165 research outputs found

    Degree/diameter problem for mixed graphs

    Get PDF
    The Degree/diameter problem asks for the largest graphs given diameter and maximum degree. This problem has been extensively studied both for directed and undirected graphs, ando also for special classes of graphs. In this work we present the state of art of the degree/diameter problem for mixed graphs

    Quantum speedup of classical mixing processes

    Get PDF
    Most approximation algorithms for #P-complete problems (e.g., evaluating the permanent of a matrix or the volume of a polytope) work by reduction to the problem of approximate sampling from a distribution π\pi over a large set §\S. This problem is solved using the {\em Markov chain Monte Carlo} method: a sparse, reversible Markov chain PP on §\S with stationary distribution π\pi is run to near equilibrium. The running time of this random walk algorithm, the so-called {\em mixing time} of PP, is O(δ1log1/π)O(\delta^{-1} \log 1/\pi_*) as shown by Aldous, where δ\delta is the spectral gap of PP and π\pi_* is the minimum value of π\pi. A natural question is whether a speedup of this classical method to O(δ1log1/π)O(\sqrt{\delta^{-1}} \log 1/\pi_*), the diameter of the graph underlying PP, is possible using {\em quantum walks}. We provide evidence for this possibility using quantum walks that {\em decohere} under repeated randomized measurements. We show: (a) decoherent quantum walks always mix, just like their classical counterparts, (b) the mixing time is a robust quantity, essentially invariant under any smooth form of decoherence, and (c) the mixing time of the decoherent quantum walk on a periodic lattice Znd\Z_n^d is O(ndlogd)O(n d \log d), which is indeed O(δ1log1/π)O(\sqrt{\delta^{-1}} \log 1/\pi_*) and is asymptotically no worse than the diameter of Znd\Z_n^d (the obvious lower bound) up to at most a logarithmic factor.Comment: 13 pages; v2 revised several part

    Glassy dynamics of kinetically constrained models

    Full text link
    We review the use of kinetically constrained models (KCMs) for the study of dynamics in glassy systems. The characteristic feature of KCMs is that they have trivial, often non-interacting, equilibrium behaviour but interesting slow dynamics due to restrictions on the allowed transitions between configurations. The basic question which KCMs ask is therefore how much glassy physics can be understood without an underlying ``equilibrium glass transition''. After a brief review of glassy phenomenology, we describe the main model classes, which include spin-facilitated (Ising) models, constrained lattice gases, models inspired by cellular structures such as soap froths, models obtained via mappings from interacting systems without constraints, and finally related models such as urn, oscillator, tiling and needle models. We then describe the broad range of techniques that have been applied to KCMs, including exact solutions, adiabatic approximations, projection and mode-coupling techniques, diagrammatic approaches and mappings to quantum systems or effective models. Finally, we give a survey of the known results for the dynamics of KCMs both in and out of equilibrium, including topics such as relaxation time divergences and dynamical transitions, nonlinear relaxation, aging and effective temperatures, cooperativity and dynamical heterogeneities, and finally non-equilibrium stationary states generated by external driving. We conclude with a discussion of open questions and possibilities for future work.Comment: 137 pages. Additions to section on dynamical heterogeneities (5.5, new pages 110 and 112), otherwise minor corrections, additions and reference updates. Version to be published in Advances in Physic

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com
    corecore