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Abstract

We consider a number of problems in graph theory, with the unifying theme being the

properties of graphs which have a high degree of symmetry.

In the degree-diameter problem, we consider the question of finding asymptotically

large graphs of given degree and diameter. We improve a number of the current best

published results in the case of Cayley graphs of cyclic, dihedral and general groups.

In the degree-diameter problem for mixed graphs, we give a new corrected formula for

the Moore bound and show non-existence of mixed Cayley graphs of diameter 2

attaining the Moore bound for a range of open cases.

In the degree-girth problem, we investigate the graphs of Lazebnik, Ustimenko and

Woldar which are the best asymptotic family identified to date. We give new

information on the automorphism groups of these graphs, and show that they are

more highly symmetrical than has been known to date.

We study a related problem in group theory concerning product-free sets in groups,

and in particular those groups whose maximal product-free subsets are complete. We

take a large step towards a classification of such groups, and find an application to

the degree-diameter problem which allows us to improve an asymptotic bound for

diameter 2 Cayley graphs of elementary abelian groups.

Finally, we study the problem of graphs embedded on surfaces where the induced map

is regular and has an automorphism group in a particular family. We give a complete

enumeration of all such maps and study their properties.
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Chapter 1

Introduction

The subject of graph theory plays an important role in modern mathematics. At the

most basic level, it captures the ideas of objects (the vertices of the graph) and

relationships between those objects (the edges of the graph). Graphs may be directed

or undirected, respectively reflecting unidirectional or biderectional relationships

between objects. As we shall see, graphs may even be mixed, including both directed

and undirected components.

Graphs are often a natural model in real world applications such as

telecommunications networks, road and transport planning, economics and social

media. In purely mathematical terms, graph theory has strong links to other areas of

combinatorics and algebra.

The problems we may study in graph theory are many and varied, including for

example:

• Distance problems – how far apart are vertices and how large can we make

graphs while keeping distances small.

• Cycle problems – what cycles are in graphs, how large are they and can we

avoid small cycles.

• Drawing problems – can we embed graphs in the plane or on other surfaces

without edge crossings.

• Colouring problems – can we colour vertices or edges in particular ways to

include or avoid certain patterns.

• Subgraph problems – what subgraphs does a graph contain and what can we

tell about a graph from its subgraphs.

• Extremal problems – how large or small can we make graphs while insisting on

certain properties.

• Symmetry problems – which permutations of the graph preserve adjacency.

These and many other problems are the subject of significant ongoing research. We

7 Grahame Erskine



8 1 Introduction

Vertices Undirected Directed

1 1 1
2 2 3
3 4 16
4 11 218
5 34 9608
6 156 1540944
7 1044 882033440
8 12346 ≈ 1.8× 1012

9 274668 ≈ 1.3× 1016

10 12005168 ≈ 3.4× 1020

11 1018997864 ≈ 3.3× 1025

12 165091172592 ≈ 1.1× 1031

Table 1.1: Numbers of unlabelled graphs and digraphs

offer the following quotes from Bollobás in the preface to his book Modern Graph

Theory [14]:

Graph theory, more than any other branch of mathematics, feeds on problems.

There are a great many significant open problems which arise naturally in the

subject: many of these are simple to state and look innocent but are proving to

be surprisingly hard to resolve. It is no coincidence that Paul Erdős, the greatest

problem-poser the world has ever seen, devoted much of his time to graph theory.

“As long as a branch of science offers an abundance of problems, so long is it

alive”, said David Hilbert in his address to the Congress in Paris in 1900. Judged

by this criterion, graph theory could hardly be more alive.

We focus here on only a few of these problems. The greater part of the thesis will be

concerned with a couple of extremal type problems. The first is the degree-diameter

problem, where we seek to find large graphs subject to constraints on the maximum

number of edges incident to any vertex and the maximum distance between vertices.

The second is the degree-girth problem, where we try to find small graphs with no

short cycles, subject to each vertex requiring to be incident to a fixed number of edges.

Both of these problems are very hard to solve in full generality. Part of the issue is

that the population of graphs becomes very large, even for relatively small numbers of

vertices. Table 1.1 gives the number of unique unlabelled undirected and directed

graphs on up to 12 vertices. (Source: OEIS [68] sequences A000088, A000273.)

Clearly these numbers become unmanageable very quickly. One common approach,

and our main tactic here, is to focus on graphs which have a high degree of symmetry.

Not only does this reduce the number of graphs we have to consider, but it also allows

us to bring algebraic techniques to bear on our problems; most often group theory.

Groups will play a key role in the discussions in this thesis. We use groups both to
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1.1 Notation and definitions 9

construct graphs (typically Cayley graphs) and to investigate the properties of graphs

via their symmetries (automorphism groups).

1.1 Notation and definitions

Before describing the problems at hand it will be useful to set out our notational

conventions and to define some common terms.

All our graphs will be finite. To denote a graph we will most commonly use the letter

G, but will employ Γ if there is a risk of confusion with groups. We begin by recalling

some basic definitions. We consider an undirected graph G to consist of a set V (G) of

vertices and a set E(G) of edges. We think of an edge between vertices u, v as a set

{u, v} and say u is adjacent to v. The order of a graph is |V (G)| and the size of a

graph is |E(G)|. Unless otherwise indicated, graphs are simple, that is to say they

contain no loops (edges from a vertex to itself) or multiple edges between the same

pair of vertices.

The degree or valency of a vertex is the number of edges incident to it; since we have

no loops or multiple edges this is the same as the number of adjacent vertices. If all

vertices in a graph G have the same degree, we say G is regular. A path of length ` in

a graph is a sequence of distinct vertices v0, v1, . . . , v` such that vi is adjacent to vi+1

for each i = 0, 1, . . . , `− 1. A walk of length ` is a similar sequence except we do not

require vertices or edges to be distinct. Given two vertices u, v ∈ V (G), the distance

dist(u, v) between them is the smallest length of any path from u to v. (We will

generally only consider connected graphs, in which there exists a path between any

pair of distinct vertices.) The diameter diam(G) of a graph G is the largest distance

between any pair of vertices.

A cycle of length ` in a graph is a sequence of vertices v0, v1, . . . , v` such that all are

distinct except v0 = v` and vi is adjacent to vi+1 for each i = 0, 1, . . . , `− 1. The girth

girth(G) of a graph G is the length of its shortest cycle, if any. A connected graph

with no cycles is called a tree.

A permutation of the vertex set of a graph which preserves adjacency is called an

automorphism. The automorphisms of a graph G form a natural group structure

under composition, which we denote by Aut(G). We therefore consider Aut(G) as a

group of permutations acting on V (G). We adopt the convention of action on the

right. If Aut(G) acts transitively on V (G) we say that G is vertex-transitive. If the

natural induced action of Aut(G) on E(G) is transitive, we say that G is

edge-transitive. If this action is transitive on ordered pairs (u, v) of adjacent vertices,

Grahame Erskine



10 1 Introduction

we say G is arc-transitive.

We recall some basic notation of finite group theory. Given a group G, its identity

element will simply be denoted by 1, or by 1G if there is a danger of ambiguity. For

abelian groups we will most often use additive notation, except that the direct

product of any two groups A,B will be denoted by A×B. The cyclic group of order

n will generally be denoted by Zn and we think of it as the additive group of residue

classes modulo n. The dihedral group of order 2n is denoted by D2n.

In Chapters 4 and 5 we construct groups via semidirect products. We choose here a

notation and definition of the semidirect product convenient for our needs. Given two

groups G and K and a group homomorphism ϕ : K → Aut(G), the semidirect

product Goϕ K is the group with element set the Cartesian product G×K and

multiplication defined by:

(g1, k1)(g2, k2) = (g
ϕ(k2)
1 g2, k1k2)

where the superscript on g1 indicates the image of g1 under the automorphism ϕ(k2)

of G.

We shall mainly be concerned with graphs which have large or interesting

automorphism groups. One such class of graphs is Cayley graphs, defined as follows.

Given a finite group G and an inverse-closed subset S of G \ {1}, we consider the

vertex set of the graph to be the elements of G, with an edge between vertices g, h if

and only if g−1h ∈ S. The resulting graph will be denoted Cay(G,S).

It is immediate from the definition that Cay(G,S) is a simple graph of order |G|, and

is regular of degree |S|. Since S is inverse-closed, the adjacency relation is symmetric

so that Cay(G,S) is an undirected graph. It is easy to see that Cay(G,S) is

vertex-transitive (for any x ∈ G the map g 7→ xg is an automorphism of the graph). It

is easy to see that the distance in the graph Cay(G,S) from the vertex 1G to an

arbitrary vertex g is simply the minimum number of elements of S which we need to

multiply together to obtain g. Since the Cayley graph is vertex-transitive, this implies

that its diameter is equal to the largest such number for all elements g ∈ G. This

translation between the geometric property (diameter) of a Cayley graph and

properties of the underlying group will be crucial in our discussions.

An example of a Cayley graph for the group G = Z21 and set S = {±1,±4,±11} is

shown in Figure 1.1. This graph has diameter 2 since every element in Z21 can be

formed by the addition of 0, 1 or 2 elements of S.

Grahame Erskine
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Figure 1.1: The Cayley graph Cay(Z21, {±1,±4,±11})

In the case of directed graphs, we use the same notation as far as possible. In place of

an edge set E(G) we have an arc set A(G) with each arc considered as an ordered

pair (u, v) of vertices. We must distinguish between the out-degree (number of leaving

arcs) and in-degree (number of entering arcs) of a vertex. A digraph is out-regular

(resp. in-regular) if all its vertices have the same out-degree (resp. in-degree). A

digraph which is both out-regular and in-regular is called diregular.

Definitions of path, walk, cycle, distance and diameter are similar to the undirected

case, but respecting directions of arcs. We may define Cayley graphs of digraphs in

exactly the same way as for undirected graphs, except that since we do not require

the adjacency relation to be symmetric we drop the condition that the set S must be

inverse-closed.

In the case of mixed graphs, we consider the graph to have both undirected edges and

directed arcs. All the definitions above carry through in the natural way. A mixed

graph whose undirected subgraph is regular and whose directed subgraph is diregular

will be called totally regular.

We will be very much concerned with parameters such as the order, diameter, degree

and girth of graphs. As notation conventions differ between authors, we set out here

our usual conventions for how we denote these parameters.

• The letter n will denote the order of a graph.

• The letter k will denote the diameter of a graph.

Grahame Erskine



12 1 Introduction

• The letter g will denote the girth of a graph.

• For regular graphs, the letter d will denote the degree of any vertex.

• For out-regular digraphs, the letter d will denote the out-degree of any vertex.

• For totally regular mixed graphs, the letter r will denote the undirected degree

of any vertex and z its directed out-degree.

1.2 The problems

1.2.1 The degree-diameter problem

The degree-diameter problem has its roots in the efficient design of interconnection

networks. We try to find the maximum possible number of vertices in a graph where

we constrain both the largest degree d of any vertex and the diameter k of the graph.

In a communication network, we may think of this as the problem of maximising the

number of nodes in the network. Our constraints model the maximum number of

interconnections which a single node may have, and the desired maximum number of

“hops” required for any two nodes to be able to communicate. Our connections may

be bidirectional (in which case we study the problem for undirected graphs),

unidirectional (digraphs) or a mixture (mixed graphs).

Our typical approach is to consider the degree-problem restricted to certain families

of graphs. Because we concentrate on graphs with a high degree of symmetry, we

choose to concentrate for the most part on Cayley graphs.

There are many possible ways to study the degree-diameter problem. One approach is

simply to seek the largest possible graph of a given (small) diameter k and degree d.

As we have seen though, the combinatorial explosion in the number of graphs of a

given order makes this practically impossible except in the smallest cases. Another

possibility is to fix the degree d of the graphs under consideration, and investigate

how the maximum order of graphs behaves as the diameter k increases. However, we

concentrate on tackling the problem in the other direction; that is to say we fix a

small diameter k and investigate asymptotic bounds on the largest order of graphs we

can construct with a given maximum degree d.

1.2.2 The degree-girth problem

The degree-girth problem is somewhat related to the degree-diameter problem. In

this case, we fix a degree d and insist that the minimum degree of vertices in our

Grahame Erskine



1.3 Outline 13

graphs should be d, while avoiding cycles shorter than some girth g. We then try to

construct graphs with as small an order as possible.

Again, we can tackle the problem in a number of ways. Cayley graphs would be a

useful tool here, and indeed there are examples in the literature of this kind of

approach. However, in the girth problem it turns out that incidence graphs of finite

geometrical structures are a very useful tool, and we will study one such class of

graphs in detail. This family of graphs is the best currently known construction in an

asymptotic sense, and has a great deal of symmetry reflected in a large and

interesting automorphism group which we study.

1.3 Outline

The remainder of the thesis is structured as follows.

In Chapter 2 we give a more detailed account of the degree-diameter problem,

including some history and the current best asymptotic results.

In Chapters 3, 4 and 5 we present new asymptotic results in the undirected and

directed versions of the degree-diameter problem. Our unifying theme is to use Cayley

graphs as a tool to explore constructions of graphs with a high degree of symmetry.

However, the results use a variety of techniques and different families of groups in

their constructions. Chapter 6 explores the mixed graph version of the problem.

In Chapter 7 we explore the degree-girth problem from the point of view of the best

asymptotic family of graphs, which is based on a particular incidence structure. We

present new results on the structure and automorphism groups of these graphs.

Chapter 8 explores a related topic in group theory. We may view

diameter-constrained Cayley graphs from a group-theoretic perspective as the

problem of finding subsets of a group which multiply together to cover the group in

an efficient way. An old problem of Street and Whitehead [70] defines a class of

groups called filled groups and we find a partial classification of all such groups, and

make a conjecture on the complete classification. To illustrate the link with the

degree-diameter problem, we use the techniques of this chapter to improve the

asymptotic bound for diameter two Cayley graphs of elementary abelian 2-groups.

In Chapter 9 we conclude our investigations into the degree-diameter problem by

considering arc-transitive graphs.

Chapter 10 departs from the degree-diameter and degree-girth problems to explore

Grahame Erskine



14 1 Introduction

another topic related to highly symmetric graphs. We explore and enumerate the

orientably-regular maps having an automorphism group isomorphic to the twisted

linear fractional group M(q2).

Finally, in Chapter 11 we present a revised summary of asymptotic results in the

degree-diameter problem, updated to reflect the impact of the constructions described

in earlier chapters.

Grahame Erskine



Chapter 2

Background to the degree-diameter

problem

2.1 Basic bounds

Recall that our goal is to find the largest possible order of a graph of maximum

degree d and diameter k. We deal first with the undirected case. Degree d = 1 is a

degenerate case so we will assume that d ≥ 2. A simple counting argument along the

following lines yields a natural upper bound called the Moore bound. We select an

arbitrary vertex u in our graph and construct a spanning tree rooted at u. At

distance 1 from u we have a maximum of d vertices. Each of those d vertices has an

edge to u, so has d− 1 other edges available to connect to vertices at distance 2 from

u. Thus the maximum possible number of vertices at distance 2 from u is d(d− 1).

Continuing in this fashion, we see that the Moore bound M(d, k) for graphs of degree

d and diameter k is:

M(d, k) =

1 + d
(d− 1)k − 1

d− 2
if d > 2

2k + 1 if d = 2

(2.1)

The solid edges of Figure 2.1 illustrate such a tree with parameters d = 3 and k = 2.

So the maximum possible order of such a graph is 10, but this can only be achieved if

we can manage to connect the vertices at the lowest level (the dotted edges) in such a

u

Figure 2.1: The Moore bound for d = 3, k = 2

15 Grahame Erskine



16 2 Background to the degree-diameter problem

way that the diameter of the whole graph is 2.

It turns out that apart from some trivial examples, this is hardly ever possible and so

graphs achieving this bound are exceedingly rare. It is easy to see that at diameter

k = 1, the bound is achieved for all d ≥ 2 by the complete graph Kd+1. At degree

d = 2, again the cycle graph C2k+1 achieves the bound. The results of Hoffman and

Singleton [38] and later Bannai and Ito [8] show that the only non-trivial examples

occur at diameter 2. The known graphs are the Petersen graph at degree d = 3 and

the Hoffman-Singleton graph at degree d = 7. The remaining possibility is an

unknown graph (or graphs) at degree d = 57, whose existence or otherwise is among

the most famous open problems in the area.

The classic paper of Hoffman and Singleton [38] uses analysis of the eigenvalues of the

adjacency matrix of a Moore graph of diameter two to show that the only possible

non-trivial degrees are 3, 7 and 57. This argument was one of the founding papers of

the topic of algebraic graph theory.

For directed graphs, we adopt a very similar counting technique based on a spanning

tree. In this case it makes sense to consider also the case d = 1. This time our vertices

at level 1 and beyond have all d out-arcs available to connect to vertices at the next

level, and so the Moore bound is:

M(d, k) =

1 +
dk+1 − 1

d− 1
if d > 1

k + 1 if d = 1

(2.2)

It turns out that Moore digraphs exist only in the trivial cases when d = 1 (directed

cycles) or k = 1 (complete digraphs). This was first proved by Plesńık and Znám [61]

in 1974 and independently in 1980 by Bridges and Toueg [16] with an elegant

argument, again based on eigenvalues of the adjacency matrix.

A Moore bound can also be defined in a similar way for mixed graphs, where we allow

both undirected and directed edges in the graph. The study of Moore graphs in the

mixed case was initiated by Bosák [15] in 1979. Bosák gave strong numerical

conditions on the parameters for which a mixed graph attaining the bound can exist,

but there are very many cases for which the existence of graphs attaining the bound

is unknown. Little progress was made on the problem until 2007 when Nguyen, Miller

and Gimbert [60, 59] showed that no non-trivial mixed Moore graph of diameter

greater than 3 can exist, and gave a formula for the Moore bound in the general case.

Much more recently, a number of authors [41, 50] have begun to tackle the problem

via computational techniques. We will return to the problem of mixed graphs in
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2.2 Graphs close to the Moore bound 17

Chapter 6.

Much research in the degree-diameter problem is focused on trying to construct

graphs which approach the Moore bound in either an absolute or asymptotic sense. A

complete summary of the history and current status of this research is contained in

the survey by Miller and Širáň [57], and we mention below only a few of the results

most pertinent to our investigations.

2.2 Graphs close to the Moore bound

Since Moore graphs are so rare, it is natural to ask about the existence of graphs

which very nearly attain the bound. In this context we speak about the defect δ of a

graph, and define it to be the shortfall in the order of the graph compared to the

relevant Moore bound. So if a graph Γ has maximum degree d and diameter k, then

δ = M(d, k)− |V (Γ)|.

In the undirected case, it is known that no graphs of defect 1 exist apart from the

trivial case of the 4-cycle C4. For defect 2, five non-trivial graphs are known and

various authors have made progress towards placing conditions on the existence of

further examples. Not much is known about the situation for larger defects.

For digraphs, defect 1 is attained for diameter 2 in the case of line graphs of complete

digraphs, and there are no defect 1 digraphs of diameters 3 or 4. The position for

large diameters is unknown.

The survey [57] contains much more detail and references about the above. While

further results in this direction would be one way to proceed, we choose instead to

focus on the asymptotic version of the problem.

2.3 The asymptotic problem

Our main method of attack in the following chapters will be to try to find families of

graphs with good asymptotic properties in the degree-diameter problem. We begin

with some definitions and notation.

2.3.1 Definitions

Let C be a class of graphs. (Typically, we might select C to be the set of Cayley

graphs of a particular class of groups, or the set of graphs with some particular

property such as vertex transitivity.)
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18 2 Background to the degree-diameter problem

We define nC(d, k) to be the largest possible order of a graph in C with diameter k

and maximum degree d. Typically of course, we have no idea what the exact value of

nC(d, k) will be, so our strategy will be to try to find an infinite family G of graphs

within C which has asymptotically “large” order as we increase d or k. We then use

nG(d, k) as a lower bound on nC(d, k).

For the most part, we will concentrate on the case where we fix a particular diameter

k of interest, and a family G where our graphs have diameter k but we let the

maximum degree d grow as large as we please. From that point of view, the Moore

bound (for both the undirected and directed cases) can be expressed as:

M(d, k) = dk +O(dk−1).

Thus to measure the usefulness of our family of graphs we define the following two

quantities:

L+
G (k) = lim sup

d→∞

nG(d, k)

dk
; L−G (k) = lim inf

d→∞

nG(d, k)

dk

Our goal will usually be to find lower bounds for these values using some particular

construction. Loosely speaking, to bound L+ we seek a family G such that for an

infinite number of values of d we can show that nG(d, k) ≥ Kdk + o(dk) for some

constant K. To bound L−, we do the same thing except we require that the

construction must be valid for all sufficiently large values of d.

In the following, where the class or family of graphs under consideration is clear from

the context we will often omit the subscripts C, G from the notation.

2.4 Existing asymptotic results

In the remainder of this section we set the context for the following few chapters by

reviewing the best asymptotic results in the literature to date. Since the majority of

these results relate to the undirected version of the problem, we will focus on that

case.

2.4.1 General graphs

In this case we take G to be the most general family possible: the set of all undirected

graphs.

At diameter 2 we have the construction of Brown [17]. Let q be any prime power and
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let P be the set of points of PG(2, q), which we view as the set of 1-dimensional

subspaces of GF (q)3. We define the graph B(q) to have vertex set P , with adjacency

defined by orthogonality of (representative non-zero vectors of) the corresponding

subspaces. It is easy to see that B(q) has diameter 2, order q2 + q + 1 and maximum

degree d = q + 1. This means that L+(2) = 1 in this case.

Brown’s construction is only directly applicable for degrees d of the form q + 1 where

q is a prime power. However, it was shown by Šiagiová, Širáň and Ždimalová in [66]

that this can be extended to all degrees by using arguments from analytic number

theory on the distribution of prime numbers. So in fact L−(2) = 1. We note that this

extension from degrees based on prime numbers to all possible degrees is a useful

technique, and we will return to it several times.

Delorme [26] gives a construction showing that L+(3) = L+(5) = 1 and quotes other

references to show L−(3) ≥ 8/27, L−(4) ≥ 3/16 and L−(5) ≥ 44/55. In a different

paper [27], Delorme shows L+(4) ≥ 1/4.

