponds to the input
image and the y matrix to the convolutional kernel.


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn

∗

y11 y12 · · · y1n

y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn

 =
m−1∑
i=0

n−1∑
j=0

x(m−i)(n−j)y(1+i)(1+j)

(1.5)
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The output feature map of a convolutional Sobel edge detection operation
on figure 1.10a is shown in figure 1.10c. This output is only a partial picture of
a fully labelled segmentation map and many different types of convolutional
kernels are required to achieve an accurate segmentation. As previously
mentioned, the advantage of deep-learning approaches is the exact set of
kernel filters do not have to be predefined by the user as the neural network
will learn the best combination of kernels, with weights and biases, to use in
order to reach the gold standard of segmentation according to the examples
provided in the training data set. For bespoke neural network design, other
parameters can be set by the user, such as the number of filters, filter size and
the overall architecture of the network, although U-Net is designed with an
optimal selection of these parameters. During the training phase of U-Net,
the ground-truth data will be augmented into a larger set of training data
by applying various transformations (rotations, shearing, mirroring, etc.) to
the original data set and taking cropped samples to train with. This is so
that the model is not “over-fit” on the training data and learns broad image
features to segment rather than specific instances of cell boundaries that is
only relevant for the specific training examples.

In the first step of figure 1.11, a single cropped input image is 572x572
pixels goes through two convolutional layers with a set of 3x3 kernel filters
to result in two sets of 64 different output feature maps. This results in one
set of feature maps, the latter being convolutions of the first feature maps, a
necessary step that serves to extract features that are combinations of lower-
level features such as edges that form shapes. These feature maps are 1 pixel
smaller in both dimensions due to the padding effects of running a 3x3 ma-
trix over a larger 572x572 image. This padding effect is repeated with every
convolutional step, as can be seen by the subsequent feature map dimensions.
Along with the 3x3 convolution, a Rectified Linear Units (ReLU) function
is applied to the output feature map. This ReLU function serves as an ac-
tivation function, operating element-wise on the feature map and replacing
all negative pixel values with zero, thereby retaining only the pertinent in-
formation to the segmentation problem, discarding redundant excess that
would only increase the computational cost. The next step is to employ a
2x2 max pooling operation to reduces the dimensionality of the feature maps
by extracting the maximum values from a 2x2 window. This is so that sub-
sequent layers are pooling information from a larger region of the image, an
important aspect of this approaches capacity to internalise the context of an
image. It also serves to make the feature representations more manageable
by reducing computational burden and to make the network more resilient to
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small distortions in the input image. This process of convolution, ReLU op-
erations and max pooling is repeated 4 times in the U-Net, with the number
of convolutions doubling at every stage so that the architecture can learn the
complex image features. This leads to a resized image of 28x28 pixels with
1024 feature maps used to define whether a region of image belongs to the
cell or background classification. A simple CNN would stop at this step, the
end product being a series of features that can be used to classify an image.

This completes the contracting path part of the U-Net, where the high-
level features of the image were extracted. An intuitive explanation of the
downsampling process is that it enables the network to better understand
what features are present in the image representations, at the cost of know-
ing where the features are present. As a consequence of this, the expanding
path is initiated in order to localise these high-level features within the orig-
inal feature maps by using context from previous layers, shown as the copy
and crop arrows in figure 1.11. The first step in the expanding path is a
up-convolution, akin to the inverse of the previous convolutions wherein the
image dimensions increase with every transposed convolution. This is cou-
pled with a concatenation of copied and cropped feature maps to help con-
textualise the extracted features within the original images. This expansion
process continues until the 1024 feature maps have been condensed down to
the two classes and the image size is comparable to the input image. The
result is a segmentation map that depicts the classification of each pixel in
the original input image as either cell or background. This map is obtained
by taking the argmax of the U-Net output, generating an image of binary
classification. A strength of U-Net is it’s ability to perform very well on
separating touching objects from the same class, the likes of which can be
seen in abundance in the example microscopy image of figure 1.10a. This
is achieved by utilising a loss weight for background pixels that penalises
incorrect classifications at the interfaces between cells.

During the training phase of creating a U-Net, a comparison between
the initial network output and the gold standard training data example is
made and used to iteratively improve the network performance by adjusting
the internal parameters using backpropagation. Once the training phase is
complete, the U-Net is then tested on a corpus of unseen input microscopy
images. This unseen test data comprises of more manually annotated ground-
truth examples to ensure that the scoring of the network is sufficiently as-
sessed to the user-defined standard. Once a satisfactory accuracy has been
achieved the U-Net is ready to implement cellular image segmentation on
newly generated microscopy image data. The generation of ground-truth
training and test data for the implementation of a U-Net segmentation is
a time-consuming and laborious process. This step can be expedited by
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using partially segmented images to inform manual annotation process, or
by using classical image segmentation as a foundation for the ground-truth
images. This is known as “boot-strapping” in machine learning parlance.
However, the reality is that the more images you use, with greater morpho-
logical variance, the better the overall performance of the cellular segmen-
tation [96]. In lieu of this, a recent trend in biomedical image segmentation
has been to crowd-source ground-truth image data and use it in the creation
of widely-applicable segmentation algorithms [97, 98]. Two of these algo-
rithms, Cellpose [99, 100] and Stardist [101, 102] are built on a foundation of
U-Net architecture, with added functionality to improve general segmenta-
tion performance. The performance of Cellpose depends on the generation of
topological maps through a process of simulated diffusion. These maps are
created from ground-truth labels and then used to train a U-Net to predict
the horizontal and vertical gradients within the topological maps, as well as
whether any one pixel belongs to a cell or the background. Given a new test
image, the network predicts the horizontal and vertical gradients and creates
a vector field representation of both. These vector fields are then used to
assign pixels belonging to a given cell by utilising a process known as gradi-
ent tracking to follow each pixel to the centroid of each cell [103]. It is this
process of grouping pixels that converge to the same cellular centroid that
allows Cellpose to accurately segment cells of great morphological diversity.

For segmentation of more roundish segmentation instances, Stardist utilises
star-convex pologyons to approximate the convex structure of cell nuclei. The
Stardist protocol, each pixel within a detected nucleus area is assigned two
different parameters in the segmentation implementation. One is the star-
convex polygon which radiates out from the pixel until it meets the edge of
the detected nuclear area. The second parameter is a normalised shortest
distance from the edge of the nucleus which acts as a proxy for the probabil-
ity that pixel belongs to the detected nucleus. Again, a U-Net architecture is
then trained using ground-truth examples of these segmented nuclei and asso-
ciated parameters. The parameters for each nuclear area are then processed
to select one star-convex polygon for every cell nucleus in the input image.
This results in a segmentation of morphologically similar convex shapes that
can cope well with touching nuclei and overlapping cells.

Morphology Classification

The output of a comprehensive segmentation process will be an instantaneous
representation of each and every cellular instance over the entire time-lapse
movie. This spatio-temporal information is a rich, yet incomplete account
of cellular activity, partly because cell trajectories are not yet linked over
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Figure 1.12: CNN architecture for image classification, taken from Bove et
al. [2] and used in Ulicna et al. [72].

time. In order to expand the analysis, further classification of cell state can
be incorporated. This process can serve two important roles: firstly, it can
integrate information about cellular health that forms a vital component
quantitative analyses in fields such as cell competition; and secondly, it can
help inform later tracking analyses of the correct state transitions of cells,
aiding in the creation of accurate cell trajectories. As previously mentioned,
Convolutional Neural Networks can be utilised to extract classifications of
pre-designated labels using a supervised deep learning approach. For exam-
ple, classifying the H2B-GFP morphology of cell nuclei as belonging to one
of the 6 classes laid out in figure 1.7 can help establish a chronology to in-
dividual instances of cell segmentation. Further to this, it will also indicate
which cells are proliferative and which are succumbing to an apoptotic com-
petitive fate. This approach has the advantage of being easy to implement
using cutting-edge online code workbooks, as outlined in a recent work by
the laboratory [72]. This classification was based on both the brightfield
morphology of a single cell and the fluorescent markers of H2B-GFP.

This CNN structure used to classify the H2B-GFP morphology is broadly
based on the LeNet-5 architecture [104], consisting of several layers of 3x3
convolutions along with rectified linear units (ReLU) and 2x2 max-pooling
units. The output of this network is a probabilistic assignment of a single-cell
image patch belonging to any class the user choses to define at the onset of
the training protocol.

Other supervised learning approaches for classification of cellular mor-
phology include utilising technologies such as Support Vector Machine (SVM)
and Hidden Markov Model (HMM) to classify cell states and transitions. A
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support vector machine is a type of algorithm that seeks to classify objects
by finding a hyperplane(s) that best segregates the data set into a number
of predefined classes based on an assessment of different visual features that
encode single-cell shape and texture [105]. The distance between the hyper-
plane and a given instances of single-cell morphology is known as the margin
and the greater the margin, the greater the confidence of that single-cell
classification [106]. As biological image data is rarely easily segregated by a
single linear hyperplane, a process called kernelling is employed to map the
feature data into higher dimensions. This kernelling procedure is continued
until the data is represented in a high enough dimension so that an adequate
class segregation can be found. SVMs are used by Held et al. in the Cellcog-
nition algorithm to classify H2B morphology [107]. After classification of
mitotic state, a HMM is used to ensure that state transitions follow the bi-
ological and chronological understanding of how cells enter mitosis. HMM
work on the premise that progression to one state depends entirely on the
given present state. They also rely on the assumption that the true state of
the cell, i.e. the mitotic phase, is unknown at any one point yet is correlated
with an observable parameters taken from the SVM classification [108]. Both
these facts fulfil the criteria for a HMM and it is subsequently employed in
the Cellcognition algorithm to correct for errors in time-resolved data. This
combination of HMM error correction coupled with the SVM mitotic event
classification reduced the per-object error rate by a factor of tenfold, high-
lighting the efficacy of coupling supervised learning approach with the correct
probabilistic model [107].

SVMs are suitable for clearly defined classes with little to no overlap.
This approach is subsequently well suited to the sudden transition between
interphase and mitosis, however it would be less effective when considering,
for example, the slower transition of PCNA morphology throughout the cell
cycle. This highlights that it is the versatility of use of convolutional neural
networks that result in their widespread adoption in the biological image
analysis.

Object Tracking

Possessing an accurate localisation of each and every cell in all frames of
a time-lapse movie is only a part of acquiring a comprehensive single-cell
analysis. Indeed, if the biological samples were not live-cells, then this sort
of labelling procedure would be enough to perform a quantitative analy-
sis. However, live cell samples migrate, divide and die over time and this
dynamism presents a challenge in ensuring that any given cell is followed
accurately across all time points, a crucial factor in the pursuit of a single-
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cell analysis. In order to circumvent this challenge, multi-object tracking
algorithms have been developed to take time-lapse segmentation maps of
unique cellular instances and unite each instance over time into individual
trajectories. Given the vast applicability of tracking algorithms, not just to
different biomedical studies, but to the whole field of computer vision, there is
a plethora of different approaches available [109]. For the purpose of brevity,
only cell-focused tracking algorithms shall be reviewed here: approaches that
focus on the reconstruction of the temporal evolution of a population of cells
spatial position. There are broadly two approaches to cell tracking: tracking
by contour evolution [110, 111, 112, 113] and tracking by detection methods
[114, 115, 116, 117, 118]. The former of these approaches relies on segment-
ing cells frame by frame and matching subtle morphological changes in cell
shape to the corresponding cell in the next frame. With this technique there
lies the assumption that the cells do not change shape or move much during
the course of the time-lapse. As this assumption does not hold true for a lot
of live-cell time-lapse movies, tracking by detection methods is the approach
utilised for more dynamic and challenging data sets. This approach starts
with a fully segmented time-lapse movie and applies probabilistic frameworks
to establish temporal associations between each instance of cell in each frame.
One such approach is employed by this laboratory using the Bayesian multi-
object tracking algorithm, btrack, [119].

One of the initial challenges in uniting the trajectories of many thousand
cells over many thousand frames is to consider object branching in the form
of mitosis. Many tracking algorithms will excel at accurately tracing the
movement of objects over time, but fail as soon as one of those objects splits
into two progenies, simply because they were not designed to accommodate
such behaviour [120, 121]. The approach employed by btrack is to assemble
single cell trajectories into confidently-linked “tracklets” that are not yet
inter-generational across mitotic events.

Another more recent approach leverages the efficacy of neural networks
in handling large, complex data sets to generate a global tracking solution by
using an Graph Neural Network (GNN) [122]. Initially, each cell instance is
encoded into a feature vector that include various spatio-temporal parameters
as well as a deep metric learning technique that encodes discriminative cell
instance features. This information is then built into a graph where each
unique instance of a cell and it’s feature vector is represented as a node. These
nodes are then connected by edges that represent potential associations in
consecutive frames. Paths are then searched for in the graph that represent
the studied microscopy sequence, with each path corresponding to a single-
cell trajectory. This new approach works both in 2D and 3D data sets and
performs well in cell tracking challenges [123, 124].
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Figure 1.13: Flow diagram illustrating the experimental and analytical
pipeline. The mitotic/apoptotic cell state classifications were an optional
input that improves the efficacy of the tracker by integrating fate into a

cell’s temporal evolution, informing the tracker whether a cellular trajectory
should stop (in the case of apoptosis) or branch (in the case of mitosis).

1.3 Aims

Coupling the aforementioned image analysis approaches together has the
capacity to yield a computer vision analysis pipeline capable of leveraging
a quantitative analysis of single-cell, spatio-temporal relations over many
generations of cells. This pipeline is represented as a flow diagram in figure
1.13. This approach has the capacity to transform even the most elementary
of fluorescence time-lapse acquisitions from a corpus of raw data into a fully
labelled depiction of intercellular interactions in a developing competitive
tissue.

With a frequent frame rate, the temporal resolution of a time-lapse mi-
croscopy movie will allow the smooth transitions between cellular states to be
captured, the spatio-temporal relations between observable competitive ac-
tions being encoded into each and every frame. Given that cellular processes
occur on a slow timescale to a human observer, a time period of several min-
utes is usually enough to ensure smooth and continuous tracking of cellular
activity. This frame rate would also ensure that the final data from a single
time-lapse would not become too large, given that the final outcome of a
tissue-wide competition could take several days. An ideal acquisition would
last almost a week, starting from low-confluency, pre-competitive configura-
tion to a fully confluent post-competitive “winner” tissue. A large field-of-
view (FOV) will be required to capture enough cells at any one time point
to ensure conclusions are drawn from an appropriate sample of cellular be-
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haviour. Further to this, several different FOV positions could be acquired in
between frames to further increase the cell count of a single acquisition. This
would be more than enough to capture several instances of interactions across
competitive interfaces, including the surrounding neighbourhood of several
cell diameters. However, the larger the FOV, the more significant the trade-
off with spatial resolution would be. A pragmatic approach can be taken to
this trade-off, as a high level of sub-cellular resolution will not be necessary
to understand such key competitive events as cell proliferation and apoptosis.
For example, a magnification that captures the appearance of chromatin mor-
phology sufficient to identify the onset of both mitosis and apoptosis would
be more than adequate. Further to this, multi-modal fluorescence imaging
capacity would help in visualising the morphology of chromatin as well as
the spatial domain of a single nuclei by the careful selection of appropriate
endogenous fluorescent proteins. To summarise, the key requirements of this
time-lapse microscopy experimental system are:

• FOV large enough to capture large populations of individual cells

• Spatial resolution detailed enough to capture morphological changes as-
sociated with cellular proliferation and demise (onset of division/apoptosis).

• Multimodal image acquisition capacity, so that several layers of infor-
mation about the state of the tissue can be captured at any one time
point.

• Endogenous fluorescent markers that are stable over many generations
and highlight structures implicated in the identification of cellular pro-
liferation and demise.

• Multi-day time-lapse capacity, in order to capture the full evolution of
the competitive system.

• A frame-rate of several minutes, to ensure smooth cell state transitions.

• Automated acquisition, to eliminate the need for unfeasible labour ex-
pectations.

• Multi-position acquisition, to further increase the number of cells im-
aged.

• Physiological heating and atmospheric CO2 control.
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1.4 Hypotheses

Several key aspects of both the ScribKD and RasV 12 competitive phenomena
remain unexplored. It is known that the wild-type net growth rate is greatest
in local cellular neighbourhoods populated by mostly ScribKD cells [2]. Fol-
lowing on from this, it is known that higher tissue densities result in ScribKD

compaction and apoptosis [21]. However, any chronological correlation and
potential causality between wild-type growth and ScribKD elimination re-
mains undefined. To answer this, I need to further investigate the extent of
any spatio-temporal correlation between the competitive events of wild-type
mitoses and ScribKD apoptosis. Would a correlation imply a causative ef-
fect of wild-type mitoses inducing a biophysical shock in the ScribKD cells,
instigating their competitive apoptotic elimination? In other words, does
the wild-type population drive a mechanical competitive outcome by divid-
ing nearby and subsequently compacting the ScribKD population? Perhaps
a close spatial correlation between these competitive events would hint at a
biochemical mechanism of cell recognition? Answering these questions would
clarify this competition’s mechanical definition and also help to characterise
the single-cell interactions that result in the emergent phenomenon of com-
petitive elimination.

A similar set of research questions can be applied to the biochemical com-
petitive mechanism theorised for wild-type versus RasV 12 . Previous studies
into RasV 12 competition have not focused on the individual contributions of
single-cell actions to the tissue-wide outcome of competitive extrusion elim-
ination [21]. As a consequence, we do not know about the spatio-temporal
organisation of wild-type proliferative action around RasV 12 cells and whether
it is having any impact. Approaching this competition from a single-cell per-
spective would yield a better understanding of whether wild-type mitoses di-
rectly influence RasV 12 competitive extrusion and elimination from the tissue.
Establishing the exact mechanism of apical extrusion, along with defining the
spatio-temporal extent of any correlated competitive interactions would help
to characterise this competition as definitively biochemical. Is this extrusion
linked to a local increase in wild-type mitotic activity and if so is there a
chronology to these events that reveals which population is driving the com-
petition? Taking both competitive systems into consideration, my primary
research question will be: Is wild-type proliferation cause or con-
sequence of mutant cell elimination from a competitive tissue?
I hypothesize that the influence of wild-type cells mitotic activity directly
causes the elimination of both ScribKD and RasV 12 mutant cells, and that
this influence will be apparent as a concentration of wild-type divisions in
the immediate local neighbourhood preceding loser cell elimination.
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Figure 1.14: Graphical abstract summarising the main hypothesis of this
project: is it the winner cells driving the competitive outcome via local

increases in mitoses with respect to pre-apoptotic mutant cells? Or is it the
loser cells autonomously deciding their elimination?
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Chapter 2

Methods

2.1 Cell Culture

Two main Madin-Darby Canine Kidney (MDCK) cell competition assays
were used in this project: MDCK wild-type versus MDCK ScribKD ; and
MDCK wild-type versus MDCK RasV 12 . A detailed protocol for the cell
culture and competition assay preparation can be found on the laboratory’s
Github (link) Protocols” repository (github.com/lowe-lab-ucl/protocols), in-
cluding a cell concentration calculation spreadsheet.

2.1.1 Cell Line Preparation

The MDCK cells used in this project were a gift from Prof. Yasuyuki Fujita
(University of Kyoto, Japan). The ScribKD cell line is described in Norman
et al. [1]. The RasV 12 cell line is described in Hogan et al. [25]. In order
to differentiate competitive cell type (wild-type or mutant) and individual
cell cycle progression, stably fluorescent tagged histone markers were devel-
oped: H2B-GFP in the wild-type population and H2B-RFP in the ScribKD or
RasV 12 populations. The RasV 12 population also has a RasV 12 -GFP marker
to indicate cytoplasmic RasV 12 distribution.

2.1.2 Cell Line Maintenance

MDCK cells were grown in a culture media made from Dulbecco’s Modified
Eagle Medium (DMEM, Thermo-Fisher) supplemented with 10% tetracycline-
free Fetal Bovine Serum (FBS, Clontech, 631106), 1% sodium pyruvate (NaPy,
Sigma-Aldrich) and 1% penicillin streptomycin. Cells were grown to 80%
confluency in a humidified incubator (37◦C, 5% CO2) to allow the tissue
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to form correct epithelial functionality and cell to cell adhesions before be-
ing passaged into new T-25 flasks. The passaging was performed by firstly
aspirating the old media from the monolayer, then rinsing the cells with dou-
ble the volume of Phosphate Buffered Saline (PBS), before adding 1mL of
trypsin-EDTA solution (0.05% trypsin, 0.53mM EDTA) and incubating for
20 minutes. After verifying that the cells had fully detached, the trypsin-cell
solution was diluted in the T-25 flasks by adding 4mL of warmed DMEM
and agitating the solution using a pipette to fully dissociate any remain-
ing clusters of cells. 5mL of fresh DMEM was then added to a new T-25
flask followed by 350µL-500µL of suspended cell solution. Cells were tested
monthly for mycoplasma (MycoAlert Plus Detection Kit, Lonza, LT07-710)
and if an infection was found the cells were treated with 1/1000 concentra-
tion puromycin for 2 weeks until the infection was eliminated and the sample
tested negative.

2.1.3 Induction of Mutation

Both the ScribKD and RasV 12 cell lines were cultured as wild-type up until
the induction of the shRNA system to express the mutation of interest for an
experiment. ScribKD cells were induced with 1µg/mL doxycycline (Sigma-
Aldrich, D9891) for 70 hours before seeding in preparation of an imaging
sample. RasV 12 cells were induced directly in the imaging well at a concen-
tration of 1µg/mL doxycycline.

2.1.4 Preparation of Competition Assay

Cells were seeded in 24-well imaging plates (Ibidi) at a density of 1x10−3

cells/µm2. Competition assays of wild-type and ScribKD cells were mixed at
50:50, 90:10 and 99:1 ratios and seeded in 24-well imaging plates (Ibidi) at
a density of 1x10−3 cells/µm2. Competition assays of wild-type and RasV 12

were mixed at 90:10, 95:5, 97:3 and 99:1 ratios and seeded at a density
of 3x10−3 cells/µm2. After seeding, cells were incubated for 3 hours to form
basolateral adhesions before starting an image acquisition, and were typically
imaged for 4-7 days, dependent on the competition assay and experiment-
specific observations.

2.1.5 Fixation of Samples

In some cases, after a time-lapse image acquisition, the RasV 12 cell samples
were fixed with Paraformaldehyde (PFA) before acquiring z-stack images of
apical extrusion and basal protrusions on a confocal microscope. In these
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instances, culture media was gently removed to preserve the organisation
of the cells before 4% PFA/PBS was applied for 20 minutes to fix. The
PFA/PBS was then gently aspirated and replaced with 1mL of PBS before
being stored at 4◦C for later imaging.

2.1.6 Staining of Samples

In one case, a fixed sample of MDCK cells required a membrane dye in
order to visualise the cell boundaries. To achieve this, CellMask Orange
Plasma membrane Stain (ThermoFisher) was used. A fresh working solution
of CellMask Orange was prepared from the 1000X stock solution by taking
10µL and diluting in 1mL of DMEM. The cell sample was then aspirated and
submerged in the diluted staining solution for 5-10 minutes at 37◦C. This
diluted staining solution was then removed and the cell sample immediately
fixed according to section 2.1.5.

2.1.7 Cryogenic Storage of Cells

Cells were prepared for long-term cryogenic storage by following the afore-
mentioned passaging protocol before resuspending the dissociated cells in
fresh DMEM, transferring to a 15mL Falcon tube (BD Biosciences) and spin-
ning for 3 minutes at 1500 RPM. After the supernatant was removed, the
remaining pellet of cells were resuspended in DMEM with 10% Dimethyl
Sulphoxide (DMSO, Sigma Aldrich) and 20% FBS before being aliquoted
into pre-chilled cryotubes (Nunc, UK). The cryotubes were then frozen for 2
days at -80◦C in a Nalgene Cryo 1◦C freezing container (containing 250mL
isopropyl alcohol) at a freezing rate of -1◦C min-1 and then transferred for
long-term storage in liquid nitrogen. Cells were thawed from cryogenic freez-
ing by immersing the cryotubes in 37◦C water bath and then diluting in
warmed culture media and transferring to a 15mL Falcon tube for 3 minutes
centrifugation at 1500 RPM. The supernatant was then removed and the
remaining cell pellet resuspended in fresh culture medium and transferred to
a T-75 flask to allow for a longer period of regrowth before normal passaging
continued.

2.1.8 Fluorescence-Activated Cell Sorting

Fluorescence-activated cell sorting (FACS) was used several times both prior
to and during this project to attain homogenous levels of fluorescence for both
sets of the H2B markers. The sorting was undertaken by Dr. Manasi Kelkar
at the UCL ICH/GOSH Flow Cytometry Core Facility, with assistance from
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Dr. Ayad Eddaoudi and Ms. Stephanie Canning. In preparation for the
sorting, cells were grown to confluency in 2 full T-75 flasks, then trypsinized
and resuspended in 1-1.5mL of FACS media (45.5mL of Geys balanced salt
solution, 2mL of HEPES, 2.5mL of K-EDTA (0.5M, pH 6.8) or Na-EDTA,
0.5g BSA, all filtered through a 0.2µm filter). Cells were then filtered with
a cell strainer. For a background comparison, a single T-75 flask of cells was
also prepared following the same protocol. After sorting, cells are collected
in the FACS media and centrifuged for 3 minutes at 1500 RPM before being
plated on a T-25 flask (for a minimum of 100,000 cells).

2.2 Microscopy

Three main imaging approaches were used in this project: Quantitative
Phase Microscope (QPM), widefield epifluorescence microscopy and confocal
fluorescence microscopy. Full usage protocols can be found online at the labo-
ratory’s Github “Protocols” repository (github.com/lowe-lab-ucl/protocols).

2.2.1 Quantitative Phase Microscopy

The Quantitative Phase Microscope (QPM) is a bespoke imaging system en-
gineered by Dr. Hugo Sinclair and Dr. Alan Lowe. It utilises phase-shifting
digital holographic microscopy [125, 126] to acquire images encoding a quan-
titative measure of cellular dry mass [127]. The imaging system consists of
a Mach-Zehnder interferometer with microscopes incorporated in both the
sample and reference arms (illustrated as pale red and dark red light beams
in figure 2.1) so that the resultant holograms can be recorded with the correct
magnification.

