45 research outputs found

    Assortativity and leadership emergence from anti-preferential attachment in heterogeneous networks

    Full text link
    Many real-world networks exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Particularly in social networks, the contribution to the total assortativity varies with degree, featuring a distinctive peak slightly past the average degree. The way traditional models imprint assortativity on top of pre-defined topologies is via degree-preserving link permutations, which however destroy the particular graph's hierarchical traits of clustering. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties and tunable realistic assortativity. In our approach, two distinct populations of nodes are added to an initial network seed: one (the followers) that abides by usual preferential rules, and one (the potential leaders) connecting via anti-preferential attachments, i.e. selecting lower degree nodes for their initial links. The latter nodes come to develop a higher average degree, and convert eventually into the final hubs. Examining the evolution of links in Facebook, we present empirical validation for the connection between the initial anti-preferential attachment and long term high degree. Thus, our work sheds new light on the structure and evolution of social networks

    Evolution of Prosocial Behavior through Preferential Detachment and Its Implications for Morality.

    Full text link
    The current project introduces a general theory and supporting models that offer a plausible explanation and viable mechanism for generating and perpetuating prosocial behavior. The proposed mechanism is preferential detachment and the theory proposed is that agents utilizing preferential detachment will sort themselves into social arrangements such that the agents who contribute a benefit to the members of their group also do better for themselves in the long run. Agents can do this with minimal information about their environment, the other agents, the future, and with minimal cognitive/computational ability. The conclusion is that self-organizing into groups that maintain prosocial behaviors may be simpler and more robust than previously thought. The primary contribution of this research is that a single, simple mechanism operating in different contexts generates the conceptually distinct prosocial behaviors achieved by other models, and in a manner that is more amenable to evolutionary explanations. It also bears importantly on explanations of the evolution of our moral experiences and their connection with prosociality.Ph.D.Political Science and PhilosophyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91448/1/bramson_1.pd

    Mining Butterflies in Streaming Graphs

    Get PDF
    This thesis introduces two main-memory systems sGrapp and sGradd for performing the fundamental analytic tasks of biclique counting and concept drift detection over a streaming graph. A data-driven heuristic is used to architect the systems. To this end, initially, the growth patterns of bipartite streaming graphs are mined and the emergence principles of streaming motifs are discovered. Next, the discovered principles are (a) explained by a graph generator called sGrow; and (b) utilized to establish the requirements for efficient, effective, explainable, and interpretable management and processing of streams. sGrow is used to benchmark stream analytics, particularly in the case of concept drift detection. sGrow displays robust realization of streaming growth patterns independent of initial conditions, scale and temporal characteristics, and model configurations. Extensive evaluations confirm the simultaneous effectiveness and efficiency of sGrapp and sGradd. sGrapp achieves mean absolute percentage error up to 0.05/0.14 for the cumulative butterfly count in streaming graphs with uniform/non-uniform temporal distribution and a processing throughput of 1.5 million data records per second. The throughput and estimation error of sGrapp are 160x higher and 0.02x lower than baselines. sGradd demonstrates an improving performance over time, achieves zero false detection rates when there is not any drift and when drift is already detected, and detects sequential drifts in zero to a few seconds after their occurrence regardless of drift intervals

    Mining complex trees for hidden fruit : a graph–based computational solution to detect latent criminal networks : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Technology at Massey University, Albany, New Zealand.

    Get PDF
    The detection of crime is a complex and difficult endeavour. Public and private organisations – focusing on law enforcement, intelligence, and compliance – commonly apply the rational isolated actor approach premised on observability and materiality. This is manifested largely as conducting entity-level risk management sourcing ‘leads’ from reactive covert human intelligence sources and/or proactive sources by applying simple rules-based models. Focusing on discrete observable and material actors simply ignores that criminal activity exists within a complex system deriving its fundamental structural fabric from the complex interactions between actors - with those most unobservable likely to be both criminally proficient and influential. The graph-based computational solution developed to detect latent criminal networks is a response to the inadequacy of the rational isolated actor approach that ignores the connectedness and complexity of criminality. The core computational solution, written in the R language, consists of novel entity resolution, link discovery, and knowledge discovery technology. Entity resolution enables the fusion of multiple datasets with high accuracy (mean F-measure of 0.986 versus competitors 0.872), generating a graph-based expressive view of the problem. Link discovery is comprised of link prediction and link inference, enabling the high-performance detection (accuracy of ~0.8 versus relevant published models ~0.45) of unobserved relationships such as identity fraud. Knowledge discovery uses the fused graph generated and applies the “GraphExtract” algorithm to create a set of subgraphs representing latent functional criminal groups, and a mesoscopic graph representing how this set of criminal groups are interconnected. Latent knowledge is generated from a range of metrics including the “Super-broker” metric and attitude prediction. The computational solution has been evaluated on a range of datasets that mimic an applied setting, demonstrating a scalable (tested on ~18 million node graphs) and performant (~33 hours runtime on a non-distributed platform) solution that successfully detects relevant latent functional criminal groups in around 90% of cases sampled and enables the contextual understanding of the broader criminal system through the mesoscopic graph and associated metadata. The augmented data assets generated provide a multi-perspective systems view of criminal activity that enable advanced informed decision making across the microscopic mesoscopic macroscopic spectrum