For general diameter k, the survey [57] indicates that the best known bound for

L−(k) is 2−k using De Bruijn or Kautz graphs. (We describe the directed version of

Kautz graphs in the diameter 2 case in Section 6.2.) We have L+(k) ≥ 1.6−k from a

paper by Canale and Gómez [21].

2.4.2 Cayley graphs

We note here the best results available for Cayley graphs, without restriction on the

families of groups considered. At diameter 2, a construction of Šiagiová and Širáň [65]

yields, for infinitely many degrees d, a Cayley graph of asymptotic order d2 so that

L+(2) = 1. More recently, the same authors with Bachratý [5] obtained a similar

result at diameter 3 so that L+(3) = 1.

No equivalent results are available for larger diameters. Using the available results for

diameters 2 and 3, it is straightforward to find a direct product construction yielding

L+(4) ≥ 1
16 and L+(5) ≥ 1

32 , but these are likely to be poor bounds.

The optimal constructions above for diameters 2 and 3 are only valid for a very sparse

set of degrees, so cannot as they stand be extended to all degrees to provide a bound

on L−. In the L− version of the problem, a recent result of Abas [2] yields

L−(2) ≥ 0.684. The best available results for diameters 3 to 5 come from Vetŕık [73]

who shows that L−(3) ≥ 3
16 , L−(4) ≥ 32

625 and L−(5) ≥ 25
1024 .

We are also interested in results valid for arbitrary diameter k. The best we currently
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have is L+(k) ≥ L−(k) ≥ k
3k

from Macbeth, Šiagiová, Širáň and Vetŕık [54].

We consider the problem of general Cayley graphs in Chapter 5.

2.4.2.1 Circulant graphs

The most obvious starting point for an analysis of groups of a particular family is

cyclic groups. Cayley graphs of cyclic groups are sometimes called circulant graphs,

and we will use both terms. At diameter 2, we have a trivial upper bound on L+(2) of

1/2 since in an abelian group, commutativity of the generators leads to duplication of

paths in the Cayley graph. In fact, for diameter k it is not hard to see (see for

example Dougherty and Faber [28]) that L+(k) ≤ 1/k!. Vetŕık [74] has a diameter 2

construction which gives L+(2) ≥ 13
36 ≈ 0.36111. A trivial lower bound on L−(2) is

1/4 (see Lemma 4.2 for an explanation of this).

Specific results for diameters 3 and above do not currently appear in the literature. A

lower bound on L−(k) for arbitrary diameter k ≥ 2 of 1/kk can be deduced in a

similar way to the diameter 2 limit of 1/4 above.

We consider the circulant graph version of the problem in Chapter 3.

2.4.2.2 General abelian groups

The next natural family to consider after cyclic groups is the general abelian case. At

diameter 2, the best result for a long time was L+(2) ≥ 3
8 from Macbeth, Šiagiová and

Širáň [53], extended to L− using the prime gaps method in [66]. However we now

have the very recent results in Pott and Zhou [62] giving L−(2) ≥ 25
64 and L+(2) ≥ 4

9 .

At diameter 3 we have L+(3) ≥ 9
128 from Vetŕık [74], again extended to L− by [66].

There is nothing in the literature beyond diameter 3, so the best bounds are

determined by those for cyclic or elementary abelian groups. We discuss abelian

groups further in Chapter 8.

2.4.3 Vertex-transitive graphs

For L+ at diameters 2 and 3 we simply note the Cayley graph results above, giving a

limit of 1. For larger diameters, good results are provided (by suppressing directions

on Faber-Moore-Chen graphs) by Macbeth, Šiagiová, Širáň and Vetŕık in [54]. These

graphs have order
((d+ 3)/2)!

((d+ 3)/2− k)!
yielding L+(k) ≥ 1/2k. Unfortunately this

construction is only valid for odd degrees and there seems to be no obvious way to
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extend it to a result on L−. However, this result is interesting because the graphs are

in general not Cayley graphs, and provide a better bound than the Cayley graph

bound noted above.

For L−(2), we can again use the results for Cayley graphs. In the non-Cayley case,

good candidates would be the graphs of McKay, Miller and Širáň [56]. Unfortunately,

these are only valid for degrees related to prime powers in certain congruence classes

and there is no obvious way to add edges to cover all possible d while maintaining

transitivity. So at present, there are no better asymptotic results than those for

Cayley graphs.

Our discussions of this version of the problem in the following chapters will focus on

the case of Cayley graphs.

2.4.4 Arc-transitive graphs

This class of graphs has received very little attention in the diameter problem, with

the first result in Zhou’s paper [76] giving n(d, 2) ≥ d5/3 +O(d) for infinitely many d.

Unfortunately, the exponent of 5/3 is smaller than 2, so this result does not currently

provide a useful bound on L+ in this category. We return to this problem in

Chapter 9.

2.4.5 Summary table

Table 2.1 collects the results of the above discussion into a single reference.

Type Diam 2 Diam 3 Diam 4 Diam 5 Diam k
General graphs

All graphs
L− 1.00000 0.29629 0.18750 0.08192 1/2k

L+ 1.00000 1.00000 0.25000 1.00000 1/1.6k

Vertex-transitive
L− 0.68400 0.18750 0.05120 0.02441 k/3k

L+ 1.00000 1.00000 0.06250 0.03125 1/2k

Arc-transitive
L− — — — — —
L+ — — — — —

Cayley graphs

All groups
L− 0.68400 0.18750 0.05120 0.02441 k/3k

L+ 1.00000 1.00000 0.06250 0.03125 k/3k

Cyclic
L− 0.25000 0.03703 0.00390 0.00032 1/kk

L+ 0.36111 0.03703 0.00390 0.00032 1/kk

General abelian
L− 0.39062 0.07031 0.00390 0.00032 1/kk

L+ 0.44444 0.07031 0.00390 0.00032 1/kk

Table 2.1: Asymptotic lower bounds on orders of undirected graphs
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Chapter 3

The degree-diameter problem for

circulant graphs

3.1 Introduction

If Cayley graphs are a natural way to study the degree-diameter problem, then in

some sense Cayley graphs of cyclic groups are an obvious starting point for that

study. Cayley graphs of cyclic groups are often called circulant graphs, and we will

use these terms interchangeably. We begin our exploration of circulant graphs with

some specific notation and definitions.

All our groups in this chapter will be abelian (indeed cyclic) and so we use additive

notation for the group operation. We are interested as usual in the largest graph we

can construct of given degree and diameter, and we will use the following notation:

• CC(d, k) is the largest order of an undirected circulant graph with degree d and

diameter k.

• DCC(d, k) is the largest order of a directed circulant graph with degree d and

diameter k.

For a given diameter k, we are interested in determining the asymptotics of CC(d, k)

and DCC(d, k) as the degree d tends to infinity. We make use of the following limits

as introduced in Chapter 2:

• L−C(k) = lim inf
d→∞

CC(d, k)/dk; L+
C(k) = lim sup

d→∞
CC(d, k)/dk.

• L−D(k) = lim inf
d→∞

DCC(d, k)/dk; L+
D(k) = lim sup

d→∞
DCC(d, k)/dk.

We begin with some trivial bounds on L− and L+. The following asymptotic upper

bound is easily obtained; see for example the survey paper [57]:

Observation 3.1 (Trivial upper bound). L+
C(k) ≤ L+

D(k) ≤ 1
k! .

For a lower bound, consider Zrk with generators {hr` : 0 < |h| ≤ b r2c, 0 ≤ ` < k}:

Observation 3.2 (Trivial lower bound). L−D(k) ≥ L−C(k) ≥ 1
kk

.
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For larger diameters, the trivial bounds become numerically small, and the ratio

between the upper and lower bound becomes arbitrarily large. Therefore, in order

more easily to assess the success of our constructions, we make use of the following

measure which records improvement over the trivial lower bound.

Let R−C(k) = kL−C(k)1/k, and define R+
C(k), R−D(k) and R+

D(k) analogously. Thus,

R−C(k) ≥ 1, with equality if the trivial lower bound is approached asymptotically for

large degrees. For each k, these R values thus provide a useful indication of the

success of our constructions in exceeding the trivial lower bound. In Section 3.5, we

show how to construct a cyclic Cayley graph from two smaller ones in such a way that

the R values are preserved.

The R values are bounded above by Rmax(k) = k(k!)−1/k. Using the asymptotic

version of Stirling’s approximation, log k! ∼ k log k − k, we see that as the diameter

tends to infinity,

1 ≤ lim inf
k→∞

R−C(k) ≤ lim inf
k→∞

R+
C(k) ≤ e,

and similarly for R−D(k) and R+
D(k).

The structure of most of this chapter follows closely our joint paper with Bevan and

Lewis [11]. However we begin with an introductory section containing some crucial

lemmas which we need both in this chapter and in subsequent chapters, and which

allow us in some circumstances to extend a result for L+(k) to L−(k).

In the following section, we use these lemmas to extend a result of Vetŕık [74] to

deduce new lower bounds for L−C(2) and R−C(2). In Section 3.4, we describe a direct

product construction and use it to build large circulant graphs of small diameter and

arbitrarily large degree. We also prove that this construction is unable to yield values

that exceed the trivial lower bound for large diameter. However, in Section 3.5, we

demonstrate a method of building a circulant graph from two smaller ones, and show

how the application of this method to the constructions from Section 3.4 enables us to

exceed the trivial lower bound for every diameter.

Section 3.6 contains an application of our constructions to obtain upper bounds on

the minimum size of a set A ⊆ Zn such that the k-fold sumset kA is equal to Zn. We

conclude, in Section 3.7, by presenting a revised table of the largest known circulant

graphs of small degree and diameter, including a number of new largest orders.
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3.2 Preliminary results

In this and subsequent chapters, we will encounter Cayley graph constructions in the

degree-diameter problem based on finite fields, which means we can only directly use

the construction for degrees which are related to some prime power. Examples of this

type of construction will be found in Theorems 4.5 and 5.4. Other examples in the

literature are Šiagiová, Širáň and Ždimalová [66] and Vetŕık [73], amongst others.

While these constructions yield graphs which are valid for an infinite number of

degrees and hence can be used to obtain a lower bound on L+(k), we would ideally

like to extend the validity to all degrees and hence obtain a bound on L−(k). Our

strategy is to use results from analytic number theory on the distribution of prime

numbers to prove that for all sufficiently large degrees d, we can find a prime number

such that we can build a graph Cay(G,S) of degree d′ ≤ d using our chosen

construction. We then add d− d′ generators to our set S yielding a graph of the same

order, no larger diameter and degree d. The method hinges on being able to find a

prime p such that d− d′ is small enough not to affect the asymptotic value of the

result.

The method was first used by Šiagiová, Širáň and Ždimalová [66]. Because this is such

a useful technique we give here a general version of their idea in the form of a lemma.

Lemma 3.3. Let G be a family of groups. Let k ≥ 2 and suppose that there exists

some N such that for all primes p ≥ N , we can find a group G(p) ∈ G and an

inverse-closed subset S(p) ⊆ G(p) such that Cay(G(p), S(p)) has diameter k. Suppose

further that there exists a positive constant C,D such that as p→∞,

|G(p)| = Cpk + o(pk), |S(p)| = Dp+ o(p) and that for all p, G(p) \ S(p) contains at

least one involution.

Then in the class of Cayley graphs of the group family G, L−G (k) ≥ C

Dk
.

Proof. It suffices to show that for any sufficiently large degree d, we can find a Cayley

graph of a group in G with degree d, diameter k and order C
Dk
dk + o(dk). Let d be a

degree large enough so that there exists a prime p such that we can find a group G(p)

and a set S(p) satisfying the conditions. We choose p to be the largest such prime so

that |S(p)| ≤ d. We now add any inverse-closed set of size d− |S(p)| chosen from

G(p) \ S(p) to our generating set to obtain a new generating set S′(p). Note that we

can always do this because if we need to add an odd number of generators, we have

an involution in G(p) \ S(p).

Let d′ = |S(p)|. Then d′ = Dp+ o(p). Now we use the result of Baker, Harman and
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Pintz [7] which states that for sufficiently large x, we are guaranteed a prime in the

interval (x, x+ xθ] where θ = 0.525. This means that p = 1
Dd
′ + o(d′) = 1

Dd+ o(d).

Then Cay(G(p), S′(p)) has the required properties.

Lemma 3.3 is applicable for constructions where we are free to choose any sufficiently

large prime p. However, in Section 3.3 we will encounter a construction in which we

are able to select p only from a restricted set of congruence classes modulo 13. To

handle this situation, we now derive a more general result which in some

circumstances allows us still to move from L+ to L− without reduction in the

asymptotic value. In what follows we use the usual notation π(x) to mean the number

of primes not exceeding x. We use φ for Euler’s totient function, so that for n ≥ 2,

φ(n) is the number of positive integers less than n and coprime to it.

Our basic tool is a strong version of the Brun-Titchmarsh theorem, which was proved

by Montgomery and Vaughan and can be stated in the following form.

Lemma 3.4. [58, Theorem 2] Given a non-trivial congruence class

C = {a+ nq : n ∈ Z} with gcd(a, q) = 1 we denote by π(x;C) the number of primes

not exceeding x which are in the class C. Then for any function f with f(x)→∞ as

x→∞, and for sufficiently large x:

π(x+ f(x);C)− π(x;C) ≤ 2f(x)

φ(q) log(f(x)/q)

We use this result to derive a further lemma in a form more suitable for our needs.

Lemma 3.5. Let q > 1 and let a be a positive integer with gcd(a, q) = 1. Let θ be a

positive real number. Then as x→∞, an asymptotic upper bound on the number of

primes in the interval (x, x+ xθ] which are congruent to a mod q is:

2

θφ(q)

xθ

log x

Proof. Take f(x) = xθ in Lemma 3.4.

What we would like to do now is to find a lower bound on all the primes in such an

interval. To do this we revisit the paper of Baker, Harman and Pintz [7] which we

used in the proof of Lemma 3.3. In that proof we used only a rather weak version of

their result. What they actually proved is that for sufficiently large x,

π(x+ xθ)− π(x) ≥ 9

100

xθ

log x
where θ = 0.525
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So if φ(q) ≥ 200
9θ ≈ 42.3, for sufficiently large x we are guaranteed a prime p in the

interval (x, x+ xθ] which lies outside any single congruence class mod q, for example

p 6≡ 1 mod q. This is exactly the kind of result we want, but unfortunately we need it

to work for smaller values of q for our diameter 2 construction.

The idea now is that θ = 0.525 gives a tighter interval than we really need. In fact for

our argument about adding edges to graph constructions in the proof of Lemma 3.3,

we only really need θ < 1. The hope would be that we might find a bound of the form

π(x+ xθ)− π(x) ≥ K xθ

log x

for some θ > 0.525 and K > 9
100 . To do this we turn to the predecessor paper by

Baker and Harman [6, Eq(2)], which says that for sufficiently large x,

π(x)− π(x− y) ≥ 2y

5 log x
for y ≥ x0.54

This lets us use K = 2
5 , θ = 0.54. Using these values we can make the argument work

for any q with φ(q) > 9.3. Thus using exactly the same argument as in the proof of

Lemma 3.3, we have the following lemma which extends that result to the case where

we exclude a single congruence class.

Lemma 3.6. Let q be a positive integer with φ(q) ≥ 10. Let a be any integer coprime

to q. Let G be a family of groups. Let k ≥ 2 and suppose that there exists some N

such that for all primes p ≥ N such that p 6≡ a (mod q), we can find a group G(p) ∈ G
and an inverse-closed subset S(p) ⊆ G(p) such that Cay(G(p), S(p)) has diameter k.

Suppose further that there exists a positive constant C,D such that as p→∞,

|G(p)| = Cpk + o(pk), |S(p)| = Dp+ o(p)) and that for all p, G(p) \ S(p) contains at

least one involution.

Then in the class of Cayley graphs, L−G (k) ≥ C

Dk
.

Ideally we would try to extend this technique further to be valid for even smaller q.

However there is an inherent limitation in this method which means that we must

always have φ(q) > 2. To see why, note that the combination of the inequalities

means that we need φ(q) > 2
Kθ . We seek the best possible values for K and θ, but we

are constrained by θ < 1 to make our construction work. In addition, we must have

K ≤ 1 by the Prime Number Theorem, since the density of primes in the interval

from x is close to 1/ log x. So we can never make this technique work for very small q,

for example 3 or 4.
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3.3 Bounds for diameter 2 circulant graphs

In common with the degree-diameter problem in general, much of the study to date

for the restricted circulant graph problem has concentrated on the diameter 2

undirected case. In this instance, the trivial lower bound on L−(2) is 1/4 and the

trivial upper bound on L+(2) is 1/2.

The best published asymptotic result to date for circulant graphs of diameter 2 is by

Vetŕık [74] (building on Macbeth, Šiagiová and Širáň [53]) who presents a

construction which proves that L+
C(2) ≥ 13

36 ≈ 0.36111.

Vetŕık’s result [74] is valid for all degrees of the form 6p− 2 where p is a prime such

that p > 14, p 6≡ 1 (mod 13). The construction satisfies all the conditions of

Lemma 3.6, and so we can directly apply the lemma to obtain our first result on

circulant graphs as follows.

Theorem 3.7. In the class of circulant graphs,

L−C(2) ≥ 13

36
≈ 0.36111

3.4 A new direct product construction

In this section, we construct large undirected circulant graphs of diameters k = 3, 4, 5

and arbitrary large degree. We also construct large directed circulant graphs of

diameters k = 2, . . . , 9 and arbitrary large degree. We then prove that the approach

used is insufficient to yield values that exceed the trivial lower bound for large

diameter.

The diameter 2 constructions of Vetŕık [74] and earlier similar ideas from other

authors construct cyclic groups of the form F+
p × F ∗p × Zw for some fixed w and

variable p, where F+
p and F ∗p are the additive and multiplicative groups of the Galois

field GF (p). Thus the first two components of their constructions are very tightly

coupled, and this coupling is a key to their success. However, a significant limitation

of this method is that it is only applicable in the diameter 2 case.

In contrast, the constructions considered here have components that are as loosely

coupled as possible. For diameter k, they have the form Zr1 ×Zr2 × . . .×Zrk ×Zw for

some fixed w and variable pairwise coprime ri. This gives us greater flexibility,

especially in terms of the diameters we can achieve. The price for this is that we lose

the inherent structure of the finite field, which consequently places limits on the

bounds we can achieve.

Grahame Erskine



3.4 A new direct product construction 29

Figure 3.1: Every element of Z17 × Z11 is the sum of one of the 21 solid elements
and one of the 9 circled elements.

The constructions in this section make use of the following result concerning the

representation of each element of the cyclic group T = Zr × Zs (r and s coprime) as

the sum of a small multiple of the element (1, 1) and a small multiple of another

element (u, v). It can be helpful to envisage T as a group of vectors on the r × s
discrete torus.

Lemma 3.8. Let u, d, s and m be positive integers with s > 1 and coprime to md.

Let v = u+ d. Suppose s ≥ mv(u− 1). Then, for every element (x, y) of

T = Zs+md × Zs, there exist nonnegative integers h < s+mv and ` < s−m(u− 1)

such that (x, y) = h(1, 1) + `(u, v).

Observe that the construction ensures that (s+mv)(1, 1) = m(u, v). Figure 3.1

illustrates the case with parameters u = 2, v = 5, s = 11, m = 2.

Proof (Bevan). Let t = s−m(u− 1). Since s is coprime to md, (1, 1) generates T.

Hence, it suffices to show that, in the list (0, 0), (1, 1), (2, 2), . . ., the gaps between

members of {`(u, v) : 0 ≤ ` < t} are not “too large”.

Specifically, we need to show that, for each nonnegative ` < t, there is some positive

h′ ≤ s+mv and nonnegative `′ < t such that `(u, v) + h′(1, 1) = `′(u, v).

There are two cases. If ` < t−m, then we can take h′ = s+mv and `′ = `+m:

`(u, v) + (s+mv)(1, 1) = (`u+ s+mu+md, `v + s+mv)

= (`u +mu, `v +mv)

= (`+m)(u, v).
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If ` ≥ t−m, then we can take h′ = muv and `′ = `+m− t = `+mu− s:

`(u, v) + muv(1, 1) = (`u+mu2 +mud, `v +muv)

= (`u+mu2 +mud− u(s+md), `v +muv − vs)

= (`+mu− s)(u, v).

The requirement that muv ≤ s+mv is clearly equivalent to the condition on s in the

statement of the lemma.

In our direct product constructions, we make use of Lemma 3.8 as follows:

Lemma 3.9. Let T = Zr1 × Zr2 × . . .× Zrk such that r1 > r2 > . . . > rk, and for each

i, j with 1 ≤ i < j ≤ k,

• ri and rj are coprime,

• ri is coprime with i,

• there is a positive integer mi,j such that ri − rj = mi,j(j − i) and

rj ≥ mi,j(i− 1)j.

Let o = (1, 1, . . . , 1), u = (1, 2, . . . , k) and, for each i, ei = (0, . . . , 0, 1, 0, . . . , 0) be

elements of T, where only the ith coordinate of ei is 1, and let the set A consist of

these k + 2 elements.

Let co = max
i<j

(rj + jmi,j), cu = r1, and for each i, cei = ri.

Then, for every element x of T and every k-element subset S of A, there exist

nonnegative integers hs < cs for each s ∈ S, such that x =
∑

s hss.

Proof (Bevan). There are four cases. If S contains neither o nor u, the result follows

trivially.

If S contains o but not u, omitting ei, then we can choose ho to be the ith coordinate

of x. Note that, as required, co ≥ r2 + 2(r1 − r2) = r1 + (r1 − r2) > ri for all i.

If S contains u but not o, omitting ei, then, since i and ri are coprime, we can choose

hu such that ihu (mod ri) is the ith coordinate of x.

Finally, if S contains both o and u, omitting ei and ej , then we can choose ho and hu

by applying Lemma 3.8 to Zri × Zrj with (u, v) = (i, j).
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3.4.1 Undirected constructions

We can use Lemma 3.9 to construct undirected circulant graphs of any diameter by

means of the following theorem.