The QPM light source was a polarisation maintaining fiber coupled Su-
perluminescent diode (SLD, 1mW, 670±7.5nm, SLD-261-MP1-DBUT-PM-
PD, SUPERLUM, Cork, Ireland) driven by a laser diode driver (CLD1015,
Thorlabs, USA). The incident light beam from the SLD is passed through a
Polarization-Maintaining Single Mode Optical Fiber (PM-SMF), then through
a half-wave plate before being split in two using a Polarising beam splitter
(PBS) to form the sample and reference arms. The half-wave plate tunes the
relative power of the sample and reference beams so that the resultant inter-
ference contrast at the image plane can be fully maximised. An optical delay
line is incorporated into the reference arm, consisting of a PBS, a quarter-
wave plate and phase shifter. The phase shifter is a silver mirror mounted on
a motorised linear translation stage (MTS25/M-Z8, Thorlabs, USA). This
component allows the path length of the reference arm to to be adjusted in
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Figure 2.1: Optical diagram of the Quantitative Phase Interferometry (QPI)
(Mach-Zehnder) microscope built by Dr. Hugo Sinclair and Dr. Alan Lowe.

order to match that of the sample arm. This phase shifting was achieved
via translation of the silver mirror by a piezoelectric device (S-303.CD Piezo
Phase Shifter, 3µm, Capacitive Sensor, Physik Instrumente, Germany). This
phase shifter changes the phase delay, so that the true phase angle can be
calculated, which is necessary for the latter reconstruction of the phase im-
age. The aligned optical beams are then passed through their respective
objective lenses and combined by a 90:10 non-polarizing beam splitter cube
before passing through a 200mm focal length tube lens, resulting in over-
lapped images from the sample and reference beams. This overlap causes an
interference pattern that was then recorded as a hologram by the sCMOS
camera (ORCA Flash 4.0, Hamamatsu).
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In order to recover the final quantitative phase image, five phase shifted
(0, π/2, π, 3/2π, 2π) interferograms (I1, . . . , I5) [128] are acquired to calculate
the wrapped phase (φw) using the following equations:

tanφw =
2(I2 − I4)

2I3 − I5 − I1

. (2.1)

The unwrapped phase φ′(x, y) is then retrieved using Fourier methods
[129]:

φ′(x, y) = FFT−1

(
FFT{cosφwFFT−1[(p2 + q2)FFT(sinφw)]}

p2 + q2

)
− FFT−1

(
FFT{sinφwFFT−1[(p2 + q2)FFT(cosφw)]}

p2 + q2

) (2.2)

Where (x, y) are real-space coordinates, (p, q) are Fourier-space coordi-
nates, FFT is the Fast Fourier Transfer function and FFT−1 the inverse
function.

For live cell imaging, the QPM features a heated imaging chamber (Kap-
ton heater with PID control) that operates at 37◦C. The imaging chamber
was heated to the correct operating temperature for at least 2 hours prior to
placing a sample inside, visible on the right hand side of figure 2.2.

Figure 2.2: Image of the Quantitative Phase Interferometry (QPI)
(Mach-Zehnder) microscope built by Dr. Hugo Sinclair and Dr. Alan Lowe.
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2.2.2 Widefield Epifluorescence Microscopy

Time-lapse imaging was performed on a bespoke automated epifluorescence
microscope (incubator-scope) built inside a standard CO2 incubator (Thermo
Scientific Heraeus BL20) operating at 37◦C, 5% CO2. The incubator-scope
has 2 different illumination modalities: brightfield and widefield epifluo-
rescence (GFP, RFP and iRFP). The brightfield illumination uses a fibre-
coupled green LED (Thorlabs M520L3, 530nm). Widefield epifluorescence
illumination was provided by a LED light engine (Bluebox Optics Niji). The
LEDs are combined using a dichoric beamsplitter (Semrock) and focused
onto a 20x air objective (Olympus Plan Fluorite, 0.5NA, 2.1mm WD). The
sample location was controlled by high performance encoded motorised XY
and focus motor stages (Prior H117E2IX, FB203E and ProScan III con-
troller). Images were acquired with a 9.1MP CCD camera (Point Grey GS3-
U3-91S6M). Cameras and light sources were synchronised using TTL pulses
from an external D/A converter (Data Translation DT9834) to ensure mini-
mal light exposure. The iRFP channel required a focal point offset from the
other channels of -3.4µm. The sample was kept at a correct humidity using a
custom built humidification chamber fitted with a thermocouple of humidity
sensor, shown in figure 2.3.

Figure 2.3: Photo of incubator scope and contents

In order to start a time-lapse image acquisition, a parameter file needs to
be edited to dictate the exposure, power and experiment duration settings.
Typical image acquisition settings are shown in table 2.1, with a frame rate of
4 minutes and a total time-lapse duration of between 1200-2400 frames (80-
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Channel Exposure (ms) Power (%)

Brightfield 50 100
GFP 200 20
RFP 2000 40

Table 2.1: A table showing the different exposure, power and focal point
settings used for each imaging channel on the incubator microscope

160 hours), depending on the imaging sample. This frame rate is sufficiently
high enough to capture the morphological changes associated with the key
competitive events of mitosis and apoptosis/extrusion, as well recording the
smooth trajectories of each single cell for optimal tracking performance. The
frame rate is also sufficiently low as to not over-sample the temporal dimen-
sion, an important aspect to consider for data management and downstream
analysis computation time.

2.2.3 Confocal Microscopy

Volumetric images of fixed RasV 12 apical extrusion or basal protrusion events
were acquired using a 100x oil immersion objective (NA 1.40, Olympus)
mounted on an Olympus IX83 inverted microscope equipped, with a scanning
laser confocal head (Olympus FV-1200). Images were acquired with a z-step
of 1µm and total field of view of (x, y, z) with the help of Dr. Manasi Kelkar.
Imaging samples were excited at 488nm and 562nm for the green and red
fluorescence profiles, respectively.

2.3 Image Analysis

All image processing was performed on a Dell Precision workstation running
Ubuntu 20.04.03 LTS with 32GB RAM and an NVIDIA GTX1080 GPU.
Python scripts used for image labelling and subsequent analysis were written
by Dr. Alan Lowe and myself. The image labelling pipeline (segmentation,
classification and tracking) was originally conducted on a remote Synology
rackstation server by submitting a parameters file that located the data stor-
age location and defined the segmentation and tracking models to use. This
pipeline was later rebuilt by myself so that each step of the analysis could be
modular in design, allowing for the adoption of newer techniques. Each step
of the pipeline was conducted in a separate Jupyter Notebook, meaning that
different labelling approaches could be integrated to the pipeline without
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the need for a complete redesign. The rebuilt “segment-classify-track”
pipeline is available on GitHub (github.com/nthndy/segment-classify-track)
in an open-source capacity so that others can adapt and utilise this image
labelling approach.

2.3.1 Software Packages

The various Python software libraries used for the image analysis are shown
in table 2.2.

Name Function Reference URL Link

octopuslite Acquisition control [119] GitHub
octopuslite-reader Image data organisation [119] GitHub
pystackreg Image alignment [130] pystackreg.readthedocs.io
UNet Cell segmentation [95] uni-freiburg.de
StarDist Nuclear segmentation [131] GitHub
cellx Morphology classification [72] GitHub
btrack Cell tracking [119] btrack.readthedocs.io
Napari Image visualisation [132] napari.org
NumPy Numerical Python operations [133] numpy.org
Pandas Data structuring [134] pandas.pydata.org
Dask Efficient image loading [135] docs.dask.org
cell-comp-analysis Quantitative analysis GitHub

Table 2.2: A table showing the Python libraries used in this project.

The following subsections describe how these libraries were used for the
organisation and visualisation of raw data, as well as the implementation of
the image labelling analysis after it was rewritten by myself.

2.3.2 OctopusLite

The octopuslite script used for automated operation of the incubator-scope
was written by Dr. Alan Lowe and can be found on GitHub. Images ac-
quired using the octopuslite script were organised and visualised using the
octopuslite-reader code, written by Dr. Alan Lowe and modified by my-
self for additional multi-channel mask functionality, which can also be found
on GitHub. The octopuslite-reader script has various pre-processing func-
tionalities such as background removal, image alignment and stack cropping.
Background removal was achieved via a second-order polynomial surface that
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assumes a sparse signal in the image. Alignment was implemented on-the-
fly from the aforementioned NumPy transformation matrices and cropping
was performed so that a central rectangle of the image is preserved. The
octopuslite-reader acquisition script saves images in the Tagged Image
File Format (.tiff ) with the filename following a pattern of:

img channel000 position000 time000000000 z000.tif

The ‘channel000 ’ parameter refers to a single image’s excitation profile, with
brightfield, GFP and RFP having 0, 1, and 2 enumerations respectively. As
a single experiment could feature up to 25 different fields of view FOV, the
‘position’ parameter refers to the location of that FOV in the imaging dish.
The ‘time’ parameter stores the frame number with a padded prefix of zeros
and the ‘z ’ parameter stores the z-position in the focal plane.

The storage of time-lapse image acquisition as a series of single-frame
.tiff files was chosen so that entire experiments could be loaded without
placing too much of a computational burden on the user. This was achieved
by using Dask “lazy-loading” to load only the single frame being viewed
at any one time, rather than attempt to load a multi-gigabyte image stack
into the computer memory. This approach also allowed for on-the-fly image
registration and background removal.

2.3.3 Alignment

Pystackreg is a Python/C++ port of the widely-used ImageJ extension
TurboReg/StackReg [136]. During a time-lapse acquisition there will always
be a small amount of unavoidable image drift as a result of imperfect stage
control, meaning that a registration algorithm was required to align the sub-
sequent images to the first in the movie. In this analysis pipeline pystackreg
was used to apply simple translational shift to every image, based on iden-
tification of shared features in successive images. Firstly, for PyStackReg, a
reference channel was chosen to base the alignment around. For computa-
tional efficiency, a central window of (500,500) pixels was cropped from the
reference image. The alignment was then registered on this cropped refer-
ence stack and saved out as a time-series of 2D transformation matrices in
the form of a 3D NumPy array. An example transformation matrix is shown
in equation 2.3, showing the locations of the x, y shift for each individual
frame.
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T =

(
1 0 x
0 1 y

)
(2.3)

To ensure that the stack registration was not affected by over/under-
exposed frames a maximum/minimum average pixel intensity of [200,2] was
imposed on each 8-bit image and any frames that exceed that criterion are
excluded from the final image stack and moved to a separate directory. The
transformation matrices are clipped at a maximum coordinate shift of 88 ÷
2 = 44 pixels. This value was chosen so that the raw image size of (1288,
1688) pixels was cropped to an optimal final image size of (1200,1600), a
size that was used in previous development of subsequent segmentation and
tracking analyses.

2.3.4 Segmentation

Segmentation was achieved in a variety of different ways over the course
of this project, reflecting the changing capabilities of a rapidly-developing
technology. Initially, both QPM images and incubator-scope images were
segmented on custom-built U-Net convolutional neural networks. The entire
cytoplasmic extent of the cell was segmented in the QPM images using the
interferometric channel. For the widefield epifluorescence microscopy, only
the nuclei were segmented using the H2B fluorescence data in both the GFP
and RFP channels as the input into the U-Net. These two different seg-
mentation masks were then combined into one image where the background
has a pixel value of zero, the H2B-GFP nuclei have a pixel value of 1 and
the H2B-RFP nuclei have a pixel value of 2. In results chapter 2 and be-
yond, nuclear fluorescence segmentation was performed using StarDist ’s
“2D versatile fluo” model, for generalist fluorescence segmentation, and our
own custom StarDist model that was trained using data previously applied
to the U-Net nuclear segmentation. StarDist was run on both the GFP
and RFP channels separately, with two mask image outputs being combined
in the same pixel-wise nuclear-class method as previously. Due to the low
signal intensity of the RFP images, a low segmentation threshold was set
resulting in a large degree of over segmentation of non-nuclear artefacts. In
results chapter 2, the cytoplasmic RasV 12 -GFP signal was also picked up by
the nuclear GFP segmentation. To avoid this erroneous over-segmentation,
several post-processing steps were applied to clean up the StarDist segmen-
tation masks. The details of this post-segmentation-processing are outlined
in results chapter 1, as well as being present in the segmentation notebooks
of the segment-classify-track GitHub repository. After segmentation was
completed, the list of mask files were saved into the main directory of images
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with the filename “channel” enumeration of “099”. If separate masks only
containing GFP or RFP masks were made, then they were saved with the
filename “channel” enumerations of “098” and “097”, respectively.

2.3.5 Cell Classification

After images have been aligned and segmented they were run through an ob-
ject localisation and classification procedure to determine where each cell
was and what phase of the cell cycle the H2B marker morphology was
indicating. The outcome of this step was a list of objects corresponding
to each cell at every time point with the following information: a unique
object ID; the corresponding x, y, t coordinates; an optional set of mor-
phology properties that can be measured using the Python package skim-
age.measure.regionprops() function (area, mean intensity); and tempo-
rary placeholder values for the latter assignment of chromatin morphology
classification (states, label, prob). An example of one object is shown in figure
2.4, rendered in Pandas dataframe format for ease of use.

Figure 2.4: A Pandas dataframe rendering of the attributes of a single
localised cell, with addition properties such as the segmented area and

mean fluorescence intensity.

The next step was to pass this list of objects, along with the entire time-
lapse stack of brightfield and GFP/RFP (depending on cell type) images
to the classifier function in order to assign the state labels and associated
label confidence probabilities into the empty placeholder variables. This
classifier function can be inspected in more detail in the cellx classifier.ipynb
notebook on the segment-classify-track GitHub repository Briefly, the
function iterates over every object and uses the object coordinates to crop
a (64,64) image patch centered on the localised cell segment. This cropping
procedure is performed for the brightfield and fluorescence channel, resulting
in 2 image patches that are supplied to the classifier CNN. The classifier
function then uses the two image patches to assign a probability that the
chromatin and brightfield morphology belongs to one of the predefined labels
of “interphase”, “prometaphase”, “metaphase”, “anaphase” or “apoptosis”.
The resulting output is the same series of object dataframes with newly
assigned label, based on whichever label probability was greatest, as well as
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the calculated label probabilities so that the confidence of classification can
be reviewed. An example of a classified object can be seen in figure 2.5.

Figure 2.5: A Pandas dataframe rendering of the attributes of a single
localised cell, with chromatin classification and associated label

probabilities. This cell localisation was classified as interphase, with label =
0 due to the highest classification probability of prob interphase = 0.999992.

The final step of the classification step was to save out the list of newly
classified objects as a .hdf5 file. This method has the advantage of also
allowing for the associated segmentation maps to be saved into the same file
in a compressed format, meaning that valuable disk space can be saved by
not requiring the segmentation images to be kept on storage.

2.3.6 Tracking

The next step was to take the classified objects .hdf5 file and supply it to
the btrack tracking algorithm to link each object to it’s temporal evolution
at the next time point. Without this crucial step, the object data cannot
be used to perform any meaningful analysis on the temporal evolution of
single-cells as it is not known which object corresponds to which cell as time
proceeds.

In order to initialise a tracking calculation, the number of parameters need
to be defined both in the tracker function (which can be seen in section 2 of
the btrack tracking.ipynb notebook in the labelling pipeline) and the track-
ing configuration .json file. Most of the parameters defined in the tracking
configuration .json file relate to the implementation of the Kalman filter that
calculates the movement of a cell that can be predicted entirely by the motion
model, without more complicated tracking considerations such as mitoses,
apoptosis or cells entering and leaving the FOV. These fragmented tracks,
called “tracklets” are linked together in the next step of the tracker using a
number of linking and termination hypotheses, resulting in the creation of the
final set of tracks and generational trees. For the purposes of this project, the
default cell config.json tracking configuration file, available in the “models”
directory of the btrack GitHub (github.com/quantumjot/BayesianTracker),
sufficed for all required tracking jobs.

Prior to initialising the tracker, objects are filtered to remove segments
that are too small to feasibly be cell nuclei. A tracking volume is also set, cor-
responding to the pixel dimensions of the time-lapse microscopy data along
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with a maximum search radius of 40 pixels, a parameter specific to the ex-
pected movement per frame of MDCK cells. Then, a track interactive()
step size of 100 is chosen to print updates on the tracking progress to the
user interface. The layout of the code used to initialise a tracker session,
with the aforementioned parameters, is shown in figure 2.6.

Figure 2.6: A screenshot of the passage of code used to initialise a tracker
session, with the various parameters defined along with the path to the

configuration file.

The main implementation of the tracking algorithm is conducted in C++,
with a Python wrapper for users to interact with. The first step of the track-
ing algorithm involves using a Kalman filter to assemble cell trajectories into
tracklets. This script iterates over tracklets and calculates various hypothe-
ses for each track. It does this by first looping through the trajectories,
isolating individual tracks and calculating a series of initial hypotheses: the
false positive hypothesis, the initialisation and termination hypotheses and
the dead hypothesis. These hypotheses are calculated for each of the track-
lets in order to perform a global optimisation. Letting T k−1 be the set of
tracklets in frame k− 1 and Ok be the set of objects observed at the current
time point k, with tj ∈ T k−1 and object oi ∈ Ok. btrack first calculates a
retrospective probability of either linking tk−1

j with oki , or of being lost. This
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is implemented via the use of a Bayesian belief matrix (Bn×(m+1)) of active
tracks and detected objects. This belief matrix is an (N,M + 1) shaped ar-
ray where N = |T k−1|, the number of of active tracklets and M = |Ok|, the
number of detected objects per FOV. B is initialised with a uniform prior
probability of linkage, defined as bij = P (tj → oi) = 1

m+1
. This means that a

tracklet can either be successfully linked to another object, or lost entirely.
A Bayesian update is then performed on B using evidence from the motion
models of each tracklet and the hypotheses generated from the cell state clas-
sifier. All tracklets are initially assigned a default hypothesis that they are a
false positive detection, meaning that the assumption is the track does not
represent a real cell, with a probability of false positive function calculated
as:

P (false pos.) = ml (2.4)

where m is the segmentation miss rate and l is the length of the track-
let. The segmentation miss rate is one of the key parameters defined in
the configuration file, with a default value of 0.1. This function means that
the shorter the tracklet length and the higher the segmentation miss rate,
the more likely it is that the track will be assigned as a false positive. The
initialisation hypothesis calculation is a combination of the probability of
initialisation and the probability of the tracklet being a true positive. The
probability of initialisation is calculated as either being a border initialisation
or a front temporal initialisation, whichever is most likely.

P (init. front) = e
−δt
λtime (2.5)

P (init. border) = e
−d
λdist (2.6)

Where δt is the time since the beginning of the movie and d is the distance
from the border. The two lambda parameters in equations 2.5 and 2.6 are two
more key parameters defined in the configuration file, with larger values for
either resulting in a higher likelihood that a track is classified as initialising for
a given distance or time. Importantly, these probabilities are only calculated
if the values for δt and d are within θtime and θdistance respectively, two values
set in the configuration file. This constraint can be circumvented by setting
the “relax“ parameter to true in the configuration file. The termination
hypothesis is functionally the same as the initialisation hypothesis, with the
spatial and temporal distance calculated in the reverse, i.e. instead measuring
from the start of time it measures from the end, and instead of measuring the
distance from the border, it measures the distance as if travelling towards
the border.
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Finally, the dead hypothesis invokes an apoptotic rate set in the config-
uration file along with the number of apoptosis classification counts in the
preceding tracklet.

P (dead) = 1− rNapop (2.7)

Where r is the apoptotic rate andNapop is the number of apoptoses, result-
ing in a higher probability of apoptotic tracklet assignment if the number of
apoptotic observations and apoptotic rate is higher. Once the previous four
types of hypotheses have been generated for the tracklets, another nested it-
eration is initiated to test track ti and tj for linking and branching hypotheses
(this is because two tracklets need to be compared to see if they form a link
or branch). In the linking step, the tracker finds all tracklets starting within
a spatiotemporal bin surrounding the end of a tracklet. For each initialising
tracklet tj within that window, a linking hypothesis is proposed originating
from the terminating tracklet ti.

P (link : ti− > tj) = e
−d×δlink
λlink (2.8)

where d is the Euclidean distance between ti and tj and λlink is a linking
hyperparameter, again defined in the configuration file. The linking hypoth-
esis (equation 2.8) has an additional factor, δlink, that sets the probability
of linking to zero if the cell state classifications of ti and tj don’t agree
chronologically (i.e. if the tracklet ends in meta/prometaphase and the new
tracklet starts with anaphase). In an event such as mitosis, there may exist
two tracklets within a spatiotemporal bin of the end of another tracklet. If
there are greater than two initialising tracklets, then for each possible pair of
initialising tracklets, tj and tk, a branching hypothesis is proposed from the
terminating tracklet ti:

P (branch : ti− > tj, tk) = e
(
−ddaughter∗δbranch

λbranch
)

(2.9)

where ddaughter is a dot product distance representing the angle between
daughter cells tj and tk and the parent cell ti and the respective states of
each cell.

ddaughter = ~a ·~b = |a||b|cosθ (2.10)

Where ~a and ~b are normalised vectors representing the distance between
the end of ti and the beginning of tj, tk. If the angle θ is 180 then naturally
the dot product will be -1, resulting in an ideal weighting where the daughter
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cells are geometrically moving away from the parent cell. This dot product
is then scaled between 0 and -1 using an error function:

ddaughter = 1− 1− erf(3~a ·~b)
2

(2.11)

This branching hypothesis is again scaled by a hyperparameter λbranch
and by an additional δbranch. The weight λbranch increases the distance over
which two cells are likely to be accepted as branched and the δbranch acts
as a weighting to zero the probability if the cell states do not agree chrono-
logically. This tracking approach is summarised in figure 2.7. Once all of
these hypotheses have been calculated we are left with a set of tracks com-
posed from united tracklets spanning generations of cell divisions and deaths.
These tracks are then saved out into another .hdf5 file populated with object
type 1 and object type 2 pytracklet variables, corresponding to two different
populations of cell tracks respectively.

2.3.7 Visualisation

Once the raw image data has been fully labelled, a qualitiative assessment of
classification and tracking performance can be conducted using the Napari
image viewer [132]. Napari has the capacity to load several image layers
into the viewer meaning that each channel can be visualised by supplying
the image stack to the Napari.Viewer.add image() function. To check
the quality of the segmentation maps, the Napari.Viewer.add labels()
function was supplied with the mask stacks. This function also allows for the
manual editing of the segmentation masks, which was utilised in the creation
of ground truth training examples early on in the project.

To visualise the quality of the btrack tracking output, the .hdf5 file was
provided to the tracks to napari function, which took the pytracklet ob-
jects and rendered them into a Napari -friendly visualisation format. This
variable was then supplied to the Napari.Viewer.add tracks() function.
In order to make manual labels on top of all the image data, Napari features
a Napari.Viewer.add points() and Napari.Viewer.add shapes() func-
tions. These two layers proved useful when manually checking that the lat-
ter quantitative analyses were returning correct values, such as the proper
euclidean distances between events. With each of the Napari.Viewer()
functions, there are several parameters that can be defined, such as colour
maps, contrast limits and layer names. After executing the various Na-
pari.Viewer() functions, a graphical user interface appears displaying the
fully annotated image data set. An example of this is shown in figure 2.8.
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Figure 2.7: Tracking implementation schematic, taken from Ulicna et al.
[119]. A Bayesian belief matrix with uniform prior predictions is created
before new cell observations are factored in. btrack then uses Kalman

filters to predict the temporal evolution of a cell’s position, x̂t, based on the
previous observation, xt−1. Bayesian updates are performed using both the
previous observations and cell state information to calculate a probability
of linking cell observations or designating a cell as lost. Observations that

are not assigned initiate new tracks. In this diagram, T1 represents a simple
linking, whereas T2 represents a mitosis, with the subsequent initialisation

of new tracks T3 and T4.

2.3.8 Statistical Validation

There were two main aspects of the project that necessitated a thorough
statistical analysis: the performance of the segmentation networks and the
validation of any conclusions drawn from the radial analysis.

Segmentation Metrics

The performance of U-Net segmentation networks employed in this project
were scored using a series of metrics. In order to accurately gauge the net-
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Figure 2.8: An example of the graphical user interface of Napari , used to
perform qualitative checks of the segmentation, tracking and final

quantitative single-cell analysis. This example shows the visualisation
options for a fully tracked competition data set, with wild-type nuclei in

green and labelled with cell IDs, and a lone central ScribKD nuclei in red a
few frames prior to undergoing apoptosis. The radial environment over

which a quantitative scan is conducted is shown in yellow.
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(a) QPM image (b) Ground-truth (c) Model output (d) Intersection

Figure 2.9: Visual depiction of the Intersection over Union segmentation
metric, with an input QPM image (2.9a), the manually annotated
ground-truth mask (2.9b), the U-Net model output (2.9c) and the

intersection of the two (2.9d), with an Intersection over Union of 0.83.
Scale bar in 2.9a is 10µm.

work output, a proportion of training data, approximately 30%, was withheld
and used as ground truth testing data. Intersection over Union (IoU) is a
quantitative measure of region overlap between an individual-cell instance of
the model output and the corresponding ground truth. It is measured on a
pixel-wise basis and is calculated using the following equation:

IoU =
|A ∩B|
|A ∪B|

(2.12)

where A is the per-object area of your model output mask and B is the
per-object area of your ground truth. A visual depiction of the IoU for a single
mask is shown in figure 2.9. The IoU was measured for every individual
mask in a segmented image and averaged over the whole test data set to
yield a quantitative assessment of segmentation precision. In order to gauge
a broader sense of model accuracy, the Jaccard index was also measured. In
contrast to the IoU, the Jaccard index was used as an object-wise approach
that counts each correct identification of a region where a mask should be.
It represents the model’s accuracy at correctly localising an individual mask
instance, rather than the precision based measure of IoU. More formally it
is defined as

Jaccard index =
TP

(TP + FN + FP )
(2.13)

TP is the number of “true positive” mask identifications, where the model
correctly localises a cell instance. FN is the number of “false negative” missed
localisations, where the model fails to identify a mask that is present in the
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ground truth. FP is the number of “false positive” mask identifications,
where the model incorrectly localises a cell where there are none present in
the ground truth. The localisation error was calculated as the Euclidean
pixel distance from the centroid of the ground truth masks to the centroid
of the model predicted masks and the pixel identity was calculated as a
coarse whole-image measure of the proportion of correctly masked pixels in
the model output compared to the ground truth. Each metric was calculated
on an average per-image basis for every model-ground truth pairing and also
averaged over all test images in the data set for a cumulative measure of
model performance.