    The Kuramoto model in complex networks

    Get PDF
    181 pages, 48 figures. In Press, Accepted Manuscript, Physics Reports 2015 Acknowledgments We are indebted with B. Sonnenschein, E. R. dos Santos, P. Schultz, C. Grabow, M. Ha and C. Choi for insightful and helpful discussions. T.P. acknowledges FAPESP (No. 2012/22160-7 and No. 2015/02486-3) and IRTG 1740. P.J. thanks founding from the China Scholarship Council (CSC). F.A.R. acknowledges CNPq (Grant No. 305940/2010-4) and FAPESP (Grants No. 2011/50761-2 and No. 2013/26416-9) for financial support. J.K. would like to acknowledge IRTG 1740 (DFG and FAPESP).Peer reviewedPreprin

    Interpersonal Status Systems. An Inquiry into Social Networks and Status Dynamics in Schools, Science, and Hollywood

    Get PDF
    Status systems—vertical orders among persons according to differences in social recognition—are a ubiquitous feature of human societies. Vast streams of research developed to explore how status structures social life. This thesis proposes a unified framework for studying the interplay between social status and social networks. The framework highlights the importance of contextual characteristics for the emergence of status systems in various settings and complements approaches that focus on how individuals gain and perpetuate status. Theoretical expectations derived from this perspective are tested by applying a combination of exponential random graph models and other network-analytical tools to three different empirical settings. The first application investigates whether the structure of friendships and status ascriptions among more than 23,000 adolescents is sensitive to contextual characteristics such as the size or demographic composition of classrooms and grade levels. The second study examines collaboration networks among more than 7,000 neuroblastoma researchers over 40 years. Here, the investigation focuses on changes in the stratification and segregation of collaboration networks as a scientific field grows and matures. Similarly, the third study investigates the interplay between culture, status, and networks among Hollywood filmmakers from 1930 through 2000 by using information on artistic references and collaborations of more than 13,000 filmmakers retrieved from the Internet movie database (IMDb). The results illustrate that the link between status and networks intensifies under certain contextual conditions. One key finding is that larger contexts exhibit networks marked by status recognition in all empirical settings: larger school classes and grade levels produce leading crowds more often than smaller ones, the scientific field of neuroblastoma research developed an elite of researchers as it grew, and social recognition is distributed increasingly unequal during periods in which Hollywood attracted more filmmakers. The thesis closes by comparing the different settings in greater detail and by discussing directions for future research

    Competition for attention in online social networks: Implications for seeding strategies

    Get PDF
    Many firms try to leverage consumers’ interactions on social platforms as part of their communication strategies. However, information on online social networks only propagates if it receives consumers’ attention. This paper proposes a seeding strategy to maximize information propagation while accounting for competition for attention. The theory of exchange networks serves as the framework for identifying the optimal seeding strategy and recommends seeding people that have many friends, who, in turn, have only a few friends. There is little competition for the attention of those seeds’ friends, and these friends are therefore responsive to the messages they receive. Using a game-theoretic model, we show that it is optimal to seed people with the highest Bonacich centrality. Importantly, in contrast to previous seeding literature that assumed a fixed and non-negative connectivity parameter of the Bonacich measure, we demonstrate that this connectivity parameter is negative and needs to be estimated. Two independent empirical validations using a total of 34 social media campaigns on two different large online social networks show that the proposed seeding strategy can substantially increase a campaign’s reach. The second study uses the activity network of messages exchanged to confirm that the effects are driven by competition for attention

    Social dynamics, network structure, and information diffusion in fish shoals.

    Get PDF
    Animal populations are often highly structured, with individuals differing in terms of whom they interact with and how frequently they do so. The resulting pattern of relationships constitutes a population’s social network. In this dissertation, I examine how environmental variation can shape social networks and influence information flow within them. In Chapter I, I review the history of social network analysis in animal behavior research, and discuss recent insights generated by network approaches in behavioral ecology. I focus on the fields of: social learning, collective behavior, animal personalities, and cooperation. Animal network studies are often criticized for a lack of replication at the network level and an over-reliance on descriptive approaches in lieu of hypothesis testing. Small, shoaling fish may provide a means to address these concerns, as manipulative experiments can be conducted on replicate social groups under captive conditions. Chapters III–V examine the impacts of environmental variation on the social networks of Trinidadian guppy (Poecilia reticulata) shoals, the social dynamics from which they emerge, and information diffusion within them. In the experiments described in Chapter III, I manipulated shoal composition in terms of within-group familiarity. Mixed shoals of familiar and unfamiliar fish exhibited greater homogeneity in network structure relative to other groups, which likely contributed to the rapid diffusion of foraging information observed within them. In the experiments discussed in Chapter IV, I manipulated the within-shoal mixture of personality types. In addition to impacting frequencies of partner switching and patterns of phenotypic assortment, individual- and group-level personality variation had strong effects on the initial acquisition of novel foraging information and the speed of its transmission through a group. In the experiments in Chapter V, I manipulated the ambient predation risk perceived by groups. High-risk conditions were associated with shifts in network structure consistent with attempts to minimize predation risk. High ambient risk also impeded the acquisition and subsequent transmission of foraging information, likely due to heightened neophobia and/or an increase in the perceived costs of personal sampling. I conclude in Chapter VI by considering the broader implications of my work and highlighting promising avenues for future research
    corecore