Theorem 3.10. Let w and k be positive integers and suppose that there exist sets B

and T of positive integers with the following properties:

• B = {b1, . . . , bk+2} has cardinality k + 2 and the property that every element of

Zw can be expressed as the sum of exactly k distinct elements of B ∪ −B, no

two of which are inverses.

• T = {r1, r2, . . . , rk} has cardinality k and the properties that all its elements are

coprime to w, and it satisfies the requirements of Lemma 3.9, i.e. for each

i < j:

– ri > rj

– (ri, rj) = 1

– (ri, i) = 1

– There is a positive integer mi,j such that ri − rj = mi,j(j − i) and

rj ≥ mi,j(i− 1)j.

Let co = max
i<j

(rj + jmi,j) and cu = r1 as in Lemma 3.9.

Then there exists an undirected circulant graph of order w
k∏
i=1

ri, degree at most

2

(
k∑
i=1

ri + co + cu

)
and diameter k.

Proof (Bevan). Let T = Zr1 × Zr2 × . . .× Zrk × Zw. Then T is a cyclic group since all

its factors have coprime orders.

Let X be the generating set consisting of the following elements.

• (x, 0, 0, . . . , 0,±b1), x ∈ Zr1

• (0, x, 0, . . . , 0,±b2), x ∈ Zr2
...

• (0, 0, . . . , 0, x,±bk), x ∈ Zrk

• ±(x, x, . . . , x, x, bk+1), 0 ≤ x < co

• ±(x, 2x, . . . , (k − 1)x, kx, bk+2), 0 ≤ x < cu

Then by construction and by Lemma 3.9, every element of T is the sum of at most k

elements of X. Since |T| = w

k∏
i=1

ri and |X| = 2

(
k∑
i=1

ri + co + cu

)
, the result

follows.
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For small diameters this technique results in the following asymptotic bounds.

Theorem 3.11. For diameters k = 3, 4, 5, we have the following lower bounds on

L−C(k) and R−C(k):

(a) L+
C(3) ≥ 57

1000 and L−C(3) ≥ 7
125 , so R+

C(3) > 1.15455 and R−C(3) > 1.14775.

(b) L+
C(4) ≥ L−C(4) ≥ 25

3456 , so R+
C(4) ≥ R−C(4) > 1.16654.

(c) L+
C(5) ≥ L−C(5) ≥ 109

134456 , so R+
C(5) ≥ R−C(5) > 1.20431.

Proof. Given a diameter k, the strategy is to find an optimal value of w which admits

a set B satisfying the conditions of Theorem 3.10. We then seek an infinite family of

positive integers q and a set ∆ = {δ1, δ2, . . . , δk−1} such that for each of our values of

q, the set T = {q, q − δ1, . . . , q − δk−1} satisfies the conditions of the theorem. We

illustrate for k = 3.

To prove (a) we take w = 57 and B = {1, 2, 7, 8, 27}. It is easily checked that every

element of Z57 is the sum of three distinct elements of B ∪ −B, no two of which are

inverses. Now we let ∆ = {4, 6}. For any q ≥ 17, q ≡ 5 (mod 6), q 6≡ 0, 4, 6 (mod 19)

it is straightforward to verify that the set T = {q, q − 4, q − 6} satisfies the conditions

of Theorem 3.10. In the notation of Lemma 3.9, we have co = q + 4.

Taking a generating set X as defined in Theorem 3.10 we may construct a circulant

graph of diameter 3, degree d = |X| = 10q − 12 and order

57q(q − 4)(q − 6) = 57
1000(d+ 12)(d− 28)(d− 48).

We can do this for an infinite number of values of q, and hence for an infinite number

of values of d = 10q − 12 we have

CC(d, 3) ≥ 57

1000
(d+ 12)(d− 28)(d− 48).

This yields L+
C(3) ≥ 57

1000 . Now we need to consider L−C(3). The strategy will be to try

to add “few” edges to our graphs to cover all possible degrees. Observe that we can

use this construction for any q ≡ 17 (mod 114) and hence for any d ≡ 158

(mod 1140). Given any arbitrary even degree d, we can therefore find some d′ no

smaller than d− 1140 for which the construction works. We can then add d− d′

generators to our graph to obtain a graph of the same order, degree d and diameter 3.

However our graphs always have odd order, and so we are unable to obtain an odd

degree graph by this method. To get round this problem we may use w = 56,

B = {1, 2, 7, 14, 15}, ∆ = {2, 4} and co = q + 2. Again it is easy to check that the
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relevant conditions are satisfied for any q ≥ 15 such that q ≡ 3, 5 (mod 6) and

q ≡ 1, 3, 5, 6 (mod 7). Then for d = 10q − 8 we can construct a graph of order

7
25(d+ 8)(d− 12)(d− 32), degree d and diameter 3. We can do this for any q ≡ 15

(mod 42) and hence for any d ≡ 142 (mod 420). So given any arbitrary degree d, we

can therefore find some d′ no smaller than d− 420 for which the construction works,

and then add d− d′ generators to our graph to obtain a graph of the same order and

diameter 3. (Since our graphs now have even order it is possible to add an odd

number of generators.) Since the number of added generators is bounded above (by

419), the order of the graph is 7
125d

3 +O(d2). Result (a) for L−C(3) follows.

For (b) and (c) we adopt a similar method. For brevity we show only the relevant

sets in the construction, summarised as follows.

(b) (k = 4) – Take w = 150, B = {1, 7, 16, 26, 41, 61} and ∆ = {6, 8, 12} so co = q + 6.

Then for q ≥ 49, q ≡ 19 (mod 30) and d = 12q − 40, we have

CC(d, 4) ≥ 25

3456
(d+ 40)(d− 32)(d− 56)(d− 104).

(c) (k = 5) – Take w = 436, B = {1, 15, 43, 48, 77, 109, 152} and ∆ = {0, 4, 10, 12, 16}
so co = q + 8. Then for q ≥ 77, q ≡ 5 (mod 6), q 6≡ 0, 1 (mod 5), q 6≡ 0, 4, 10, 12, 16

(mod 109) and d = 14q − 68, we have

CC(d, 5) ≥ 109

134456
(d+ 68)(d+ 12)(d− 72)(d− 100)(d− 156).

3.4.2 Directed constructions

An analogous method yields directed circulant graphs via the following theorem.

Theorem 3.12. Let w and k be positive integers and suppose that there exist sets B

and T of positive integers with the following properties:

• B = {0, b2, . . . , bk+2} has cardinality k + 2 and the property that every element

of Zw can be expressed as the sum of exactly k distinct elements of B.

• T = {r1, r2, . . . , rk} has cardinality k and the properties that all its elements are

coprime to w, and it satisfies the requirements of Lemma 3.9, i.e. for each i < j:

(a) ri > rj

(b) (ri, rj) = 1

(c) (ri, i) = 1

(d) There is a positive integer mi,j such that ri − rj = mi,j(j − i) and

rj ≥ mi,j(i− 1)j.
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Let co = max
i<j

(rj + jmi,j) and cu = r1 as in Lemma 3.9.

Then we may construct a directed circulant graph of order w

k∏
i=1

ri, degree

k∑
i=1

ri + co + cu − 1 and diameter k.

Proof. Let T = Zr1 × Zr2 × . . .× Zrk × Zw. Then T is a cyclic group since all its

factors have coprime orders.

Let X be the generating set consisting of the following elements.

• (x, 0, 0, . . . , 0, 0), x ∈ Zr1 \ {0}

• (0, x, 0, . . . , 0, b2), x ∈ Zr2
...

• (0, 0, . . . , 0, x, bk), x ∈ Zrk

• (x, x, . . . , x, x, bk+1), 0 ≤ x < co

• (x, 2x, . . . , (k − 1)x, kx, bk+2), 0 ≤ x < cu

Then by construction and by Lemma 3.9, every element of T is the sum of at most k

elements of X. Since |T| = w

k∏
i=1

ri and |X| =
k∑
i=1

ri + co + cu − 1, the result

follows.

For small diameters this technique results in the following asymptotic bounds.

Theorem 3.13. For diameters k = 2, . . . , 9, we have the following lower bounds on

L−D(k) and R−D(k)

(a) L−D(2) ≥ 3
8 , so R−D(2) > 1.22474.

(b) L−D(3) ≥ 9
125 , so R−D(3) > 1.24805.

(c) L−D(4) ≥ 13
1296 , so R−D(4) > 1.26588.

(d) L−D(5) ≥ 17
16807 , so R−D(5) > 1.25881.

(e) L−D(6) ≥ 3
32768 , so R−D(6) > 1.27378.

(f) L−D(7) ≥ 10
1594323 , so R−D(7) > 1.26436.

(g) L−D(8) ≥ 9
25000000 , so R−D(8) > 1.25206.

(h) L−D(9) ≥ 42
2357947691 , so R−D(9) > 1.23939.
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Proof. The method is exactly the same as the proof of Theorem 3.11 and we

summarise as follows.

(a) (k = 2) – Take w = 6, B = {0, 1, 2, 4}, ∆ = {2} so co = q + 2. Then for

q ≥ 7, q ≡ 1 (mod 6) and d = 4q − 1, we have

DCC(d, 2) ≥ 3

8
(d+ 1)(d− 7).

(b) (k = 3) – Take w = 9, B = {0, 1, 2, 3, 6}, ∆ = {4, 6} so co = q + 4. Then for

q ≥ 17, q ≡ 5 (mod 6) and d = 5q − 7, we have

DCC(d, 3) ≥ 9

125
(d+ 7)(d− 13)(d− 23).

(c) (k = 4) – Take w = 13, B = {0, 1, 3, 5, 7, 8}, ∆ = {2, 4, 6} so co = q + 2. Then for

q ≥ 23, q ≡ 5 (mod 6), q 6≡ 0, 2, 4, 6 (mod 13) and d = 6q − 11, we have

DCC(d, 4) ≥ 13

1296
(d+ 11)(d− 1)(d− 13)(d− 25).

(d) (k = 5) – Take w = 17, B = {0, 1, 2, 3, 4, 8, 13}, ∆ = {4, 10, 12, 16} so co = q + 8.

Then for q ≥ 77, q ≡ 5 (mod 6), q 6≡ 0, 1 (mod 5), q 6≡ 0, 4, 10, 12, 16 (mod 17) and

d = 7q − 35, we have

DCC(d, 5) ≥ 17

16807
(d+ 35)(d+ 7)(d− 35)(d− 49)(d− 77).

(e) (k = 6) – Take w = 24, B = {0, 1, 2, 4, 8, 13, 18, 22}, ∆ = {6, 12, 18, 24, 30} so

co = q + 6. Then for q ≥ 181, q ≡ 1, 5 (mod 6), q 6≡ 0, 4 (mod 5) and d = 8q − 85, we

have

DCC(d, 6) ≥ 3

32768
(d+ 85)(d+ 37)(d− 11)(d− 59)(d− 107)(d− 155).

(f) (k = 7) – Take w = 30, B = {0, 1, 2, 6, 9, 12, 16, 17, 18}, ∆ = {0, 2, 6, 18, 20, 30, 42}
so co = q + 42. Then for q ≥ 529, q ≡ 1 (mod 6), q ≡ 4 (mod 5), q 6≡ 0, 2, 6

(mod 7), q 6≡ 9 (mod 11) and d = 9q − 77, we have

DCC(d, 7) ≥ 10

1594323
(d+ 77)(d+ 59)(d+ 23)(d− 85)(d− 103)(d− 193)(d− 301).

(g) (k = 8) – Take w = 36, B = {0, 1, 2, 3, 6, 12, 19, 20, 27, 33},
∆ = {0, 6, 12, 18, 24, 30, 36, 42} so co = q + 6. Then for q ≥ 353, q ≡ 1, 5
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(mod 6), q ≡ 3 (mod 5), q 6≡ 0, 1 (mod 7) and d = 10q − 163, we have

DCC(d, 8) ≥ 9

25000000
(d+ 163)(d+ 103)(d+ 43)(d− 17)(d− 77)

(d− 137)(d− 197)(d− 257).

(h) (k = 9) – Take w = 42, B = {0, 1, 2, 3, 4, 9, 16, 20, 26, 30, 37},
∆ = {0, 2, 6, 12, 20, 30, 42, 56, 72} so co = q + 72. Then for q ≥ 1093, q ≡ 1

(mod 6), q ≡ 3, 4 (mod 5), q ≡ 1, 3, 4 (mod 7), q 6≡ 1, 6, 9 (mod 11), q 6≡ 4, 7 (mod 13)

and d = 11q − 169, we have

DCC(d, 9) ≥ 42

2357947691
(d+ 169)(d+ 147)(d+ 103)(d+ 37)(d− 51)

(d− 161)(d− 293)(d− 447)(d− 623).

3.4.3 Limitations

In [49], Lewis showed that an analogous class of constructions using finite fields to

create graphs of diameter 2 is limited by the bound L−C(2) ≤ 3
8 . By extending this

logic, we can show that the constructions in this section have a similar limitation:

Theorem 3.14. Let k be a positive integer. The direct product constructions of

Theorems 3.10 and 3.12 can never yield a lower bound on L−C(k) or L−D(k) that

exceeds k+1
2(k+2)k−1 .

Proof (Lewis). First we consider the undirected case. Suppose the requirements of

Theorem 3.10 hold and for each i = 1, . . . , k, we have ri = q − ai, where

a1 < a2 < . . . < ak. Let T = Zq−a1 × . . .× Zq−ak × Zw and X be its generating set as

in the proof of Theorem 3.10.

Since every element of Zw is a sum of k distinct elements of B, no pair of which are

inverses, we must have w ≤
(
k+2
k

)
2k = (k + 1)(k + 2)2k−1.

By the requirements of Lemma 3.9, for any i < j, we have mi,j ≤ ri − rj and

co = max
i<j

(rj + jmi,j). Hence, since ri = q − ai, we have mi,j ≤ ak − a1, and so

co ≤ q + kak.

Thus X is the generating set for a Cayley graph on T with diameter k, degree d no

greater than 2(k + 2)q − 2
∑k

i=1 ai + 2kak − 2a1, and order

n = w(q − a1)(q − a2) . . . (q − ak).
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Hence:

n =
w

(2(k + 2))k
dk +O(dk−1) ≤ (k + 1)(k + 2)2k−1

((2(k + 2))k
dk +O(dk−1)

=
k + 1

2(k + 2)k−1
dk +O(dk−1)

as required.

The directed case is analogous. We follow Theorem 3.12 and its proof. In this case,

every element of Zw is the sum of k distinct elements of B, so

w ≤
(
k+2
k

)
= (k + 1)(k + 2)/2, and X is the generating set for a Cayley graph on T

with diameter k, degree d ≤ (k + 2)q −
∑k

i=1 ai + kak − a1 − 1, and order

n = w(q − a1)(q − a2) . . . (q − ak).

Hence, n = w
(k+2)k

dk +O(dk−1) ≤ (k+1)(k+2)
2(k+2)k

dk +O(dk−1) = k+1
2(k+2)k−1d

k +O(dk−1).

Observe that, in the limit,

lim
k→∞

k

(
k + 1

2(k + 2)k−1

)1/k
= 1.

As a consequence, these direct product constructions themselves can never yield an

improvement on the trivial lower bound for the limiting value of R−C(k) or R−D(k).

However, it is possible to combine graphs of small diameter to produce larger graphs

in such a way that we can improve on the trivial lower bound in the limit as the

diameter increases. The next section introduces this idea.

3.5 A general graph product construction

The following theorem gives a simple way to combine two cyclic Cayley graphs to

obtain a third cyclic Cayley graph. It is valid in both the directed and undirected

cases.

Theorem 3.15. Let Γ1 and Γ2 be two cyclic Cayley graphs of diameters k1 and k2,

orders n1 and n2, and degrees d1 and d2 respectively. In the case of undirected graphs

where d1 and d2 are both odd let δ = 1, otherwise δ = 0. In the directed case let δ = 0

always. Then there exists a cyclic Cayley graph with diameter k1 + k2, degree at most

d1 + d2 + δ, and order n1n2.

Proof. Let S1 be the connection set of Γ1 so that |S1| = d1 and similarly for Γ2. For

convenience we consider each Si to consist of elements within the interval
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(−ni/2, ni/2]. Let G be the cyclic group Zn1n2 and consider the connection set

S′ = n2S1 ∪ S2. Then |S′| ≤ n1 + n2.

We now construct a connection set S for the group G such that the Cayley graph

Cay(G,S) has diameter k1 + k2. In the directed case we may simply take S = S′. In

the undirected case we need to ensure that S = −S. If at least one of d1, d2 is even we

may assume without loss of generality that d2 is even and then we may again let

S = S′ and S = −S by construction.

It remains to consider the undirected case when d1 and d2 are both odd (the case

δ = 1). In that case we know n2/2 ∈ S2 ⊂ S′ and we let S = S′ ∪ {−n/2} so that

S = −S.

It is then clear that the Cayley graph Cay(G,S) has degree at most d1 + d2 + δ,

diameter k1 + k2 and order n1n2.

We can use this construction to obtain lower bounds on our L and R values for large

diameters, given values for smaller diameters.

Corollary 3.16. If L(k) is one of L−C(k), L+
C(k), L−D(k) or L+

D(k) and R(k) is one of

R−C(k), R+
C(k), R−D(k) or R+

D(k), then

(a) L(k1 + k2) ≥
L(k1)L(k2)k

k1
1 kk22

(k1 + k2)k1+k2

(b) R(k1 + k2) ≥
(
R(k1)

k1R(k2)
k2
) 1
k1+k2

Proof. (a) Let d > 1. For i = 1, 2 we may construct graphs Γi of diameter ki, degree

kid and order L(ki)(kid)ki + o(dki). Theorem 3.15 yields a product graph of diameter

k1 + k2, degree at most (k1 + k2)d+ 1 and order L(k1)L(k2)k
k1
1 k

k2
2 d

k1+k2 + o(dk1+k2).

Part (b) follows by straightforward algebraic manipulation.

In particular, we note that the general product construction of Theorem 3.15

preserves lower bounds on the R values: R(mk) ≥ R(k) for every positive integer m.

We may use this idea to obtain better bounds for some particular diameters; for

example we may improve on the undirected diameter 4 construction in Theorem 3.11:

Corollary 3.17.

L+
C(4) ≥ L−C(4) ≥ 169

20736
≈ 0.0081501
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Diameter (k)

2 3 4 5 6 7 8 9

Rmax(k) ≈ 1.41421 1.65096 1.80720 1.91926 2.00415 2.07100 2.12520 2.17016

R+
C(k) > 1.20185a 1.15455d 1.20185c 1.20431d 1.20185f 1.20360f 1.20185f 1.20321f

R−C(k) > 1.20185b 1.14775d 1.20185c 1.20431d 1.20185f 1.20360f 1.20185f 1.20321f

R−D(k) > 1.22474e 1.24805e 1.26588e 1.25881e 1.27378e 1.26436e 1.26588f 1.26514f

Table 3.1: The best R values for diameter k ≤ 9
a. Vetŕık [74]; b. Theorem 3.7; c. Corollary 3.17;
d. Theorem 3.11; e. Theorem 3.13; f . Corollary 3.16

and hence

R+
C(4) ≥ R−C(4) > 1.20185

Proof. We note L−C(2) ≥ 13
36 from Theorem 3.7 and apply Corollary 3.16 with

k1 = k2 = 2.

Theorem 3.15 can be iterated to produce a construction for any desired diameter, and

Corollary 3.16 then gives us a lower bound for the R values for that diameter. We

illustrate the results for small diameter k in Table 3.1. As an indicator of progress we

show also the largest possible value of R for a particular k, given by

Rmax(k) = k(k!)−1/k.

It is worth noting that the method of Corollary 3.16 may be used to produce values of

R which are larger than those achievable from the direct product constructions of

Section 3.4. For example, the limitations noted in Theorem 3.14 show that the

maximum possible value of R−D(10) we could achieve using Theorem 3.12 is

approximately 1.26699. However, combining the results for diameters 4 and 6 in

Table 3.1 yields R−D(10) > 1.27061.

Next we use our previous results to show that R is well-behaved in the limit.

Theorem 3.18. Let L(k) be one of L−C(k), L+
C(k), L−D(k) or L+

D(k), and let

R(k) = kL(k)1/k. The limit R = lim
k→∞

R(k) exists and is equal to supR(k).

Proof (Bevan). R(k) is bounded above (by e), so s = supR(k) is finite. Hence, given

ε > 0, we can choose k so that s−R(k) < ε/2. By Corollary 3.16(b), R(mk) ≥ R(k)

for every positive integer m. Moreover, for any fixed j < k, since R(j) ≥ 1, we have

R(mk + j) ≥ R(k)mk/(mk+j) ≥ R(k)m/(m+1), which, by choosing m large enough, can

be made to differ from R(k) by no more than ε/2.

Corollary 3.19.
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(a) lim
k→∞

R−C(k) ≥ 5× 1091/5

7× 23/5
> 1.20431

(b) lim
k→∞

R−D(k) ≥ 37/6

23/2
> 1.27378

Proof. We choose the largest entry in the relevant row in Table 3.1. For (a) we know

from Theorem 3.11 that L−C(5) ≥ 109

23 × 75
. For (b) we know from Theorem 3.13 that

L−D(6) ≥ 3

215
.

We conclude this section by using the foregoing to derive new lower bounds for the

maximum possible orders of circulant graphs of given diameter and sufficiently large

degree.

Theorem 3.20.

(a) For any diameter k ≥ 2 and any degree d large enough, CC(d, k) >
(
1.14775 dk

)k
.

(b) For any diameter k that is a multiple of 5 or sufficiently large, and any degree d

large enough, CC(d, k) >
(
1.20431 dk

)k
.

(c) For any diameter k ≥ 2 and any degree d large enough,

DCC(d, k) >
(
1.22474 dk

)k
.

(d) For any diameter k that is a multiple of 6 or sufficiently large, and any degree d

large enough, DCC(d, k) >
(
1.27378 dk

)k
.

Proof.

(a) Corollary 3.19 shows that for any k large enough, R−C(k) > 1.20431. We cannot

choose a constant larger that 1.14775 because this value of R−C appears in

Table 3.1 at diameter 3.