Validating The Probability of Rare Events

In order to verify the conclusions from the comparison of observed and control
radial analyses, both approaches had a coefficient of variation of rare events
[63] calculated for a varying choice of spatial and temporal bin size on the
histogram plots. This coefficient was calculated as shown in equation 2.14:

CV =

√
(1− p)
pn

(2.14)

where p is the probability of an event and n is the number of observations.
By calculating a coefficient of variation value for each spatio-temporal bin,
the margin of error of each probability can be assessed for both the observed
and control radial analyses. The resulting observed bin was then defined as
being featuring a statistically relevant increase above the control measure if:

P (div)
(
1− CVP (div)

)
> P (div control)

(
1 + CVP (div control)

)
(2.15)

Where P (div) is the probability of division, P (divcontrol) is the probabil-
ity of control division and CV is the coefficient of variation. The observed bin
is defined as being statistically relevant decrease below the control measure
if:

P (div control)
(
1− CVP (div control)

)
> P (div)

(
1 + CVP (div)

)
(2.16)

For any given probability of division histogram, if a certain spatio-temporal
bin was designated as a statistically relevant divergence from a background
rate, it was plotted as a separate histogram with a bin value of 1. This
boolean histogram was then multiplied by the original probability histogram
to only show regions of statistical relevance.
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Chapter 3

Development of Imaging
Pipeline

The primary aim of this project was to develop a strategy to quantify the
competitive interactions within a tissue on a single-cell level. This was mo-
tivated by the research question of which population of cells are driving the
competitive outcome? Therefore, to begin with, a detailed quantification of
growth periods and fate commitment of both populations of cells was de-
veloped. This would help to build a picture of which cells were engaging
in a context-dependent, competitive manner and where and when they were
doing so. Once this is achieved, a further analysis will be conducted to gauge
whether it was the wild-type population driving the tissue-wide competitive
outcome or whether it was the mutant population. The desired experimen-
tal pipeline would result in the acquisition of large quantities of time-lapse
microscopy data which would then be fully annotated using a single-cell
image analysis approach. The labelling of this raw data would result in a
detailed account of each cell’s location in space and time, as well as a quan-
titative measure of other key attributes such as single-cell growth dynamics,
cell morphology, cell cycle phase and commitment to a future fate. Ideally,
the length of this time-lapse would cover the full evolution of competition,
from a sparsely-seeded, mixed population of cells to a fully-confluent, post-
competitive monolayer. This biological process takes several days, so the
frame-rate will need to be a compromise between over- and under-sampling
the entire time period. The image acquisition frequency therefore needs to be
short enough to ensure smooth tracking of individual cell movement whilst
not over-sampling the temporal dimension which would result in a larger
than necessary memory allocation. Taking in to account the differing motil-
ity rates of the two model cell systems, a time period of δt = 4 minutes
was decided upon for all time-lapse imaging. The imaging conditions need to
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Figure 3.1: Flow diagram illustrating the experimental and analytical
pipeline. The mitotic/apoptotic cell state classifications were an optional
input that improves the efficacy of the tracker by integrating fate into a

cell’s temporal evolution, informing the tracker whether a cellular trajectory
should stop (in the case of apoptosis) or branch (in the case of mitosis).

closely reflect physiological conditions so that it could be guaranteed that any
observed phenomena was not unique to that experimental set up and instead
was representative of in-vivo behaviour. Therefore, incubated microscopes
kept at 40◦ and 5% CO2 were used. Imaging sub-cellular activity was less
of a priority than capturing the movement of the tissue at a larger scale, so
the image resolution only needed to be sufficient to visualise key organelles,
such as chromatin, so that competitive events such as division and apoptosis
could be recorded. Importantly, the spatial scope of the images necessitated
a single frame featuring thousands of individual cells. This was due to the
relative rarity of key competitive events, such as apoptotic elimination or ex-
trusion. By acquiring single-frame images featuring hundreds to thousands
of cells, these individual phenomena could be recorded in larger numbers, en-
suring that any analytical assessment of single-cell behaviour carried a strong
degree of statistical confidence. Multi-modal imaging would be employed to
help visualise and quantify key competitive events and to differentiate cell
type, as well as allowing for the future opportunity of later analyses utilis-
ing newly-developed fluorescent markers. The ideal experimental pipeline is
illustrated in figure 3.1.

Several imaging approaches were explored to achieve this experimental
plan: quantitative phase microscopy, selective-plane illumination microscopy
and widefield microscopy. This chapter outlines the research that went into
assessing the viability of each approach as well as describing the final exper-
imental approach and subsequent single-cell analysis it spawned.
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3.1 Microscopy

3.1.1 Quantitative Phase Microscopy

Quantitative Phase Microscope (QPM) is a transmission imaging method-
ology that can be used to quantify the dry mass of a biological sample.
This is achieved by inducing an interference pattern between a sample beam
that is transmitted through the biological sample, and a reference beam that
bypasses the biological sample. As the sample beam passes through the bi-
ological sample it experiences refraction due to the scattering effect of the
opaque dry matter. The wavefront of the sample beam is then subsequently
delayed as it experiences an optical phase shift in comparison to the refer-
ence beam. The two different light beams are then recombined, resulting in
the interference pattern that is translated into a gray-scale image, as shown
in figure 3.2. The pixel intensity of figure 3.2 is directly correlated to the
underlying height and refractive index of the sample which can be used to
measure a quantification of single-cell dry mass.

Figure 3.2: A cropped example of a Quantitative Phase Microscope (QPM)
image of an MDCK wild-type monolayer. Individual cells are clearly
discernible, however the exact boundaries between the cells are more

challenging to define. Scale bar is 25µm.
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The correlation between sample refractive index, phase change and re-
sultant image intensity was first quantified in the 1950s in order to make
direct measurements of cellular dry mass [137]. Equation 3.1 shows that the
induced phase shift ϕ, also called the Optical Path Difference (OPD) is the
product of the difference in the refractive index of the specimen, µ0, and the
refractive index of the immersion medium, µm, multiplied by the height of
the specimen, h.

ϕ =

∫
(µ0 − µm)dh (3.1)

To avoid having to make direct measurements of a cell sample’s thickness
or refractive index, protein solution refractometry is used to derive an alter-
nate definition of the OPD. If α is defined as a constant specific refraction
increment then the OPD, ϕ, can be redefined as the product of the mass mcell,
volume Vcell and height hcell (i.e. the projected area Acell) of an individual
cell.

α =
µp − µs
C

(3.2)

where µp is the refractive index of the protein component, µs is the re-
fractive index of the solvent and C is the concentration of dry protein mass.
Thus, the expression for the OPD can be written as:

ϕ = α× C × hcell

= α×mcell ×
1

Vcell
× hcell

= α×mcell ×
1

Acell

(3.3)

Therefore, if the OPD is integrated over the cell surface area then the
resultant product is a quantity proportional to the cell dry mass. All that
is needed to calculate the dry mass is the specimen-specific constant α, the
OPD (as given by the pixel intensity) and the area of an individual cell. As
the property of interest was only the relative changes in cellular dry mass,
the value for α was arbitrary. All that was needed to extract a measure of
the relative dry mass was the signal intensity of the QPM image (the OPD)
and a reliable measure for individual cell area, which was easily extracted
from the segmentation maps. This is why the OPD can be taken as a proxy
for a quantitative assessment of relative cellular dry mass.
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The first quantitative analysis explored in this project was focused on the
single-cell growth dynamics of competitive tissue, specifically the individual
dry mass of every cell in the monolayer over the duration of the competition.
I acquired time-lapse image data of cell competition using the laboratory’s
newly built QPM, designed and assembled by Dr. Hugo Sinclair. It was
hypothesized that if changes in individual cellular dry mass could be recorded
at a high enough temporal resolution, then the onset of a cell’s G2 growth
phase could be an early indicator for a commitment to division. On the
other hand, if the stalling of a typical growth pattern was observed, then
this could indicate a cell entering a period senescence, perhaps resulting in a
later apoptosis or extrusion.

This approach promised to reveal the internal dynamics of an individ-
ual cell at a resolution not seen before in cell competition studies. The use
of single-cell changes in dry mass as a proxy for cellular proliferation could
have the benefit of being a far earlier indicator for fate commitment than
preexisting methods, such as H2B markers previously employed in the lab-
oratory. Developing an early indicator for when cells commit to their fates
could also yield information pertaining to what local environmental condi-
tions exist at theses commitment points. Conditions such as changes in cell
densities, or a quantitative measure of how dynamic any fate commitments
are, indicated by a rapid growth or sudden onset of senescence. Aggregating
these division commitment time points in relation to the mutant cells elim-
ination could yield the valuable chronological insight in to whether whether
wild-type proliferation is cause of consequence of mutant elimination. The
spatial patterning of these growth commitments would also reveal the extent
of competitive behaviour in a local cellular environment.

A hypothetical result was envisioned where a particular wild-type cell
encounters a mutant cell and enters a different growth phase when compared
to typical, non-competitive wild-type behaviour. This result would indicate
that there is a single-cell dependency to the competitive outcome and it is
conducted by the wild-type population. On the other hand, the same analysis
could reveal how mutant cells respond to being in a competitive environment,
or indeed if there is any response at all. This would help characterise the
mechanism of mutant cell elimination: whether it is a fight until death or
a more benign abdication. Knowing when and how quickly cells initiate
various fate commitments would end up contributing to a detailed, label-
free and single-cell understanding of early commitment to events, and more
importantly, to event chronology between wild-type proliferation and mutant
cell demise. This would ultimately serve to answer the primary research
question of whether wild-type proliferation is cause or consequence of mutant
cell apoptoses, as well as the wider mechanisms of how cell competition
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unfolds from a biophysical perspective. To achieve this goal, the feasibility of
imaging long-term tissue dynamics on the QPM needed to be assessed. Then,
a reliable post-acquisition labelling pipeline that allowed for the single-cell
interrogation needed to be designed.

Data Acquisition

One a sample of cells had been prepared, according to the method laid out
in section 2.1.4, they were taken to the QPM and placed inside the pre-
heated imaging chamber. The first step in the data acquisition was to get
the optical system into focus using the brightfield imaging modality. Once the
correct z-focal plane had been found, the phase alignment could occur. This
involved tweaking an adjustment screw on the phase shifter mirror until the
reference and sample beam alignment resulted in a clear interference pattern,
presented as a series of highly contrasted stripes. The phase shifter was then
finely adjusted using the computer-controlled fine adjustment option until
the interference pattern was evenly contrasted across the screen. A further
fine adjustment of focus was then conducted using the fluorescence image
modality, until the sample’s z position was ideally located for imaging. Then,
multiple different imaging positions could be chosen before a parameter file
was saved with the parameter settings of laser power, exposure time and
number of phase images per fluorescence image. The time-lapse acquisition
could then begin.

Cytoplasmic Segmentation

Considering the scope of this project was to observe a time-dependent pro-
cess occurring over several thousand frames and involving several thousand
cells, the challenge of reliably segmenting the single-cell area of a whole pop-
ulation of cells was not a trivial one. Coupling the scale of the proposed data
acquisition with the fact that the typical QPM image data consists of noisy,
gray-scale images of varying intensity and contrast (as shown in figure 3.2)
meant that a sophisticated approach to cellular segmentation was required.

Previously the laboratory has utilised fluorescent H2B markers [2] to seg-
ment nuclear area, but in order to calculate a single-cell dry mass mea-
surement the area of segmentation needed to cover the cytoplasmic region.
Therefore, efforts were made to construct a U-Net that could segment whole
cells from the QPM signal alone. Largely following the structure depicted
in figure 1.11, this U-Net consisted of five convolutional up and down layers
(featuring (3,3) kernels) with residual blocks [138]. It utilised max-pooling
and nearest neighbour upscaling to up- and down-sample. The final layer of
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the network was a (1,1) convolution with 2 kernels for this binary segmen-
tation approach, with a per-pixel softmax activation. The final step of the
U-Net was decided by an arg-max function operating on the stack of class-
corresponding maps, finding the class with the highest probability for every
pixel in the input image and outputting a binary segmentation map.

Training Data Creation

In order to train the U-Net, a representative sample of QPM images were
selected and manually labelled as ground truth mask images. These binary
images were created by hand, with cytoplasmic regions featuring a pixel value
of 1 and background regions a pixel value of 0. 50 images were manually la-
belled, with 15 of those saved for later testing of the model, following the
standard practice of withholding 30% of your training data set for validation.
These 50 ground truth images were selected to represent a confluency dis-
tribution that would mirror the distribution of cell coverage within a typical
80 hour time-lapse imaging experiment. The majority of these images repre-
sented 90% to 100% confluency with the remaining images representing an
equal coverage of confluencies below 90%. The same approach was employed
for selecting the testing data from a third of the training data. A montage
of 16 of these images and their labelled counterparts are shown in figure 3.3.

As well as taking a representative sample of cell confluency for the training
data-set, several images with clear interference artefacts were also included.
This step was important as the QPM was very sensitive to disturbance and
acquiring complete time-lapse data sets with no interference artefacts was
unlikely. Interference artefacts were so common due to the delicate align-
ment of the sample and reference beams of light being highly susceptible
to outside disturbance. The optical bench that the QPM was on provided
a degree of pneumatic stabilisation, however something as subtle as touch-
ing the imaging system’s computer mouse at the wrong moment would have
been enough to push the system out of alignment. This would result in a
corrupted phase image, with a very low Signal to Noise Ratio. To add to this
imaging challenge, any small fragments of non-cellular detritus or floating
apoptotic debris in the imaging FOV had the capacity to interfere with the
sample beam. This resulted in images wherein very small pieces of matter
interfered with large regions of the phase image. This can be seen in the
third image across the top row of figure 3.3a. The most challenging images
to manually label were those nearing tissue confluency, as the lack of visible
background and intermediate cell densities meant that cell boundaries were
difficult to distinguish. At higher densities the cell junctions become more
well defined as cells packed together tighter and formed stronger intercellu-
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(a) Ground truth QPM images (b) Ground truth masks

Figure 3.3: A subset of hand-labelled ground truth training and testing
data, showing the variety of input QPM images with a range of different
confluencies and image quality. The input QPM images are in figure 3.3a

and the corresponding ground truth binary segmentation maps are in figure
3.3b.

lar connections. Images acquired later in a time-lapse, when confluency was
higher, were more susceptible to the system drifting out of focus and phase
alignment, resulting in more interference artefacts. In order to circumvent
this challenge, new QPM images were acquired featuring confluent monolay-
ers stained with CellMask Orange membrane dye. This fluorescent signal
was acquired as a separate image channel and when overlaid on the QPM
images it provided a clear outline of where to manually label such images. An
example image of the QPM and CellMask Orange staining is shown in figure
3.4. This technique aided with the creation of several of the high-confluency
ground truth masks that contributed to the final training data set.

Training the Segmentation Network

During the training phase, the input data set is randomly augmented, with
regions of (768,768) pixels cropped and altered using transformations such as
rotation, flipping, noise addition, uneven illumination simulation, scale and
affine deformations.
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(a) Noisy QPM Image (b) CellMask Orange (c) Overlay image

Figure 3.4: A series of example QPM images used in the creation of ground
truth segmentation masks. 3.4a shows the noisy QPM image, with

interference artefacts occluding the cell boundary regions. 3.4b shows the
same tissue region imaged in the fluorescence channel with an excitation of
561nm, showing the CellMask orange dye (pseudo-coloured magenta) that

helped highlight cell boundary regions. 3.4c shows the overlay of both
images which was used as a template for the manual annotation of ground

truth examples. Scale bar in 3.4a is 80µm.

The network then compares the segmentation output with the ground
truth masks using a binary cross-entropy loss function [95], defined as:

Lunweighted = − 1

N

N∑
i=1

yi · log(p(yi) + (1− yi) · log(1− p(yi)) (3.4)

yi

{
0 background

1 cell
(3.5)

where N is the number of pixels in the image, i is a pixel of the im-
age, yi is the class of pixel i and p(yi) is the probability of observing class
y. The U-Net training process is generally conducted by mapping the input
image to the ground truth segmentation mask and iteratively tweaking the
model’s internal parameters in order to minimise L. This approach typi-
cally treats all pixels in the image with identical weighting, which was not
an optimal approach in this instance due to the challenges presented by the
low-contrast regions separating proximal cells in the QPM data. Accurately
classifying these boundary areas was of crucial importance in ensuring neigh-
bouring cell segments were not merged into contiguous regions. These low-
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Figure 3.5: A diagram illustrating the Delaunay triangulation process
involved in weighting narrow regions between cells in ground-truth mask

images. The individual masks are coloured magenta and the simplices
connecting the boundary coordinates of each mask are coloured green. The
regions with the smallest triangles are weighted the highest, according to

equation 3.6.

contrast boundary regions between individual cells were typically the most
error-prone, with masks frequently featuring a small bridge between them
(as shown in the lower panels of figure 3.8b), resulting in a corresponding
mask centroid shifted massively from the true value. This misdirection of
cell localisation was especially problematic when it came to tracking cells
over time, hence requiring a careful consideration of these seemingly minor
segmentation errors. To achieve a more careful consideration of challenging
segmentation regions, pixel-wise weight maps were supplied as an additional
input to the training phase. These weight maps were focused the loss func-
tion on specific intercellular regions, penalising regions with high weighting
more than low weighting regions.
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(a) Phase image (b) Ground truth mask (c) weight map

Figure 3.6: Example of ground truth segmentation map used for training
and/or testing. 3.6a shows the QPM image used as the template. 3.6b
shows the corresponding manually annotated ground truth mask. 3.6c

shows the weight map that accompanied the ground truth mask,
highlighting areas of close cell contact that required more attention in the

training process. Scale bar in 3.6a is 40µm.

The weight maps were created by first extracting a set of x, y coordinates
from the outline of individual masks in the ground truth image. Next, a
Delaunay triangulation [139] was generated from this set of coordinates by
creating a set of triangles, or simplices, in which no coordinate point lies
within the circumcircle of any other simplex in the set. Then, for each back-
ground pixel in the ground truth mask, the mean length of the edges of the
simplex in which the pixel lies was calculated. This mean simplex length
acts as a proxy for how isolated this background pixel is from neighbouring
cell boundaries, with lower values indicating the pixel was located within a
narrow region between cells. The weight map was then created by replac-
ing background pixel values with the simplex mean values, weighted by the
exponential decay function shown in equation 3.6:

wi = ω0 exp−d
2
i /2σ

2

(3.6)

where di is the mean length of the simplex edges that encloses pixel i, ω0

is a scaling amplitude that increase the weighting of any given region and σ
is a factor that determines the spatial decay of the weighting. The higher
the ω0, the more the training step focused on that region and the higher the
σ value, the more the training focused on the surrounding region. The ω0

value scaled directly with the pixel value of the bright regions shown in figure
3.6c, meaning that this parameter is directly proportional to the final weight
map maximum pixel intensity. The effect of a series of different combinations
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(a) ω0 = 1, σ = 3 (b) ω0 = 1, σ = 30

(c) ω0 = 3, σ = 11 (d) ω0 = 16, σ = 16

Figure 3.7: A series of U-Net training weight maps with different ω0 and σ
parameters. Note that in each image, the cell regions have a pixel value of

1, deeming the higher weighted images as darker in the foreground cell
regions.
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of ω0 and σ is illustrated in figure 3.7. The low decay value σ of panel 3.7a is
apparent from the relatively contained extent of the inter-cellular weighting.
Comparing this with the neighbouring panel of 3.7b, which features a ten-fold
greater σ value, and the reduced decay of weighting is clearly visible from this
juxtaposition. The weight maps are incorporated into the training process
as an addition per-pixel weighting variable factored into the loss function
(equation 3.4), resulting in the following expression:

Lweighted = − 1

N

N∑
i=1

wi ·
(
yi · log(p(yi) + (1− yi) · log(1− p(yi))

)
(3.7)

Where wi is the per-pixel weight of pixel i and the other parameters are
the same as for equation 3.4. To finalise the best values for ω0 and σ, a
wide parameter space of 0 ≥ ω0 ≤ 300 and 0 ≥ σ ≤ 300 was tested, with
weight maps made for the 16 different combinations of the values ω0/σ =
{0, 15, 30, 300}.

Parameter σ = 1 σ = 3 σ = 30 σ = 300

ω0 = 1

ω0 = 3

ω0 = 30

ω0 = 300

Table 3.1: Table of segmentation maps acquired after training with different weight map
parameters, showing the effect of varying (ω0, σ) values. Setting the ω0 value too low results in

merged regions, whilst setting the σ balue too high results in under-segmentation, with too much
focus on the regions in between cells.
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Quantitative Assessment of Segmentation Accuracy

A qualitative assessment of network performance for various ω0 and σ values
is shown in table 3.1. An immediate observation that can be drawn from
these segmentation images is that with larger values of ω0 and σ, increased
weighting is given to the boundaries between cells, resulting in a segmentation
approach that focuses too much attention on the background regions between
cells, rather than correctly segmenting the cells. On the other hand, paying
too little attention to these crucial boundary regions results in an under-
segmented image output, with cells being frequently merged into contiguous
regions that would yield misleading information on single-cell location. The
corresponding accuracy scores of each weight map parameter test (from the
training algorithm’s self-assessment) are shown in table 3.2. These scores
give an approximate assessment of performance, based on quality metrics
calculated from the training data. However, it is best practice to properly
test the performance using the separate subset of training data withheld
from the training process. Therefore, after conducting a visual assessment
of general segmentation quality and checking the self-scored accuracy, the
performance metrics of IoU, Jaccard index, localisation error and pixel iden-
tity were calculated for the refined parameter space of 3 ≤ ω0 ≤ 30 and
3 ≤ σ ≤ 30.

Parameter σ = 1 σ = 3 σ = 30 σ = 300

ω0 = 1 79% 79% 83% 80%
ω0 = 3 79% 83% 84% 84%
ω0 = 30 82% 75% 72% 70%
ω0 = 300 76% 64% 66% 57%

Table 3.2: Training phase self-scored accuracy display of parameter
performance

Another parameter defined prior to initiating the training process was
the number of training iterations, known as the number of steps. This pa-
rameter had a noticeable effect on the segmentation metrics. If the network
was trained for too long, then the performance of the segmentation would
tend towards being over-fit on the training data. This meant that the seg-
mentation worked very well for the given training examples but not so well
for new patterns of cells. However, training for too little time resulted in the
network not being given enough opportunity to learn the pertinent image
features necessary for good segmentation (such as the cell boundaries).
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The detailed segmentation performance for three different parameter weight-
ings are shown in table 3.3. These scores are cumulative, averaged over all
15 test images and they illustrate the incremental improvements being made
towards the end of the fine tuning of weight map parameters. The impact
of the number of iterations of training are shown as the varying number of
steps between the columns. The effect of an insufficient training period can
be seen in the difference between the segmentation metrics of column 2 and
3, where the overall performance drops when the network was trained for
20,000 steps rather than 60,000.

Metrics
ω0 = 100 σ = 3
Steps = 30,000

ω0 = 30 σ = 3
Steps = 60,000

ω0 = 30 σ = 3
Steps = 20,000

True labels 2743 2743 2743
Predicted labels 3163 2791 2880
True positives 1121 1175 1230
False positives 1477 1195 1211
False negatives 155 150 127
IoU 0.699 0.733 0.731
Jaccard Index 0.407 0.466 0.479
Pixel identity 0.417 0.408 0.409
Localisation error 38.215 55.020 38.181

Table 3.3: Detailed U-Net performance scores, showing the slight improvement gained by
changing the ω0 parameter (first to second column) and the slight decrease in performance by

training the network for too few training steps (second to third column).

As well as conducting whole-image segmentation scores for a variety of
different confluencies, the segmentation performance was tested over time by
isolating one individual cell mask and measuring the IoU over several frames.
The IoU score for a single cell over 32 hours is shown in figure 3.8a. The
subset of the corresponding ground truth and model masks are shown in
figure 3.8b. A common segmentation error is shown in the latter panels as a
neighbouring cell gets merged with the focal cell of interest.

At this stage in the project, a complete survey of the available parameter
space had been conducted and the final optimal configuration was decided
upon. Parameter values of ω0 = 3 and σ = 30 and a training period of 60,000
steps were chosen and the focus turned towards extracting QPM signals in
order to quantify the dry mass dynamics of single cells in a competitive
MDCK monolayer.
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(a) The single-cell IoU over time, showing the temporal variability in performance
of QPM segmentation output. The performance starts off well, with an IoU
nearing 1, but the majority of the time is spent with a much lower IoU value,
especially when the cell segment merges with a neighbour as shown in figure 3.8b.

(b) A sequence of images showing the Intersection over Union of two objects, one
a manually-labelled cell and one a model-labelled cell, progressing through the
time period (δt = 4mins) corresponding to the first drop in IoU from figure 3.8a.
The grey pixels are the intersection of the green and magenta pixels. Scale bar is
25µm.

Figure 3.8: Measuring the Intersection over Union (IoU) over time.
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Quantification of Cell Dry Mass

A preliminary result for single-cell OPD over time is shown in figure 3.9.
This particular cell underwent a mitosis around hour 15 in the plot. The
resulting OPD of the two progeny cells are shown after hour 15. This par-
ticular cell example was chosen to try and capture the G1 and G2 growth
phases in both generations of cell. As can be seen in figure 3.9, the OPD
signal for both generations is generally very noisy, with sharp jumps in signal
intensity occurring very frequently. The primary reason for these jumps is
the variability in segmentation quality over time, as depicted in figure 3.8a.
If the quality and area of a single-cell segmentation mask is liable to fluctu-
ate by significant amounts over time, then the corresponding dry mass OPD
signal will mirror that fluctuation. Despite this, a post-mitosis increase in
dry mass can be observed for both progeny cells after the 15 hour mark,
with a more pronounced increase visible for progeny cell 1. However, due to
the low signal to noise ratio present throughout figure 3.9, it is difficult to
confidently assert that this increase is due to cell growth.

Figure 3.9: A graph depicting the relative fluctuations in dry mass for a
single cell that undergoes mitosis at t=15 hours, calculated by taking the
OPD signal intensity and normalising by cell area. A suspected increase in
the progeny cell’s dry mass can be observed after mitosis, albeit the Signal

to Noise Ratio ratio is low enough to cast doubt on this claim.

In order to see if fluctuations in the QPM signal correlated to phases of
growth and senescence, a fluorescent cell cycle indicator was used to demar-
cate the onset of cellular growth phases. Previous work in the laboratory had
resulted in the acquisition of QPM time-lapse data sets featuring cells ex-
pressing the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI)
marker. Cells endogenously expressing FUCCI will cycle through a colour
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change of red/orange during G1 phase, red/orange and green at the onset of
S-phase, and then just green for the rest of S and G2 phase, as depicted in fig-
ure 1.8. Any correlation in growth between the OPD signal and the FUCCI
signal would indicate that the experimental plan was worth pursuing.

An example of the QPM/FUCCI fluorescence intensity plot is shown
in figure 3.10, where the clear switch between G1 and S phase is apparent
when the relative fluorescence intensities of the red and green signal are
equal between the 5 to 10 hour mark. However, this period, as well as the
preceding G1 growth phase, does not seem to coincide with any significant
changes in the QPM signal. There is also a distinct lack of OPD signal
growth during the subsequent G2 phase, with the only noticeable change
being immediately before mitosis, at approximately the 27 hour time point.
Further to this, there was no discernible changes in OPD signal intensity that
indicated the onset or cessation of any growth phases at all. The main issue in
the implementation of the single-cell dry mass analysis was the variability in
segmentation quality. Fluctuations in the area of single mask meant that the
underlying signal of cell growth was being convoluted by a random variable
with no capacity for prediction. Despite this, one might expect to see a more
gradual change in dry mass dynamics if this fluctuating signal was smoothed.
Such graphs were explored, but provided no more clarity on whether OPD
signal changes were indicative of underlying dry mass dynamics. In total, 50
example tracks had their OPD intensities extracted and plotted, all returning
similar results to the examples shown in 3.9 and 3.10. The relatively low
number of extracted tracks was a result of many seemingly-eligible single-
cell trajectories being invalidated by temporary segmentation merges with
neighbouring cells. This was perhaps the biggest issue when it came to
quantitatively assessing single-cell dry mass. Frequent segmentation errors
meant that there was no easy way to guarantee that a single-cell dry mass
trajectory was truly single-cell.