(b) For k a multiple of 5, we know from Theorem 3.11 and Corollary 3.16 that

R−C(k) > 1.20431. The result for sufficiently large k follows from Corollary 3.19.

(c) and (d) follow by using similar logic in the directed case.

These represent significant improvements over the trivial bound of

(
d

k

)k
.
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3.6 Application to sumsets covering Zn

Our constructions of directed circulant graphs can be used to obtain an upper bound

on the minimum size, SS(n, k), of a set A ⊂ Zn for which the sumset

kA = A+A+ . . .+A︸ ︷︷ ︸
k

= Zn.

The trivial bound is SS(n, k) ≤ kn1/k which follows in the same way as the trivial

lower bound for the directed circulant graph (see Observation 3.2). Improvements to

this trivial bound do not appear to have been investigated in the literature.

The idea is that, given S ⊆ Zn such that Cay(Zn, S) has diameter k, if we let

A = S ∪ {0} then kA = Zn. Our constructions thus enable us to bound SS(n, k) for

fixed k and infinitely many values of n. For example, if we let

L−S (k) = lim inf
n→∞

SS(n, k)/n1/k, then the following new result for k = 2 follows from

Theorem 3.13(a):

Corollary 3.21. L−S (2) ≤
√

8
3 ≈ 1.63299.

More generally, Corollary 3.19 shows that for large enough k and infinitely many

values of n, SS(n, k) is at least 21 percent smaller than the trivial bound:

Corollary 3.22. lim
k→∞

k−1L−S (k) ≤ 23/2

37/6
≈ 0.78506.

These covering sumsets are an interesting area of study in their own right, and we will

return to the topic in Chapter 8.

3.7 Searching for optimal graphs

We can use the construction of Theorem 3.15 to obtain large undirected circulant

graphs for small degrees and diameters. Recently in [32], Feria-Puron, Pérez-Rosés

and Ryan published a table of largest known circulant graphs with degree up to 16

and diameter up to 10. Their method uses a construction based on graph Cartesian

products which is somewhat similar to ours. In contrast, however, Theorem 3.15 does

not in general result in a graph isomorphic to the Cartesian product of the

constituents. Furthermore, our construction does not require the constituent graph

orders to be coprime, which allows more graphs to be constructed.

Using Theorem 3.15 allowed us to improve many of the entries in the published table.

However, at the same time we developed a computer search algorithm which allows us
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42 3 The degree-diameter problem for circulant graphs

to find circulant graphs of given degree, diameter and order. It turns out that this

search is able to find larger graphs (at least in the range d ≤ 16, k ≤ 10) than the

Theorem 3.15 method. We therefore describe this algorithm and present a much

improved table of largest known circulant graphs.

3.7.1 The algorithm

We begin with a given order n, degree d and diameter k. We attempt to find a subset

S ⊆ Zn with |S| = d such that Cay(Zn, S) has diameter k. As usual, this involves

trying to find a generating set S = {±s1,±s2, . . . ,±sf} such that any element of Zn
can be expressed as a sum of at most k elements of S. (If the degree d is odd, we must

have the unique involution n/2 as an additional member of any generating set S.) The

number f = bd2c is the dimension of the problem; that is, the number of choices of

elements si we need to make. It will be convenient for us to consider the reduced form

r(S) of a generating set S, where r(S) = {s1, s2, . . . , sf} consists only of elements si

in the range 1 . . . bn−12 c. For clarity, we always write r(S) in numerical order so that

s1 < s2 < · · · < sf . It is clear that the set S can be recovered from r(S) uniquely.

A naive approach to the search would be simply to carry out an exhaustive

enumeration of possible reduced generating sets r(S) and then test whether each

leads to a diameter k graph. However, for moderately large d, k or n, this procedure

quickly becomes infeasible. To reduce the search space we employ two specific

techniques. The first is a variation on a traditional “branch and bound” algorithm.

We view the search space as a tree, with each branch of the tree represented by a

partial reduced set {s1, s2, . . . , sm} for some m ≤ f . The subtree of the search space

represented by this branch consists of all the full reduced sets of size f which begin

with these m elements. We search the tree depth first in lexicographic order; that is to

say, we order the reduced sets first by their smallest element, then by their second

smallest if there is a tie and so on. In every branch, the algorithm keeps track of how

many elements of Zn have been covered so far by sums of up to k of the reduced set of

size m. It is straightforward to calculate the maximum possible number of uncovered

elements which may become covered by adding the remaining f −m choices to the

reduced set. If this is insufficient to cover the whole of Zn, we can discard the branch

and avoid searching the subtree.

The second search reduction technique uses the idea of isomorphism avoidance. Given

a Cayley graph Cay(G,S) on some group G and some automorphism φ of G, it can be

shown (for example Biggs [12, Proposition 16.2]) that the graph Cay(G,φ(S)) is

isomorphic to Cay(G,S). In the case of cyclic groups, the automorphisms of Zn are
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precisely the maps φα : x 7→ αx where gcd(α, n) = 1. An automorphism φα of Zn acts

on a reduced set r(S) in a natural way by defining:

φα(r(S)) = r({αs : s ∈ S}).

In this way, the orbit of a reduced set under the action of the automorphism group of

Zn is the set:

Orb(r(S)) = {φα(r(S)) : gcd(α, n) = 1}.

The idea now is that a branch represented by a reduced set need not be searched if we

have already searched another branch in the same orbit. To that end we define the

canonical orbit representative CR of a reduced set r(S) to be:

CR(r(S)) = min(Orb(r(S)))

where of course the minimum is taken with respect to the lexicographic ordering.

We implement this technique by computing, at the start of processing of a branch, its

canonical orbit representative. If this is smaller, we can skip the branch. For practical

purposes, we only implement this test down to a fixed depth in the search tree, since

otherwise the overhead of computation would outweigh the gains.

The combination of these techniques has allowed us to make substantial

improvements to the table of largest known circulant graphs, which we now present.

3.7.2 Revised table

In Table 3.2, we show the largest known circulant graphs of degree d ≤ 16 and

diameter k ≤ 10. In Table 3.3 we give a reduced generating set r(S) for each new

record largest graph found. The computer search described has been completed as an

exhaustive search in the diameter 2 case up to degree 23, and these results are

included in Table 3.3 for completeness.
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d \ k 1 2 3 4 5 6 7 8 9 10
2 3 5 7 9 11 13 15 17 19 21
3 4 8 12 16 20 24 28 32 36 40
4 5 13 25 41 61 85 113 145 181 221
5 6 16 36 64 100 144 196 256 324 400
6 7 21 55 117 203 333 515 737 1027 1393
7 8 26 76 160 308 536 828 1232 1764 2392
8 9 35 104 248 528 984 1712 2768 4280 6320
9 10 42 130 320 700 1416 2548 4304 6804 10320

10 11 51 177 457 1099 2380† 4551† 8288† 14099† 22805†

11 12 56 210 576 1428† 3200† 6652† 12416† 21572† 35880†

12 13 67 275 819† 2040† 4283† 8828† 16439† 29308† 51154†

13 14 80 312 970† 2548† 5598† 12176† 22198† 40720† 72608†

14 15 90 381 1229† 3244† 7815† 17389† 35929† 71748† 126109†

15 16 96 448 1420† 3980† 9860† 22584† 48408† 93804† 177302†

16 17 112 518† 1717† 5024† 13380† 32731† 71731† 148385† 298105†

Table 3.2: Largest known circulant graphs of degree d ≤ 16 and diameter k ≤ 10
† new record largest value
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d k Order Generators
6 2 21* 1, 2, 8
6 3 55* 1, 5, 21
6 4 117* 1, 16, 22
6 5 203* 1, 7, 57
6 6 333* 1, 9, 73
6 7 515* 1, 46, 56
6 8 737* 1, 11, 133
6 9 1027* 1, 13, 157
6 10 1393* 1, 92, 106
7 2 26* 1, 2, 8
7 3 76* 1, 27, 31
7 4 160* 1, 5, 31
7 5 308* 1, 7, 43
7 6 536* 1, 231, 239
7 7 828* 1, 9, 91
7 8 1232* 1, 11, 111
7 9 1764* 1, 803, 815
7 10 2392* 1, 13, 183
8 2 35* 1, 6, 7, 10
8 3 104* 1, 16, 20, 27
8 4 248* 1, 61, 72, 76
8 5 528* 1, 89, 156, 162
8 6 984* 1, 163, 348, 354
8 7 1712* 1, 215, 608, 616
8 8 2768 1, 345, 1072, 1080
8 9 4280 1, 429, 1660, 1670
8 10 6320 1, 631, 2580, 2590
9 2 42* 1, 5, 14, 17
9 3 130* 1, 8, 14, 47
9 4 320* 1, 15, 25, 83
9 5 700* 1, 5, 197, 223
9 6 1416 1, 7, 575, 611
9 7 2548 1, 7, 521, 571
9 8 4304 1, 9, 1855, 1919
9 9 6804 1, 9, 1849, 1931
9 10 10320 1, 11, 4599, 4699

10 2 51* 1, 2, 10, 16, 23
10 3 177* 1, 12, 19, 27, 87
10 4 457* 1, 20, 130, 147, 191
10 5 1099* 1, 53, 207, 272, 536
10 6 2380 1, 555, 860, 951, 970
10 7 4551 1, 739, 1178, 1295, 1301
10 8 8288 1, 987, 2367, 2534, 3528
10 9 14099 1, 1440, 3660, 3668, 6247
10 10 22805 1, 218, 1970, 6819, 6827
11 2 56* 1, 2, 10, 15, 22
11 3 210* 1, 49, 59, 84, 89
11 4 576* 1, 9, 75, 155, 179
11 5 1428 1, 169, 285, 289, 387
11 6 3200 1, 259, 325, 329, 1229
11 7 6652 1, 107, 647, 2235, 2769
11 8 12416 1, 145, 863, 4163, 5177
11 9 21572 1, 663, 6257, 10003, 10011
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d k Order Generators
11 10 35880 1, 2209, 5127, 5135, 12537
12 2 67* 1, 2, 3, 13, 21, 30
12 3 275* 1, 16, 19, 29, 86, 110
12 4 819 7, 26, 119, 143, 377, 385
12 5 2040 1, 20, 24, 152, 511, 628
12 6 4283 1, 19, 100, 431, 874, 1028
12 7 8828 1, 29, 420, 741, 2727, 3185
12 8 16439 1, 151, 840, 1278, 2182, 2913
12 9 29308 1, 219, 1011, 1509, 6948, 8506
12 10 51154 1, 39, 1378, 3775, 5447, 24629
13 2 80* 1, 3, 9, 20, 25, 33
13 3 312* 1, 14, 74, 77, 130, 138
13 4 970 1, 23, 40, 76, 172, 395
13 5 2548 1, 117, 121, 391, 481, 1101
13 6 5598 1, 12, 216, 450, 1204, 2708
13 7 12176 1, 45, 454, 1120, 1632, 1899
13 8 22198 1, 156, 1166, 2362, 5999, 9756
13 9 40720 1, 242, 3091, 4615, 5162, 13571
13 10 72608 1, 259, 4815, 8501, 8623, 23023
14 2 90* 1, 4, 10, 17, 26, 29, 41
14 3 381* 1, 11, 103, 120, 155, 161, 187
14 4 1229 1, 8, 105, 148, 160, 379, 502
14 5 3244 1, 108, 244, 506, 709, 920, 1252
14 6 7815 1, 197, 460, 696, 975, 2164, 3032
14 7 17389 1, 123, 955, 1683, 1772, 2399, 8362
14 8 35929 1, 796, 1088, 3082, 3814, 13947, 14721
14 9 71748 1, 1223, 3156, 4147, 5439, 11841, 25120
14 10 126109 1, 503, 4548, 7762, 9210, 9234, 49414
15 2 96* 1, 2, 3, 14, 21, 31, 39
15 3 448* 1, 10, 127, 150, 176, 189, 217
15 4 1420 1, 20, 111, 196, 264, 340, 343
15 5 3980 1, 264, 300, 382, 668, 774, 1437
15 6 9860 1, 438, 805, 1131, 1255, 3041, 3254
15 7 22584 1, 1396, 2226, 2309, 2329, 4582, 9436
15 8 48408 1, 472, 2421, 3827, 4885, 5114, 12628
15 9 93804 1, 3304, 4679, 9140, 10144, 10160, 13845
15 10 177302 1, 2193, 8578, 18202, 23704, 23716, 54925
16 2 112* 1, 4, 10, 17, 29, 36, 45, 52
16 3 518 1, 8, 36, 46, 75, 133, 183, 247
16 4 1717 1, 46, 144, 272, 297, 480, 582, 601
16 5 5024 1, 380, 451, 811, 1093, 1202, 1492, 1677
16 6 13380 1, 395, 567, 1238, 1420, 1544, 2526, 4580
16 7 32731 1, 316, 1150, 1797, 2909, 4460, 4836, 16047
16 8 71731 1, 749, 4314, 7798, 10918, 11338, 11471, 25094
16 9 148385 1, 6094, 6964, 10683, 11704, 14274, 14332, 54076
16 10 298105 1, 5860, 11313, 15833, 21207, 26491, 26722, 99924
17 2 130* 1, 7, 26, 37, 47, 49, 52, 61
18 2 138* 1, 9, 12, 15, 22, 42, 27, 51, 68
19 2 156* 1, 15, 21, 23, 26, 33, 52, 61, 65
20 2 171* 1, 11, 31, 36, 37, 50, 54, 47, 65, 81
21 2 192* 1, 3, 15, 23, 32, 51, 57, 64, 85, 91
22 2 210* 2, 7, 12, 18, 32, 35, 63, 70, 78, 91, 92
23 2 216* 1, 3, 5, 17, 27, 36, 43, 57, 72, 83, 95

Table 3.3: Largest circulant graphs of small degree d and diameter k found by
computer search
* proven extremal
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Chapter 4

The degree-diameter problem for

dihedral Cayley graphs

If cyclic groups are the most obvious starting point for an investigation of Cayley

graphs, then natural next steps would be general abelian groups or dihedral groups.

We will return briefly in Chapter 8 to a particular class of non-cyclic abelian groups.

Here we study the problem of dihedral groups. We saw in Chapter 3 that even in the

simplest case of diameter 2, we do not have a complete understanding of the

asymptotic behaviour of Cayley graphs of cyclic groups. In contrast, we will now see

that we do have such an understanding for dihedral groups.

4.1 Diameter 2

Recall that we have an upper limit of d2 + 1 (the Moore bound) for a graph of

maximum degree d and diameter 2. Thus for any family of diameter 2 graphs the

largest possible asymptotic order is d2. A recent result of Abas [1] shows that a

Cayley graph of diameter 2 and asymptotic order d2/2 can be constructed for any

degree d using direct products of dihedral and cyclic groups.

In this section we show that the asymptotic limit for dihedral groups is precisely d2/2,

first by obtaining a lower bound by way of a construction involving Galois fields, and

then by finding an upper bound for generalised dihedral groups by a counting

argument. We follow the structure of our published paper [29].

We denote the dihedral group of order 2n by D2n. We will view the usual dihedral

group as an example of a generalised dihedral group Go C2 which is a semidirect

product of an abelian group G with the multiplicative group {±1} where the action

on G is via its inversion automorphism. For a group G and a subset S ⊆ G which is

inverse-closed and identity-free, recall that the graph Cay(G,S) is vertex-transitive

and hence regular, with degree d = |S|, and has diameter at most k if and only if each

element of G can be expressed as a product of no more than k elements of the

generating set S.

By DC(d, k) we mean the largest number of vertices in a Cayley graph of a dihedral
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48 4 The degree-diameter problem for dihedral Cayley graphs

group having degree d and diameter k.

4.1.1 Results

Our first result uses a construction based on finite fields to obtain a lower bound for

DC(d, 2) for certain values of d. The method is similar to constructions in [53]. We

also make use of a folklore result for cyclic groups which we include for completeness.

Lemma 4.1. Let n > 1. Then the cyclic group Zn has a diameter 2 Cayley graph

with a generating set of size at most 2d
√
ne.

Proof. Let K = d
√
ne,M = bK2 c and take a generating set consisting of

{±1,±2, . . . ,±M,±K,±2K, . . . ,±MK}.

Lemma 4.2. If p is any prime and d = 2(p+ d√pe − 1), then DC(d, 2) ≥ 2p(p− 1).

Proof. Let F be the Galois field GF (p) where p is a prime. The additive and

multiplicative groups F+ and F ∗ are cyclic of coprime orders so that F+ × F ∗ is a

cyclic group of order n = p(p− 1). Consider the dihedral group D2n as a semidirect

product G = (F+ × F ∗) o C2 where the cyclic group C2 is thought of as the

multiplicative group {±1} and acts on F+ × F ∗ by inversion. Specifically, the

multiplication rule is:

(a, b, c)(α, β, γ) = (a+ αc, bβc, cγ)

The subgroup C = 〈(1, 1, 1)〉 is cyclic of order p and so by Lemma 4.1 it has a

diameter 2 Cayley graph with respect to some generating set {c1, c2, . . . , c2d√pe} of

cardinality 2d√pe. Consider now a generating set S of the full group G containing:

v = (0, 1,−1) (1 element)

ax = (0, x, 1), x ∈ F ∗ \ {1} (p− 2 elements)

bx = (x, x,−1), x ∈ F ∗ (p− 1 elements)

ci, i = 1 . . . 2d√pe (2d√pe elements)

Since v−1 = v, a−1x = ax−1 , b−1x = bx and {c1, c2, . . . , c2d√pe} is inverse-closed it follows

that S is inverse-closed. To show that the diameter is 2, it suffices to show that every

element of the group can be expressed as the product of at most two of these

generators. We consider all the possible cases as follows.

If x 6= 0, x 6= y then (x, y,−1) = (0, z, 1)(x, x,−1) = azbx where z = yx−1.
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If x 6= 0, x = y then (x, y,−1) = (x, x,−1) = bx.

If x = 0, y 6= 1 then (x, y,−1) = (0, y, 1)(0, 1,−1) = ayv.

If x = 0, y = 1 then (x, y,−1) = (0, 1,−1) = v.

If y 6= 1, x 6= 0 then (x, y, 1) = (z, z,−1)(t, t,−1) = bzbt where

z = yx(y − 1)−1, t = x(y − 1)−1.

If y 6= 1, x = 0 then (x, y, 1) = (0, y, 1) = ay.

If y = 1 then (x, y, 1) ∈ C and so is the product of at most two ci.

Since |S| = 2(p+ d√pe − 1) the result follows.

The previous result shows that lim sup
d→∞

DC(d, 2)

d2
≥ 1

2
. The next result shows that 1/2

is in fact also an upper bound.

Lemma 4.3. Let G be a generalised dihedral group of order 2n and let S be an

inverse-closed generating set for G not containing the identity. Suppose that the

Cayley graph Cay(G,S) has diameter 2. Then the degree d of Cay(G,S) satisfies

d ≥ 2
√
n− 1.

Proof. Let G = H o C2 where H is an abelian group of order n and C2 acts on H by

inversion. Let C be the index 2 subgroup of G isomorphic to H and write S = A ∪B
where A ⊂ C and B ⊂ G \ C. Let m1 = |A|,m2 = |B|.

Consider how the n elements of G \ C can be expressed as a product of at most two

elements in S. There are m2 possibilities from the set B itself, then m1m2 elements of

the form ab where a ∈ A, b ∈ B. Since a−1b = ba and the set A is inverse-closed the

products of the form ba do not contribute any further elements. So we require:

m2(m1 + 1) ≥ n

The degree d of the Cayley graph is |S| = m1 +m2. All numbers are inherently

positive and so elementary calculus shows that the minimum possible value of

m1 +m2 occurs when m2 = m1 + 1 =
√
n. So d ≥ 2

√
n− 1.

The bound |G| ≤ 1
2(d+ 1)2 in Lemma 4.3 is valid for all values of d, but as it stands

Lemma 4.2 only holds for a restricted set of values. We can extend the result of

Lemma 4.2 by using the ideas first used in [66] to obtain a lower bound valid for all

values of d.
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Lemma 4.4. Let d ≥ 6 and let p be the largest prime satisfying

D(p) = 2(p+ d√pe − 1) ≤ d. Then DC(d, 2) ≥ 2p(p− 1).

Proof. Let p be as in the statement, n = 2p(p− 1) and G = Dn. By Lemma 4.2 there

is an inverse-closed unit-free subset S ⊂ G with |S| = D(p) such that Cay(G,S) has

diameter 2. We can add d−D(p) involutions from G \ S to form a new inverse-closed

unit-free generating set S′. The diameter of Cay(G,S′) is still 2 and the result

follows.

Using the method of [66] and Lemma 3.3 we may use ideas from number theory to

obtain a result independent of p. Specifically, from [7, Therorem 1] we know that for

all sufficiently large D, there is some prime p in the range D −D0.525 ≤ p ≤ D.

Theorem 4.5. For all sufficiently large d, DC(d, 2) ≥ 0.5d2 − 1.39d1.525.

Proof. For given d, let p be the largest prime such that 2(p+ d√pe − 1) ≤ d. Then p

is at least as large as the largest prime q satisfying 2(q +
√
q) ≤ d. Rearranging this

we find that q is the largest prime not exceeding D = 1
2(d−

√
2d+ 1 + 1). By [7,

Therorem 1], for sufficiently large d we have q ≥ D −D0.525. So for large d we have:

p ≥ q ≥ D −
(
d

2

)0.525

=
1

2

(
d− (2d+ 1)0.5 + 1− 20.475d0.525

)

For large d the term in d0.525 dominates terms of lower powers of d and since

20.475 ≈ 1.389918, for large d we have p ≥ 1
2

(
d− 1.38992d0.525

)
. For sufficiently large

d we therefore have

2p(p− 1) ≥ d2

2
− 1.39d1.525

Since we can construct a Cayley graph of degree d and diameter 2 on the dihedral

group of order 2p(p− 1) by Lemma 4.4 the result follows.

Lemma 4.3 and Theorem 4.5 allow us to determine completely the asymptotic

behaviour of DC(d, 2).

Corollary 4.6.

lim
d→∞

DC(d, 2)

d2
=

1

2
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and hence in the class of Cayley graphs of dihedral groups,

L−(2) = L+(2) =
1

2

4.1.2 Remarks

It is tempting to try to extend these results to other split extensions of abelian groups

where the action is via an automorphism other than the inversion map. However the

counting argument of Lemma 4.3 relies on the fact that in our Cayley graph

Cay(G,S) the generating set S has the very particular form

{(a, 1) : a ∈ S1} ∪ {(b,−1) : b ∈ S2} where the set S1 is inverse-closed and hence

closed under the acting automorphism. The upper asymptotic bound d2/2 would not

necessarily hold for other more general semidirect products of an abelian group with

C2, although no family of such groups with a larger bound is known.

We illustrate this remark with a couple of examples. Firstly, the construction of

Abas [1], uses a direct product of the form D2m × Zn which we may regard as the

semidirect product (Zm × Zn) o C2, where C2 acts on Zm via its inversion

automorphism and on Zn via the identity automorphism. In this case a generating set

S which is inverse-closed is not necessarily of the form in the previous paragraph,

since the action in the semidirect product is not inversion.

However, we may modify the construction to obtain a family of groups for which the

counting argument of Lemma 4.3 does hold. In the first example above, if n = 2 then

the identity automorphism coincides with the inversion automorphism and the

Lemma applies. Further, if we replace Z2 by any elementary abelian 2-group then its

inversion automorphism is the identity and the argument continues to hold. Thus the

upper bound of Lemma 4.3 holds for any group of the form D2n ×H where H is an

elementary abelian 2-group.

We note also that the argument of Lemma 4.3 holds in the case of dicyclic groups.

For any n ≥ 1, the dicyclic group of order 4n has presentation

〈a, b | a2n = b4 = 1, an = b2, ab = ba−1〉. The final relator in the presentation means

that in any inverse-closed generating set, asymptotically half the possible products

are duplicated as in the argument of Lemma 4.3. We therefore have the following

corollary.

Corollary 4.7. In the class of Cayley graphs of dicyclic groups,

L−(2) ≤ 1

2
.
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4.2 Bounds for larger diameters

The construction of the previous section cannot readily be extended to higher

diameters. However, we can extend the logic of Lemma 4.3 to obtain an upper bound

for diameters 3 and 4. We begin by recalling the method of Lemma 4.3.

Our group G = D2n has an index 2 cyclic subgroup C of order n. Our generating set

S is decomposed into A = S ∩ C and B = S ∩ (G \ C). We set m1 = |A|,m2 = |B|.
The argument proceeds by counting the ways in which we can multiply at most two

elements of S.

If V = S ∪ SS is the set of elements which can be written as a product of at most two

elements of S, then the proof of the lemma shows that |V ∩ (G \ C)| ≤ m1m2 +m2.

By a similar argument we can see that |V ∩ C| ≤ 1
2m

2
1 +m2

2 +m1 −m2 + 1.

We now use this information to bound the possible order of a Cayley graph of a

dihedral group of diameter 2. To ease the notation we denote the degree of the graph

by d and the number m2 of generating elements outside the cyclic subgroup by x.

Then m1 = d− x. The functions above can then be expressed in terms of the single

variable x which makes finding the maximum easier.

To be able to generate a dihedral group of order 2n, for a given d and x we must have

f(x) ≥ n and g(x) ≥ n. Thus a bound on the largest possible graph of diameter 2 and

degree d is given by:

N = 2 max
0≤x≤d

min{f(x), g(x)}

The proof of Lemma 4.3 then solves this in the diameter 2 case. We can now use a

similar method for diameters 3 and 4.

4.2.1 Diameter 3

With the notation of the previous section, we now set V = S ∪ SS ∪ SSS to be the

set of elements which can be written as a product of at most 3 elements of S. It is a

straightforward but tedious counting exercise to show that bounds on V are given by:

|V ∩ C| ≤ 1

6
m3

1 +m1m
2
2 +

1

2
m2

1 −m1m2 +m2
2 +

4

3
m1 −m2 + 1

|V ∩ (G \ C)| ≤ 1

2
m2

1m2 +
1

2
m3

2 +m1m2 −
1

2
m2

2 +m2
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Figure 4.1: Illustrative plot of diameter 3 polynomials with d = 100

Once again we express the formulae for cyclic and non-cyclic elements in terms of a

single variable x = m2.

f(x) =
1

6
(d− x)3 + (d− x)x2 +

1

2
(d− x)2 − (d− x)x+ x2 +

4

3
(d− x)− x+ 1

g(x) =
1

2
(d− x)2x+

1

2
x3 + (d− x)x− 1

2
x2 + x

To be able to generate a dihedral group of order 2n, for a given d and x we must have

f(x) ≥ n and g(x) ≥ n. Thus a bound on the largest possible graph of diameter 3 and

degree d is given by:

N = 2 max
0≤x≤d

min{f(x), g(x)}

It remains to find this maximum. We want to find the value of x (as a proportion of

d) which maximises the order, and find an expression for that order. It is helpful to

view these functions graphically to see how they behave as we vary x from 0 to d in a

particular case. An illustrative plot appears in Figure 4.1 in the case d = 100.

For our solution, we are in fact content with the leading term i.e. the d3 term in this

case. It is clear that the maximum will occur at one of the following points:

• An end point of the interval: x = 0 or x = d

• A critical point (local maximum) of either f or g

• An intersection point of f and g

In practice we can discount the end points since x = 0 can generate no non-cyclic
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54 4 The degree-diameter problem for dihedral Cayley graphs

elements at all and x = d leads to a bipartite graph. In the diameter 3 case we see

that the maximum occurs at the local maximum of f . Elementary calculus shows

that this local maximum is at x =
1

21

(
9d+ 15 +

√
18d2 + 18d− 69

)
.

We want an asymptotic expression for this local maximum in terms of d, so it suffices

to take x = Kd where K =
3 +
√

2

7
. At this point, the value of f is

d3
(

1

6
(1−K)3 +K2(1−K)

)
+ o(d3) =

20 + 2
√

2

147
d3 + o(d3).

So we have proved:

Theorem 4.8. In the class of Cayley graphs of dihedral groups,

L+(3) ≤ 40 + 4
√

2

147
≈ 0.31059

We note that the optimal asymptotic proportion of involutions in the generating set is

K ≈ 0.63060. This is in contrast to the diameter 2 case where the optimal proportion

was 1
2 .

4.2.2 Diameter 4

We use the same method, this time setting V = S ∪ SS ∪ SSS ∪ SSSS. The

equations bounding the possible sizes of V are more awkward, but with the help of

computer algebra packages we obtain:

|V ∩ C| ≤ 1

24
m4

1 +
1

2
m2

1m
2
2 +

1

4
m4

2 +
1

6
m3

1 −
1

2
m2

1m2 +m1m
2
2

− 1

2
m3

2 +
5

6
m2

1 −m1m2 +
7

4
m2

2 +
4

3
m1 −

3

2
m2 + 1

|V ∩ (G \ C)| ≤ 1

6
m3

1m2 +
1

2
m1m

3
2 +

1

2
m2

1m2 −
1

2
m1m

2
2

+
1

2
m3

2 +
4

3
m1m2 −

1

2
m2

2 +m2

Once again we express the formulae for cyclic and non-cyclic elements in terms of a

single variable x = m2.

f(x) =
1

24
(d− x)4 +

1

2
(d− x)2x2 +

1

4
x4 +

1

6
(d− x)3 − 1

2
(d− x)2x+ (d− x)x2

− 1

2
x3 +

5

6
(d− x)2 − (d− x)x+

7

4
x2 +

4

3
(d− x)− 3

2
x+ 1

g(x) =
1

6
(d− x)3x+

1

2
(d− x)x3 +

1

2
(d− x)2x− 1

2
(d− x)x2

+
1

2
x3 +

4

3
(d− x)x− 1

2
x2 + x
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Figure 4.2: Illustrative plot of diameter 4 polynomials with d = 100

To be able to generate a dihedral group of order 2n, for a given d and x we must have

f(x) ≥ n and g(x) ≥ n. Thus a bound on the largest possible graph of diameter 4 and

degree d is given by:

N = 2 max
0≤x≤d

min{f(x), g(x)}

Again it is helpful to view the illustrative plot in Figure 4.2. Although the equations

are much more complex, with the aid of computer algebra we can deduce that this

time the optimal point is the local maximum of g which occurs at x = Kd+ o(d)

where K =
k + 1

k + 3

8
, k = (4

√
3 + 7)1/3.

We can then show that:

Theorem 4.9. In the class of Cayley graphs of dihedral groups,

L+(4) ≤ K(1−K)(1− 2K + 4K2)

3
≈ 0.10983

The optimal asymptotic proportion of involutions in the generating set this time is

K ≈ 0.72771.

4.2.3 Comments

Ideally, we would have a construction for diameter 3 and 4 Cayley graphs of dihedral

groups which at least approaches these bounds. Unfortunately, the construction from

the diameter 2 case based on finite fields cannot readily be extended to larger

diameters.
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Chapter 5

Large Cayley graphs of fixed small

diameter

Chapters 3 and 4 derived new asymptotic bounds in the degree-diameter problem for

the classes of Cayley graphs on, respectively, cyclic groups and dihedral groups. We

now turn our attention to the problem of general Cayley graphs.

Much of the existing literature is focused on the diameter 2 case. For larger diameters

k, we have a useful lower bound L−(k) ≥ k/3k for any k > 2 by Macbeth, Šiagiová,

Širáň and Vetŕık [54]. For the specific cases of diameters 3, 4 and 5, Vetŕık [73] has a

series of constructions giving the best known asymptotic results, namely L−(3) ≥ 3
16 ;

L−(4) ≥ 32
54

and L−(5) ≥ 25
45

. Both these papers above use variations of a semidirect

product construction, and we generalise this idea in Section 5.2 to obtain

improvements for diameters 3 to 7.

In the directed case, the best currently available results are by Vetŕık [72] who shows

that L−(2) ≥ 8/9 and for k ≥ 3, L−(k) ≥ k/2k. We generalise our method in

Section 5.2 to the directed case to obtain new larger bounds at diameters 3, 4 and 5.

However we begin with a new construction for diameter 3, for which the result given

in Vetŕık is that L−(3) ≥ 3
16 . Our improved bound uses a construction which is, as far

as we know, the first example to use matrix groups over finite fields.

5.1 Cayley graphs of matrix groups

Our strategy will be to find a suitable Cayley graph on a group based on a particular

subgroup of SL(3, p) for any odd prime p. However, as in the case of the diameter 2

Cayley graphs of dihedral groups from Chapter 4, we will be left with some awkward

subgroups which our chosen generating set is unable to cover directly. We therefore

begin with two lemmas on diameter 3 Cayley graphs of cyclic and elementary abelian

groups, extending the idea noted in the dihedral proof.

Lemma 5.1. For any n ≥ 6 there is a subset S ⊆ Zn of cardinality 6

⌈
n1/3

2

⌉
such

that Cay(Zn, S) has diameter at most 3.
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Proof. Let n ≥ 6 and let K = dn1/3e and M = bK2 c. Let S ⊆ Zn be the set

{±1,±2, . . . ,±M,±K,±2K, . . . ,±MK,±K2,±2K2, . . . ,±MK2}. Then it is easy to

see that we can express any element of Zn as a sum of at most 3 elements of S.

Lemma 5.2. For all large n, there is a subset T ⊆ Zn × Zn of cardinality

9n2/3 + o(n2/3) such that Cay(Zn × Zn, T ) has diameter at most 3.

Proof. For the set T we may take the Cartesian product of two copies of the set S

from Lemma 5.1.

Given our strategy to find a family of groups based on prime numbers, we will also

need to use Lemma 3.3 in Chapter 3 to extend our construction to be valid for all

degrees.

Now we are ready to describe the main construction. For any odd prime p, we begin

with a group H which is the unique non-abelian group of order p3 with exponent p.

This has the form (Zp ×Zp)oZp. It is well known that the group H can be viewed as

the upper unitriangular subgroup of SL(3, p), i.e. the subgroup consisting of matrices

of the form


1 a b

0 1 c

0 0 1

 where a, b, c are arbitrary elements of GF (p). The group G

for our Cayley graph will be a direct product of this group with Z2.

Lemma 5.3. Let p be an odd prime. Let H be the upper unitriangular subgroup of

SL(3, p) and let G = H × Z2. Then there is an inverse-closed subset S of G with

cardinality 2p+O(p2/3) such that the Cayley graph Cay(G,S) has diameter 3, and S

contains neither the identity nor the unique involution of G.

Proof. We construct our generating set S for G as follows. For each x ∈ GF (p)∗ we

define the following elements of G.

αx =




1 x x

0 1 0

0 0 1

 , 0

 ; βx =




1 0 x

0 1 x

0 0 1

 , 1


Let S1 be the set consisting of αx and βx for all x ∈ GF (p)∗. Notice that S1 contains

neither the identity nor the involution. We now show that all elements of G of the

forms




1 a b

0 1 c

0 0 1

 , 0

 , a 6= 0 and




1 a b

0 1 c

0 0 1

 , 1

 , c 6= 0 may be expressed as a

product of at most 3 elements from S1.
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First consider X =




1 a b

0 1 c

0 0 1

 , 0

 , a 6= 0. There are three cases to consider. If

b = a+ c then we choose any u /∈ {0, c} and then X = βuβc−uαa. Otherwise if

b = a+ c+ ac then again we choose u /∈ {0, c} and this time X = αaβuβc−u.

Otherwise we let x = c− (b− c)/a+ 1; y = a; z = (b− c)/a− 1 and then X = βxαyβz.

Now consider X =




1 a b

0 1 c

0 0 1

 , 1

 , c 6= 0. Let

x = (b− a)/c− 1; y = c; z = a− (b− a)/c+ 1. If b = a+ c then X = βyαz. Otherwise

if b = a+ c+ ac then X = αxβy. Otherwise X = αxβyαz.

Now we deal with the remaining cases. The elements of the form




1 0 b

0 1 c

0 0 1

 , 0


form a subgroup of G isomorphic to Zp × Zp. By Lemma 5.2 there is a set S2 of size

9p2/3 + o(p2/3) such that each of these can be expressed as a product of at most 3

elements of S2.

Finally, the elements of the form




1 a b

0 1 0

0 0 1

 , 1

 are contained in a subgroup of G

isomorphic to Zp × Zp × Z2. In a similar way, we can find a set S3 of size

18p2/3 + o(p2/3) such that each of these can be expressed as a product of at most 3

elements of S3. Letting S = S1 ∪ S2 ∪ S3 we see that Cay(G,S) has diameter at most

3 and |S| = 2p+O(p2/3) as required.

The main result now follows.

Theorem 5.4. In the class of general Cayley graphs,

L−(3) ≥ 1

4

Proof. The graphs in Lemma 5.3 have order 2p3 and degree 2p+O(p2/3), and satisfy

the conditions of Lemma 3.3.
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5.2 A semidirect product construction

5.2.1 Motivation

The results of Section 5.1 provide a useful improvement to the asymptotic bound at

diameter 3. For larger diameters, it is possible that other subgroups of matrix groups

might yield interesting results. However, it is unlikely that a general construction

covering a range of diameters would be possible with this approach.

To find a more general construction, we are inspired by the ideas of Vetŕık [73],

Macbeth et al [54], Bevan [10] and others. A common strategy of such constructions

for a given diameter k is to begin with a k-fold direct product of some group H, and

then to permute the coordinate positions in the direct product by means of a

semidirect product of Hk by some other group K.

We recall from our definition in Chapter 1 that the semidirect product GoϕK of two

groups G and K has multiplication defined by:

(g1, k1)(g2, k2) = (g
ϕ(k2)
1 g2, k1k2)

where the superscript on g1 indicates the image of g1 under the automorphism ϕ(k2)

of G.

In a k-fold direct product Hk, any permutation of the k coordinate positions is an

automorphism of the group. These automorphisms of Hk form a subgroup N of its

full automorphism group, with N isomorphic to the symmetric group Sk. We restrict

ourselves in our semidirect products Hk oϕ K to homomorphisms ϕ into this

restricted subgroup N .

Our goal is again to find a lower bound on the quantity L−(k) for certain fixed values

of k, as defined in Section 2.3. To achieve this we first fix a diameter k, and then try

to construct an infinite sequence of Cayley graphs of degree sm and asymptotic order

mkn for every m ≥ 2 and for some fixed constants n, s.

We begin the discussion with an example at diameter 6 which should help clarify the

overall method. The example is derived from an original note of Tuite [71], amended

to conform to our notation.
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5.2.2 Diameter 6 example

Let H be an abelian group of order m. For the purposes of our construction we take

H = Zm and use additive notation for the group operation. Let k = 6 and denote the

6-fold direct product of H by H6. Let σ be the automorphism of H6 which maps the

element (x1, x2, x3, x4, x5, x6) to (x6, x1, x2, x3, x4, x5). Let K be the group Z36 and

let ϕ : K → Aut(Hk) be the group homomorphism given by ϕ(r) = σr. Let

G = H6 oϕ K.

We write the elements of G in the form (x1, x2, x3, x4, x5, x6; y) where each xi ∈ H
and y ∈ K. We construct our generating set as follows. For each x ∈ H we define:

a(x) = (0, 0, 0, 0, 0, x; 1)

A(x) = (0, 0, 0, 0, x, 0;−1)

b(x) = (0, x, x, 0, 0, x; 4)

B(x) = (0, x, 0, x, x, 0;−4)

Then the generating set is:

X =
⋃
x∈H
{a(x), A(x), b(x), B(x)}

Note that since a(x)−1 = A(−x) and b(x)−1 = B(−x), the set S is inverse-closed.

We claim that the graph Cay(G,X) has diameter 6. To do this, it suffices to show

that every element of G can be expressed as a product of at most 6 elements of X.

For a given y ∈ K, we can express the element (x1, x2, x3, x4, x5, x6; y) ∈ G via the

products in Figure 5.1. For y = 18 . . . 35, we may obtain expressions simply by

inverting the appropriate products. Thus Cay(G,X) has diameter 6 as claimed.

To illustrate the multiplication rules we show here an example from the solution. In

the case of y = 3 we clam that

(x1, x2, x3, x4, x5, x6; 3) = a(x2)a(x1)b(x6)A(x3 − x6)A(x4)A(x5 − x6).

Expanding the right hand side one step at a time we get the following.

a(x2)a(x1)

= (0, 0, 0, 0, 0, x2; 1)(0, 0, 0, 0, 0, x1; 1)
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y = 0 : a(−x2 + x3 + x5)a(−x2 + x3 + x4)b(x3)
A(−x3 + x6)A(x1)B(x2 − x3)

y = 1 : b(x3)b(x2 − x4)A(−x2 − x3 + x5)
A(−x3 + x6)A(x1 − x2 + x4)B(x4)

y = 2 : b(x6)a(x3 − x4 + x6)a(x2)
a(x1 − x4)B(x4 − x6)A(x5)

y = 3 : a(x2)a(x1)b(x6)
A(x3 − x6)A(x4)A(x5 − x6)

y = 4 : a(−x1 + x3)a(x1 + x2 − x4)B(−x1 + x4)
a(x1 − x4 + x5)b(x1)a(x6)

y = 5 : a(x2 + x4 + x5 − x6)a(−x2 + x3 − x5)B(x5)
A(x1 + x2 + x5 − x6)b(−x2 − x5 + x6)b(x2)

y = 6 : a(x5)a(x4)a(x3)
a(x2)a(x1)a(x6)

y = 7 : a(x1 − x3 + x6)a(2x1 − x3 − x4 + x5)b(x1)
b(−x1 + x3)a(x1 + x2 − x4)B(−x1 + x4)

y = 8 : a(x1 + x3 − x6)b(x3)a(x2)
b(−x3 + x6)A(x3 + x4 − x6)A(−x3 + x5)

y = 9 : a(x2 − x3)a(x1)a(−x3 + x6)
a(x5)a(x4)b(x3)

y = 10 : a(x3)b(x2 − x4)A(−x2 + x5)
b(x4)a(x1 − x2 + x4)a(x6)

y = 11 : a(x4)b(−x1 + x2)A(−x3 + x6)
b(x1 − x2 + x3)b(x1)A(−2x1 + x2 − x3 + x5)

y = 12 : a(x5)a(−x1 + x4)a(x1 + x3 − x6)
a(x1 + x2 − x6)b(x1)b(−x1 + x6)

y = 13 : a(−2x2 + x3 − x4 + x6)a(x5)b(−x2 + x3)
A(x1 − x4)b(x2 − x3 + x4)b(x2)

y = 14 : b(−x3 + x6)b(x3)b(x3 + x4 − x6)
A(−x1 + x2 − 3x3 − x4 + 2x6)b(x1 + x3 − x6)A(−x1 − 2x3 − x4 + x5 + 2x6)

y = 15 : a(x2 − x3 − x5)a(x1 − x4 + x5)a(−x3 − x4 + x5 + x6)
b(x5)b(x4 − x5)b(x3)

y = 16 : a(−2x2 + x3 − x4 + 2x5 + x6)b(x5)b(x2 + x4 − x5 − x6)
A(x1 − x4 − x5)b(−x2 + x5 + x6)b(x2 − x5)

y = 17 : B(x1 − 2x2 − x3 + 2x5 − x6)B(−x2 + x5)B(x2 + x3 − x5)
a(x1 − 5x2 − 2x3 + x4 + 4x5 − 2x6)B(x2 − x5 + x6)B(−x1 + 3x2 + x3 − 2x5 + x6)

Figure 5.1: Solution for diameter 6
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The multiplication rule is that we rotate the first 6 coordinates of the first term by

the final coordinate of the second term, then add. So we get:

a(x2)a(x1)

= (x2, 0, 0, 0, 0, x1; 2)

We continue in this way.

a(x2)a(x1)b(x6)

= (x2, 0, 0, 0, 0, x1; 2)(0, x6, x6, 0, 0, x6; 4)

= (0, x6, x6, x1, x2, x6; 6)

a(x2)a(x1)b(x6)A(x3 − x6)

= (0, x6, x6, x1, x2, x6; 6)(0, 0, 0, 0, x3 − x6, 0;−1)

= (x6, x6, x1, x2, x3, 0; 5)

a(x2)a(x1)b(x6)A(x3 − x6)A(x4)

= (x6, x6, x1, x2, x3, 0; 5)(0, 0, 0, 0, x4, 0;−1)

= (x6, x1, x2, x3, x4, x6; 4)

a(x2)a(x1)b(x6)A(x3 − x6)A(x4)A(x5 − x6)

= (x6, x1, x2, x3, x4, x6; 4)(0, 0, 0, 0, x5 − x6, 0;−1)

= (x1, x2, x3, x4, x5, x6; 3)

Since |G| = 36m6 and |X| = 4m, it follows that for every degree d of the form 4m,

there exists a Cayley graph of diameter 6 and order 36d6/46. To cover the cases

d ≡ 1, 2, 3 (mod 4) we may simply add one more involution from G and/or one more

pair of mutually inverse elements to our set X. We have therefore proved the

following result.