Another common feature across the extracted single-cell profiles was the
significantly long cell cycle times. According to recent literature, cell cycle
times for a healthy, MDCK monolayer should be 17.9 ± 4.9 hours [119],
provided the layer is yet to reach full confluency. All of the example tracks
had a cell cycle duration in excess of 35 hours, indicating that the QPM
imaging conditions were resulting in aberrant cellular behaviour. This is
understandable considering the QPM did not feature a typical incubator
environment and instead relied on a simple Kapton heater imaging chamber
with no CO2 control. Despite using CO2 buffering media, this resulted in
an environment that cells could not thrive in as homogeneous monolayers,
let alone engage in a physiologically representative competition scenario. It
was primarily due to this engineering issue that it was decided to take the
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project in a different direction and shift the focus away from relying on the
QPM as the main analysis tool.

Figure 3.10: A graph depicting the normalised intensities of GFP, RFP and
OPD signals from a single cell, acquired from the QPM. The onset of

S-phase can be seen in the region where the GFP and RFP signals cross
over at 7 hours, and the onset of mitosis can be seen when the GFP signal

drops at 27 hours.

3.1.2 Selective Plane Illumination Microscopy

In addition to measuring the single-cell dry mass of a competitive monolayer,
the volume and 3-dimensional position in cells was also of key interest. I
therefore assisted Dr. Kwasi Kwakwa in the assembly of a Selective Plane
Illumination Microscope (SPIM). The motivation for assembling the SPIM
was twofold: firstly, to have a system with the capacity to image volumetric
time-lapse data so the RasV 12 extrusion events could be recorded in greater
detail; and secondly, to check the height and volume variability of MDCK
cells throughout the cell cycle. This second point was pursued to see if
such cellular volume changes would significantly impact the OPD readout,
and subsequent cell density. It was suspected that maybe the effect of cell
rounding prior to mitosis may affect the quantitative analysis of cell dry mass.
This would be due to any increases in z resulting in an increase in refractive
index and subsequent OPD profile. This effect may be present at the point of
mitosis in figure 3.10, where a sudden increase in OPD signal is present. This
increase could be interpreted as a sudden addition of dry matter in the hour
prior to division. However, it could also be a misleading reading where the
OPD signal intensity increases due to the amount of matter in that cellular
region increasing as a result of pre-mitotic cellular rounding causing a rapid
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increase in z height. As the limitations of the QPM set in, the SPIM was
mooted as a potential avenue for investigating the primary hypothesis on the
role of wild-type division in mutant cell elimination. Two orthogonal profiles
from the SPIM showing a MDCK monolayer are shown in figure 3.11. MDCK
cells typically form blisters after reaching fully confluency, which is apparent
in both images. These images were acquired by Dr. Kwasi Kwakwa using a
CellMask membrane dye using a fixed sample of MDCK wild-type cells.

(a) Left hand side view of a fixed
MDCK monolayer

(b) Right hand side view of a fixed
MDCK monolayer

Figure 3.11: Two orthogonal views of a fixed MDCK monolayer, imaged
with CellMask membrane dye on the laboratory’s SPIM. Scale bar is 40µm.

Up until this point, all images acquired on the SPIM were from fixed
samples. In order to image the dynamics of cell competition, the partially
built SPIM needed to be placed inside a standard incubator so that imaging
conditions would approximate a physiological condition. Unfortunately, due
to unforeseen circumstances, this was not possible so the focus was set on
acquiring a corpus of competition imagery on the existing widefield epifluo-
rescence microscope.

3.1.3 Widefield Epifluorescence Microscopy

In order to check the preliminary results from the QPM and SPIM experi-
ments, an established and validated microscopy approach was adopted. The
same cell lineages were imaged on the laboratory’s widefield incubator micro-
scope, which had a proven record of imaging cell competition assays [2, 119].
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Figure 3.12: A graph depicting the normalised intensities of GFP and RFP
signals from a single cell, acquired from the incubator microscope. The

onset of S-phase can be seen in the region where the GFP and RFP signals
cross over at 5 hours, and the onset of mitosis can be seen when the GFP

signal drops at 18 hours.

After segmenting, classifying and tracking the raw image data, the single-cell
trajectories were extracted. The FUCCI profiles of a series of example cells
were then plotted and the cell cycle times assessed from the change in flu-
orophore expression. An example single-cell fluorescence profile imaged on
the widefield incubator microscope is shown in figure 3.12.

As can be seen in figure 3.12, the cell cycle time is approximately 20
hours, reflecting a typical distribution of cell cycle times. This data, cou-
pled with the published work from this laboratory that utilised the same
microscope [2], shows that this imaging system is more physiologically repre-
sentative, with the cells displaying healthier cell cycle times. Therefore, the
focus of the project turned towards designing an analysis based on widefield
epifluorescence data that could answer my original hypotheses.

Learning from the work done on cytoplasmic QPM image segmentation, a
more moderate approach was adopted for the widefield image segmentation.
Instead of aiming to capture the whole irregular shape of a cell’s cytoplasm,
the nuclei would be segmented. The generally-predictable, elliptical shape
coupled with the strongly defined fluorescent signal meant that reliable seg-
mentation was more achievable. The fact that these regions of interest were
separated by a cytoplasmic gap, with no fluorescence signal, also meant that
the segmentation was easier to accomplish over large sets of image data. Once
the segmentation was complete, the aforementioned image analysis could be
conducted on the raw image data, resulting in a fully-annotated, single-cell
account of competitive divisions and apoptoses.
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A corpus of widefield epifluorescence data already existed for the mechan-
ical wild-type versus ScribKD competition, with over 130 time-lapse acqui-
sitions already labelled. Such a dataset did not exist for the biochemical
RasV 12 competition, which would be addressed later in the project with my
own experimental data acquisition. In the meantime, a quantitative single-
cell analysis was designed to help quantify the impact of wild-type mitoses
on mutant cell elimination.

3.2 Radial Analysis

The outcome of the widefield image annotation pipeline was a detailed ac-
count of each cell at every time point of the time-lapse acquisition. Every
instance of cell localisation had an associated identity (wild-type or mu-
tant), a cell cycle classification and the other aforementioned morphological
attributes. To interrogate the chronological and spatial relationship of key
competitive events, this fully labelled data set was supplied to a bespoke
“radial analysis” algorithm. The primary aim of this radial analysis was to
extract a space and time dependent probability of mitosis that was aligned
around a central focal elimination event (apoptosis/extrusion). To achieve
this, the radial analysis algorithm was designed to take a “focal” competitive
event, such as a ScribKD apoptosis or RasV 12 extrusion, and count the num-
ber of instances of “subject” cells, defined as the other population of cells
(i.e. wild-type), within a radial distance.

The core function of the radial analysis script measured the euclidean
distance between two cells at any one time point. This distance is calculated
as per equation 3.8:

dij,t =
√

(xi,t − xj,t)2 + (yi,t − yj,t)2 (3.8)

where di,j,t is the euclidean distance between subject cell i and focal cell
j at time t and xi/j,t and yi/j,t are the x and y coordinates of each cell
at time t. This calculation was repeated for all cells within a predefined
maximum distance for that given time frame, yielding a list of inter-cellular
distances between one population and a given focal event at that time point.
The script then repeated this quantitative spatial description of local cellu-
lar neighbourhoods for every time point before and after a focal event for
a predefined temporal window. This added a chronological assessment to
the wild-type cell distribution around a mutant cell elimination event. This
iteration across time added more distance measurements to the output of the
radial analysis. In order to record the temporal distance along the the spatial
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(a) t = 59.3 hours (b) t = 62.7 hours

(c) t = 69.7 hours (d) t = 79.9 hours

Figure 3.13: Schematic representation of the single-cell, quantitative “radial
analysis”, designed to elucidate any correlations between mutant cell

elimination and wild-type mitotic behaviour. In this figure, the mutant
ScribKD cells are shown with magenta nuclei (H2B-RFP) and the wild-type
cells are shown with green nuclei (H2B-GFP). The competitive elimination

of the focal cell occurs at 69.7 hours, whilst the other panels show the
preceding and succeeding radial environments, featuring mitoses both

before and after the apoptosis. The post-elimination radial environment
stays fixed at the site of elimination (note that the apoptotic debris present

at t = 79.9 hours is from a different, neighbouring ScribKD cell).
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distance, the time period between the focal event and subject cell observa-
tion was measured and added to every distance measurement, according to
equation 3.9:

tij = |ti − tj| (3.9)

where tij is the time period that has elapsed between the subject cell i and
the focal event j. For the time periods prior to the competitive elimination,
the radial analysis was fixed on the movement of the focal cell, following it
around the FOV. This was so that the radial analysis measured the local
cellular environment around the focal cell of interest prior to it’s elimination.
After the focal cell was eliminated from the tissue the radial environment
became fixed at that location, measuring the spatio-temporal distribution of
subject cells in the local region of the recently eliminated cell. A graphical
summary of this analytical approach is shown in figure 3.13. Given that every
cellular instance had a mitotic classification associated with it, the spatio-
temporal distribution of wild-type mitoses could easily be recorded with the
same approach.

The radial analysis was originally designed to measure the spatio-temporal
distribution of wild-type cells around a single ScribKD apoptosis. However,
the script was built with the capacity to change the different types of focal
cells, focal events, subject cells and subject events, allowing for the opportu-
nity to expand this analysis to investigate relationships between any recorded
cellular phenomenon beyond mitoses and apoptoses. This design versatility
was used in the third results chapter (section 5) when applying the radial
analysis to RasV 12 extrusion events. It could also be further expanded to
investigate relationships between the same population of cells, or perhaps to
interrogate a vice-versa inversion of the typical mitoses-elimination analysis,
in the form of the spatio-temporal distribution of eliminations around focal
mitotic events.

In order to increase the statistical certainty of any correlations observed
in the radial analysis output, the script needed to be easily applicable over
a cumulative measure of many focal elimination events. Given that the out-
put data was a list of distances and time periods all relative to a focal cell,
this analysis was easy to scale by iterating the main script over many dif-
ferent focal events. This was achieved by providing a list of focal events to
a calculate.radial scan function within a radial analysis.ipynb notebook
located in the radial analysis directory of the cell-comp-analysis GitHub
repository). This list of focal events was created by filtering all events of
interest from the main corpus of annotated, single-cell image data. This list
of focal events was provided in a Python dictionary format, with the exper-
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iment number, imaging position and cell ID information in the key and the
focal time of the event as the dictionary value. An example dictionary entry
of the focal event format is shown below:

‘ND0025 Pos7 930 RFP’: ‘1030’

Where the experiment was “ND0025_Pos7”,the mutant (RFP) cell ID was
930 and the focal time of the event was at frame 1030. Along with a list of
focal events, the type of subject cell and subject event (most typically wild-
type mitoses) needed to be stipulated, as well as a list of .hdf5 tracking file
paths for each experiment to analyse, the total spatial and temporal extent
of the radial scan and the output path to save the results to.

The output of this script was a Comma Seperated Value (.csv) list of
cell IDs, with the corresponding cell state classification, time of appearance,
distance from focal event and time since the focal event. This list was a cu-
mulative measure of wild-type mitotic activity around many thousand focal
events. In order to plot this cumulative radial analysis, the .csv results were
given to a function that transformed them into user-friendly table, shown in
figure 3.14, which was then used to plot a 2-dimensional histogram. This vi-
sualisation approach can be thought of as a form of radial kymograph, aligned
around a central elimination event. These histograms showed the spatial and
temporal distribution of cell instances and mitotic instances around a focal
elimination event, with the focal time point in the middle of the x axis and
the radial distance scaling outwards along the y axis. To discretise the data
into a manageable format, bin sizes were chosen to reflect a realistic window
of observation for the relevant biological phenomena (2 hours) and with spa-
tial bins on the order of single-cell diameter (20µm). A range of bin sizes
were used for different plots in the project and this is further discussed in
the results chapters 4 and 5.

Finally, to make a 2-dimensional histogram plot reflecting a measure of
the probability of division events the distribution for mitotic instances was di-
vided by the distribution of cell instances. The resulting ratio, shown in equa-
tion 3.10, for each spatio-temporal bin was plotted into a separate histogram
showing the probability of wild-type division around a mutant elimination
event. This analysis was defined as the “observed” or “phenomenological”
radial analysis.

pevent =

∑
f(event)∑
f(cell)

(3.10)

where f(event) is an observed competitive event (division or apoptosis)
and f is an observation of a cell, both summed over all instances for a given
spatio-temporal bin.
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(a) Cell count data (b) Division count data

Figure 3.14: Data frames showing the results of the cumulative radial scans
of wild-type cell and division counts around n = 1839 focal ScrKD

apoptoses

3.2.1 Control Radial Analysis

In order to isolate the competition-independent rates of division from the
competition-dependent rates of divisions around an apoptoses, a control anal-
ysis were designed. This control analysis aimed to elucidate a background
rate of division in a growing epithelial monolayer. This involved conducting
a radial analysis of wild-type divisions where the focal event was a randomly
chosen wild-type cell at any random time point in its cell cycle. It was de-
cided that the behaviour of wild-type cells around other wild-type cells could
be defined as non-competitive. The control plots were obtained in a similar
way to the standard observed analyses, with lists of focal events (randomly-
selected wild-type cell instances) given to a modified radial analysis function,
resulting in similar .csv outputs for the control distribution of cells. Once the
control plots were calculated they were subtracted from the original prob-
ability analysis, resulting in histograms for probability of division above a
control background measure of wild-type activity.

3.3 K-Function Analysis

The output of the radial analysis was a set of coordinate points of wild-
type cells and mitotic events, focused around a series of focal elimination
events. This meant that the output from the quantitative single-cell analysis
was highly suitable for a K-function analysis. K-function analyses are used
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to detect and quantify clustering or dispersion in point pattern data sets.
Adding another analytic strategy to investigate the same hypothesis would
serve to either embolden or disprove the initial radial analysis conclusions.
Therefore, research was conducted in to how to adapt a K-function clustering
analysis to the preexisting data. The final approach taken in this project was
adapted from an online lecture series by Prof. Tony Smith [140, 141].

Figure 3.15: Spatio-temporal domain over which the K-function analysis is
conducted. The region R is the field of view whilst the radial scan is

measured over a subdomain of 2∆πr2, shown on the right.

The first point of consideration was that the output radial analysis data
was a space-time point pattern. Therefore, a more nuanced K-function
space-time analysis was required. A typical K-function plot would be a
1-dimensional distribution, showing how a point pattern data set is dis-
tributed across space. For the radial analysis data, the K-function would be
2-dimensional, showing how the number of expected events (mitoses) changes
over space and time (relative to a focal elimination event, ei). The first step
in defining a space-time K-function was to establish the spatio-temporal do-
main over which to conduct the analysis. In this context, this was the area,
a(R), of the FOV region R and the time duration of the time-lapse acquisi-
tions, tmax − tmin. This spatio-temporal domain is illustrated in figure 3.15.
Next, a space-time sample estimate, shown in equation 3.11, was made, which
represents the rate or frequency of events over the defined domain.
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This equation is analogous to the radial analysis conducted by equation
3.10.

λst =
n

a(R) · (tmax − tmin)
(3.11)

The K-function depends primarily on an indicator function, as shown
in equation 3.12, that counts the number of events within a given spatio-
temporal bin.

I(r,∆) (dij, tij) =

{
1, (dij ≤ h) and (tij ≤ ∆)

0, otherwise
(3.12)

Thus, in the context of the radial analysis, the value for I(r,∆) is essentially
a count of events within the radial distance h and time period ∆ of the focal
event. The subsequent space-time K-function is shown in equation 3.13.

K̂(r,∆) =
1

n · λst

n∑
i=1

∑
j 6=i

I(r,∆) (dij, tij)

ωij
(3.13)

Equation 3.13 features the indicator function, I(r,∆), scaled by three dif-
ferent parameters. The first two of these parameters is n · λst, where n is
the number of subject events and λst is the sample estimate from equation
3.11. The other parameter is an optional weighting, ωij, that scaled the indi-
cator function based on whether a particular subdomain of h or ∆ extended
partially out of the domain R. This weighting parameter was important
when it comes to the radial analyses as many of the maximum radial dis-
tances around a focal event had regions extending beyond the image FOV.
Once the space-time K-function (equation 3.13) was calculated for a range
of different spatial and temporal values, a 2-dimensional K-function graph
was plotted. This graph showed the distribution of the expected number of
mitoses around a focal mutant cell elimination event.

The next step in the K-function analysis was to conduct a temporal indis-
tinguishability test. This test was designed to establish whether the observe
K-function calculated by equation 3.3 contained patterns of clustering when
compared to a random distribution of events. Therefore, a random distribu-
tion of events needs to be generated. To do this, a random labelling process
was conducted on the observed data set. This involved shuffling the indexes of
all of the time coordinates of the observed events so that a new set of pseudo-
events was generated with a random distribution in time. This process was
then repeated, resulting in N permutations of random pseudo-events, each
one representing a null hypothesis where there is no spatio-temporal clus-
tering of events. A permuted K-function, K̂τ (r,∆) was then calculated for
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each of the N set of the null-hypotheses, followed by the temporal indistin-
guishability test. The temporal indistinguishability test involved counting
the number of instances the observed K-function, K̂(r,∆) had a greater
value for a given space-time coordinate (r,∆) than the permuted K-function
K̂τ (r,∆). This was a simple comparison of each spatio-temporal bin in both
the observed and null hypothesis 2-dimensional K-function plots. This com-
parison was then repeated for every spatio-temporal bin and all the N null
hypothesis K-functions, as defined in equation 3.14:

M(r,∆) =
∑

K̂(r,∆) < K̂τ (r,∆) (3.14)

The resulting set of M(r,∆) values were an indication of whether the
observed K-function exhibited fewer event instances for a given r,∆ than
the cumulative null hypotheses. If a large number of null hypotheses are
generated, say N = 1000, then M(r,∆) represents a quantitative statistical
assessment of how rare the distribution of observed events are. Equation 3.15
was then used to calculate a p-value for each spatio-temporal bin.

p(r,∆) =
M(r,∆) + 1

N + 1
(3.15)

This resulted in a 2-dimensional, space-time plot indicating which spatio-
temporal regions, relative to the focal elimination event, had statistically sig-
nificant p-values of below 0.01, indicating that mitotic clustering was present
in that region. To generate a statistically significant p-value for a given
spatio-temporal bin at r,∆, the majority of null hypothesis K-function val-
ues must be less than the observed K-function value. This means that more
events are witnessed for (r,∆) in the observed K-function over the randomly
generated set of events, resulting in a statistically confident assessment of
event clustering. The advantages of this space-time K-function analysis is
discussed in more details in the following results chapters.

3.4 Discussion

In summary, Quantitative Phase Microscope provides a novel approach for
a quantitative assessment of the internal single-cell dynamics of a MDCK
monolayer. In theory, it promised the benefit of being a non-invasive, label-
free method. This meant that cells would not suffer from unintended side
effects usually associated with long-term quantitative imaging, such as pho-
totoxicity, and new competitive cell lines could be introduced without time-
consuming bio-engineering of different fluorescent markers. The type of anal-
ysis it could have yielded is rare: a single-cell, quantitative assessment of
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monolayer growth dynamics is something not seen before in cell competition
studies. If the original experimental plan were to be fully realised, then the
changes in single-cell dry mass could have served as a early predictive tool for
commitment to cell fate. If these growth phases were apparent from the OPD
signal then apoptotic or mitotic decision making could have been predicted
many hours before the event occurred, promising a deeper insight into the
chronology of competitive decision making. Being able to mark the onset of
these key competitive events in relation to one another would have helped an-
swer the primary research question of whether wild-type divisions are cause
or consequence of mutant elimination. This kind of analysis promised to
possess the added benefit of having a real-terms relative measure of cell dry
mass. This measure would have been a continuous measure over time, yield-
ing an assessment of not just when various growth phases were initiated, but
also how rapidly or slowly they were initiated. Further to this, if subsequent
analyses yielded no obvious conclusions regarding the mitotic dependency of
competitive elimination, a time-dependent analysis of density could reveal
a more subtle mechanism of competitive elimination. This kind of mecha-
nism could potentially exist beyond the interactions between key competitive
events, such as mitosis and apoptosis, and instead rely on a more indistinct
exchange of inter-cellular forces. Given that the ScribKD competitive system
has been shown to be heavily density-dependent and the RasV 12 competitive
system utilises a mechanical system of elimination via apical extrusion, this
analysis would have suited both these assays very well. This would have
been useful in further characterising the mechanism of mechanical competi-
tion, as well as revealing the mechanics of a biochemical competition system,
perhaps challenging the status quo of the mutually exclusive classification of
mechanical versus biochemical competition.

However, there were two key obstacles that stood in the way of realising
this type of single-cell dry mass analysis. The first was the challenges in estab-
lishing a reliable image analysis pipeline. Segmenting the entire cytoplasmic
region of the cell in the QPM images alone was an incredibly challenging yet
crucial step in the image analysis. The images contained a high background
signal and frequent interference patterns that occluded important regions of
interest for the segmentation process. These difficulties stood in the way of
achieving an adequate quality of segmentation, with fluctuations in the area
of single-cell masks resulting in a noisy OPD signal that was also frequently
invalidated by neighbouring cells merging. Despite this, I do not believe the
difficulties experienced with this image analysis completely invalidates any
future research into this experimental approach. There have recently been
several technological advances in the field of biomedical image segmentation
and revisiting the segmentation challenge with newer approaches would per-
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haps yield a more successful result. Perhaps a stably fluorescent membrane
marker could be employed to help segment cells by providing an alternative
input to the segmentation algorithm with clearly defined cell boundaries. Un-
fortunately this did not exist at the start of the project. Another approach
could be to segment just the nucleus of the cell using the endogenous H2B
markers, the use of which is well established in the laboratory. However,
considering the DNA content of cells represents a very small proportion of
the total dry mass [142], it is unclear if changes in growth phases would be
evident from an exclusively nuclear OPD signal.

The other limitation of the QPM system is more challenging to overcome
without a significant engineering intervention. The lack of incubator-quality
temperature and CO2 control meant that the microscope was not well suited
to long term imaging, with cells exhibiting aberrant cell cycle times indicative
of non-physiological imaging conditions. Due to the complexity of the optical
set up and the subsequent size of the imaging system, it would be impossible
to fit inside of a standard incubator. Therefore, it was decided that the issue
of non-physiological imaging conditions was too great to overcome without
basing the entire project on it.

In order to address the main hypotheses of the mitotic dependency of
mutant cell elimination, a switch in approach was decided upon. This ini-
tially started with the SPIM system, with this approach promising to yield
a volumetric insight into cell competition. This would have been a valuable
perspective for the extrusion elimination events present in wild-type versus
RasV 12 competition. It also originally promised to serve as a parallel anal-
ysis into the role that single-cell volume changes had on the QPM’s OPD
signal, before this system was deemed not suitable for further experiments.
Several encouraging preliminary SPIM image acquisitions were conducted on
fixed cell samples in preparation to move the partially built microscope inside
an incubator for time-lapse imaging. However the unforeseen circumstances
of the COVID-19 pandemic prioritised a simpler imaging approach. There-
fore, a pragmatic compromise was taken where the preexisting method of
imaging cell competition using widefield epifluorescence was adopted, along
with a redesign of the image labelling pipeline and the creation of a suite
of bespoke analyses of the spatio-temporal correlations between competitive
events. This meant that a corpus of already acquired competition data could
be used as the template to design a sophisticated radial analysis of the spatio-
temporal distribution of wild-type mitoses around focal competitive elimina-
tion events. The radial analysis started as a simple assessment of mitotic
distributions around a single ScribKD apoptosis and ended up as a versatile
script capable of plotting the distribution of any subject event around any
focal event, scalable over any number of time-lapse experiments so that a cu-
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mulative pictures of spatio-temporal competitive relations could be built. To
confirm that any observed correlations in the radial analysis were competitive
behaviours, a set of control analyses were also designed. These control analy-
ses aimed to extract a radial analysis of non-competitive cell behaviours from
the same images so that any focal distributions around competitive events
could be proscribed as a competition-dependent phenomenon. This also pro-
vided the opportunity to conduct a statistical assessment of the confidence
around these rare, competitive events.

An alternative computational strategy, the space-time K-function cluster-
ing analysis, was also designed to further interrogate the original hypotheses.
This analysis utilised the same single-cell data set, but took a completely
novel, orthogonal approach to answering the primary research question re-
garding mitotic distribution around mutant elimination. This approach was
utilised to provide a greater sense of statistical certainty regarding the organ-
isation of wild-type mitoses. The creation of a mathematical framework in
which any number of control null hypotheses could be generated meant that
any underlying mitotic patterning could be discussed with a renewed sense of
confidence, yielding p-values as low as 0.001. In conclusion, widefield epiflu-
orescence microscopy and a new analytical approach enabled a quantitative
description of cell competition to be developed. In the next two chapters,
this approach will be applied to mechanical and biochemical competition in
order to answer the primary research question of the mitotic-dependency of
mutant elimination.
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Chapter 4

Quantitative Analysis of
Mechanical Competition

Wild-type MDCK cells mixed with ScribKD mutants initiates a competitive
scenario that is considered a good model for mechanical cell competition
[143]. Previous work from this laboratory suggested that there is a context
dependency to the proliferation of wild-type cells around ScribKD cells [2].
The net growth rate of a single wild-type cell when surrounded by differ-
ent configurations of wild-type or mutant ScribKD cell types shown in figure
4.1a. This suggests that the most proliferative environment a single wild-
type cell can be found in is surrounded by four ScribKD neighbours, and that
more generally wild-type cells experience a higher net growth rate when sur-
rounded by mostly ScribKD neighbours. Another key conclusion from figure
4.1b in this study was that probability of apoptosis for a ScribKD cell is heav-
ily dependent on density of the surrounding tissue, far more than that of the
wild-type counterparts. These two conclusions point to a context-dependent
behaviour of wild-type cells that could be interpreted as an aggressive com-
petitive behaviour. Are the wild-type cells increasing their division rate in
order to outcompete neighbouring ScribKD cells? Wild-type mitoses are fre-
quently observed in the immediate vicinity of ScribKD cells as seen in figure
4.2: does this behaviour impact upon the fate of the ScribKD cells? Or
perhaps this proliferative behaviour is purely reactionary and the ScribKD

cells are voluntarily ejecting themselves from the monolayer, leaving more
space into which the wild-type cells proliferate? The tissue-wide competitive
outcome of ScribKD elimination is well established, but are there single-cell
interactions that govern this outcome and can they be observed from tracking
any correlations between the competitive events of mitosis and apoptosis?
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(a) (b)

Figure 4.1: Two figures from the work of Bove et al. [2]. 4.1a depicts the
growth rate of a single MDCK wild-type cell when surrounded by varying

configurations of local cellular neighbourhoods. The growth rate of a
wild-type cell is the highest when surrounded by 0 wild-type neighbours
and 4 ScribKD neighbours. The value within each box of the plot is the

number of cell observations used to calculate the net growth. Figure 4.1b
shows the idealised density dependency of the probability of division or

apoptosis for both populations of MDCK wild-type and ScribKD , used in
the cellular Potts modelling.