Proposition 5.5. In the class of Cayley graphs,

L−(6) ≥ 36

46
≈ 0.00878

This is, as far as we know, the first specific result for diameter 6 and is an

improvement on the bound of 6/36 ≈ 0.00823 from [54]. However, the method is
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capable of generalisation and we now describe the full construction.

5.2.3 The general construction

We begin by drawing out the key features of the construction in Section 5.2.2. Recall

that H = Zm, K = Z36 and k = 6. We define n = |K|, so n = 36 in our example.

Finally, ϕ : K → Aut(Hk) is the group homomorphism given by ϕ(r) = σr and

G = Hk oϕ K.

Our generating set was constructed as follows. We have a set

S = {s1, s2, s3, s4} = {1,−1, 4,−4} which is a subset of K of cardinality 4. It can

readily be checked that the set S has the property that every element of K can be

expressed as a sum of exactly k elements of S. Moreover, the sums satisfy the further

restriction that no element of S appears consecutively with its inverse. For example,

from the table above for the case y = 3 we have 3 = 1 + 1 + 4− 1− 1− 1.

We have a set V = {v1, v2, v3, v4} = {000001, 000010, 011001, 010110} of 4 non-zero

0/1 vectors of length k = 6. This set has two important properties. The first is that

v2 = vσ
−s1

1 and v4 = vσ
−s3

1 , where as before σ represents a right rotation of one place

in the coordinates. This ensures that our generating set defined below will be

inverse-closed. The second is that the vectors have been carefully chosen to ensure

that our eventual graph will have diameter 6.

For every x ∈ H, we define vi(x) to be the element of Hk with x in every coordinate

position where vi has a 1, and 0 otherwise. We now define our generating set X to

consist of four sets of elements of G as follows.

a(x) = (v1(x); s1) for all x ∈ H

A(x) = (v2(x); s2) for all x ∈ H

b(x) = (v3(x); s3) for all x ∈ H

B(x) = (v4(x); s4) for all x ∈ H

Note that because of the forms of the vectors vi explained above, we have

a(x)−1 = A(−x), b(x)−1 = B(−x) and so X is an inverse-closed subset of G.

The most awkward part of the process is to determine how to express any possible

element of our group G as a product of k of our generators. To determine how this

can be done we proceed as follows. We must show, for each i = 0 . . . n− 1, that we

can express any element of the form (x; i) as a product of k generators. Since the
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generator set is inverse-closed we need only check i ≤ bn2 c. To find products which

work we proceed as follows for each such i.

a Find all possible ways in which i can be expressed as a sum of k elements of S

(ignoring order in the sum).

b Find all unique ways to order the elements in this sum, say T = (t1, t2, . . . , tk) with

each tj ∈ S and
∑
tj = i. We insist also that tj+1 6= −tj for j = 1 . . . k − 1.

c For each T , compute the vector U of k numbers chosen from {1, 2, 3, 4} such that

tj = suj for each j. That is to say, we identify in order those elements of S involved

in the sum. At this point we know our product must have the form

(vu1(y1); su1)(vu2(y2); su2) · · · (vuk(yk); suk) for some y = (y1, y2, . . . , yk).

d To determine whether there is a solution we compute the mapping matrix M such

that yM = x. If M is invertible over Z (i.e. it has determinant ±1) we have found

a solution for i, otherwise we proceed with the search.

In the final step, it is easy to see that the mapping matrix M has the following form:

M =



vσ
r1

u1

vσ
r2

u2

...

vσ
rk

uk



T

; rw =
∑
j<w

tj

The elements of this construction which can be generalised are as follows.

(i) The target diameter of our Cayley graph could be any k > 2.

(ii) The group K could be an arbitrary group of order n rather than being restricted

to cyclic groups.

(iii) The size |S| of set of elements of K need not be 4.

(iv) The homomorphism ϕ in the semidirect product could be any non-trivial

homomorphism from our group K to the group of coordinate permutations of

Hk.

(v) Our set V of 0/1 vectors could be any set, provided the resulting set of

generators is inverse-closed.
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It is clear that with the large number of variables, and the relatively complex nature

of the construction, some form of automated search for feasible solutions is essential.

We outline the search algorithm below. We begin with the following inputs:

• A target diameter k.

• A set size s = |S|.

• A target order n for our group K.

Given these parameters, we run the search using a GAP [35] script as follows.

1. Find all groups K of order n from the small groups library.

2. For each K, find (up to conjugacy) all possible homomorphisms ϕ from K to Sk.

(To avoid trivial cases, we consider only homomorphisms whose image has no fixed

point.)

3. For each K, find all sets S of size s with the property that any element of K can

be written as a product of exactly k elements of S.

4. For each combination of ϕ and S, find all possible sets V = {v1, . . . , vs} of 0/1

vectors of length k, such that, given the elements of S, the resulting generating set

will be inverse-closed.

For each viable combination found, we then search for a solution using a modified

version of the diameter 6 example. So for each element i ∈ K we test whether the

following procedure succeeds.

(a) Find all ways to express i as a product of k elements of S, say T = (t1, t2, . . . , tk)

with each tj ∈ S and
∑
tj = i. As before, we insist that tj+1 6= t−1j for

j = 1 . . . k − 1.

(b) For each T , compute the vector U of k numbers chosen from 1 . . . s such that

tj = suj for each j. So we know our product must have the form

(vu1(y1); su1)(vu2(y2); su2) · · · (vuk(yk); suk) for some y = (y1, y2, . . . , yk).

(c) To determine whether there is a solution we again compute the mapping matrix

M such that yM = x. If M is invertible over Z we have found a solution for i,

otherwise we proceed with the search.

If this procedure finds a solution for all i ∈ K, then our search has yielded a positive

result.
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Set size s Group order n Group K L−(3) bound

4 12 Z12 12/43 ≈ 0.18750
5 24 S4 24/53 ≈ 0.19200
6 48 (Z4 × Z4) o Z3 48/63 ≈ 0.22222
7 72 (Z2

2 o Z9) o Z2 72/73 ≈ 0.20991

Table 5.1: Best results for undirected graphs of diameter 3

When a solution has been found, we know that for any m, we can create a Cayley

graph of diameter k, order mkn and degree sm. Thus by the same argument as in the

diameter 6 example, we will have proved that in the class of Cayley graphs:

L−(k) ≥ n

sk

The object now is to choose the parameters for the search in such a way that we can

improve the existing asymptotic bounds. The following sections describe our best

results.

5.2.4 Undirected graphs

5.2.4.1 Diameters 2 and 3

For diameter 2, our method will never produce a useful result. This is because our

construction requires us to be able to express every element of our group K as a

product of k elements chosen from S so that no element follows its inverse in the

product. With k = 2 this is clearly impossible.

For diameter 3, our best results for set sizes s = 4, 5, 6, 7 are shown in Table 5.1.

(There were no useful solutions with s = 3.) The best existing published result is by

Vetŕık [73] giving L−(3) ≥ 3
16 . Although our results improve on that, we are unable to

do better than the specific diameter 3 construction from Section 5.1 above.

5.2.4.2 Diameter 4

For diameter 4, the increasing size of the search space means that we were only able

to search for solutions with set sizes of 3, 4 and 5. The results are summarised in

Table 5.2. The best existing published result is again by Vetŕık [73] giving

L−(4) ≥ 32
54
≈ 0.05120. For set sizes 4 and 5, we obtain results better than that bound.

We note that in contrast to the diameter 6 example construction above which used a

cyclic group K, the groups found by the computer search are not at all obvious and

the combination of group K, homomorphism ϕ, set S and vectors V lead to a solution
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Set size s Group order n Group K L−(4) bound

3 4 Z4 4/34 ≈ 0.04938
4 24 S4 24/44 ≈ 0.09375
5 60 Z15 o Z4 60/54 ≈ 0.09600

Table 5.2: Best results for undirected graphs of diameter 4

Set size s Group order n Group K L−(5) bound

3 6 S3 6/35 ≈ 0.02469
4 60 A5 60/45 ≈ 0.05859

Table 5.3: Best results for undirected graphs of diameter 5

which is complex and lengthy to tabulate. For reasons of brevity therefore we omit all

the full solutions here. The simplest solution to describe, although not the one

yielding the largest value, uses a set of size 4. In this case we are fortunate that the

group is S4 and the homomorphism ϕ is simply the identity mapping. We therefore

illustrate the results by tabulating this solution below in the same format as our

diameter 6 example in Figure 5.1.

5.2.4.3 Diameter 5

For diameter 5 we were able to search for solutions with set sizes of 3 and 4, with the

results summarised in Table 5.3. As before, the best existing published result is by

Vetŕık [73] giving L−(5) ≥ 25
45
≈ 0.02441. For set size 3, we have a marginal

improvement and at set size 4 our best solution is a substantial increase.

5.2.4.4 Diameters 6 and 7

For diameters 6 and 7 we were again able to search for solutions with set sizes of 3

and 4, with the results summarised in Tables 5.4 and 5.5. There are no specific

published results at diameters 6 and 7. The best available published result comes

from the general construction of Macbeth, Šiagiová, Širáň and Vetŕık [54] which yields

L−(6) ≥ 6
36
≈ 0.00823 and L−(7) ≥ 7

37
≈ 0.00320.

Recall that our diameter 6 example with a set size of 4 already yielded an

improvement to ≈ 0.00878, but with the aid of the computer search we are able to

more than double this figure. At diameter 7 our best result is now more than three

times that obtained by the published general construction.

Grahame Erskine



5.2 A semidirect product construction 69

K = S4

S = {(2 3 4), (2 4 3), (3 4), (1 2)}
V = {1010, 1100, 0100, 1110}

a(x) = (x, 0, x, 0; (2 3 4))

A(x) = (x, x, 0, 0; (2 4 3))

b(x) = (0, x, 0, 0; (3 4))

c(x) = (x, x, x, 0; (1 2))

y = () : b(x2 − x3 − x4)c(x4)b(x1 − x3 − x4)c(x3)
y = (1 2) : a(x2 − x3 − x4)a(x4)a(−x1 + x2 − x4)c(x1 − x2 + x3 + x4)

y = (1 3) : b(x2 − x3)c(x4)a(−x1 + x3 − x4)c(x1)
y = (1 4) : b(−x1 + x2)c(x4)A(x1 − x3 − x4)c(x3)
y = (2 3) : A(x2 − x3 − x4)c(x4)b(x1 − x2)c(x3)
y = (2 4) : a(x4)a(x2)b(−x1 + x2 + x3 + x4)a(x1 − x2 − x4)
y = (3 4) : b(−x1 + x2 + x3 + x4)a(x1 − x3 − x4)a(x4)a(x3)

y = (1 2)(3 4) : A(−x1 + x2)b(x1 − x2 + x4)A(x1 − x3)c(x3)
y = (1 3)(2 4) : a(−x2 + x3)c(x2 − x3 + x4)a(−x1 + x3 − x4)c(x1)
y = (1 4)(2 3) : b(x3)A(x1 − x2)c(−x1 + x2 + x4)A(x1 − x4)
y = (1 2 3) : a(−x1 + x2)b(x4)A(x2 − x3)c(x1 − x2 + x3)

y = (1 3 2) : b(x1 − x2 − x4)c(x3)A(−x3 + x4)A(x2)

y = (1 2 4) : b(−x2 + x3 + x4)a(x2 − x3)a(−x1 + x3)c(x1)

y = (1 4 2) : b(x1 − x3 − x4)c(x2)a(−x2 + x4)a(x3)

y = (1 3 4) : a(x2)b(x1 + x2 − x3)c(x4)a(−x2 + x3 − x4)
y = (1 4 3) : A(x1 − x2 − x3)c(x3)b(−x1 + x2 + x4)A(x2)

y = (2 3 4) : b(−x1 + x2 + x3)a(x1 − x2)b(x4)A(x2)

y = (2 4 3) : b(x4)A(x3)A(x1 − x3)b(−x1 + x2 + x3)

y = (1 2 3 4) : b(x3)A(x1 − x4)c(x4)b(−x1 + x2)

y = (1 4 3 2) : b(x1 − x2 − x3)c(x3)b(−x3 + x4)A(x2)

y = (1 2 4 3) : b(−x2 + x3 + x4)a(x2 − x3)b(x1 − x3)c(x3)
y = (1 3 4 2) : c(x4)b(x3 − x4)A(x1 − x4)b(−x1 + x2 + x4)

y = (1 3 2 4) : a(−x1 + x2 + x4)c(x1 − x2 + x3 − x4)A(−x3 + x4)A(x2)

y = (1 4 2 3) : a(x3)a(−x1 + x2)c(x1 − x2 − x3 + x4)A(x2 + x3 − x4)

Figure 5.2: Solution for diameter 4

Set size s Group order n Group K L−(6) bound

3 12 A4 12/36 ≈ 0.01646
4 78 Z2 × (Z13 o Z3) 78/46 ≈ 0.01904

Table 5.4: Best results for undirected graphs of diameter 6
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Set size s Group order n Group K L−(7) bound

3 14 D14 14/37 ≈ 0.00640
4 168 Z8 × (Z7 o Z3) 168/47 ≈ 0.01025

Table 5.5: Best results for undirected graphs of diameter 7

5.2.4.5 Summary

We collect the results above into a single theorem.

Theorem 5.6. In the class of undirected Cayley graphs,

L−(4) ≥ 60

54
≈ 0.09600

L−(5) ≥ 60

45
≈ 0.05859

L−(6) ≥ 78

46
≈ 0.01904

L−(7) ≥ 168

47
≈ 0.01025

5.2.5 Directed graphs

The search method we used for undirected Cayley graphs can be modified to search

for Cayley digraphs. The only substantial difference is that our generating set X need

not be inverse-closed. This has two major consequences for the search:

• The set S of elements of K need not be inverse-closed.

• The set V of 0/1-vectors is not restricted by the requirement that the resulting

generating set be inverse-closed.

These consequences taken together result in a substantial increase in the search space

for a given set of parameters. Due to this effect, we were only able to search a limited

range of set sizes (2, 3 and 4) for diameters 3, 4 and 5. The best results are

summarised in Table 5.6.

In general as one would expect, removing the restriction on generating sets results in

bounds which are much better than the corresponding undirected bounds. As far as

we know, there are no better published results.

The current table has the curious feature that the best result we were able to find for

diameter 5 is better than that for diameter 4. This is counter-intuitive, but may

simply be a consequence of the restricted space that we were able to search.
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Diameter k Set size s Group order n Group K L−(k) bound

3 4 48 Z2 × S4 48/43 ≈ 0.75000
4 3 36 Z3 ×A4 36/34 ≈ 0.44444
5 3 120 S5 120/35 ≈ 0.49382

Table 5.6: Best results for directed graphs

We summarise these results again into a single theorem.

Theorem 5.7. In the class of directed Cayley graphs,

L−(3) ≥ 48

43
≈ 0.75000

L−(4) ≥ 36

34
≈ 0.44444

L−(5) ≥ 120

35
≈ 0.49382

Our new constructions are able to better the directed graph bounds of Vetŕık [72] at

diameters 3, 4 and 5.

5.3 Diameter two revisited

Although our main focus in this chapter has been on Cayley graphs of diameters 3

and above, we conclude with a small incremental improvement to the asymptotic

bound for general Cayley graphs of diameter 2. Abas shows in [2] that L−(2) ≥ 0.684.

To do this, he uses the “prime gaps” technique using a method based on Cullinan and

Hajir [25] and Ramaré and Rumely [63] to show for degrees d > 360756, his

construction yields a lower bound of 0.684.

Because in our version we are interested in the asymptotic version of the bounds, we

are able to tolerate a much larger validity bound on d. We can then use the tables

in [63] to get to a slightly larger bound.

This leads to the following small improvement on the bound of Abas.

Theorem 5.8. In the class of undirected Cayley graphs, for all sufficiently large d we

have n(d, 2) ≥ 0.68762d2. Thus

L−(2) ≥ 0.68762.

Proof. We recall Abas’ proof in [2]. His construction works for values of d of the form

17p− 1, where p is a prime such that p ≡ 1 (mod 10). He shows that for n > 1010
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there is a prime p in this congruence class in the interval (n, (1 + δ)n) where

δ = 2ε/(1− ε) and the value of ε = 0.002785 is taken from [63, Table 1] in the row for

k = 10 and column for 1010. This yields δ = 0.00558556 and since his construction

gives an asymptotic graph order of 200
289d

2 for degrees d of the form 17p− 1, he

concludes that an asymptotic order of 200
289(1+δ)2

d2 is valid for all sufficiently large d.

We now replace the value of ε used by Abas with the one from the 10100 column,

giving ε = 0.001606 and hence δ ≤ 0.003207. This means that for d sufficiently large,

n(d, 2) ≥ 200
289(1+δ)2

d2 ≥ 0.68762d2.
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Chapter 6

The degree-diameter problem for

mixed graphs

As we noted in Chapter 2, the degree-diameter problem for mixed graphs has received

much attention in recent years. Despite this interest, there remain a large number of

open questions which appear to be more resistant to progress than their counterparts

in the undirected and undirected problems. In Section 6.2 we will discuss the

surprisingly large number of open cases in which the existence or otherwise of a

Moore graph is unknown. However, we begin with one of the most basic ideas in the

degree-diameter problem: the Moore bound itself.

6.1 The mixed Moore bound

6.1.1 Introduction

In this chapter we are concerned with the mixed or partially directed degree-diameter

problem, in which we allow some of the edges in our graph to be directed and some

undirected. We conform to the most usual notation in the literature, so that the

maximum undirected degree of a vertex (the number of undirected edges incident to

it) is denoted by r. The maximum directed degree is taken to mean the maximum

number of out-arcs from any vertex and is denoted by z. As usual we denote the

diameter of a graph by k.

To bound the maximum possible number of vertices, the approach is to consider a

spanning tree rooted at some arbitrary vertex. It is not difficult to see that

maximality is only achieved when each vertex has a unique parent at the previous

level in the tree, and the maximum possible number of neighbours at the next level.

Figure 6.1 shows such a tree for the case z = 3, r = 3, k = 2.

Note that this Moore bound is only attained in a very small number of known cases.

Nguyen, Miller and Gimbert [60] show that no graphs attaining the bound exist if the

diameter k ≥ 3. For k = 2, the known examples [57] are a family of Kautz graphs

with r = 1, z ≥ 1 and a graph of Bosák with r = 3, z = 1. Recently, Jørgensen [41] has

discovered a pair of graphs with r = 3, z = 7.
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0

1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 6.1: The labelled Moore tree for z = 3, r = 3, k = 2

In [59] the general Moore bound for the largest possible order of a graph with

parameters z, r, k is given as

Mz,r,k = 1 + (z+r) + z(z+r)+r(z+r−1) + . . . + z(z+r)k−1+r(z+r−1)k−1 (6.1)

It seems that this formula may have been extrapolated from the expressions for

graphs of small diameter. However, it turns out that for diameters greater than 3 the

formula in 6.1 is not correct. In this section we develop a corrected formula for the

Moore bound, and show that for all diameters greater than 3 this is strictly smaller

than the bound stated in [59]. We follow the structure of our published paper [19].

6.1.2 Revised Moore Bound

Theorem 6.1. Let Mz,r,k denote the largest possible number of vertices in a mixed

graph of diameter k, maximum directed degree z and maximum undirected degree r.

Then:

Mz,r,k = A
uk+1
1 − 1

u1 − 1
+B

uk+1
2 − 1

u2 − 1
(6.2)
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where:

v = (z + r)2 + 2(z − r) + 1

u1 =
z + r − 1−

√
v

2

u2 =
z + r − 1 +

√
v

2

A =

√
v − (z + r + 1)

2
√
v

B =

√
v + (z + r + 1)

2
√
v

To prove the formula, we count vertices in the spanning tree by fixing an arbitrary

vertex w and consider the distance partition from w. Denote by Lj the maximum

possible number of vertices in the graph at distance j from w.

Lemma 6.2. The maximum number of vertices in the distance partition satisfies the

recurrence

Lj = (z + r − 1)Lj−1 + zLj−2; L0 = 1; L1 = z + r

Proof. Clearly L0 = 1, L1 = z + r. For j ≥ 2 we proceed inductively. The key

observation is that in a maximal graph, a vertex at level j − 1 has exactly one parent

at level j − 2, but the number of its children at level j depends on whether the edge

from its parent is undirected or directed. If the edge is undirected then the vertex has

at most z + r − 1 children, and if it was directed then the vertex has at most z + r

children, i.e. one more. Since the number of vertices at level j − 1 with a directed

edge from their parent is at most zLj−2, the recurrence follows.

Proof of Theorem 6.1. Clearly Mz,r,k =

k∑
j=0

Lj . To find an explicit form for Lj we

solve the second-order homogeneous recurrence defined by Lemma 6.2. The

characteristic equation of the recurrence system is u2 + (1− z − r)u− z = 0. This has

roots u1 and u2 as defined in the theorem. Since v = (z + r − 1)2 + 4z, in all

non-degenerate cases v > 0 and so the roots are real and distinct. From the general

theory of second-order recurrences, the general solution of the system is

Lj = Auj1 +Buj2 where A,B are constants defined by the initial conditions.

Elementary algebraic manipulation gives the values of A,B as defined in the theorem.
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Since Mz,r,k =
k∑
j=0

Lj , summing the geometric series for the Lj gives the result

Mz,r,k = A
uk+1
1 − 1

u1 − 1
+B

uk+1
2 − 1

u2 − 1

Although the closed form solution (6.2) looks rather more complex than the old

version, we can show via straightforward algebraic manipulation that it generalises

both the undirected and directed formulae.

Proposition 6.3.

(a) Setting z = 0 in Equation (6.2) recovers the undirected Moore bound (2.1).

(b) Setting r = 0 in Equation (6.2) recovers the directed Moore bound (2.2).

At first glance the formula (6.2) offers little insight into the behaviour of the bound as

k increases. However we can obtain a relatively straightforward estimate of its

asymptotic behaviour.

Proposition 6.4. Suppose r > 0. In the notation of Theorem 6.1, for sufficiently

large k, Mz,r,k is the nearest integer to B
uk+1
2 − 1

u2 − 1
− A

u1 − 1
.

Proof. It suffices to show that |u1| < 1.

Now 2
∂u1
∂z

= 1− z + r + 1√
(z + r)2 + 2(z − r) + 1

. Since r > 0, it follows that

(z + r + 1)2 > (z + r)2 − 2(z + r) + 1 and so
∂u1
∂z

< 0. So for any fixed r > 0, u1 is

strictly decreasing as z increases. When z = 0, u1 = 0 and for any z we have u1 > −1

since z + r + 1−
√

(z + r)2 + 2(z − r) + 1 > 0. Thus 0 ≥ u1 > −1 for any r > 0 and

any z ≥ 0.

6.2 Mixed Cayley Moore graphs

6.2.1 Introduction

In this section we discuss the possible existence of Moore graphs in the mixed

problem. As noted above, Nguyen, Miller and Gimbert [60] showed in 2007 that no
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mixed Moore graph can exist for diameters greater than 2. The validity of this result

is unaffected by the correction to the Moore bound in the previous section.

In the diameter 2 case, the Moore bound for graphs with undirected degree r and

directed degree z is (r + z)2 + z + 1. In 1979, Bosák [15] derived (using a modification

of the spectral method used by Hoffman and Singleton in the undirected case) a

numerical constraint on the sets of parameters r, z for which a mixed Moore graph of

diameter 2 can exist. Bosák’s condition is that r = (c2 + 3)/4 for some odd integer c

dividing (4z − 3)(4z + 5).

We can see (Table 6.1) that the range of feasible pairs (r, z) for which a Moore graph

can exist is quite limited. Firstly, by Bosák’s condition, r is always odd. In the case

r = 1, it is immediate that any positive integer z yields a feasible pair. For r = 3 we

have c = 3 and so we must have z ≡ 0, 1 (mod 3). We have no solution with r = 5,

then for r = 7 we have c = 5 so z ≡ 0, 2 (mod 5). In a similar way, the next possible

values of r are 13, 21, 31, 43, 57, . . . and for each value of r, z is constrained to two

congruence classes modulo c.

Existence or otherwise of these graphs has only been determined in some special

cases. For r = 1, Moore graphs always exist by the following construction.

The Kautz digraphs [42] Ka(d, 2) are a family of mixed Moore graphs of diameter 2,

directed degree z = d− 1 and undirected degree r = 1. The vertices are the words ab

of length 2 over an alphabet of d+ 1 letters where we insist a 6= b. So there are

d(d+ 1) = (r + z)2 + z + 1 vertices. There is a directed edge from ab to bc for all of

the d eligible values of c. The edge from ab to ba can be considered as the undirected

edge since the reverse edge also exists. All other edges from ab are purely directed.

The graph has diameter 2 since there is a path ab→ xy of length 1 if x = b and

ab→ bx→ xy of length 2 if x 6= b. An example in the case d = 2 is shown in

Figure 6.2.

The Kautz digraphs Ka(d, 2) are not Cayley graphs for all values of d, and in fact

they turn out to be Cayley graphs precisely when d+ 1 is a prime power (see for

example [18]). Until very recently, these graphs and a single further example of Bosák

with parameters r = 3, z = 1 (and hence order 18) were the only known mixed Moore

graphs. (See the survey paper [57] for more on these known graphs.)

Recently, Jørgensen [41] has reported a pair of graphs with r = 3, z = 7 and hence

order 108. These graphs are interesting because they are Cayley graphs (as indeed is

Bosák’s graph of order 18). The two graphs are in fact a transpose pair, where one
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ac

cb

ca

ba

bcab

Figure 6.2: The Kautz digraph Ka(2, 2)

Undirected Directed Order Existence
degree r degree z n

1 any z2 + 3z + 2 Yes [42]

3 1 18 Yes [15]
3 40 No [50]
4 54 No [50]
6 88 Unknown
7 108 Yes [41]

0, 1 (mod 3) z2 + 7z + 10 Unknown

7 2 84 No [50]
5 150 Unknown
7 204 Unknown

0, 2 (mod 5) z2 + 15z + 50 Unknown

13 4, 6 (mod 7) z2 + 27z + 170 Unknown

21 1, 3 (mod 9) z2 + 43z + 442 Unknown

Table 6.1: Feasible values for mixed Moore graphs up to r = 21
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graph is obtained from the other by reversing the direction of the directed arcs.

On the negative side, no simple combinatorial argument has yet been found to rule

out any feasible parameter pairs satisfying Basák’s condition. For small graphs, an

exhaustive computational approach is now becoming feasible with advances in CPU

power and algorithms. Very recently, López, Miret and Fernández [50] have used

computational techniques to show that there are no mixed Moore graphs at orders 40,

54 or 84.

It seems unlikely that brute-force algorithms will take us much further in the table.

Inspired by Jørgensen’s result and the fact that the Bosák graph of order 18 is also a

Cayley graph, we describe a search algorithm for further examples of mixed Moore

Cayley graphs.

6.2.2 The algorithm

Given a feasible pair r, z, we wish to find a group G and a set S ⊆ G such that the

graph Cay(G,S) has order n = (r+ z)2 + z + 1, undirected degree r, directed degree z

and diameter 2. For ease of explanation we split S into the undirected generators S1

and the directed generators S2. Then |S1| = r, |S2| = z, S1 = S−11 , S2 ∩ S−12 = ∅.

As we have seen before, the naive approach of simply testing all possible sets S very

quickly becomes computationally infeasible. Our strategy therefore is to look for

properties of Moore graphs and corresponding properties of Cayley graphs which will

allow us to reduce the search space. We begin with some elementary yet useful

properties of mixed Moore graphs.

Proposition 6.5. Let Γ be a mixed Moore graph of diameter 2, undirected degree r

and directed degree z.

(i) If u, v ∈ V (Γ) are distinct vertices then there is one and only one path of length

1 or 2 from u to v.

(ii) Γ contains no undirected cycle of length 3 or 4.

(iii) Γ is totally regular.

(iv) Every arc in Γ is contained in exactly one directed 3-cycle.

Proof. Item (i) follows immediately from the counting argument deriving the Moore

bound by considering the spanning tree of Γ rooted at u. Item (ii) is a consequence of

(i). Item (iii) was proved by Bosák [15].
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To see why (iv) is true, consider a vertex u ∈ V (Γ). Then u has z directed

out-neighbours v1, . . . , vz. Since Γ is totally regular, u must have z directed

in-neighbours w1, . . . wz. These cannot be at distance 1 from u, so each wi is reached

by a path of length 2 from u. There can be no undirected edges in any of these paths,

since that would lead to the end vertices of such an edge violating (i). So each wi is

reached by a directed path of length 2 from u passing through some vj . These vj

must be distinct, since if any were repeated it would have two paths of length 2 to u.

Thus every arc u→ vj emanating from u lies in the unique directed triangle

u→ vj → wi → u.

Now we can use these properties to develop constraints on our generating set

S = S1 ∪ S2 to narrow the search for mixed Moore Cayley graphs.

Proposition 6.6. Let Γ be a mixed Moore graph of diameter 2, undirected degree r

and directed degree z. Suppose that Γ ∼= Cay(G,S) where G is a group of order

n = (r + z)2 + z + 1 and the generating set S consists of undirected generators S1 and

directed generators S2. Then:

(i) No element of S1 has order 3 or 4.

(ii) No element of S2 is an involution.

(iii) No pair of elements in S1 has a product of order 2.

(iv) No two distinct elements of S commute, apart from the inverse pairs in S1.

(v) S is product-free (that is, S ∩ SS = ∅).

(vi) All non-identity products of two elements of S are unique.

(vii) The elements of S2 are of two types:

1. Elements of order 3

2. Triples of distinct elements {a, b, c}, each of order at least 4, such that

(ab)−1 = c

Proof. These facts follow immediately from the properties of the graph and

Proposition 6.5.

We note that the conditions of Proposition 6.6(v) and (vi) must also hold for any

subset of S. This motivates the following definition.

Let T ⊆ G with T = T1 ∪ T2, T1 = T−11 , T2 ∩ T−12 = ∅, |T1| = r′, |T2| = z′. Define

P (T ) = |{1} ∪ T ∪ TT |. We say T is a feasible subset of generators if

P (T ) = (z′ + r′)2 + z′ + 1.
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We have two further ways to reduce the number of sets S we need to search for a

given group G. The first is the same idea as we used in Section 3.7.1 which is that if φ

is an automorphism of the group G, then Cay(G,S) ∼= Cay(G,φ(S)). So we need not

consider all possible sets – only orbit representatives under the action of Aut(G).

The second idea is to exploit the fact that all mixed Moore graphs must have even

order (a consequence of Bosák’s condition). So a suitable group G for a Cayley graph

must have even order, and may in many cases have an index 2 subgroup.

Proposition 6.7. Let Γ be a mixed Moore graph of diameter 2, undirected degree r

and directed degree z. Suppose that Γ ∼= Cay(G,S) where G is a group of order

n = (r + z)2 + z + 1 and the generating set S consists of undirected generators S1 and

directed generators S2. Suppose further that G admits an index 2 subgroup H and that

|S1 ∩H| = s1 and |S2 ∩H| = s2. Then:

s1 + s2 =
2(z + r)− 1±

√
4r − 3

4

Proof. We know each non-identity element of H can be expressed uniquely as a

product of 1 or 2 elements of S. We count these products. Firstly, there are s1 + s2

elements of S ∩H. Any other element is either a product of 2 elements of S ∩H or 2

elements of S ∩ (G \H). In the first case there are s1(s1 − 1) + 2s1s2 + s22 possibilities.

In the second case there are (r − s1)(r − s1 − 1) + 2(r − s1)(z − s2) + (z − s2)2.
Writing s = s1 + s2 we see following some manipulation that the total number of

elements of H which we can write as a product of 0, 1 or 2 elements of S is

2s2 + s(1− 2(r+ z)) + (r+ z)2 − r+ 1. But H is an index 2 subgroup and so contains

exactly ((r + z)2 + z + 1)/2 elements. Solving this quadratic equation for s yields the

stated result.

It might be thought that this provides a very strong condition, since the expression

for s1 + s2 must clearly give an integer result. However, it is interesting that Bosák’s

condition on allowable values of r, z means that this expression always gives one

integer solution for s1 + s2. Nevertheless, the condition does give a useful way to cut

down the search space when we have an index 2 subgroup H, since it precisely

determines the overall split of generators between H and G \H. In addition, we have

a useful corollary allowing us to exclude some groups from consideration entirely.

Corollary 6.8. Suppose Γ and G are as in the statement of Proposition 6.7. Then if

2(z + r)−
√

4r − 3 > 9 then G cannot contain an index 2 abelian subgroup H.

Proof. If H is an index 2 abelian subgroup of G, then if 2(z + r)−
√

4r − 3 > 9, by
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Proposition 6.7 the generating set S contains more than 2 elements of H. This is

contrary to Proposition 6.6(iv).

We can now describe the search algorithm. Given a feasible pair z, r we use a GAP [35]

script.

1. Find all groups G of order n = (z + r)2 + z + 1.

2. If G has an abelian index 2 subgroup, ignore it.

3. Compute the list U of orbit representatives of all inverse-closed sets A of size r

such that |AA| = r(r − 1) + 1.

4. If G admits an index 2 subgroup H, delete any infeasible sets from U .

5. Compute the list D of all inverse-free sets B = {a, b, (ab)−1} such that

|B ∪BB| = 12.

6. Try to extend each S ∈ U by adding directed generators of order 3 or triples from

D until we have added z generators.

6.2.3 Search results

Results of the search on feasible orders up to 200 are in Table 6.2. For completeness

the case r = 1 is included. As explained above, we know there is a unique Moore

graph with r = 1 for every z ≥ 1, but these are Cayley only if q = z + 2 is a prime

power. The algorithm reproduces all the known Cayley Moore graphs and confirms

that there are no more examples below order 200.

We then continued the search for feasible orders up to 500. The results are in

Table 6.3. The algorithm was unable to complete the search at order 486 due to the

large numbers of groups and the increasing search space. However, there are no more

examples at any of the other feasible orders up to 485.

We summarise these results as tabulated in Tables 6.2 and 6.3 in a theorem.

Theorem 6.9. Up to order 485, the only mixed Moore Cayley graphs of undirected

degree r, directed degree z and diameter 2 are as follows.

• r = 1 and z ≤ 20 where z + 2 is a prime power (Kautz graphs).

• r = 3 and z = 1 (Bosák’s graph).

• r = 3 and z = 7 (the two graphs of Jørgensen).
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n r z Graphs

18 3 1 1
40 3 3 0
54 3 4 0
84 7 2 0
88 3 6 0
108 3 7 2
150 7 5 0
154 3 9 0
180 3 10 0

n r z Graphs

6 1 1 1
12 1 2 1
20 1 3 1
30 1 4 0
42 1 5 1
56 1 6 1
72 1 7 1
90 1 8 0
110 1 9 1
132 1 10 0
156 1 11 1
182 1 12 0

Table 6.2: Cayley Moore graphs up to order 200

n r z Graphs

204 7 7 0
238 3 12 0
270 3 13 0
294 13 4 0
300 7 10 0
340 3 15 0
368 13 6 0
374 7 12 0
378 3 16 0
460 3 18 0
486 21 1 ?

n r z Graphs

210 1 13 0
240 1 14 1
272 1 15 1
306 1 16 0
342 1 17 1
380 1 18 0
420 1 19 0
462 1 20 0

Table 6.3: Cayley Moore graphs from order 200 to 500
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Chapter 7

The degree-girth problem

7.1 Background

In the degree-girth problem, the objective is to find the smallest possible order of a

graph with given girth g and having each vertex of degree d. To avoid trivialities, we

restrict attention to the case d ≥ 3. In a similar way to the Moore bound in the

degree-diameter problem, a counting argument based on a spanning tree rooted at a

given vertex yields a lower bound (also called the Moore bound) on the order of a

d-regular graph of girth g:

M(d, g) =


d(d− 1)(g−1)/2 − 2

d− 2
if g is even

2(d− 1)g/2 − 2

d− 2
if g is odd

Graphs attaining the lower bound above are also called Moore graphs. While they are

not quite as rare as their counterparts in the diameter problem, the values of the

parameters d, g for which they may exist are still very restricted and the following are

the only possibilities:

• For d = 2, the cycle graph Cg is a Moore graph for any g ≥ 3.

• For g = 3 and g = 4, the complete graphs Kd+1 and complete bipartite graphs

Kd,d are respectively d-regular Moore graphs for any d ≥ 3.

• For g = 5, the Moore graphs correspond exactly to the Moore graphs of

diameter 2 in the diameter problem. Thus the known graphs are the 5-cycle, the

Petersen graph, the Hoffman-Singleton graph and possibly an unknown graph of

degree 57.

• For g = 6, g = 8 and g = 12, the Moore graphs are precisely the incidence graphs

of certain generalised polygons — projective planes for girth 6, generalised

quadrangles for girth 8 and generalised hexagons for girth 12. In all three cases,

these graphs are known to exist for degrees d such that d− 1 is a prime power.
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Given the scarcity of Moore graphs, progress can still be made in a number of

directions, for example:

• Fix a particular girth g and degree d and try to find the smallest possible

d-regular graph of girth g.

• Fix a degree d and find an infinite family of graphs with “good” asymptotic

order as we increase the girth g.

We focus here on the second approach. In this problem, we seek a family of graphs G
with the property that there exists some γ > 0 such that for any G ∈ G,

girth(G) ≥ γ logd−1(|G|)

From the Moore bound we know that γ is at most 2, but there is no known family of

graphs attaining the bound. The best asymptotic families to date are based on

constructions of Lubotzky, Phillips and Sarnak [51], and of Lazebnik, Ustimenko and

Woldar [45, 46, 43, 47]. Both of these achieve a value of γ = 4/3 for certain values of

d. Despite the ages of these constructions, no better families have been found which

more closely approach the upper bound of 2. For more information on families of

graph of large girth, see the survey paper by Exoo and Jajcay [31] and the paper of

Biggs [13].

We concentrate here on the construction of Lazebnik, Ustimenko and Woldar. These

graphs first appeared in a series of papers [45, 46, 43, 47] between 1995 and 1997. The

graphs as constructed in those papers have their origins in Lie algebras, and use a

notation which is somewhat awkward. Partly for this reason, few other authors have

attempted a systematic analysis of the properties of the graphs.

More recently, a survey paper by Lazebnik and Sun [44] recasts the notation of these

graphs in a more accessible way, and summarises their known properties.

Nevertheless, there is still no complete published account of the automorphisms of

these graphs. In an attempt to better understand this important family of graphs, we

derive a group of automorphisms which arise in a natural way from the recasting of

the description of the graphs in a more accessible format. As a consequence of this

derivation, we prove that these graphs have a higher level of symmetry than had

previously been known, being 3-arc transitive in 75% of cases.

Grahame Erskine



7.2 The graphs of Lazebnik, Ustimenko and Woldar 87

7.2 The graphs of Lazebnik, Ustimenko and Woldar

7.2.1 Construction and properties

We begin by defining the graphs using a notation similar to that used in [44].

Let q be a prime power and let n ≥ 3. Let P,L be two copies of the vector space of

dimension n over GF (q). For convenience we denote a vector p ∈ P by (p1, p2, . . . , pn)

and a vector ` ∈ L by [`1, `2, . . . , `n]. We define a bipartite graph D(n, q) to have

vertex partitions P and L and an edge between p and ` if and only if the following

n− 1 identities for `2, `3, . . . , `n are simultaneously satisfied:

`2 = p2 + p1`1

`3 = p3 + p1`2

`i =

pi + pi−2`1 if i ≡ 0, 1 (mod 4), 4 ≤ i ≤ n

pi + p1`i−2 if i ≡ 2, 3 (mod 4), 6 ≤ i ≤ n

An example graph with q = 3, n = 3 is shown in Figure 7.1.

We note that the paper [44] in fact expresses the adjacency equations in the form

p2 + `2 = p1`1 and so on. By Proposition 2 of that paper however, the two forms yield

isomorphic graphs and so are equivalent.

It can be seen that given any p, the first coordinate `1 may be chosen freely and then

`2, . . . , `n are determined. Thus any vertex in P has exactly q neighbours. By

reversing the equations it is readily seen that any ` ∈ L also has exactly q neighbours.

Thus D(n, q) is a q-regular bipartite graph of order 2qn. The basic properties of

D(n, q) were explored in the original papers and summarised in [44]. The crucial

points are as follows.

1. For odd n, the graph D(n, q) has girth at least n+ 5.

2. For even n, the graph D(n, q) has girth at least n+ 4.

3. For n ≥ 6 and odd q, the graph D(n, q) is disconnected and consists of qt

mutually isomorphic components, where t = bn−24 c.

Because the graphs are disconnected, we focus attention on the connected

components which we denote CD(n, q). These graphs remain asymptotically the best

general construction in the girth problem. Thus their properties are of interest.
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Figure 7.1: The graph D(3, 3)
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A number of known automorphisms of the graphs D(n, q) are summarised in [44]. It

is known that the graphs are edge-transitive, and hence transitive on each of the

vertex partition sets P,L. In addition, if q is even then the graphs are

vertex-transitive. However, there is as far as we know no more complete investigation

of the automorphism groups of these graphs. We begin with a more detailed

treatment of those automorphisms which preserve the partition sets P,L.

7.2.2 Partition-preserving automorphisms

Because D(n, q) contains a large number of mutually isomorphic connected

components as n grows, its automorphism group becomes very unwieldy. We will

therefore concentrate on the connected components CD(n, q). Our main result

towards a classification of the partition-preserving automorphisms of CD(n, q) is as

follows.

Theorem 7.1. Let n ≥ 2 and let m = n− bn−24 c. Let q be any prime power. Then

there exists a group of automorphisms of CD(n, q) of order qm+1(q − 1)2 which

preserves the vertex partition.

It will be convenient for the proof of this result to consider the vertices of CD(n, q) as

(n+ 1)-dimensional vectors over GF (q) where we simply add a 1 in the final

coordinate position. The strategy of the proof is to show that for all n and q, there

exists the following:

• a group of (n+ 1)× (n+ 1) matrices GP over GF (q)

• a function φ mapping each element of GP onto another (n+ 1)× (n+ 1) matrix

such that for every MP ∈ GP the following map ψ is an automorphism of the

component CD(n, q) of D(n, q) containing the vertex (0, 0, . . . , 0):

ψ(v) =

vMP if v ∈ P

vφ(MP ) if v ∈ L

We will see that the matrices MP will have an “affine” block form

M 0

F 1

 where M

is an upper triangular n× n matrix and F is a 1× n block. It will turn out that m of

the n entries in F are free parameters in GF (q), and the matrices M have the form
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

a b y13 . . . y1n

0 c y23 . . . y2n

0 0 y33 . . . y3n
...

...
...

...
...

0 0 0 . . . ynn


. In M , a and c can be chosen freely from GF (q)∗, and b from

GF (q). All the yij will be completely determined by the freely chosen variables.

The set of such matrices forms a group of order qm+1(q − 1)2.

To illustrate the method we begin with the case n = 3.

Lemma 7.2. Let q be a prime power, let a, c ∈ GF (q)∗ and let b, d, e, f ∈ GF (q). Let

MP be the matrix

MP =


a b db− ea 0

0 c dc 0

0 0 ac 0

d e f 1


Let φ(MP ) = ML be the matrix

ML =


c/a dc/a d2c/a 0

0 c 2dc 0

0 0 ac 0

−b/a e− db/a f + de− d2b/a 1


Then the mapping

ψ(v) =

vMP if v ∈ P

vML if v ∈ L

is an automorphism of D(3, q).