These questions form the basis of this chapter. Is there an explicitly
observable spatio-temporal correlation between wild-type mitotic events and
ScribKD apoptoses that tells the story of competitive elimination from a
single-cell perspective? I hypothesised that if there was a clear increase in
wild-type mitotic activity prior to ScribKD apoptoses in the immediate local
environment then this would serve as evidence for wild-type cells driving the
competitive outcome. On the other hand, it could be that the wild-type
proliferation only peaks after the ScribKD apoptoses, pointing towards a less
competitive space-filling behaviour from the wild-type population. Both of
these hypotheses are hinted at by the behaviour illustrated in figure 4.3,
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Figure 4.2: Incubator widefield time-lapse microscopy cropped image
showing wild-type proliferative behaviour, highlighted with white circles, in
the immediate local environment of a collection of ScribKD cells. ScribKD

cells are shown with magenta nuclei (H2B-RFP). Wild-type cells are shown
with green nuclei (H2B-GFP).

where wild-type mitoses are present both before and after a ScribKD apop-
tosis. What if there is no clearly defined spatial aggregation of wild-type
events around ScribKD apoptoses? This could perhaps lead to a new under-
standing of what type of competition is happening here: is it one cell type
directly affecting the other? Perhaps the real competition is not directed at
individual cells, but the resources they require to survive such as space and
nutrients.

In this chapter I will attempt to answer these hypotheses by measuring the
spatio-temporal localisation of wild-type mitoses around ScribKD apoptotic
events. Firstly, I will outline the process by which these events are identified,
then I will describe the protocol used to find any correlations. Finally, I will
discuss the results of the analysis aiming to further define the mechanisms
of this mechanical cell competition system.
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4.1 Defining Competitive Events

As mentioned previously, the competition between MDCK wild-type and
ScribKD results in the eventual elimination of ScribKD cells from the epithelial
monolayer. This happens due to the cumulative effect of many ScribKD

apoptoses until the population of ScribKD cells is fully depleted and removed
from the monolayer via apical extrusion [1]. A typical phenotype of this
competitive elimination is shown in figure 4.3. In order to ascertain any
correlation between the single-cell competitive outcome of apoptosis and the
proliferative behaviour of wild-type cells I needed to reliably define when
both a wild-type mitosis and a ScribKD apoptosis was happening. Once the
space-time coordinates of both sets of competitive events had been found,
then I could begin the radial analysis outlined in section 3.2.

(a) t = 0 hours (b) t = 5.93 hours

Figure 4.3: Incubator widefield time-lapse microscopy image showing two
frames from an acquisition of wild-type versus ScribKD cell competition,

showing a pre-apoptotic ScribKD cell (labelled with white arrow) with four
post-mitotic wild-type cells in the local neighbourhood (circled). The same
ScribKD cell is shown again, apically extruded after apoptosis, with more

instances of wild-type mitosis in the local neighbourhood. ScribKD cells are
shown with magenta nuclei (H2B-RFP). Wild-type cells are shown with

green nuclei (H2B-GFP).
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4.1.1 Identifying Mitoses and Apoptoses

The corpus of data this chapter’s analysis is based on consists of 127 time-
lapse acquisitions, totalling 139,216 frames of images and 9281 hours of cell
competition. Due to the size of this data set, reliably identifying competitive
mitoses and apoptoses required an automated process. Therefore, I initially
relied upon the H2B fluorescence classifications provided by the CNN cell
state classifier (previously explained in section 2.3.5) to yield the (x, y, t) co-
ordinates of all wild-type cells that undergo a mitoses and all ScribKD cells
that undergo an apoptosis. This is easily achieved by filtering the tracks data
for cells that end with a fate of “DIVIDE” or “APOPTOSIS” using a Python
list comprehension method shown below:

apoptoses = [track for track in scr_tracks

if track.fate.name == ‘APOPTOSIS’]

This approach yielded a list of cell track information, contained within the
variable “apotoses”, of every ScribKD cell that culminates in an apoptosis.
This track information contained not only the apoptotic cell’s location at the
time of apoptosis but, importantly, the location of the cell in the time leading
up to it’s eventual apoptosis. This information is needed so that the focal
environment of the radial scan stays fixed on the location of the cell leading
up to apoptosis, and not just it’s final apoptotic local environment. This
detail of implementation is important as I wanted to scan over the relevant
local environment for any mitotic activity that could be influencing the cell
before it’s apoptosis. Fixing the radial scan at the sight of apoptosis would
only catch the relevant local environment at the time of and after apoptosis.

As can be seen in the confusion matrix shown in 4.4, the performance
of the CNN classification of apoptoses was very accurate, with an F1 score
of 98.16% for the 511 ground truth examples tested in a recent publication
from the lab [119]. However, due to this classification forming the basis of
my subsequent analysis I wanted to verify that each apoptosis was correctly
classified. Even the 15 misclassifications shown in figure 4.4 would result
in an unacceptable sampling of false events as the focal point of the radial
analysis. To avoid such false sampling, a Napari macro was created that
highlighted the location of each automated apoptosis classification in the
raw image data. This macro iterated over all 127 time-lapse acquisitions
and recorded the precise ground-truth time point of apoptosis as confirmed
by human observation from myself, with help from Jasmine Michalowska,
Christopher Soelistyo. The combined effort of this manual verification of
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Figure 4.4: Confusion matrix showing the accuracy and F1 scores of the
classification of H2B morphology from the CNN cell state classifier (taken

from a recent publication [119]).

apoptosis classification resulted in a list of ScribKD apoptotic events that
totalled Napop. = 1839.

Next, I wanted to ensure that a similarly rigorous approach was employed
for the identification of wild-type mitoses. Due to the nature of a growing
epithelium, the incidences of wild-type mitoses would be an order of mag-
nitude more numerous than that of the ScribKD apoptoses, therefore the
option of repeating the ScribKD apoptosis verification approach was ruled
out immediately. After manually inspecting the cell state classifications of a
subset of pre-mitotic cells it was decided that a sequence of three frames of
subsequent “METAPHASE” classifications followed by a cell-fate of “DIVIDE”
was sufficient enough to reliably capture the division events. Unlike with the
ScribKD apoptosis classifications, I was not interested in the total amount of
division events. Instead, I was interested in the total number of mitotic events
that happened within a set radial distance from the predefined focal ScribKD

apoptoses, and within a set temporal window of the focal apoptotic time.
Only by visualising the focal distribution of these mitoses could I endeav-
our to answer the question of event correlation between wild-type mitoses
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and ScribKD apoptoses. However, before this focally-orientated distribution
of mitoses were explored, I wanted to check the data for any irregularities,
and that the temporal evolution of the cellular behaviour agreed with the
underlying biology.

4.1.2 Distribution of Mitoses and Apoptoses

When initially inspecting these data a striking edge effect became apparent.
Plotting the spatial distribution of all the wild-type mitoses as a finely grained
2D histogram resulted in the number of division counts on the edge of the
FOV being an order of magnitude greater than the mean. This 2D histogram
is shown in figure 4.5a, and cropped region of interest is shown in figure 4.5b.
This edge effect is simple to explain: cells that have their nuclei cropped
by the edge of the FOV are misunderstood to possess a metaphase-like H2B
morphology. This is partly due to the fact that the classifier will pad a
cropped image of a single cell if it is at the edge of the FOV, turning an
interphase morphology into a pseudo-metaphase morphology. Comparing
the highlighted mitotic wild-type cells shown in figure 4.3 with any other cell
that is cropped by the FOV illustrates this potential for misclassification.
After this edge effect was noticed, all data points from a radial scan were to
be subject to an exclusion criterion: if they were within 20 pixels of the edge
of the FOV then they would be cropped out.

The temporal distribution of ScribKD apoptoses is shown in figure 4.6.

(a) (b)

Figure 4.5: 4.5a) Spatial distribution of wild-type mitoses recorded in all
radial scans of ScribKD apoptoses. 4.5b) Cropped spatial distribution

showing a focus on the edge effects of the left side of the FOV.
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Figure 4.6: Temporal distribution of ScribKD apoptosis times.

This distribution is centered on the later stages of the experiment duration
as the number of ScribKD cells going through apoptosis increases as the
monolayer reaches confluency and the tissue organises itself in a competi-
tive manner. The number of apoptoses decreases towards the end of the
experiment duration as the competition reaches equilibrium. The moderate
amount of apoptoses at the beginning of the experiments, at t = 0 hours, is
most likely due to lone cells going through apoptosis before adhering properly
and integrating into the monolayer, as is highlighted in figure 4.7.
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Figure 4.7: Incubator widefield time-lapse microscopy image of the entire
FOV of a typical acquisition, showing the first frame at t = 0 hours. A
ScribKD cell that has undergone an apoptoses prior to the acquisition

starting is highlighted with a white arrow. ScribKD cells are shown with
magenta nuclei (H2B-RFP). Wild-type cells are shown with green nuclei

(H2B-GFP).

99



4.2 Radial Analysis

In order to assess the distribution of wild-type mitoses around ScribKD apop-
toses, a focal distribution was plotted. This focal distribution was rendered
as a 2D histogram with the “time since apoptosis” and “distance to apopto-
sis” featuring as the x and y axes. Each of the 1839 focal apoptoses previ-
ously identified were accumulated together to build a more reliable account
of aggregate cellular behaviour. This sum distribution of wild-type mitoses
around focal ScribKD apoptoses is shown in figure 4.8b, showing the total
spatio-temporal extent of the original radial scans.

Taken alone, this figure is not a valid gauge of whether wild-type mitoses
are clustering in any meaningful sense around ScribKD apoptoses. Firstly,
there is no accounting for the underlying cell count which is directly corre-
lated with the number of cells going through mitosis. Secondly, there is no
consideration for the background rate of cell growth that would be present
regardless of any competitive effects. This important aspect of the analysis is
addressed later on with the control analysis. Before introducing the control
measures and in order to gain a more realistic picture of wild-type prolifera-
tion around ScribKD apoptoses, a simple ratio of division count to cell count
is calculated, as shown in equation 4.1.

pmitosis =

∑
f(mitosis)∑
f(cell)

(4.1)

where f(mitosis) is an observed mitosis f is an observation of a cell, both
summed over all instances for a given spatio-temporal bin.

This ratio, which is henceforth called the “probability of mitosis”, scales
the mitotic count to the cell count, yielding a measure of division rate (num-
ber of wild-type mitoses per observation of wild-type cells) that is decon-
volved from cell count. The plots for the complete radial scans of 533µm and
±53.3 hours from apoptosis for cell count and division count are shown in
figure 4.8, and the ratio of the two plots shown as a probability of division
is presented in figure 4.8c.

Before moving on to the control measures of wild-type cellular prolif-
eration, it is worth inspecting the figures shown in 4.8 to ensure they are
true representations of expected epithelial activity. Taking the cell count
histogram of figure 4.8a and plotting the 50th spatial bin across time, cor-
responding to a distance of 250-255 µm from the focal apoptoses, results in
figure 4.9. Prior to the focal time of the apoptoses at t = 0 hours, one can
see that the number of wild-type cells follows a typically expected growth
curve [2]. This is highlighted with a typical logistic growth curve plotted
in magenta. However, after the focal apoptotic point the cell count begins
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(a) (b)

(c)

Figure 4.8: Phenomenological distributions of wild-type activity around
ScribKD apoptoses featuring the whole scope of the original radial scan.
4.8a) Distribution of wild-type cells around ScribKD apoptoses. 4.8b)

Distribution of wild-type mitoses around ScribKD apoptoses. 4.8c)
Distribution of wild-type mitosis probability around ScribKD apoptoses.
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to dramatically decrease. This is not a result of a number of cells in the
monolayer decreasing, but rather an artefact of the cumulative scan design:
typically the ScribKD cells enter apoptosis towards the end of a time-lapse
(as shown in figure 4.6), meaning that if I am taking a cumulative measure
of cell count over all time-lapses, as each time-lapse ends I will be observing
progressively fewer and fewer cells. This drop off in cell count is not present
if data from only one time-lapse is plotted in such a manner, but can be ob-
served in all the cell or division count plots created. Given that the measure
we are interested in is the ratio of division count to cell count, this drop off
is not problematic when it comes to the wider analysis.

Figure 4.9: Cumulative distribution of wild-type cells over time at a
distance 250-255 µm from the focal apoptoses (green, taken from figure

4.8a), taken over all observed apoptoses (Napop. = 1839) in all experiments.
A theoretical curve (magenta, logistic growth) is overlaid to indicate that

this analysis yields typical epithelial growth patterns.

The spatio-temporal range and subsequent bin size in figure 4.8 is arbi-
trarily chosen and bears little relevance to the underlying biological phenom-
ena. For competitive interactions, the bin sizes should be on a scale relatable
to the cellular behaviour: on the order of 20 microns, approximately a cell
diameter; and lasting around 2 hours, enough time for multiple competitive

102



events to occur. In aiming to capture as much information as possible about
the system in one single analysis, I ended up missing the finer details of
cellular behaviour occurring at smaller spatio-temporal scales and it became
clear that I should rescale my bin sizes accordingly. However, this presented
a dilemma between plotting the histograms at a sufficient enough spatio-
temporal resolution whilst maintaining a large enough bin size to capture a
statistically significant cell count.

Inspecting potential regions of interest in the full-scope spatio-temporal
plot of figure 4.8 reveals why the plots need to be re-scaled before any con-
clusions can be drawn. Figure 4.10 shows the first spatial bin (the row
corresponding to 0-5 µm, the immediate local environment around a focal
apoptotic ScribKD cell) plotted as the evolution of cell and mitosis counts
over time. It is clear that prior to apoptosis there are no cells that occupy
this spatial bin and subsequently no mitoses. In fact, the largest mitosis
count only features 6 instances for 1839 focal apoptoses. The reason for
this is twofold: firstly, very few focal apoptotic cells existed 50 hours prior
to their eventual apoptosis. We only know that some did as there are cell
counts existing at farther radial distances, so there must have been a focal
cell present to count those cells in that individual radial scan. Secondly, the
size of the spatial bins in figure 4.8 is only 5µm, and is subsequently unlikely
to record significant numbers of mitoses at this spatial resolution, Therefore
it is imperative that the number of observations of cellular activity within
each bin is taken into consideration when choosing the maximum scope of
the spatial and temporal distances. As I will now show, this is both a trade
off between the range of scan and the size of the bin.

Given that an average confluent cell nucleus diameter was on the order
of 10µm, a spatial bin size of at least 10 micrometres was chosen. This is
so that each spatial bin represented an approximate measure of 1 cell, and
the adjacent bins represented the local neighbourhood in individual cellular
increments. However, when the results for this spatial configuration were
plotted it became apparent that this was too fine-grained and yielded far
too many statistically insignificant bins, according to the tests laid out in
section 2.3.8. Therefore, the spatial bins were increased in size to 20µm,
which still represented an approximate measure of nearest neighbour local
environment. If the range of the spatial scan was too large, it could result in
heavily biased results as the edges overlap with the boundary of the FOV. In
order to limit these edge effects, the largest distance was set at 100µm. This
was considered to be far enough to capture any interactions in the immediate
local environment as well as any potentially more diffuse signalling occurring
across many cell diameters. Mitoses that happen at further distances away
could also be influencing the focal cell by increasing the local density due
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Figure 4.10: Cumulative number of cell observations and mitoses over time
for the first spatial bin (0-5µm) in figures 4.8, taken over all observed

apoptoses (Napop. = 1839) in all experiments, showing low cell and mitosis
counts prior to the focal apoptotic time, and low mitosis counts persisting

after the focal apoptotic time.

to mechanical effects. Previous studies have shown that cell dynamics are
correlated at 5 cell diameters [144], so doubling this range was deemed more
than sufficient. This maximum radial diameter also meant that if a full ex-
clusion of edge effects was implemented then there would still be a significant
number of focal apoptoses present. The per-bin cell count was also taken into
consideration when defining the temporal extent of each bin, as well as the
maximum time range of the analysis. Given that a cell cycle for a typical,
wild-type MDCK cell is an average of 17.92 hours [119], a maximum tempo-
ral extent of 20 hours was chosen. This would ensure that single generations
of proliferation were adequately captured in the subsequent analysis. The
temporal bin size was discretised into 2 hour bins. This was considered to be
a good compromise on temporal resolution whilst maintaining sufficient cell
counts. The resulting plot for the mitotic count, cell count and probability
of mitoses is shown in figure 4.11.
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(a) (b)

(c)

Figure 4.11: Phenomenological distributions of wild-type activity around
ScribKD apoptoses (Napop. = 1839), cropped at 100µm and ±10 hours.

4.11a) Distribution of wild-type cells around ScribKD apoptoses. 4.11b)
Distribution of wild-type mitoses around ScribKD apoptoses. 4.11c)

Distribution of wild-type mitosis probability around ScribKD apoptoses,
with the number of mitotic observations overlaid in each bin.
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The mitoses count numbers overlaid in figure 4.11c show that by increas-
ing the bin size, a higher number of cellular observations can be made and
subsequent statistical significance of any conclusion is increased, as is shown
in equation 2.14. There also appears to be a broad distribution of higher
probabilities across the entire spatial range, bringing to attention the possi-
ble influence of edge effects, especially in the distances greater than 60µm
away from the apoptoses. This increased probability in the further spatial
bins could easily be a result of counting an uneven distribution of wild-type
divisions around a focal apoptosis that has most of it’s non-mitotic neigh-
bours outside of the FOV. However, as there is no way of knowing if each bin
has been taken from a true sampling of the event distribution in that region
of the space-time, I took the decision to exclude any focal apoptotic cells
that came within 100µm of the FOV at any time point prior to the apopto-
sis. By setting the maximum radius to 100µm a total of 434 focal apoptoses
remained. The radial scan for this spatio-temporal scope is shown in figure
4.12c. This reduction in focal apoptoses would have a knock-on effect on the
cell count in each individual bin, thereby decreasing the statistical signifi-
cance of any probabilty measurements. This highlights a common theme in
this analysis: there is a delicate balance between quantity and quality when
analysing the radial data. For the rest of the chapter I will consider both the
filtered instance of Napop. = 434 focal apoptoses, which may yield statistically
uncertain results, and the unfiltered instance of Napop. = 1839, which may
yield results featuring edge effects. Ultimately, a comparison between the
two approaches after statistical testing is required.

Returning to the radial scan of the filtered set of focal ScribKD apop-
toses, presented in figure 4.12c, there is a broad range of higher probabilities
mainly prior to the focal apoptotic time. Focusing on spatial bin of 0-20µm
from apoptosis, it could be suggested that the local increase in probability
is influencing the apoptosis that happens 5 hours later. This increase in
probability is also present in the unfiltered set of focal apoptoses in figure
4.11c. However before conducting a statistical analysis it is important to note
that this local increase might be a symptom of a general increase in prob-
ability across all spatial scales prior to focal apoptoses times. Given that
this increased mitosis probability is also present between 40-80µm away, it
could be explained as a result of measuring the dynamics of a growing ep-
ithelium. Therefore, a control measure is required in order to extricate any
background growth patterns from the competition-dependent mechanisms.
This control measure was designed as to repeat the radial scan for the same
spatio-temporal scope, but to capture a competition-independent rate of mi-
tosis. This was achieved by recording the division rates of wild-type cells
around other wild-type cells at random time-points. This control analysis
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was repeated for both the filtered set of focal apoptosis and the unfiltered
set. The plot for this control measure is presented in figure 4.13. A total of
Ncontrol = 7, 688 radial scans with random focal wild-type time points were
selected to form the basis of this first control. This highlights an advantage
of using this approach: as the analysis is not centered around a biological
event, any number of pseudo-events can be generated. The more random
events that were sampled for local wild-type distributions, the more the to-
tal event space available in the experiments would be sampled, resulting in a
more accurate set of results that return the underlying wild-type behaviour
independent of any competitive effects.

In this control probability histogram, figure 4.13c, there is a broadly simi-
lar pattern of pre-apoptotic increase in the probability of division, suggesting
that this is a pattern independent of any competitive effect. There is also
a similar decrease in mitotic probability in the immediate local environment
post-apoptosis. This decrease in mitotic probability is also present in the
phenomenological histograms of figure 4.12.
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(a) (b)

(c)

Figure 4.12: Phenomenological distributions of wild-type activity around
ScribKD apoptoses (Napop. = 434), cropped at 100µm and ±10 hours and

filtered in order to exclude any focal scan that leaves the FOV at any time
point. 4.12a) Distribution of wild-type cells around ScribKD apoptoses.

4.12b) Distribution of wild-type mitoses around ScribKD apoptoses. 4.12c)
Distribution of wild-type mitosis probability around ScribKD apoptoses,

with the number of mitotic observations overlaid in each bin.
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(a) (b)

(c)

Figure 4.13: The control distributions of wild-type activity around filtered
random wild-type focal time points (Ncontr. = 1911). 4.13a) Distribution of

wild-type cells around control focal time points. 4.13b) Distribution of
wild-type mitoses around control focal time points. 4.13c) Distribution of
wild-type mitosis probability around control focal time points, portraying
the background rate of wild-type mitotic probability, independent of any

competitive interactions.
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4.2.1 Coefficient of Variation

Coefficient of Variation of Filtered Radial Analysis

The next step in this analysis is to plot the difference between the phe-
nomenological and control analyses and assess the statistical significance of
any notable differences between the two. The first aspect of the statistical
analysis described in section 2.3.8 is an assessment of the coefficient of vari-
ation of rare events of figures 4.12c & 4.13c, calculated for each individual
spatio-temporal bin using the following equation:

CV =

√
(1− p)
pn

(4.2)

Where p is the probability of mitosis and n is the number of observations
of wild-type cells. The coefficient of variation indicates how much variability
there is in relation to the mean of the population. For example, if CV = 0.1
then the probability of mitosis could vary by up to 10% of it’s observed value.
The resulting CV histograms are shown in figures 4.14a & 4.14b.

Considering that the number of focal events in the control analysis is over
four times as much than in the phenomenological, it is not surprising that
4.14b returns a generally much lower distribution of CV values. Referring
back to equation 4.2, the final value for the CV is inversely proportional to n,
the number of observations of cells. With over four times as many focal radial
scans, this control analysis will return individual spatio-temporal bins that
feature many more wild-type cells. This is further confirmed by a comparison
of cell numbers in figures 4.12a & 4.13a. It is also important to note that the
same radial filtering approach was employed for these control radial scans,
where individual scans that leave the field of view were excluded from the
final cumulative plot of radial scans presented.

The next step in the statistical validation of probability histograms was
to use the CV values to assess if the values of probability were significantly
above a margin of error when compared with the control probabilities. Each
spatio-temporal value for probability was deemed statistically significant if
the following equation (4.3) was true:

P (mito. )
(
1− CVP (mito. )

)
> P (mito. control)

(
1 + CVP (mito. control)

)
(4.3)

And the probability value was deemed statistically significant if the fol-
lowing counterpart equation (4.4) was true:

P (mito. control)
(
1− CVP (mito. control)

)
> P (mito. )

(
1 + CVP (mito. )

)
(4.4)
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The results from the coefficient of variation analysis are shown in figure
4.14. Statistically irrelevant areas are shown as not applicable and marked
as n/a.

It is immediately obvious that despite the large number of control ra-
dial scans there is an overwhelming statistical uncertainty across the spatio-
temporal range shown in figure 4.14c. This brings into question the filtering
applied to exclude radial scans that leave the FOV. Therefore, in order to
increase the statistical certainty of the radial scans, the filtering methods
were put aside in favour of the raw results of wild-type cell distribution.

Coefficient of Variation of Unfiltered Radial Analysis

The unfiltered radial scan for the phenomenological distribution of wild-type
cells around ScribKD apoptoses has already been shown in figure 4.11. The
corresponding unfiltered control analysis of wild-type divisions around ran-
dom wild-type control time points is shown in figure 4.15 The coefficient of
variation and subsequent statistical confidence plots for the unfiltered radial
scans are shown in figure 4.16

It is clear that including every individual ScribKD apoptosis radial scan
has a dramatic effect on the statistical significance of the spatio-temporal
bins. The number of statistically irrelevant bins has gone from 32 to 9 in
figure 4.16c. Whilst there are still regions of interest that are marked as not
applicable, such as the closest spatio-temporal bin at -5 hours to apoptosis,
the majority of the histogram is statistically relevant. The next step is to plot
the probability of division above the first control measure whilst considering
both the statistical relevance of each bin and any potential edge effects at
the further spatial reaches of the radial scan.
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(a) (b)

(c)

Figure 4.14: Coefficient of variation histograms, as calculated by equation
4.2 and resulting statistical significance of each spatio-temporal bin for the

filtered set of focal apoptoses (Ncontr. = 1911). 4.14a) Coefficient of
variation of the phenomenological probability of mitosis around ScribKD

apoptoses. 4.14b) Coefficient of variation for the control measure of
probability of wild-type mitosis around random wild-type time points.

4.14c) Statistical significance of each spatio-temporal bin, with the
statistically insignificant bins marked as not applicable n/a.
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(a) (b)

(c)

Figure 4.15: The control distributions of wild-type activity around
unfiltered random wild-type focal time points (Ncontr. = 7688). 4.15a)
Distribution of wild-type cells around control focal time points. 4.15b)

Distribution of wild-type mitoses around control focal time points. 4.15c)
Distribution of wild-type mitosis probability around control focal time
points, portraying the background rate of wild-type mitotic probability,

independent of any competitive interactions.
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(a)
(b)

(c)

Figure 4.16: Coefficient of variation histograms, as calculated by equation
4.2 and resulting statistical significance of each spatio-temporal bin for the

unfiltered set of focal apoptoses (Ncontr. = 7688). 4.16a) Coefficient of
variation of the phenomenological probability of mitosis around ScribKD

apoptoses. 4.16b) Coefficient of variation for the control measure of
probability of wild-type mitosis around random wild-type time points.

4.16c) Statistical significance of each spatio-temporal bin, with the
statistically insignificant bins marked as not applicable n/a.
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Figure 4.17: Distribution of wild-type mitosis probability around ScribKD

apoptoses, above a control background mitosis rate. Statistically
insignificant spatio-temporal bins are labelled as non-applicable (n/a)

4.2.2 Probability of Mitoses

Considering the statistically relevant spatio-temporal bins of figure 4.17, it is
apparent that there is a broad decrease in mitotic probability across the near-
est spatial regions either side of the apoptotic event. There is no apparent
correlation between the wild-type cells proliferative mitotic activity and the
focal ScribKD apoptoses. In fact, this decrease in mitotic probability com-
pared to the background control of generalised wild-type proliferation could
be indicative of an inhibitory effect around the ScribKD apoptoses. Whether
this inhibitory effect is originating from the activity of the ScribKD popu-
lation or the wild-type population is something that cannot be deciphered
from these histograms. The inhibitory effect could be a result of the density
dependency of cell competition. It is known that the probability of division
of both populations decreases as the local cell density increases, as shown
in previous work from this laboratory [2]. Thus, in order to understand
the radial analysis results, a subsequent radial analysis of tissue density was
explored.
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4.3 Density Analysis

Considering the inherent density dependency of wild-type versus ScribKD

competition, the versatility of the radial analysis algorithm was employed
to assess the focal distribution of cell densities around ScribKD apoptotic
elimination. This was implemented as the number of cell observations per
area of each spatial bin. This resulted in the density distribution of wild-type
cells as shown in figure 4.19.

Figure 4.18: Distribution of wild-type density around ScribKD apoptoses.

The immediate local neighbourhood of the focal ScribKD apoptoses in
this first histogram features density measurements much lower than the rest
of the plot. This is because it is a measure of only wild-type cell density
rather than general cell density. To mitigate this, the focal cells that were
present in each pre-apoptotic temporal bin were included in the subsequent
density plot shown in figure 4.19.

There is a clear increase in cell density in the immediate local environment
of ScribKD apoptoses, both leading up to and after the focal apoptoses. This
suggests that the decrease in proliferation of wild-type mitoses, as seen in
figure 4.17 is due to increases in density in these local environments. These
increases in density also contribute to the understanding of why ScribKD cells
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Figure 4.19: Distribution of wild-type density, including focal ScribKD cells
that exist at the pre-apoptotic time points, around ScribKD apoptoses.

experience apoptosis when they do. It is not a result of proliferative wild-
type mitoses directly impacting the fate of ScribKD cells, rather a general
increase in density which the ScribKD cells are hypersensitive to [21].

In order to rule out any further correlations of wild-type mitoses having
a one-to-one impact upon ScribKD apoptoses, a new computational strategy
was implemented.

4.4 K-Function Analysis

The K-function clustering analysis has the benefit of not requiring a parallel
measure of non-competitive cellular activity in order to generate a control
measure [140, 141]. Instead, it requires the creation of N null hypotheses
to create a statistical test for assessing whether any given event is clus-
tered in space-time. The given events in this scenario are wild-type mitoses
and the K-function space-time analysis has been modified slightly, as ex-
plained in section 3.3, to measure event distribution around ScribKD apop-
toses. As explained previously, a single null hypotheses is created by ran-
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domly shuffling the time indices (tij) for all observed mitotic events. For
example, a data set of Nmito = 2, 469 events could potentially generate up to(
n
x

)
=
(

2469
2

)
= 3.046 × 106 null hypotheses (calculated as 2 combinations of

dij, tij from 2,469 observed combinations). This creates a series of pseudo-
events that are randomly distributed in the space-time manifold. As many
null hypotheses can be created as mathematically possible with the given
set of observed events, but N = 1000 is sufficient to create p-values as low
as 0.001. The distribution of observed events and pseudo-events are then
collated in a cumulative manner to build K-functions for each set of events
that measure the incidence of mitoses within a spatio-temporal increment
of the entire range. This observed K-function is then compared to the 1000
null hypothesis K-functions for each bin in the spatio-temporal range. If the
observed K-function is greater than the null hypothesis K-function then that
is indicative that clustering is happening in the phenomenological data set
and not in the null hypothesis data set. If this is the case for N = 1000
comparisons between the observed and null hypotheses sets of events then
the resultant p-value will be as low as 0.001, according to equation 3.15.
P-values as low as 0.05 are usually sufficient to ensure statistical certainty,
but the ease with which extra null hypotheses are created means that it is
no challenge to aim for lower than this. If none of the null hypotheses K-
functions are lower than the observed for a given spatio-temporal bin, then
the resulting P-value will be 1, indicating no evidence of clustering.

This analysis has the benefit of firstly being a cumulative measure over
space-time, so the spatio-temporal bins can be plotted at a much higher
degree of precision than in the radial analysis counterpart. Secondly, as all
that is needed to calculate a K-function is the distance and time between the
observed wild-type mitosis and it’s focal ScribKD apoptosis (dij, tij), then no
further analysis of the raw data is required. Instead, the raw results from the
radial scans can be easily factored into the calculation of these K-functions
and the null hypotheses easily generated by shuffling the time indices of all
the mitoses already recorded.

The K-function clustering analysis for a spatio-temporal range of ±10
hours and 100 µm is shown in figure 4.20. The regions immediately around
the focal apoptoses are noticeably absent from p-values less than 0.1, indi-
cating that there is no strong evidence for mitotic clustering in this area.
Prior to the focal apoptotic time points, the spatial region closest to the fo-
cal apoptoses yields clustering p-values of 1, which agrees with the previous
assessment (figure 4.17) of mitotic activity in this region. This lack of mi-
totic clustering evidence extends beyond the 20µm point to the entire spatial
region prior to the apoptotic time. This seems to confirm that there is no
incidences of wild-type mitoses that could be having an aggregate impact

118



Figure 4.20: Distribution of p-values indicating a lack of wild-type mitotic
clustering around the immediate local environment of ScribKD apoptoses.

on the later fate of the focal ScribKD apoptosis. However, looking in the
temporal regions beyond the apoptotic time, it can be observed that there is
strong evidence, where p < 0.05, for mitotic clustering in two spatial areas.
The first of these spatial areas is within 20µm from the focal apoptosis at
a time period of 7 hours afterwards. This pattern of p-values suggests that
there is a space-filling effect going on, where the apoptotic ScribKD cell is
vacated from the epithelium a number of hours after the apoptosis. It is only
after this space has been vacated that the neighbouring wild-type cells are
able to reconfigure the local environment and occupy this new space. This
reconfiguration will be accompanied by a drop in local density, something
that can be seen in figure 4.19.

Looking at the spatial region further away from the focal apoptoses, there
is a pattern of low p-values existing post-apoptosis time at 50-80µm from the
apoptosis location. This shows that there is a pattern of mitotic clustering
approximately 5 cell diameters away from the apoptosis that begins almost
as soon as the apoptosis occurs. I offer two possible explanations for this be-
haviour, both requiring further analyses to prove beyond doubt. Firstly, this
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mitotic activity at a distance could be the result of a tissue-wide relaxation in
cell density after an apoptotic event. It is known that after apoptosis the dead
ScribKD cell will be apically extruded from the tissue, leaving a space into
which other cells can migrate [1]. This extrusion and subsequent space-filling
migration would result in a reduction in local density that has a ripple-like
effect, leading to a reduction in density across the local environment of the
focal cells nearest neighbours. This reduction in density could yield a higher
rate of mitotic wild-type cells, according to the inverse relationship between
probability of division and local density [2]. Secondly, it could be that there
exists an overlapping effect between neighbouring ScribKD apoptoses where
the wild-type response to one focal apoptosis is picked up in a neighbouring
radial scan for a separate focal apoptosis. If there was another ScribKD cell
going through an apoptosis at a distance of 40µm away from the focal apop-
tosis then perhaps it would return a similar space-filling clustering pattern
of mitotic activity in it’s own immediate local environment and it would be
present at approximately 60µm away. The fact that this would not be a single
instance but many instances of neighbouring apoptotic cells further explains
why this second clustering pattern is more spread out in space-time than the
first. If it is the aggregate measure of any nearest neighbour apoptosis then
the pattern of space-filling clustering will not be as localised in space-time. In
order to further explore this hypothesis, I plotted the distribution of nearest
neighbour ScribKD apoptosis that feature in the same time-lapse experiment
and therefore could have an effect on one another. This distribution is shown
in figure 4.21.

It can be seen that most of the ScribKD apoptoses occurring in the same
tissue happened within approximately 60 µm of one another, with the av-
erage distance between ScribKD apoptoses equalling 47µm. If the influence
from a further ScribKD apoptosis was recognisable from the K-function anal-
ysis, then the clustering observed at 0-20µm away would perhaps be partly
replicated at a further distance of 47-67µm. This is the pattern that is ob-
served in figure 4.20, albeit with a greater spread over time than the closer
clustering pattern. This could be explained as being the result of many dif-
fuse interactions between further apoptotic events, each with a different time
period before the apoptotic cell is ejected from the tissue. This theory of
nearest neighbour apoptotic influence is only presented as a possible expla-
nation for the further wild-type clustering patterns here. Further work is
required to definitely assert that wild-type proliferation patterns are visible
around other apoptoses. However, what is clear is that there is no convincing
evidence that wild-type mitoses are impacting upon the ScribKD elimination
prior to apoptosis.
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Figure 4.21: Distribution of distances between focal ScribKD apoptoses
featured in the same time-lapse experiment, with the mean nearest

neighbour distance highlighted by a magenta dashed line.

4.5 Discussion

Wild-Type Mitoses Do Not Appear to Directly Influence ScribKD

Apoptoses

In this chapter, wild-type cell mitoses and ScribKD apoptotic events were
examined for any spatio-temporal correlation between the two. If wild-type
cells were generally more proliferative after an apoptosis, then this would
serve as evidence that the ScribKD apoptoses are an autonomous decision
made by a population of cells that voluntarily ejected themselves from the
monolayer. If wild-type cells were more proliferative before an extrusion
event then this would serve as evidence that the wild-type cells caused the
apoptosis of ScribKD cells. In the latter case, by increasing the local den-
sity around the ScribKD cells via increased mitoses, wild-type cells could be
thought of as acting as the driving force behind the apoptosis event, rather
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than vice versa. Further to this, if the spatial organisation of wild-type
mitoses were localised in the immediate region around ScribKD apoptoses,
then this would provide more evidence of the strong context dependency of
cellular interactions in a competitive system. It could also help characterise
the spatial extent over which these competitive interactions can reach. These
questions represented a follow up inquiry from the laboratory’s previous work
into the ScribKD competitive system. Was the observed increase in wild-type
mitoses in the local environment of ScribKD cells cause or consequence of the
increased ScribKD apoptotic rate observed in Bove et al. [2]?

This hypothesis necessitated the design of a new radial analysis to inves-
tigate the spatio-temporal patterning of wild-type mitoses around ScribKD

apoptoses. This radial analysis first revealed that despite the large scope
of this analysis, featuring 1839 focal ScribKD apoptoses and approximately
350 million wild-type cells counted, there was still a question of statistical
reliability of the resultant probability measures. It was discovered that the
statistical confidence of the probability of mitoses values depended heavily
on how the data was binned into discrete spatio-temporal blocks, with larger
blocks resulting in higher cell counts and an increased confidence. However,
with larger spatio-temporal bins came a reduced resolution of the distribu-
tion resulting in a compromise between the confidence and clarity. A parallel
analysis was pursued that aimed to eliminate the edge effects associated with
the radial environment partially exiting the FOV by filtering those scans from
the cumulative set, however this approach yielded cell counts too low to en-
sure statistical confidence. This fact, coupled with an indistinct differences
between the filtered and unfiltered cumulative scans, meant that the focus
turned back towards assessing the entire cumulative radial scan data set,
regardless of edge effect considerations.

The final assessments of the probability of mitosis around focal ScribKD

apoptoses proved inconclusive. There exists a generally lower incidence of
wild-type mitoses in the entire spatio-temporal window around the focal
apoptoses, with only a few statistically irrelevant bins. This suggests that
wild-type mitoses are not directly causing ScribKD apoptoses as was first
hypothesized. It also suggests that wild-type mitoses are not a direct conse-
quence of ScribKD apoptoses as was first hypothesized. The low distribution
of wild-type mitosis probability observed across the spatio-temporal scope
in figure 4.17 prompted an investigation in to the potential effect of contact
inhibition. The dependency of wild-type proliferation on tissue density was
explored in previous work from the laboratory [2].

In order to investigate the biophysical dependency of wild-type mitoses
around ScribKD elimination, the density of wild-type cells was plotted in a
similar radial manner around the focal ScribKD apoptoses. This analysis sug-
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gested that wild-type density increases in the immediate local environment
leading up to the time of ScribKD elimination, a perspective that agrees
with previous understanding regarding the density dependency of ScribKD

apoptoses [21]. However, there was no sudden uptick in wild-type density
prior to the elimination event, indicating that this tissue growth was not a
clearly competitive response to ScribKD cell presence. Coupling the original
radial analysis results with the density analysis results, one could arrive at
the interpretation that whilst ScribKD apoptoses are not directly dependent
on wild-type mitotic activity, there is an indirect relation that governs the
eventual elimination of ScribKD cells. This mechanism would depend on the
more diffuse organisation of wild-type mitoses resulting in a general increase
in cellular crowding. This cellular crowding then results in higher levels of lo-
cal density around the ScribKD cell, which leads to it’s subsequent apoptosis
and elimination from the competitive tissue.

An alternate analysis was conducted to assess any more subtle wild-type
mitotic influence using a statistical assessment of event clustering from a
space-time K-function. This result confirmed what was hinted at in the
original radial analysis: that there is no evidence for wild-type mitotic or-
ganisation in the immediate local environment of a ScribKD cell. It did
suggest that there is a space-filling behaviour occurring many hours after
the ScribKD apoptosis, suggesting the apical extrusion of the dead cell re-
sults in wild-type proliferation. This space-filling response to the ScribKD

elimination that could potentially expedite more apoptotic elimination as a
result of the wild-type cells maintaining a higher tissue density. This result
hinted that the increased wild-type mitotic rate was consequence of ScribKD

apoptosis, rather than the other way round.
This observed diffuse mechanism of ScribKD elimination brings in to ques-

tion the semantics of calling this particular phenomenon competition at all.
From my studies, there seems to be only a tangential interaction between
the two populations occurring, with no evidence for a direct one-to-one fight
as one would normally expect in a competition. Given that there is evi-
dence for a focused, local increase in density, there seems to be a recognition
of cell type going on. However, the nature of the mechanical response and
elimination mechanism seems to bring in to question whether the wild-type
population truly target the ScribKD population. As a result, this mechanism
seems to be more of a competition for the shared resource of space, rather
than a direct exchange of competitive insults.
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4.5.1 Further Work

Future experiments could benefit from increasing the imaging FOV. This
would have a significant impact upon the statistical certainty of any later
analysis. More competitive events would be recorded and fewer radial anal-
ysis would have to be excluded due to edge effects. This would perhaps have
the effect of extracting any significant changes in wild-type mitotic proba-
bility that are currently too subtle to be observed with this corpus of data.
Another experiment that could be conducted in the future would be to in-
vestigate the dependency of seeding ratios of wild-type versus ScribKD on
the general competitive outcome. If there is no difference between the wild-
type proliferation around very few ScribKD cells, or even a lone ScribKD cell,
when compared to a larger proportion of ScribKD cells, then this would sug-
gest there is no recognition of cell type and subsequent competitive response.

Further to this, an experiment where cells are grown in segregated areas
before being introduced to one another could be used to try and trace the
onset of a competitive response, if one exists in this system at all. This
could take the form a two populations being introduced by the removal of a
temporary divider in the imaging well. An increased incidence of wild-type
mitoses at the interface of a ScribKD population of cells would help discern
an exact competitive response. This would need to be compared to a parallel
experiment where wild-type cells are introduced to another population of
wild-type cells, as a control analysis. If the results from these experiments
suggested a competitive response, then some further perturbing experiments
ought to be conducted to confirm or deny this. These perturbing experiments
would employ drugs that block wild-type proliferation so that the dependency
of the ScribKD apoptosis could be investigated.

Another promising avenue for future research lies within the use of early
fluorescence markers for cell fate. The fate of a programmed cell death is
decided upon well in advance of the phenotypic expression of H2B frag-
mentation used in my experiments. Perhaps there is exists a local cellular
neighbourhood at this time point of commitment to apoptosis that exhibits
a more clustered pattern of wild-type mitoses. Employing fate markers such
as a KTR-JNK marker that indicates the exact time points of these com-
mitments would form the focus of these future experiments. These time
points could then be integrated into a new radial analysis as well as a new
K-function analysis in order to really investigate the mitotic dependency of
apoptotic commitment. This analysis could also be inverted to investigate
which local cellular neighbourhoods wild-type cells commit to a division in,
by using a PCNA marker, perhaps yielding results that reveal if there is a
cell recognition system in this competition.
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This investigation of early commitment to cell fate was originally planned
for the QPM. A future attempt at completing these experiments would have
to integrate a more suitable incubator system and the latest segmentation
technologies, perhaps coupled with new fluorescence markers to aid in the
labelling of whole cytoplasmic extent of cells. Recent approaches in the field
of biomedical image segmentation [131, 145] could result in a suitable image
analysis pipeline for the extraction of single-cell dry mass trajectories. Any
significant inflection points in the dynamics of single-cell growth could then
be used to predict proliferation or apoptosis well in advance of the H2B mark-
ers employed in this project. These growth patterns could also yield valuable
insight into the proliferation dynamics of a wild-type population that occur
on a more subtle level than key mitoses. A single-cell dry mass analysis
coupled with a quantification of cell movement around ScribKD apoptotic
events could contribute a deeply biophysical insight into exactly how and
when the fate of ScribKD apoptoses depends on tissue density. This could
be achieved by measuring the mean squared displacement of cells in between
time points as part of a particle image velocimetry analysis, which would re-
veal how the wild-type populations actively increase cellular crowding around
ScribKD cells, and whether there is an organised convergence around ScribKD

cells. This would contribute to a deeper understanding of the competitive
recognition and to what degree it exists in this system, if at all.

Another future experiment could involve a 3-dimensional SPIM analy-
sis of ScribKD elimination events. This could reveal the exact nature of
the potential space-filling clustering of wild-type mitotic activity seen hours
after the ScribKD apoptosis, as hinted at in the K-function results. Record-
ing the fate of a dead, post-apoptotic ScribKD cell in 3-dimensions would
show exactly when it is ejected from the monolayer and a space for wild-
type proliferation becomes available. Making this time point the focus of
a parallel K-function analysis would reveal to what extent the later clus-
ter of wild-type divisions is a result of a new region of free-space becoming
available. To answer the questions posed by the K-function evidence for wild-
type mitotic clustering occurring at further spatial distances, a new set of
experiments could be conducted. These experiments would feature seeding
of single ScribKD cells in wild-type environments. This would hopefully re-
sult in lone instances of ScribKD apoptoses that the distribution of wild-type
divisions could be plotted around without the potential influence of other
ScribKD apoptoses. However, this experiment could result in a rapid com-
petitive elimination of ScribKD cells. A better approach would be to extract
instances of ScribKD apoptoses in evenly mixed competitive tissues, then fil-
ter the radial analysis results to include ScribKD apoptoses that happened
independently within a set spatio-temporal window.
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Chapter 5

Quantitative Analysis of
Biochemical Competition

The competitive behaviour of RasV 12 cells is heavily context dependent.
When viewing the raw microscopy images, it is apparent that the RasV 12

mutants actively migrate around and seemingly avoid their wild-type coun-
terparts. As can be seen in figure 5.1a, the RasV 12 cell highlighted with the
white arrow is extending a protrusion between neighbouring wild-type cells,
perhaps searching for a region with fewer wild-type cells present. On the
other side of the cell, it appears as if this focal RasV 12 cell is wrapping its
surface around the wild-type cell next to it, perhaps in an attempt to recog-
nise cell type via biochemical interaction. This space-seeking, exploratory
behaviour is a common occurrence in all RasV 12 versus wild-type competition
experiments. This behaviour is in stark contrast to the morphology of unin-
duced RasV 12 cells, as shown in figure 5.2. When the competitive monolayer
reaches confluency, induced RasV 12 cells are often surrounded by wild-types
and subsequently experience an apical extrusion. What can be observed in
figure 5.1c, is that when wild-type mitoses happen in the immediate vicinity
of a RasV 12 cell, there is a visible recoil of the RasV 12 cytoplasmic region.
After witnessing many of these extrusion events, it seems as if the wild-type
cells are shepherding the RasV 12 into an extrusion in a process mediated by
wild-type mitoses. Do wild-type mitoses influence RasV 12 extrusions and if
so, can this influence be observed from microscopy image data?

In this chapter I will test this by measuring the spatio-temporal local-
isation of wild-type mitoses around RasV 12 extrusion events. Firstly I will
outline the process of identifying the focal extrusion events, then I will ex-
plain how the same two approaches previously employed for the wild-type
versus ScribKD were applied to this new competitive cellular system.
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(a) t = 0 hours

(b) t = 6.66 hours (c) t = 10.6 hours

(d) t = 15.46 hours (e) t = 33.6 hours

Figure 5.1: Incubator widefield time-lapse microscopy images showing a
typical extrusion event of a RasV 12 cell, highlighted with a white arrow.

RasV 12 cells are shown with magenta nuclei (H2B-RFP, low signal in these
images) and green cytoplasmic RasV 12 (RasV 12 -GFP). Wild-type cells are

shown with green nuclei (H2B-GFP).
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Figure 5.2: Incubator widefield time-lapse microscopy image showing a
collection of uninduced RasV 12 cells, with a cellular morphology comparable

to the wild-type neighbours and lower expression of cytoplasmic RasV 12

-GFP. RasV 12 cells are shown with magenta nuclei (H2B-RFP) and green
cytoplasmic RasV 12 (RasV 12 -GFP). Wild-type cells are shown with green

nuclei (H2B-GFP).

5.1 Acquiring the data

In contrast to the wild-type versus ScribKD competition, there was no ex-
perimental image data available for analysis for the wild-type versus RasV 12

competition. Therefore, a new set of competition experiments had to be
carried out in order to acquire a corpus of image data that contained a suffi-
cient number of RasV 12 extrusion events to base another radial analysis on.
The previous ScribKD radial analysis was conducted on 135 time-lapse ac-
quisitions, yielding 1839 ScribKD apoptotic focal events. I aimed to acquire
imagery containing 100 extrusion events before assessing how many more
experiments ought to be conducted to meet the requirements for a statis-
tically confident radial analysis. RasV 12 cells were initially seeded in a 1:1
ratio with wild-type cells and imaged over several days. It became appar-
ent that this seeding ratio resulted in competition that was evolving far too
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slow, yielding only 1 clear extrusion event per experiment. In order to in-
crease this number, RasV 12 cells were seeded in lower numbers in order to
expedite their competitive extrusion from the monolayer. Seeding ratios of
99:1 and 97:3 wild-type:RasV 12 cells were found to be the most suitable to
guarantee many instances of clear RasV 12 extrusion per time-lapse. After
assessing some preliminary results from a radial analysis, it was decided that
90 extrusion events was sufficient to confirm a statistical reliability in the
subsequent radial analysis. Thus the experimental work was stopped ahead
of schedule and the newly acquired RasV 12 data set was taken through the
image analysis pipeline.

5.2 Defining Competitive Events

RasV 12 cells do not undergo apoptosis as an immediate response to competi-
tive threat, as in the wild-type versus ScribKD competitive system. Instead,
apical extrusion of the mutant cells is the most common outcome of this
competition, resulting in the eventual elimination of the RasV 12 population
from the tissue. Cellular extrusion from the monolayer is considered a fun-
damental process that epithelia use to promote cell death [146]. Once a cell
is extruded, it rarely reintegrates itself back in the monolayer, and most fre-
quently will experience an apoptosis shortly afterwards. Therefore, in this
chapter, the deleterious outcome for the mutant population of cells in this
competitive system is considered to be the apical extrusion of RasV 12 cells.
This extrusion phenomena is rarely observed outside of a region of concen-
trated wild-type presence and is generally more common if the RasV 12 cell is
alone or not surrounded by a large colony of same cell type. For this reason,
the majority of data in this chapter has been taken from experiments with a
99:1 seeing ratio of wild-type to RasV 12 mutant cells.

Basal protrusions are another common phenotype observed in the inter-
actions between wild-type cells and RasV 12 mutant cells [147]. As well as
exhibiting protrusions to migrate around wild-type cells, RasV 12 cells engage
in disruptive behaviour by extending their reach under the neighbouring
wild-type cells, as can be seen in figure 5.5a. This behaviour is also context
dependent; it happens at the interface of RasV 12 and wild-type cells only and
in a physiological environment would result in the eventual migration of the
RasV 12 cells downwards and out of the monolayer. However, unlike for the
apical extrusions, this basal migration of cells was prevented by the fact that
these experiments were conducted on glass-bottomed imaging dishes. As a
result of this experimental set up, basal protrusions were not considered to
be a clearly defined and discernible outcome of competition like apoptosis
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or apical extrusion, and were excluded from the analysis of wild-type versus
RasV 12 competition.

5.2.1 Identifying Extrusions

To investigate the question of event causality between wild-type mitoses and
RasV 12 extrusions, I firstly needed to reliably define when each extrusion
occurred. In contrast to an apoptosis, an extrusion event could occur over
many hours and may not have a clearly defined or sudden morphology change
as with the fluorescent H2B fragmentation of the ScribKD cells. Therefore I
relied on manual identification to define the spatio-temporal coordinates of
extrusion events.

Figure 5.1 illustrates a typical RasV 12 cell over several key time-points
that confirm the cell has undergone a permanent extrusion from the epithe-
lium. Figure 5.1a shows the initial state of the cell, seemingly trying to
escape an area of moderate wild-type cell density by extending a protrusion
between a group of wild-type cells. Figure 5.1b shows the first indication
that this cell is undergoing an extrusion: this is evident as the intensity of
the RasV 12 -GFP fluorescent signal has increased significantly due to an in-
crease in the basal-apical height of the cell. This shape change means that
the distribution of cytoplasmic RasV 12 -GFP is now more concentrated in
the z-direction, rather than being evenly spread along the xy-direction as
it was previously. Figure 5.1c shows the RasV 12 cell beginning to round up
as it detaches from the basal surface, a process I considered the second key
morphology change used to define an extrusion. The definitive point of ex-
trusion was subsequently defined as when the cell has completely rounded
up and drifted out of the focal plane, as in figure 5.1d. This transition was
confirmed in every instance of extrusion identification by following the cell
for the rest of the time-lapse to confirm that it either underwent a further
apoptosis or remained extruded and out of the focal plane, as in figure 5.1e.

In many cases a suspected extrusion would occur at lower wild-type cell
densities, resulting in the extruded cell returning to the focal plane after trav-
elling over the top of a smaller collection of wild-type cells and reintegrating
itself back into the monolayer. These extrusions were not included in the final
analysis as these RasV 12 cells were considered to not be out-competed if they
were able to resume their place in the epithelium. As a result of this phe-
nomenon, a qualitative assessment of the local density of the neighbouring
wild-type cells was taken into consideration for each RasV 12 extrusion classi-
fication. This approach is illustrated by the pattern of extrusions shown in
figure 5.3, where there is a notable absence of extrusion events on the left
side of a collection of RasV 12 cells that are not surrounded by wild-type cells
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for the majority of the time-lapse.

(a) t = 0 hours (b) t = 46.46 hours

(c) t = 73.8 hours

Figure 5.3: Incubator widefield time-lapse microscopy images of RasV 12 cell
apical extrusion. The white arrows show the RasV 12 cells that have
undergone an extrusion. RasV 12 cells are shown with magenta nuclei

(H2B-RFP) and green cytoplasmic RasV 12 (RasV 12 -GFP). Wild-type cells
are shown with green nuclei (H2B-GFP).
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(a) t = 0 hours (b) t = 1.8 hours

Figure 5.4: Incubator widefield time-lapse microscopy images of RasV 12 cell,
shown with a white arrow, that is undergoing a mitosis that could

potentially be misclassified as an extrusion. RasV 12 cells are shown with
magenta nuclei (H2B-RFP, low signal in these images) and green

cytoplasmic RasV 12 (RasV 12 -GFP). Wild-type cells are shown with green
nuclei (H2B-GFP).

Another scenario in which RasV 12 cells could potentially be misclassified
as extruded was during a RasV 12 mitosis. Cellular rounding is a typical trait
of division, as shown in figure 5.4a. However, these divisions were far less
common at the higher densities seemingly required for a full extrusion, so the
role of surrounding local neighbourhood density was again taken into con-
sideration before classifying an extrusion. Further to this, suspected RasV 12

extrusions were checked for any possible later divisions after the extrusion
event, as shown in figure 5.4b.

5.2.2 Verifying Extrusion Events

In order to confirm the existence of RasV 12 cellular extrusion, several compe-
tition experiments were fixed with formaldehyde after capturing a time-lapse
acquisition and imaged on a confocal microscope. This imaging approach
presented two key benefits: firstly, it yields higher resolution images (includ-
ing z-stacks) that help discern the tissue-scale structure of cells; and secondly
it provides the option for a lateral z-profile of the tissue to be imaged. A
total of 5 positions over 2 experiments were checked for apical extrusions and
basal protrusions to see if the expected competitive phenotype was present.
The best examples of these images are shown in figures 5.5 & 5.6.
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(a) z = 0 µm (b) z = 8 µm

(c) z = 12 µm (d) z = 16 µm

Figure 5.5: Confocal microscopy images showing RasV 12 mutant cell
extrusion from a wild-type MDCK monolayer. RasV 12 cells are shown with
magenta nuclei (H2B-RFP) and green cytoplasmic RasV 12 (RasV 12 -GFP).

Wild-type cells are shown with green nuclei (H2B-GFP).

Figure 5.5 shows, from top left to bottom right, a journey upwards
through the competitive monolayer at different z-heights. The basal pro-
trusions of RasV 12 cells can be seen in figure 5.5a. As stated previously,
the phenotype shown here is the limit to this competitive outcome due to
the glass-bottomed imaging dishes. If there was no glass surface preventing
further migration then these cells would attempt to basally extrude. It was
good practice to verify that this phenomena was occurring in these competi-
tion experiments to show that the cells were behaving as expected, however
the existence of basal protrusions were not utilised as a defined end-point of
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Figure 5.6: Confocal microscopy x, z image of collection of RasV 12 and
wild-type MDCK cells in competition. The central RasV 12 cell undergoing

an extrusion is shown by a white arrow. RasV 12 cells are shown with
magenta nuclei (H2B-RFP) and green cytoplasmic RasV 12 (RasV 12 -GFP).

Wild-type cells are shown with green nuclei (H2B-GFP).

competition in the latter radial analysis. Figure 5.5b shows the distribution
of nuclei at the midpoint of the z-axis as well as the lateral distribution of
RasV 12 -GFP. Note that areas between RasV 12 cells that previously depicted
high fluorescent intensities of basally-located RasV 12 -GFP are now occupied
by wild-type cells, which serves as further evidence for the basal protrusions.
Finally, figures 5.5c & 5.5d show the top of the monolayer and the apical
extrusions present in the RasV 12 population. Note the enlarged shape of the
newly extruded RasV 12 cells taking advantage of the new free space they find
themselves in, as well as the absence of the majority of wild-type nuclei.

5.2.3 Extrusion Identification Procedure

Once the morphology of an extruding RasV 12 cell had been confirmed over
multiple imaging modalities, it was time to identify as many extrusions as
possible in order to build the foundation for another radial analysis. Origi-
nally, I wanted to build a new “extruded” classification of H2B morphology
that would automate the task of finding these focal events. However, the
only discernible H2B morphology change of an extruded RasV 12 cell is a
slightly out of focus nucleus. Given that the time-lapse experiments were
liable to drift slightly out of focus over the course of a long acquisition, I
deemed this definition to be not rigorous enough to exclude non-extruded
nuclei. Coupled with this, the H2B-RFP fluorescence intensity SNR is much
lower than the GFP counterparts, so obtaining a reliable cut-off point of in-
focus versus out-of-focus was deemed unrealistic. Besides, in establishing a
potential automated method for extrusion identification, one would have to
manually label as many extrusion events as practically possible, a number of
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the order needed to run a radial analysis regardless. Therefore, I proceeded
to manually identify extrusion events by eye, both with a view to use them
in the radial analysis and as a potential future source of training data for
automating this classification.

In order to streamline the manual identification process I wrote a custom
script in Napari that, at the click of a user-defined key, recorded the x, y, t
location of an extruded RasV 12 cell, as well as the track identification. This
data could then easily be ported into my preexisting radial analysis to scan
the spatio-temporal region around the extrusion event for wild-type cell ac-
tivity. Following the extrusion identification guidelines, a total of N = 90
extrusions were initially manually labelled from the subset of the RasV 12

versus wild-type time-lapse experiments with an initial seeding ratio of 99:1
wild-type:RasV 12 . This subset was chosen as it presented far more lone ex-
trusions that were clearly defined than in experiments with higher seeding
densities of RasV 12 cells. In many cases of the 9:1 and 1:1 wild-type to RasV 12

seeding densities, large collections of RasV 12 cells would be extruded over a
prolonged time period, resulting in a more ambiguous extrusion phenotype
and a less well-defined extrusion time point.

(a) (b)

Figure 5.7: 5.7a) Spatial distributions of wild-type cell counts and 5.7b)
mitosis counts from the radial analysis scan results for Nextru. = 90 RasV 12

extrusions.

5.2.4 Distribution of Mitoses

Before analysing the focal distribution of wild-type cells, the results were
checked for anomalous traits. The spatial distributions of both wild-type cells
and wild-type divisions were initially plotted to ensure no boundary effects
were present. As before, the region of 20 pixels at each x, y boundary was

135



cropped to remove false division identifications. The resulting distributions
from the results of the radial scan are shown in figure 5.7, with an example
image of the observed distribution of wild-type cells in figure 5.8. No unusual
artefacts are present in the cropped spatial distribution of wild-type cells and
mitoses and as a consequence the plotting of the radial results was pursued.

Figure 5.8: Incubator widefield time-lapse microscopy image of the entire
FOV of a typical acquisition. A RasV 12 cell undergoing extrusion is shown

with a white arrow. RasV 12 cells are shown with magenta nuclei
(H2B-RFP) and green cytoplasmic RasV 12 (RasV 12 -GFP). Wild-type cells

are shown with green nuclei (H2B-GFP).
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5.3 Radial Analysis

Now that the existence of RasV 12 extrusions had been confirmed, both qual-
itatively and quantitatively, the radial analysis of wild-type divisions around
these events could be conducted. The only input needed for the radial anal-
ysis is a list of cell tracking files for each experiment, along with a Python
dictionary format of {Focal cell ID: extrusion frame}. Along with this phe-
nomenological measure of wild-type cell behaviour around focal RasV 12 ex-
trusion, a control measure of background wild-type activity was needed. As
was the case for the ScribKD experiments, the control analysis was a mea-
sure of the radial distribution of wild-type cells and mitoses around random
wild-type time points in RasV 12 experiments, in order to ascertain the base
rate of division in experiments used. This control approach has the benefit of
easily being able to set any Ncontr. you require, thereby increasing the statis-
tical certainty of any latter assessment. It is also, importantly, distinct from
the previous control analysis as it measures background wild-type growth in
RasV 12 competition experiments, not ScribKD experiments.

Next, the spatio-temporal distributions of wild-type cell count and mitosis
count focused around central extrusions were plotted, as shown in figures
5.9a & 5.9b. These 2D histograms reflect the underlying growth pattern of
the epithelium, with an increase in cell count across time as well as with
increasing size of the spatial bins. Next, the ratio of the two 2D histograms
in figures 5.9a & 5.9b were then plotted resulting in the probability of division
around a RasV 12 extrusion event, as shown in figure 5.9c. This plot initially
suggests a post-extrusion peak in mitotic probability in the immediate local
neighbourhood of RasV 12 extrusions. However before any conclusions can be
drawn from this graph, the control measure must be calculated to extricate
the background rate of division from the observed behaviour around focal
extrusions. The focal distributions of both wild-type cells and mitoses around
these control focal points are shown in figures 5.10a & 5.10b.
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(a) (b)

(c)

Figure 5.9: The phenomenological distributions of wild-type activity
around RasV 12 extrusion events. 5.9a) Distribution of wild-type cells

around RasV 12 extrusions. 5.9b) Distribution of wild-type mitoses around
RasV 12 extrusions. 5.9c) Distribution of wild-type mitosis probability

around RasV 12 extrusions, indicating a competitive interaction between the
two events in the immediate local environment.
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(a) (b)

(c)

Figure 5.10: The control distributions of wild-type activity around random
wild-type focal time points. 5.10a) Distribution of wild-type cells around
control focal time points. 5.10b) Distribution of wild-type mitoses around

control focal time points. 5.10c) Distribution of wild-type mitosis
probability around control focal time points, portraying the background

rate of wild-type mitotic probability, independent of any competitive
interactions.
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The resulting control probability of division across the wild-type popu-
lation in the competitive experiments is shown in figure 5.10c, showing a
broadly even probability across most of the spatio-temporal range. The ex-
ception being the closest spatial bin to the focal points, which indicates that
there is less likely to be a wild-type mitosis in the 10 µm distance from the
centroid of the focal cell for the entirety of the duration prior to the focal
time, and for most of the time after the focal time. This is the result of that
spatial bin being occupied by the random focal cell of choice during that
time period. The probability of mitosis only increases after the focal scan
has been fixed in the location of the focal time, such is the implementation
of the radial analysis. After the focal time point, it is probable that the focal
cell stays approximately in the fixed centroid location as the monolayer is
likely at full confluency, only moving from this fixed location a number of
hours after the focal time as the epithelium slowly reorganises.

5.3.1 Coefficient of Variation

The next step was to calculate the coefficient of variation of rare events
for both figure 5.9c & 5.10c. Figures 5.11a & 5.11b show, for each spatio-
temporal increment, the extent of variability of the probability measure. This
is calculated using the same method as in chapter 4.2.1, by taking the proba-
bility and number of cells observed in each spatio-temporal bin and factoring
them into equation 2.14.

The CV is highest for the spatio-temporal bins with the lower cell counts,
mostly located closest to the focal event in space and earlier on in time. One
method of lowering the CV for both the phenomenological and control anal-
yses would be to increase the number of focal events. This was quite simple
to implement for the simulated focal events of the control, resulting in the
generally lower values in figure 5.11b. For the phenomenological analysis it
would require the identification of more focal extrusions, something I would
implement if the latter analysis necessitated it. In order to gauge the impact
of these CV values, a comparison between the probability histograms of fig-
ures 5.9c & 5.10c and the CV values in plots in figure 5.11 was conducted.
As explained in equation 4.3, the probability value of a particular bin was
deemed statistically relevant if the product of the probability and the differ-
ence between 1 and the CV was less than a similar measure for the control
probability (with the CV value added to 1 in this instance). The probability
value of a particular bin was deemed statistically insignificant if the inverse
relation was true, as shown in equation 4.4. The resulting plot of these cal-
culations is shown in figure 5.11c, with the insignificant bins highlighted as
not applicable (n/a).
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(a) (b)

(c)

Figure 5.11: 5.11a) Coefficient of variation for distribution of wild-type
mitosis probability around RasV 12 extrusions. 5.11b) Coefficient of

variation for distribution of wild-type mitosis probability around random
focal wild-type time points. 5.11c) Statistical relevance of distribution of
wild-type mitosis probability around RasV 12 extrusions above a control

background mitosis rate.
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5.3.2 Probability of Mitoses

As was the case in the ScribKD analysis, taken alone, the sets of histograms
in figures 5.9 & 5.10 are not as informative as the difference between them.
This difference, considered to be the probability of mitosis around a focal
event above the background probability of mitosis, is shown in figure 5.12,
with the statistically insignificant spatio-temporal bins highlighted as not
applicable (n/a).

Figure 5.12: Distribution of wild-type mitosis probability around RasV 12

extrusions, above a control background mitosis rate. Statistically
insignificant spatio-temporal bins are labelled as non-applicable (n/a).

It is immediately apparent from the distribution of mitotic probabilities in
figure 5.12 that there is an statistically significant increase above background
in the local neighbourhood of and after the focal time point of RasV 12 ex-
trusions (in the [0, 2] hours, [0, 10]µm spatio-temporal bin). This points to a
reactionary behaviour from the wild-type cells wherein they take advantage
of the newly freed up space vacated by the recently extruded mutant cell.
The rest of the statistically relevant areas exhibit a smooth distribution of
slightly higher probabilities, further hinting that the mitotic behaviour of
the wild-type cells is concentrated around sites of extrusion. This also sug-
gests that in the control analysis, the distribution of wild-type mitoses is less

142



common across the whole tissue, rather than a hyper-localised environment
in space-time. This could suggest that wild-type cells behave generally in a
more proliferative manner in both the hyper-local and more general environ-
ment of a RasV 12 cell, pointing towards a broad competitive behaviour in the
tissue.

Two further points of interest in figure 5.12 come from regions of slightly
higher probability in the immediate local neighbourhood prior to the ex-
trusion event, at distance between [0, 20]µm away. Understanding that the
probability of each bin depends on the number of events and observations
contained within, which in turn depends upon how the data is discretised
into specific bins, I didn’t want to immediately discount the importance of
these two bins due to them having a lower value than the maximum peak
in probability. In order to investigate further, the number of mitoses that
occurred for every spatio-temporal bin were overlaid on the plot of wild-type
mitotic probability, as shown in figure 5.13.

Figure 5.13: Distribution of wild-type mitosis probability around RasV 12

extrusions, above a control background mitosis rate. Each spatio-temporal
bin shows the number of observed mitoses from the phenomenological radial
analysis that contributed to the calculation of observed mitotic probability.
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Comparing figures 5.12 & 5.13 reveals why the three bins with statistical
insignificance are as such; they each feature only 1 mitosis observation for
all 90 extrusion events. Looking at the second closest spatial bin immedi-
ately preceding the extrusion event, at [10, 20]µm and [−2, 0] hours away
from the extrusion, it is shown that there are 17 mitoses present. Comparing
this spatial bin with the same distance range across time reveals that even
though the probability is seemingly not as high as the other bins, there is
still a significant number of divisions present. This reveals a weakness in
just plotting the radial analysis as a 2D histogram. Given that the choice
of bin size boundaries is somewhat arbitrary, based on cell size but not cell
organisation for a given competitive scenario, it is possible that vital con-
clusions about the competitive behaviour are being lost in this method of
data visualisation. Where I chose the start and end time of any particular
spatial bin could result in drastically different representations of the strength
of mitotic probability. It is for precisely this point that I chose to expand this
research to include a K-function clustering analysis to further reveal any hid-
den trends of wild-type mitotic patterning, independently of my assessment
of how the spatio-temporal range should be discretised.

5.4 K-Function Analysis

As outlined in the previous chapter, K-function clustering and dispersion
analyses possess a number of advantages over plotting the data in histogram
format. The first of these advantages is the ability to generate as many null
hypotheses as one feasibly requires. As explained in section 3.3, a single
null hypothesis necessitates a permutation of all of the time coordinates of
each event with the spatial coordinates. For a data set of Nmito = 2, 469
events, one could potentially generate up to

(
n
x

)
=
(

2469
2

)
= 3.046 × 106

null hypotheses (calculated as 2 combinations of dij, tij from 2,469 observed
combinations). Therefore, it is quite simple to achieve an analysis where
confidence is very high. Secondly, because the analysis relies on a cumulative
measure of event density, the granulation of the data does not affect the final
results as much. Having large sized spatio-temporal bins with higher cell
counts is no longer a necessity for statistical significance and subsequently the
resolution of the final plots can be increased to an order of magnitude above
the 2D histograms. This is illustrated in figure 5.14, where the clustering of
wild-type mitoses around RasV 12 extrusions has been plotted with a spatial
and temporal resolution of 100 bins, resulting in each bin representing a
region of 1µm by 12 minutes. If this were attempted for the typical 2D
histogram in the previous section then the majority of bins would not register
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a single cell presence and have very high CV values.
Assessing figure 5.14, it is clear that the post-extrusion, space-filling mi-

totic behaviour shown in figure 5.12 is present in the clustering analysis.
There is a broad, 18µm spread of p-values less than 0.01 at a time point of
36 minutes after the extrusion. This agrees with the peak in probability at
the 0-2 hours, 0-10µ m spatio-temporal bin in figure 5.12. Due to the diffi-
culty associated with obtaining a sharply defined extrusion time point, this
36 minute delay should be taken as a general indicator of post-extrusion mi-
totic clustering and not be interpreted as there being a consistent 36 minute
delay period. 36 minutes corresponds to 8 frames of time-lapse data and
in many cases in the raw data there exists a period of ±4 frames during
which any time point could be defined as the extrusion time. As the time
increases in the immediate aftermath of extrusion, it can be seen that there
is a narrowing of the broad spatial region over which the p-value is on the

Figure 5.14: K-function clustering of wild-type mitoses around RasV 12

extrusions. A clear pattern of clustering is shown in the immediate
nearest-neighbour environment prior to extrusion, and then in the location
of the recently extruded cell, indicating both a pre-emptive influence and a

space-filling behaviour from the wild-type cells.
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order of 10−2. At approximately 1 hour after the extrusion it appears as
if the extent of mitotic clustering comes closer to 12µm, down from 18µm.
This could be interpreted as the wild-type cells space-filling behaviour taper-
ing off to become hyper-localised as the space is filled with newer wild-type
cells. This tapering effect continues in a gradual manner until approximately
4 hours post extrusion and is illustrative of a spatial reorganisation of the
local neighbourhood to the scale of approximately 3 nearest neighbours. This
shows that the whole local region exhibits increased mitoses in the immedi-
ate aftermath, with mitoses only continuing in the nearest-neighbour locale a
number of hours after the focal extrusion. As time continues post-extrusion,
the spread of mitotic clustering with p-values on the order of 10−2 continues
to taper off until about 8 hours, where there is only a hint of evidence for
space-filling behaviour. This pattern consents with a basic understanding of
how space-filling would work; the more space-filling there is over time, the
less opportunity there will be for more space-filling as time goes on. It ap-
pears that after almost ten hours the space voided by the extruded RasV 12

cell has been fully occupied with new wild-type cells, either as a result of
new division (as shown here), or by the convergence of other wild-type cells
preventing further clustering of divisions.

Finally, for the post-extrusion evidence of clustering, this analysis reveals
that this space-filling behaviour may occur over two waves. There is a notice-
able tail-off of the broad spatial region over which the initial post-extrusion
clustering occurs. At around 4 hours there appears to be a second broader
spatial spread of p-values on the order of 10−2. This could be a result of two
waves of division happening from groups of cells occupying the same local
neighbourhood. It is unlikely that the exact same cells undergo a mitosis
twice in the space of 5 hours, however, it could be possible that an initial
wave of divisions occur, increasing the local density and having a transient
inhibiting effect on any further divisions until a local relaxation of the tissue
happens approximately 4 hours later. In order to verify such propositions, a
deeper inspection of the patterning of wild-type divisions would be required,
with greater numbers of focal extrusion events contributing to a more clearly
defined aggregate behaviour. More importantly though, a sharper-definition
of the time point of extrusion would be needed to align any post-extrusion
reactionary mitoses to the correct starting time point.

Inspecting the region of figure 5.14 that is before the extrusion time point,
one can see a broad, 20µm spread of p-values on the order of 10−2 at be-
tween [10, 30]µm from the focal RasV 12 cell. Given that the cell is yet to
be extruded, the absence of mitotic clustering in the region below 10µm is
seemingly due to this space being occupied by the focal cell in question. The
slight hint of mitotic clustering, on the order of approximately p = 0.05 that
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begins to happen approximately 4 hours prior to extrusion, within this clos-
est 10µm spatial range, could be evidence that the focal cell is beginning
to round up and reduce in size before being extruded. In the immediate
local neighbourhood not occupied by the focal cell, there is strong evidence
(p < 0.01) of clustering at 2.5 hours prior to extrusion. This pattern of
statistically relevant clustering serves as evidence that there may well be an
inductive effect of wild-type mitoses pre-empting and causing the extrusion
of RasV 12 . This conclusion is emboldened by the fact that this clustering
is very narrowly defined in time and hyper-local to the nearest neighbour
region of cells.

Furthermore, as the clustering evidence does not seem to continue right
up until the time point of extrusion, this pattern could indicate that it takes
approximately 2 hours before the cell is fully extruded and the rest of the
wild-type cells take advantage of the space left void. Given that wild-type
mitotic time points are clearly defined as occurring at one definitive time
point, it is maybe more instructive to take the patterning of mitotic cluster-
ing as the time region over which extrusions occur, rather than the manually
observed time point which is naturally subject to human error as well as
being generally less well-defined. According to this interpretation, it could
be hypothesized that the average extrusion process occurs over a period of
approximately 2 hours, which would further explain the difficulties in manu-
ally identifying precise extrusion time points. Therefore, not only does this
K-function analysis yield a pattern of mitotic behaviour that goes some way
to explain the causality of wild-type proliferation and mutant extrusion, but
is also adds to a qualitative description of how long and over which spatial
extent this process occurs. It may then be useful to use this analysis and
apply it to different populations of cell competition with the outcome of ex-
trusion, to further clarify the nature in which these extrusions occur. Does
the profile of extrusions and mitotic clustering change if you alter the seed-
ing ratios of wild-type to mutant cells? What about if you seed the cells in
different patterns to begin with? Could we see a quicker, more aggressive
extrusion occur for a salt and pepper seeding distribution versus a colony
profile? Finally, what if we used these results to further refine the exper-
imental analysis? Knowing that an extrusion may take place over 2 hours
could assist in changing the way we align the focal time points, subsequently
making any temporal patterning become more apparent in a later, refined
K-function plot.
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5.5 Density Analysis

The focus of this research thus far has been the effect of mitotic behaviour
on RasV 12 extrusions. But what if mitosis is simply a symptom of the more
subtle effect of cell crowding as a competitive action? In order to investigate
the effects of density on the focal RasV 12 extrusions, the distribution plots of
cell count in figure 5.9a were scaled to the area of each spatial bin, resulting
in figure 5.15.

Figure 5.15: Distribution of wild-type cell density around RasV 12 extrusions,
calculated as the number of cells divided by the area of a spatial bin.

It is difficult to separate the build-up in wild-type cell density over time
from the background increase in cell density as the monolayer grows. Previ-
ously, I have relied on a control assessment of mitotic probability to differen-
tiate the observed growth patterns around extrusions from a background rate
of growth. However, this is more challenging to implement in this instance
as the number of cells in the control plot will differ wildly from the observed
instance due to the number of simulated focal events being far greater. Even
if the number of focal control cells is equal to the number of focal extrusions,
there is no way of telling if the confluency for each focal event is comparable
and the subsequent cell densities could be orders of magnitude apart.
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Therefore, in order to assess the meaning of any peaks in cell density,
the further spatio-temporal reaches of the plot are used as a comparative
tool. This relative assessment of cell density still holds valid for comparing
local increases to a background level of density at a range where competitive
interactions are unlikely. In figure 5.15, it can be observed that the local
increases in density are above the background rate that seems independent
of temporal evolution of the monolayer. Looking at the further spatial bins,
they seem to indicate no similar increases in density over time, which agrees
with the understanding that extrusions typically occur after full confluency
has been established for a period of time.

Inspecting the region of interest in the < 20µm spatial bin, prior to
the focal extrusion time point, one can see that instead of a sharp peak
in probability of mitoses, there is a gradual build up of cell density. This
build-up occurs over 10 hours, from t = −10 hours to t = 0 hours and
does not seem to be confined to just 10-20µm. In fact, there seems to be a
general increase in cell density around the focal extrusion to a spatial extent
of 50µm, with the build-up extending back in time to the start of the radial
scan. This build up seems to be separate from the background level of cell
density observed at further distances away and indicates that the spatial
extent of the competition is around 50-60µm.

The local increases in cell density around the extrusion location agree
with both the probability histogram and K-function analysis of division
rates. There appears to be a directed wild-type response to the presence
of RasV 12 cells and that this response takes the form both of cellular migra-
tion/crowding and of increased division in the regions of crowding. This is
also the case for the post-extrusion cellular space-filling behaviour exhibited
by wild-type division rate, wild-type division clustering and now the wild-
type cell density. Understanding the density dependency of wild-type growth
rates, as shown in previous work from the laboratory [2], it would appear that
the density analysis in figure 5.15 shows the consequence of the increased in-
cidences of wild-type division exhibited in figures 5.13 and 5.14. In fact, the
probability of mitoses still increases further in the immediate hours prior to
the RasV 12 extrusion, despite the tissue density increasing continuously. This
exemplifies this action as a competitive one as in a non-competitive tissue
there would be no such pattern of sudden wild-type proliferation unless the
tissue density decreased.
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5.6 Discussion

Local Wild-Type Proliferation May Induce RasV 12 Cell Extrusion

In this chapter, wild-type cell mitoses and RasV 12 extrusion events were ex-
amined for any spatio-temporal correlation between the two. If wild-type
cells were generally more proliferative after an extrusion event, then this
would serve as evidence that the RasV 12 extrusions are an autonomous deci-
sion made by a population of cells that voluntarily ejected themselves from
the monolayer. If wild-type cells were more proliferative before an extrusion
event then this would serve as evidence that the wild-type cells caused the
extrusion of RasV 12 . In the latter case, by increasing the local density around
the RasV 12 cells via increased mitoses, wild-type cells could be thought of as
acting as the driving force behind the extrusion event, rather than vice versa.
Further to this, if the spatial organisation of wild-type mitoses were localised
in the immediate region around RasV 12 extrusions, then this would provide
more evidence of the strong context dependency of cellular interactions in a
competitive system. It could also help characterise the spatial extent over
which these competitive interactions can reach. To summarise, the aim of this
chapter was to investigate whether wild-type mitotic behaviour was cause or
consequence of RasV 12 extrusions.

The initial radial analysis conducted in this chapter revealed a strong
peak in wild-type division probability after the focal RasV 12 extrusion, hint-
ing that this mitotic behaviour was a reactionary consequence of new space
becoming available in the area once occupied by the extruded RasV 12 cell.
However there also existed a more slight increase in the wild-type mitotic
probability prior to the focal extrusion event that warranted a closer inspec-
tion of underlying division numbers. This closer inspection revealed a high
number of divisions in the time period prior to extrusion that indicated the
local wild-type mitotic behaviour was not just a reactionary process.

To further investigate any signature of wild-type proliferation prior to
extrusion, each mitoses event was integrated into a K-function clustering
analysis and the results plotted over a spatio-temporal area with greater
statistical confidence than the 2D histograms of mitotic probability. This
analysis agreed with the space-filling behaviour observed in the histogram
plots, but also gave new evidence that prior to extrusions there is a cluster-
ing of wild-type divisions in the local neighbourhood. The presence of this
evidence meant that the wild-type cells were not acting in a purely reactive
manner, that they instead seem to be driving the extrusion events. This was
confirmed by the plotting of the wild-type cell density, which strengthened
the argument that wild-type cells are the instigating agents in this particular
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competition system, with increased mitoses resulting in a higher tissue den-
sity, especially in the immediate temporal window prior to RasV 12 extrusion.
This collection of analyses also showed evidence for the spatial and temporal
extent to competitive interactions. For this system they occur over the highly
localised ranges of 30µm and 2 hours prior to the competitive outcome of
extrusion, suggesting that this is a fundamentally biochemical mechanism of
competition according to the prevailing paradigm of classification.

As is often the case in complex systems such as cell competition, the
answer to a hypothesis rarely falls into a neat binary category such that
was laid out at the beginning of the project. In fact, it appears that both
hypothesized behaviours are occurring in the instance of RasV 12 versus wild-
type cell competition. Firstly, the wild-type cells are seemingly inducing
the extrusion events, suggesting a causative relationship between the two.
Secondly, wild-type cells are also reacting to the extrusion events in a space-
filling manner. Importantly, however, the presence of the evidence for the first
hypothesis subsequently rules out the second hypothesis from being true. The
evidence that wild-type cells actively crowd and proliferate in the immediate
local environment of RasV 12 cells prior to their exclusion means that this
cannot be a purely reactive interaction as it takes away the possibility that
the RasV 12 cells are acting independently in their decision to end up extruded.

The overriding conclusion from all of these analyses is that wild-type cells
are modifying their behaviour heavily, with regard to both mitoses and cell
density, in response to the presence of RasV 12 mutant cells. It appears as
if this behavioural modification occurs prior to the RasV 12 extrusion events,
thereby suggesting a causative relationship.

5.6.1 Further Work

In order to further verify this conclusion, more focal RasV 12 extrusion events
could be identified. Although they were not deemed necessary for the scope
of this analysis, they would serve to perhaps embolden the concluding argu-
ments presented here. More focal extrusions could then be used to automate
the process of identifying this outcome of competition, yielding more data
that would serve to increase the statistical significance of any conclusions.
Further to this, more extrusion events sampled from different initial seeding
ratios could reveal different mechanisms of wild-type competitive prolifer-
ation. Perhaps the aggressiveness with which extrusion is pursued by the
wild-type would be different for lower numbers of wild-type cells. There may
even exist a point where extrusion is not a viable outcome of the competi-
tion, at which point one could use this analysis to reveal the critical ratio
of wild-type to RasV 12 cells needed to induce a competition? Beyond seed-
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ing ratios, could different seeding patterns reveal different approaches to this
competitive outcomes? An experiment with segregated colonies of cells could
yield information on the speed with which wild-type cells begin to compete
with RasV 12 at the meeting of two previously separate populations.

Further to this, to really confirm the hypothesis that wild-type prolif-
eration induces RasV 12 extrusion, a series of perturbing experiments ought
to be conducted. Firstly, wild-type proliferation could be blocked after the
tissue reaches confluency to see if there is any further extrusion. Secondly,
wild-type motility could be reduced to see if this has an impact on cellular
crowding and subsequent extrusions.

Another potential extension of this analysis would be to question the
time point of the mitoses. When a cell commits to dividing it is normally
many hours in advance of the actual event. Therefore, if the time point
of commitment to mitosis was used instead of the time point of mitosis,
perhaps we would yield a different more clearly defined pattern of reactive
competitive interactions? In order to do this, a PCNA fluorescence marker
could be employed in the wild-type cells to identify the time at which S-
phase is entered and the single-cell is committing to a future division. If
more fluorescent probes are being integrated into this experimental model,
then perhaps a novel probe to indicate extraction from the basal layer could
be found. This would contribute to a more sharply defined extrusion time
point, further clarifying the patterns of wild-type clustering around extrusion
events.

Another approach that would yield a completely novel insight into this
biochemical competition would be the employment of a QPM analysis. This
could provide a deeply biophysical perspective on this biochemical competi-
tion, perhaps showing how actively individual cells proliferate in the immedi-
ate local environment of RasV 12 cells. This single-cell quantitative description
of proliferation could indicate how rapid the biochemical recognition of cell
type is, by pin pointing the exact inflection points that neighbouring cells be-
gin to initiate a growth response. If this dry mass analysis was coupled with
a cell displacement analysis, by using particle image velocimetry, it could also
reveal how cell movement across the tissue impacts upon RasV 12 extrusion.

Finally, another future avenue of research for this competitive system
would be to expand the analysis to include the z dimension. This could be
achieved by using a properly incubated SPIM system. By doing so, the point
of extrusion could be defined with an whole new level of clarity, narrowing
the broad time range over which it currently exists. On top of this, the
experimental set-up could be modified to seed the cells on a gel-based medium
to allow for the additional competitive fate of basal protrusion/invasion too.
This would increase the scope of competitive outcomes and yield far more
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focal data points to base a radial analysis on. A final radial and K-function
analysis focused around both clearly defined sets of apical extrusions and
basal protrusions would yield a more comprehensive picture of how wild-type
mitotic activity influences RasV 12 competitive fate on a single-cell level.
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Chapter 6

Conclusion

6.1 Summary of findings

The primary research question of this PhD project was whether wild-type
proliferation was cause or consequence of mutant cell elimination. To answer
this, the spatio-temporal patterning of wild-type mitoses around mutant cell
eliminations was quantified on a single-cell level. A new suite of quantitative
analyses were developed which resulted in a reliable image labelling pipeline
that segmented, tracked and classified every cell in the tissue over the full
course of cell competition before assessing any spatio-temporal correlations
between competitive events. For the case of wild-type versus ScribKD , there
was no organisation of wild-type mitoses relative to ScribKD apoptoses, ev-
ident from the radial analysis. A K-function clustering analysis suggested
that there is a space-filling clustering of wild-type mitoses occurring many
hours after the ScribKD apoptosis. However, a further radial analysis of tissue
density showed a locally focused increase in cell crowding leading up to the
ScribKD apoptosis. As a result, this suggests that loser cells are responding
to a tissue averaged property, rather than succumbing to a direct competi-
tive insult from the wild-type population. In contrast, when wild-type are
confronted with RasV 12 cells, there was a clear organisation of wild-type mi-
toses in the local environment of RasV 12 extrusions, both before and after
the event. This was confirmed by both a K-function clustering analysis of
wild-type divisions, and a radial analysis of tissue density relative to RasV 12

extrusion.
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6.2 Assessment of experimental approach

In order to answer the question of mitotic-dependency on mutant cell elim-
ination, a single-cell analysis had to be developed on two fronts. Firstly, a
corpus of raw image data from time-lapse microscopy experiments needed
to be segmented, tracked and classified on a single-cell scale. Then, this
fully-labelled data set needed to be interrogated for any spatio-temporal cor-
relations between competitive events.

The first aspect of this experimental approach was chosen after several
imaging systems were tested. Quantitative Phase Microscope was employed
to extract a single-cell measure of dry mass dynamics. This measure was
envisioned to work as an early marker for commitment to various compet-
itive outcomes, be that cellular proliferation or programmed cell death. A
single-cell understanding of dry mass dynamics also promised to yield a high-
resolution quantification of local tissue biophysics, revealing which neighbour-
hoods experienced higher densities and the subsequent effect of that. This
would have been especially useful in characterising the exact mechanistic ba-
sis of ScribKD cell elimination, which is known to be density dependent [2].
This approach was thoroughly tested and ultimately found to be not suitable
due to image segmentation challenges and poor control of environmental con-
ditions. Selective Plane Illumination Microscope was an approach designed
to measure the changes in single-cell volume and z position over the course
of different competitive events, such as mitoses, apoptoses and extrusions.
This would have yielded novel insight into the 3-dimensional evolution of
RasV 12 apical extrusion, aided by reliable quantification of dry mass dynam-
ics. Apical extrusion does not always result in RasV 12 apoptosis, so being
able to track these cells after they have been ejected from the monolayer rep-
resented a promising potential analysis. Further to this, characterising the
volume changes of cells during key competitive events would have increased
the confidence that changes in dry mass were genuine and not just due to
fluctuations in cellular z height. However, due to unforeseen circumstances,
the focus of the project was taken away from utilising the SPIM and pushed
towards a more dependable method of image acquisition.

Thus, the final imaging system represented a pragmatic approach to ac-
quiring a reliable, physiologically accurate cell competition data set. This
system yielded images exhibiting healthy cell cycle times and competitive
phenomena as reported in the literature. A corpus of widefield time-lapse,
cell competition microscopy data was acquired and a suite of new analyses
designed to interrogate the raw imagery. These analyses fall into two cat-
egories: first, the extraction of single-cell trajectories from the microscopy
image data; and second, the processing of these trajectories to gain a spatio-
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temporal insight into wild-type mitotic activity. To achieve the first aspect
of this analysis, the pre-existing image labelling pipeline was adapted to be
modular in nature. This was so that new image analysis approaches could
be easily implemented for each stage of the segmentation, classification and
tracking pipeline. Once this was achieved, a new radial analysis was de-
signed to elucidate the relationship between wild-type mitoses and loser cell
elimination. This analysis was designed to plot the spatio-temporal distri-
bution of wild-type mitoses around mutant cell elimination events. Because
the project focused on two separate competitive systems, the radial analysis
needed to be versatile: it required the capacity to work with different types
of focal events and subject cell populations and to be scalable over many
time-lapse experiments. The radial analysis possessed the benefits of being
relatively simple to implement. Several algorithm redesigns resulted in a
quick and versatile script that recorded the spatio-temporal distribution of
wild-type mitoses around key focal competitive events. A control analysis
was designed to record the same distribution around non-competitive events,
such as wild-type apoptoses. However, it was difficult to confidently distin-
guish the results observed in competition from the control, non-competitive
conditions. Therefore, addition to the core radial analysis, two additional
analyses were designed to take advantage of the spatio-temporal distribution
of wild-type cells recorded in the radial analysis. The first of these was a
spatio-temporal distribution of cell densities. This served to further define
the subsequent effect of wild-type proliferation patterns, if the cumulative
effect of many divisions was perhaps more influential than single-cell mi-
toses. The second of these was a K-function clustering analysis. This was
adapted to further confirm or invalidate any mitotic patterning observed in
the original radial analysis and to quantify the level of statistical certainty
of any mitotic activity. The advantage of the K-function analyses lay in the
simple generation of many thousand null hypotheses, resulting in a confident
statistical assessment of mitotic clustering patterns (p < 0.001).

6.3 Single-cell competitive mechanisms of wild-

type versus ScribKD

For the wild-type versus ScribKD mechanical competition model, it was al-
ready known that there exists a local increase in wild-type proliferation, as
evidenced by higher division probabilities and net growth rates, in the im-
mediate local environment of ScribKD cells [2]. This research suggested that
there ought to be mitotic clustering evident in the first 20µm spatial ring of

156



my radial analysis. However, my analysis revealed no clear spatio-temporal
correlations between wild-type mitoses and ScribKD apoptoses. Instead, this
radial analysis yielded mitotic probability distributions that suggested there
is a generally lower likelihood of wild-type proliferation in a 100µm radial
environment around ScribKD apoptoses. This suggested that mitosis was not
directly impacting ScribKD apoptosis in the way first hypothesised: there was
no evidence that ScribKD cells were experiencing a nearest neighbour contact
with wild-type mitoses, as was suggested by the analysis of Bove et al. [2].
A subsequent investigation into the patterning of tissue density around the
ScribKD focal apoptoses revealed that despite there being no evident cluster-
ing of wild-type mitoses, there was still a significant local increase in tissue
density leading up to the ScribKD apoptoses. According to other literature,
cell crowding is sufficient for ScribKD elimination [21], which my analysis
agrees with. Further to this, my analysis suggests that is only cell crowding
that is necessary for the competitive elimination of ScribKD . However, there
was no sudden increase in wild-type density prior to the elimination event,
indicating that this tissue growth was not a clearly competitive response
induced by ScribKD cell presence.

A subsequent K-function analysis of mitotic clustering further confirmed
that there was no spatial organisation of wild-type proliferation prior to the
ScribKD apoptotic elimination. Instead, it showed that there exists strong ev-
idence for a post-apoptotic clustering of wild-type division events, occurring
locally to the apoptosis site and only many hours after the apoptosis. This
suggests that general high tissue density leads to ScribKD elimination rather
than nearest neighbour mitoses. After a ScribKD apoptosis, the wild-type
cells then subsequently proliferate in a space-filling response. This would ex-
pedite more mutant elimination due to the wild-type cells maintaining higher
tissue densities at the disadvantage of the ScribKD population, resulting in
a negative feedback cycle with the emergent property of complete mutant
elimination. According to these results, it appears as if the competitive elim-
ination of ScribKD apoptoses are the result of diffuse mechanical properties
of the tissue and not a result of a direct impact of wild-type mitoses in the
local cellular environment.

The hypothesized role of wild-type mitoses impacting directly upon ScribKD

apoptoses was found to be not true. Instead, my results suggest a more sub-
tle mechanism of mechanical elimination. There seems to be no organised
clustering of wild-type divisions local to ScribKD cells that results in cellular
crowding, or any concentrated local density increases immediately around
the ScribKD elimination as evidenced in the density analysis. Instead, this
slow increase in tissue density across time may be a result of wild-type cell
crowding. This type of tissue organisation could be considered as a non-
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competitive phenomenon, where the wild-type population seeks to maintain
a higher homeostatic density than the ScribKD population can tolerate, re-
sulting in their programmed cell death and eventual complete elimination
from the monolayer. Is this type of emergent behaviour really competitive at
all, or it it rather two separate populations of cells seeking their own different
niches, interacting via the free space available? Each cell type monitoring
free space independently, with their own autonomous responses, but they do
not specifically detect one another, nor do they exchange direct competitive
insults.

It just so happens that the wild-type preferred homeostatic density is a
massive disadvantage to the mutant ScribKD population. The mutant pop-
ulation then expedites it’s own complete removal by eliminating ScribKD in
exchange for wild-type cells that maintain a higher tissue density, further
contributing to the ScribKD elimination. However, the definition of competi-
tion may not be completely satisfied during the interaction between wild-type
and ScribKD cells in two aspects: firstly, if there is evidence of a context-
dependent recognition; and secondly, if this recognition results in targeted
elimination mechanism. The second of these points does not seem to be met
in a clear manner in the case of ScribKD . There is no strong evidence for the
wild-type cells exchanging direct mechanical insults with the ScribKD popu-
lation, according to the low wild-type probability of mitoses around ScribKD

apoptoses evidenced in the radial and K-function analyses. However, it does
appear that there is a hint of cell type recognition, otherwise there would be a
homogeneous, general increase in density across the spatial scope measured in
the radial analysis. This homogeneous increase in cell density across spatial
ranges would be indicative of non-competitive growth across a large cellu-
lar neighbourhood, without evidence for local context dependency. Instead,
there exists a targeted increase in cell density in the immediate local neigh-
bourhood of ScribKD cells that eventually go through apoptosis, although
this target does not seem to increase significantly immediately prior to the
elimination, as it does with the RasV 12 system. Perhaps this behaviour does
not mean that wild-type cells are targeting specifically ScribKD cells, or that
they do not recognise the ScribKD cells, instead mistaking ScribKD regions
for free space. They could be migrating to or concentrating in regions with
lower homeostatic density as a result of continuous assessment of contact
inhibition, regardless of whether ScribKD cells are present in these regions or
not (which they will be as they prefer lower homeostatic densities).

Ultimately, the exact competitive nature of this biological phenomenon
needs further investigation to be fully clarified. For example, a PIV (Par-
ticle Image Velocimetry) analysis could be utilised to assess whether wild-
type cells migrate and crowd specifically towards ScribKD cells, suggesting a
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recognition of cell type, or whether they migrate to generally lower density
regions. This has been partially explored by the work of Wagstaff et al. [21],
who showed that wild-type cells do migrate towards ScribKD populations.
However, it is unknown if this is due to biochemical cell type recognition or
a more mechanical cell density recognition. A continuation of this research
could be realised by seeding cells on a deformable matrix that can relax tis-
sue density in a locally constrained way, and not across the whole tissue.
This could be in the form of a composite matrix with one half formed of a
stretchable substrate. If the cells were allowed to grow to confluency before
a gentle stretch was applied, simulating a reduction in cell density, then the
resultant response from the wild-type cells could be compared to the non-
stretched region of tissue. If a homogeneous population of wild-type cells
exhibited a clear pattern of migration towards these locally less-dense re-
gions then this would indicate that the so called competitive behaviour seen
in ScribKD competition may just be wild-type cells seeking a homeostatic
density niche of their own, independent of cell type. This experiment could
also be realised by seeding wild-type cells with a non-biological material that
approximates a lower-density population of ScribKD cells. The lack of bio-
logical markers present would mean that no competitive recognition of cell
type could occur, so if the wild-type cells still crowded in these regions then
this again would confirm this behaviour is non competitive. On the other
hand, a vice versa experiment could be run where populations of ScribKD

cells are grown alongside a non-biological material possessing a higher home-
ostatic density, simulating a wild-type population, to see if the same patterns
of ScribKD death are observed. Of course this experiment would be difficult
to realise due to the density dependency of ScribKD cells likely resulting in
their widespread apoptotic elimination at artificially created higher densi-
ties. For a quantification of the biophysical forces at play in this mechanical
competition, a suitably incubated QPM could yield time-lapse imagery that
promises to depict the distribution of different regions of cellular dry mass
around key competitive events. This could perhaps reveal a competitive
mechanism evidenced by differences in individual cell densities of wild-type
cells neighbouring ScribKD cells, when compared to neighbouring wild-type
cells. This type of quantitative analysis, coupled with a Particle Image Ve-
locimetry analysis, could result in a detailed single-cell assessment of how
wild-type cells conduct themselves around ScribKD cells.
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6.4 Single-cell competitive mechanisms of wild-

type versus RasV 12

The radial analysis focusing on RasV 12 extrusions yielded results that strongly
suggest a direct competitive impact of wild-type mitoses. There was a clearly
increased probability of division of wild-type cells in the immediate local en-
vironment in which a RasV 12 extrusion was to occur. This pattern of be-
haviour was reflected by both the K-function and the density radial analysis,
with strong evidence for mitotic clustering both before and after the focal
extrusion and sudden increases in cell density both before and after the focal
extrusion. These results suggest that wild-type mitoses have a biomechanical
effect on the subsequent extrusion of RasV 12 cells. The fact that both the
probability of mitoses, the observed density and the mitotic clustering all
increased significantly immediately prior to the extrusion suggest that this
effect is not just a biochemical recognition, rather that there is a mechanical
mitotic effect occurring in the form of a direct competitive insult. However,
the fact that wild-type mitoses were concentrated within 20 µm and 2 hours
of RasV 12 extrusions, a spatio-temporal distance between nuclei equivalent
to direct cell-cell contact, also suggests that there is a biochemical mecha-
nism of cell type recognition occurring. Regarding the main differentiation
between biochemical and mechanical competition, as illustrated in figure 1.2,
these results agree with the previous literature’s assessment that this is a bio-
chemical competition as there are competitive interactions occurring between
nearest neighbour cells.

Future work on this topic could start at acquiring more examples of
RasV 12 extrusions. This would be with an aim to automate the classifi-
cation of these extrusion events to enable collection and analysis of more
data points to characterise this competition. If more RasV 12 competition
experiments are to be conducted, the optimal system to acquire them on
would be a fully incubated SPIM. This would help characterise the elimina-
tion process in 3 spatial dimensions, yielding a more confident assessment of
the exact timing of extrusion. Coupling this with early markers for cell fate,
such as PCNA markers, could help determine under what local conditions the
wild-type cells decide to initiate their increased proliferation rates, further
clarifying the exact moments of competitive cell type recognition. The use of
an apoptotic fate marker such as JNK markers would also help identify the
eventual fate of recently extruded cells, whether they end up experiencing
apoptosis or not. The eventual apoptotic fate of extruded RasV 12 cells is of
huge importance in the field of cancer research, as these mutated cells could
represent a model of an epithelial to mesenchymal transition akin to cancer
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metastasis. Further to this, there are additional reports of basal extrusion
of RasV 12 cells [148]. Defining the conditions of this basal extrusion and
comparing to the apical extrusion would be a valuable insight in the field.

Another avenue of future research would be to conduct experiments with
different seeding densities. This would help characterise the critical ratios of
wild-type to RasV 12 cells that are needed to initiate a typical competition.
A series of experiments with increasing RasV 12 initial seeding densities could
be conducted, followed by a measure of the number of RasV 12 extrusions for
each scenario. In my experiments, I found that equal proportions of wild-
type and RasV 12 cells yielded very few, if any, RasV 12 extrusions. Increasing
the number of RasV 12 cells so that they outnumber the wild-type on the
onset of the competition could yield a super-competitive like scenario, and
knowing the critical proportion for RasV 12 survival would be a useful result.
In the context of field cancerisation, this could represent a model for how a
mutant cell line can colonise a whole tissue by defeating the typical quality
control mechanism of RasV 12 extrusion. Furthermore, a series of perturbing
experiments could be conducted to really define the effect of wild-type pro-
liferation on RasV 12 extrusion. It is already known that RasV 12 cells do not
experience extrusion in pure populations [25], but what about the case of
a wild-type population that has stopped growing? This would reveal vital
insight into the biophysical dependency of this competition, which has previ-
ously been characterised in homogeneous monolayers by Kuipers et al. [149].
If RasV 12 cells still experienced extrusion in this scenario then it would point
to a biochemical recognition of cell type followed by a seemingly autonomous
ejection of RasV 12 cells, although I do not think this would be the case.

Finally, employing a suitably-incubated QPM analysis of this RasV 12 ex-
trusion events would help precisely quantify the mechanical inputs that lead
to a RasV 12 extrusion event. This would work by coupling this quantification
of single-cell dry mass with an analysis of tissue movement, in the form of
particle image velocimetry, would yield a detailed picture of how the tissue
forces conspire to potentially induce the eventual RasV 12 extrusion events.
It could also be used to pinpoint the exact moment cells decide to initiate a
proliferative response to a nearby RasV 12 cell, working in a similar manner to
employing an early fate marker. This would help further characterise both
the seemingly biochemical recognition of RasV 12 cells, and their biophysical,
mechanical ejection from the competitive tissue by near-by wild-type mitoses.
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6.5 What Defines Cell Competition?

These results ultimately bring in to question the seemingly mutually ex-
clusive definitions of biochemical and mechanical competition. Wild-type
versus RasV 12 , typically designated as biochemical competition, appears to
operate on a very mechanical mechanism of competitive elimination. How-
ever, there is evidence for a strong immediate recognition of cell type, with
the mechanical competitive response of increased mitotic activity being ini-
tiated immediately prior to the competitive elimination. ScribKD appears
to be possess a more subtle, biophysical mechanism of elimination, however
the mechanism of recognition is unclear as there appears no strong evidence
for an immediate recognition of cell type. Instead, there seems to be a slow,
context-dependent response in the form of increased density levels in the local
environment. This begs the question of if this biological phenomena is really
a competition at all? Is it a competition for the resource of space, rather
than a direct insult-exchange? Or is it two populations of cells continuing to
grow independently of one another?

Given the difficulty of defining any particular instance of cell competi-
tion as purely mechanical or biochemical in nature, perhaps it is time to
move beyond this well established yet rigid binary. A recent review has sug-
gested that a better way of describing the different modes of cell competition
would be to categorise the observed phenomena as existing as a contest or
a scramble and as being either costly or inexpensive to the winner popula-
tion [150]. In this definition, a costly competition “includes behaviours or
molecular interactions that do not yield immediate benefit for the cell or pop-
ulation outside the elimination of loser cells”. An inexpensive competition
involves behaviours that would be expected from the winner cell population
regardless of competitive context. A contest implies that cells are directly
involved with the fate of one another, with cell-cell interactions and com-
parisons between populations resulting in the competitive elimination. A
scramble implies that cells are not as concerned with the identity of one an-
other, instead competing for a limited stock of shared resource, which could
be space. According to this definition, the MDCK wild-type versus ScribKD

competition could fall into the “inexpensive scramble” category as cells com-
pete for the shared resource of space, not exhibiting any unusual behaviour
outside of a density-dependent propensity to proliferate. On the other hand,
MDCK wild-type versus RasV 12 competition would fall into “costly contest”
definition as wild-type cells appear to actively concentrate mitoses to ex-
trude the loser population, a context-dependent behaviour not observed in
the non-competitive control scenarios of my research.

In conclusion, my single-cell analysis of the spatio-temporal extent of
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competitive interactions has confirmed, according to the prevailing dogma
in figure 1.2, that the ScribKD competitive system operates on a mechanical
basis. This is because there was no clear evidence for interactions occur-
ring between nearest neighbour cells. For the case of the RasV 12 competitive
system, according to the prevailing dogma of classification, my analysis con-
firmed that there appears to be a biochemical mechanism of competition
in operation. This is due to the close spatio-temporal correlation between
competitive events. However, my analysis also may indicate an incredibly
biophysical instigation of this biochemical recognition, bringing in to ques-
tion the mutual exclusivity of these categories. Ultimately, to answer the
original hypothesis, it appears as if the increased proliferation of wild-type
cells is the consequence of the ScribKD apoptoses and the cause of RasV 12

extrusions.

163



Bibliography

[1] M. Norman, K. A. Wisniewska, K. Lawrenson, P. Garcia-Miranda,
M. Tada, M. Kajita, H. Mano, S. Ishikawa, M. Ikegawa, T. Shimada,
and Y. Fujita, “Loss of scribble causes cell competition in mammalian
cells,” Journal of Cell Science, vol. 125, pp. 59–66, Jan. 2012.

[2] A. Bove, D. Gradeci, Y. Fujita, S. Banerjee, G. Charras, and A. R.
Lowe, “Local cellular neighborhood controls proliferation in cell com-
petition,” Molecular Biology of the Cell, vol. 28, no. 23, pp. 3215–3228,
2017. PMID: 28931601.

[3] C. Dı́az-Dı́az, L. Fernandez de Manuel, D. Jimenez-Carretero, M. C.
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