Proof. Let p = (p1, p2, p3, 1) and ` = [`1, `2, `3, 1]. We must show that ψ(p) and ψ(`)

satisfy the adjacency equations if and only if p and ` do. So suppose p and ` are

adjacent. Then we know `2 = p2 + p1`1 and `3 = p3 + p1`2. Now:

ψ(p) =


a p1 + d

b p1 + c p2 + e

(db− ea) p1 + dc p2 + ac p3 + f

1


T
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ψ(`) =


c/a `1 − b/a

dc/a `1 + c `2 + e− db/a
d2c/a `1 + 2dc `2 + ac `3 + f + de− d2b/a

1


T

Elementary manipulation now shows that, in an obvious notation,

ψ(`)2 = ψ(p)2 + ψ(p)1ψ(`)1 and ψ(`)3 = ψ(p)3 + ψ(p)1ψ(`)2 as required. So ψ(p) and

ψ(`) are adjacent.

It is easy to see that this argument is reversible so that ψ(p) and ψ(`) are adjacent if

and only if p and ` are adjacent.

To extend the idea to arbitrary n, we will derive the form of the matrices in

Lemma 7.2 in a way which will point towards an inductive approach for larger

dimensions. But before that, we need to understand more about the structure of the

components CD(n, q) of our graphs. These components were investigated by

Lazebnik, Ustimenko and Woldar in a follow-up paper [43] and we present the results

of that investigation in a form suitable for our needs.

Lemma 7.3. Let q be a prime power and let p = (p1, . . . , p6) and ` = [`1, . . . , `6] be

vertices of D(n, q). Define f : D(6, q)→ GF (q) by

f(p) = p1p4 − p22 − p5 + p6

f(`) = `1`3 − `22 − `5 + `6

Then f is constant on a connected component of D(6, q).

Proof. Using the adjacency relations it follows by elementary algebraic manipulation

that if p is adjacent to ` then f(p) = f(`). The result follows immediately.

The corollary of this result is that since f can take any value in GF (q), there are at

least q components in D(6, q). In fact the authors go further and show that there are

exactly q components when q is odd (the behaviour of the graphs when q is even is

slightly different). Moreover, this same splitting happens again at n = 10 where they

show the existence of a second function which is constant on connected components,

leading to a total of q2 components of the full graph. In general, for any n = 4k + 2

where k ≥ 1, another such function appears. This is essentially due to the periodic

structure of the adjacency relations, which repeat their form with a cycle of length 4.

Now we are ready to extend Lemma 7.2 to arbitrary n. To illustrate the inductive
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approach we will begin with the simpler case n = 2, and then extend this to the case

n = 3 to re-derive the form of the matrices in Lemma 7.2. We amend our matrix

notation slightly by including the dimension n of the space under consideration as a

superscript.

Let q be a prime power and let a, c ∈ GF (q)∗. Let b, d, e ∈ GF (q). Let

M
(2)
P =


a b 0

0 c 0

d e 1

. We wish to find a matrix M
(2)
L =


x y 0

0 z 0

t u 1

 such that the

mapping

ψ(v) =

vM
(2)
P if v ∈ P

vM
(2)
L if v ∈ L

is an automorphism of D(2, q). Our goal then is to find values of x, y, z, t, u in terms

of a, b, c, d, e to make this work, that is to say that p = (p1, p2) is adjacent to

` = [`1, `2] if and only if ψ(p) = (p′1, p
′
2) is adjacent to ψ(`) = [`′1, `

′
2].

We begin with a simple set of equations given by the form of ψ:

p′1 = ap1 + d

p′2 = bp1 + cp2 + e

`′1 = x`1 + t

`′2 = y`1 + z`2 + u

From the adjacency relations, if p ∼ ` we must have `2 = p2 + p1`1 so that:

`′2 = y`1 + z(p2 + p1`1) + u (7.1)

If p ∼ ` we must have ψ(p) ∼ ψ(`) so that `′2 = p′2 + p′1`
′
1 or:

`′2 = bp1 + cp2 + e+ (ap1 + d)(x`1 + t) (7.2)

We need these equations to be satisfied for all possible values of p1, p2, `1. So we
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equate coefficients in 7.1 and 7.2 to get:

y = xd

z = c

z = ax

u = dt+ e

b+ at = 0

This leads to M
(2)
L =


c/a dc/a 0

0 c 0

−b/a e− db/a 1

.

Our goal now is to extend these matrices for n = 2 to the case n = 3. To do this,

notice that M
(2)
P has the block form

M (2) 0

F (2) 1

 where M (2) is a 2× 2 matrix, and

F (2) is a 1× 2 row. The matrix M
(2)
L has a similar form

N (2) 0

G(2) 1

.

The incidence rules for D(n, q) mean that the first n− 1 coordinates satisfy the same

equations as in the graph D(n− 1, q). Thus if we have matrices

M
(n−1)
P =

M (n−1) 0

F (n−1) 1

 ; M
(n−1)
L =

N (n−1) 0

G(n−1) 1


then we expect the extended matrices to have the form

M
(n)
P =


M (n−1) X(n−1) 0

0 xn 0

F (n−1) fn 1

 ; M
(n)
L =


N (n−1) Y (n−1) 0

0 yn 0

G(n−1) gn 1

 .

In the above, X(n−1) = (x1, x2, . . . , xn−1)
T and xn are entries which will be

determined by the adjacency rules, and fn may be chosen freely. In M
(n)
L , all the new

matrix entries are determined by the adjacency rules and our choice of fn.

To see how this works we complete the extension to the case n = 3. Since

M
(2)
P =


a b 0

0 c 0

d e 1

 and M
(2)
L =


c/a dc/a 0

0 c 0

−b/a e− db/a 1

, we expect our matrices to
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have the following forms:

M
(3)
P =


a b x 0

0 c y 0

0 0 z 0

d e f 1

 ; M
(3)
L =


c/a dc/a t 0

0 c u 0

0 0 v 0

−b/a e− db/a w 1


where the values of x, y, z, t, u, v, w need to be determined.

As before, the form of ψ gives us:

p′3 = xp1 + yp2 + zp3 + f

`′3 = t`1 + u`2 + v`3 + w

If p ∼ ` then the second equation expands to:

`′3 = t`1 + u(p2 + p1`1) + v(p3 + p1(p2 + p1`1)) + w (7.3)

If p ∼ ` then we must have ψ(p) ∼ ψ(`) and so:

`′3 = p′3 + p′1`
′
2

= xp1 + yp2 + zp3 + f + (ap1 + d)(dc/a`1 + c(p2 + p1`1) + e− db/a)
(7.4)

Since these equations must hold for all possible values of p1, p2, p3, `1, we equate

coefficients in 7.3 and 7.4 to get x = db− ea, y = dc, z = ac, t = d2c/a, u = 2dc,

v = ac and w = f + de− d2b/a. Notice that as expected, the value of f can be chosen

freely but all other matrix entries were completely determined by the adjacency rules.

We have therefore recovered the form of the matrices from Lemma 7.2:

M
(3)
P =


a b db− ea 0

0 c dc 0

0 0 ac 0

d e f 1

 ; M
(3)
L =


c/a dc/a d2c/a 0

0 c 2dc 0

0 0 ac 0

−b/a e− db/a f + de− d2b/a 1

 .

We now proceed inductively. To move from the case n = 3 to n = 4, we set up the

equations in the same way as before, but applying the adjacency rules in the fourth

coordinate and equating coefficients to determine the required matrix entries. The
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details are tedious but routine, and the resulting matrices are:

M
(4)
P =



a b db− ea b2/a 0

0 c dc 2bc/a 0

0 0 ac 0 0

0 0 0 c2/a 0

d e f g 1



M
(4)
L =



c/a dc/a d2c/a ec/a 0

0 c 2dc bc/a 0

0 0 ac 0 0

0 0 0 c2/a 0

−b/a e− db/a f + de− d2b/a g − eb/a 1



When n = 5, the same process yields:

M
(5)
P =



a b db− ea b2/a b2d/a− be 0

0 c dc 2bc/a 2bcd/a− ce 0

0 0 ac 0 bc 0

0 0 0 c2/a c2d/a 0

0 0 0 0 c2 0

d e f g h 1



M
(5)
L =



c/a dc/a d2c/a ec/a cf/a 0

0 c 2dc bc/a bcd/a− ce 0

0 0 ac 0 0 0

0 0 0 c2/a c2d/a 0

0 0 0 0 c2 0

−b/a e− db/a f + de− d2b/a g − eb/a h− bf/a 1



Moving to the case n = 6 is similar, but we need to take care because in this case the
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graph D(6, q) becomes disconnected. Applying the same process as before gives:

M
(6)
P =



a b db− ea b2

a
b2d
a − be be− ag 0

0 c dc 2bc
a

2bcd
a − ce ce 0

0 0 ac 0 bc bc 0

0 0 0 c2/a c2d
a 0 0

0 0 0 0 c2 0 0

0 0 0 0 0 c2 0

d e f g h i 1



M
(6)
L =



c
a

dc
a

d2c
a

ec
a

cf
a

cde
a 0

0 c 2dc bc
a

bcd
a − ce

bcd
a + ce 0

0 0 ac 0 0 bc 0

0 0 0 c2

a
c2d
a

c2d
a 0

0 0 0 0 c2 0 0

0 0 0 0 0 c2 0

− b
a e− db

a f + de− d2b
a g − eb

a h− bf
a i+ dg − bde

a 1



These matrices certainly represent an automorphism of D(6, q). But this

automorphism may send a vertex out of its connected component, so it may not be an

automorphism of CD(n, q). We want to understand the automorphisms of CD(n, q),

so we need to prevent this.

Recall from Lemma 7.3 that two vertices p, p′ of D(n, q) are in the same connected

component if and only if f(p) = f(p′) as defined in the lemma. The form of f means

that given p, we can express p′6 as a function of p′1, . . . , p
′
5 to ensure that p and p′ are

in the same component. In terms of our matrices, this is equivalent to saying that the

entry i in the matrix M
(6)
P can no longer be chosen freely from GF (q), but must be

constrained to be the unique value which will keep p′ in the same component as p.

Finally we apply the same process to the case n = 7 and calculate the matrices M
(7)
P
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and M
(7)
L :



a b db− ea b2

a
b2d
a − be be− ag bf − ah 0

0 c dc 2bc
a

2bcd
a − ce ce cf 0

0 0 ac 0 bc bc bcd− ace 0

0 0 0 c2/a c2d
a 0 0 0

0 0 0 0 c2 0 0 0

0 0 0 0 0 c2 c2d 0

0 0 0 0 0 0 ac2 0

d e f g h i j 1




c
a

dc
a

d2c
a

ec
a

cf
a

cde
a

cdf
a 0

0 c 2dc bc
a

bcd
a − ce

bcd
a + ce cf − cde+ bcd2

a 0

0 0 ac 0 0 bc bcd− ace 0

0 0 0 c2

a
c2d
a

c2d
a

c2d2

a 0

0 0 0 0 c2 0 c2d 0

0 0 0 0 0 c2 c2d 0

0 0 0 0 0 0 ac2 0

− b
a e− db

a f + de− d2b
a g − eb

a h− bf
a i+ dg − bde

a j + dh− bdf
a 1


At this point we have constructed pairs of matrices yielding automorphisms of

CD(n, q) in the cases n = 3, 4, 5, 6, 7 having started from n = 2. Given that the

adjacency equations for our graphs repeat with a cycle of period 4 as from n = 3

onwards, it is clear that our inductive construction approach can be continued up to

any arbitrary dimension n. If n 6≡ 2 (mod 4), then we add one more free variable into

our matrix M
(n)
P . If n ≡ 2 (mod 4), then the graph D(n, q) splits again into another q

components as discussed following Lemma 7.3 and the new variable in the matrix

must be determined so as to keep a vertex within its connected component. This

completes the proof of Theorem 7.1.

7.2.3 Vertex transitivity of D(n, q)

As noted in Section 7.2.1, it is known that the automorphism group of D(n, q) acts

transitively on each of the partition sets P,L. (In fact, we will see in the next section

that this result can be strengthened.) For the graphs to be vertex-transitive, all that

is required is that there should exist some automorphism which exchanges P and L.

So far, this has been shown [45, Theorem 3.2] to be true for even q or n, although the

proof of this result is in a form and uses a notation which is awkward for our use. Our

main result in this section shows that such a “swapping” automorphism exists for any
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odd q unless n ≡ 3 (mod 4).

Theorem 7.4. For any prime power q and for any n 6≡ 3 (mod 4) the graph D(n, q)

is vertex-transitive.

The proof of this result will use induction on n and we begin with the smallest

non-trivial case.

Lemma 7.5. For any prime power q, the graph D(4, q) is vertex-transitive.

Proof. Let q be any prime power and let P,L be the two partitions of D(4, q). For

clarity, we denote an element of P by p = (a, b, c, d) and of L by ` = [x, y, z, t]. The

adjacency relations are that p ∼ ` if and only if:

y = b+ ax

z = c+ ay

t = d+ bx

For each β ∈ GF (q), every vertex v in P or L is adjacent to exactly one vertex Nβ(v)

with first coordinate β.

Nβ(p) = [β, b+ βa, c+ ab+ βa2, d+ βb]

Nβ(`) = (β, y − βx, z − βy, t− xy + βx2)

From [45, Thm 3.2] we know that the graph is edge transitive and hence transitive on

each of P and L. To show vertex transitivity we need only exhibit a “swapping”

automorphism φ which interchanges the vertices of P and L. Define φ by:

φ =

(a, b, c, d) 7→ [a,−b, d, c]

[x, y, z, t] 7→ (x,−y, t, z)

We need to show that p ∼ ` if and only if φ(p) ∼ φ(`). Since φ fixes the first

coordinate it suffices to show for each β that Nβ(φ(p)) = φ(Nβ(p)) and

Nβ(φ(`)) = φ(Nβ(l)). This follows from the calculations below.

Nβ(φ(p))=Nβ([a,−b, d, c])=(β,−b− βa, d+ βb, c+ ab+ βa2)

φ(Nβ(p))=[β, b+ βa, c+ ab+ βa2, d+ βb]φ=(β,−b− βa, d+ βb, c+ ab+ βa2)

Nβ(φ(`))=Nβ((x,−y, t, z))=[β,−y + βx, t− xy + βx2, z − βy]

φ(Nβ(l))=φ((β, y − βx, z − βy, t− xy + βx2))=[β,−y + βx, t− xy + βx2, z − βy]
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So φ is an automorphism.

Our strategy now is somewhat similar to our strategy for the proof of Theorem 7.1.

We complete some small cases to see how the process works, and then find an

inductive argument based on the period four cycle in the adjacency relations. The

proof for the case n = 5 is along similar lines:

Lemma 7.6. For any prime power q, the graph D(5, q) is vertex-transitive.

Proof. Let q be any prime power and let P,L be the two partitions of D(5, q). We

denote an element of P by p = (a, b, c, d, e) and of L by l = [x, y, z, t, u]. The

adjacency relations are that p ∼ l if and only if:

y = b+ ax

z = c+ ay

t = d+ bx

u = e+ cx

For each β ∈ GF (q), every vertex v in P or L is adjacent to exactly one vertex Nβ(v)

with first coordinate β.

Nβ(p) = [β, b+ βa, c+ ab+ βa2, d+ βb, e+ βc]

Nβ(l) = (β, y − βx, z − βy, t− xy + βx2, u− xz + βxy)

Again, we need only show the existence of an automorphism φ swapping P and L.

Define φ by:

φ =

(a, b, c, d, e) 7→ [a,−b, d, c, ad− b2 − e]

[x, y, z, t, u] 7→ (x,−y, t, z, xz − y2 − u)

Since φ fixes the first coordinate it suffices to show for each β that
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Nβ(φ(p)) = φ(Nβ(p)) and Nβ(φ(`)) = φ(Nβ(`)):

Nβ(φ(p)) = Nβ([a,−b, d, c, ad− b2 − e])

= (β,−b− βa, d+ βb, c+ ab+ βa2,−b2 − e− βab)

φ(Nβ(p)) = φ([β, b+ βa, c+ ab+ βa2, d+ βb])

= (β,−b− βa, d+ βb, c+ ab+ βa2,−b2 − e− βab)

Nβ(φ(`)) = Nβ((x,−y, t, z, xz − y2 − u))

= [β,−y + βx, t− xy + βx2, z − βy, xz − y2 − u+ βt]

φ(Nβ(`)) = φ((β, y − βx, z − βy, t− xy + βx2))

= [β,−y + βx, t− xy + βx2, z − βy, xz − y2 − u+ βt]

So φ is an automorphism.

For the case n = 6, we know from [43, Prop 5.1] that the graph D(6, q) is

disconnected, consisting of q connected components each isomorphic to D(5, q). So

the following is immediate:

Lemma 7.7. For any prime power q, the graph D(6, q) is vertex-transitive.

We are now ready to prove Theorem 7.4. The strategy is to show that for any k ≥ 1,

the existence of a swapping automorphism for D(4k, q) implies one for D(4k + 2, q)

and D(4k + 4, q). Further, the one for D(4k + 2, q) implies one for D(4k + 1, q). Since

Lemmas 7.5, 7.6 and 7.7 have proved the result for n = 4, 5, 6 the result follows.

Proof of Theorem 7.4. Let k ≥ 1, let q be a prime power and suppose there is an

automorphism φ of D(4k, q) which interchanges the sets P and L and has the

following form:p = (p1, p2, . . . , p4k) 7→ [p1,−p2, p4, p3, . . . ,−p4k−2,−p4k−3, p4k, p4k−1]

` = [`1, `2, . . . , `4k] 7→ (`1,−`2, `4, `3, . . . ,−`4k−2,−`4k−3, `4k, `4k−1)

We deal first with 4k + 2. We write p′ for the vector p extended by two coordinates

and similarly for ` and φ. In the usual notation we need to show that

φ′(Nβ(p′)) = Nβ(φ′(p′)). The adjacency rules give:

Nβ(p′) = [Nβ(p), p4k+1 + βp4k−1, p4k+2 + p1p4k + βp1p4k−2]

φ′(Nβ(p′)) = [φ(Nβ(p)),−p4k+2 − p1p4k − βp1p4k−2,−p4k+1 − βp4k−1]
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If we write φ′(p′) = [`1, `2, . . . , `4k, `4k+1, `4k+2] then by the operation of φ′:

`1 = a1

`4k−3 = −p4k−2

`4k−2 = −p4k−3

`4k−1 = p4k

`4k = p4k−1

`4k+1 = −p4k+2

`4k+2 = −p4k+1

If we write Nβ(φ′(p′)) = [b1, b2, . . . , b4k, b4k+1, b4k+2] then by the adjacency rules:

b4k+1 = `4k+1 − x1`4k−1 + β`1x4k−3 = −p4k+2 − p1p4k − βp1p4k−2

b4k+2 = `4k+2 − β`4k = −p4k+1 − βp4k−1

Since φ(Nβ(p)) = Nβ(φ(p)) by the induction hypothesis, the result follows.

A similar argument shows that φ′(Nβ(`′)) = Nβ(φ′(`′)).

We deal with the case 4k+ 4 in exactly the same way, and omit the details for brevity.

For 4k + 1, by [43, Prop 5.1] each component of D(4k + 1, q) is isomorphic to a

component of D(4k + 2, q) and so the result follows immediately.

7.2.4 Arc transitivity of D(n, q)

Our last result on the automorphisms of D(n, q) shows that in fact these graphs have

a very high degree of symmetry.

Theorem 7.8. Let q be any prime power and let n ≥ 3. Let P and L be the vertex

partitions of the component CD(n, q) of D(n, q) containing the vector (0, 0, 0, . . . , 0).

Then the automorphism group of CD(n, q) acts transitively on the set of paths of

length 3 with initial vertex in P .

Proof. We begin the proof in the case n = 3. We know that the matrices for

Grahame Erskine



102 7 The degree-girth problem

automorphisms of D(3, q) have the following form:

M
(3)
P =


a b db− ea 0

0 c dc 0

0 0 ac 0

d e f 1

 M
(3)
L =


c/a dc/a d2c/a 0

0 c 2dc 0

0 0 ac 0

−b/a e− db/a f + de− d2b/a 1


As before, we let p ∈ P, ` ∈ L and consider the vectors defining the vertices to be

extended by a 1 in the final coordinate position. An automorphism ψ is determined

by these matrices by defining ψ(p) = pM
(3)
P , ψ(`) = `M

(3)
L .

We want to find an automorphism ψ which maps the path u0 → u1 → u2 → u3 to the

path v0 → v1 → v2 → v3 where both u0 and v0 are in P . Because we know the

automorphism group acts transitively on P it is sufficient to consider the case

u0 = (0, 0, 0, 1). If v0 = (p1, p2, p3, 1) then because ψ(u0) = v0 we can simply fill in the

bottom row of the matrix A so that d = p1, e = p2, f = p3.

Now u1 is a neighbour of u0 with first coordinate β1 say, and β1 uniquely determines

this neighbour. Similarly, u2 is the unique β2-neighbour of u1 and u3 is the unique

β3-neighbour of u2. In the transformed path we denote the first coordinate of

successor neighbour of each vi by αi+1, i = 0, 1, 2.

Notice that because we are considering paths we disallow backtracking walks, so we

have that β2 6= 0 and β1 6= β3. In the same way, α2 6= p1 and α1 6= α3.

Now we use the equations:

ψ(u1) = u1M
(3)
L = v1

ψ(u2) = u2M
(3)
P = v2

ψ(u3) = u3M
(3)
L = v3

Working this through leads to the following solution for a, b, c:

a =
α2 − p1
β2

c =
(α1 − α3)a

β1 − β3
b = β1c− α1a

Since we have a solution, we conclude that there are matrices M
(3)
P and M

(3)
L defining

an automorphism ψ mapping the path u0 → u1 → u2 → u3 to the path
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v0 → v1 → v2 → v3. Thus Aut(D(3, q)) acts transitively on paths of length 3 with

initial vertex in P .

To deal with the cases where n > 3, we note that the only additional free variables in

the matrix M
(n)
P occur in the last row. These are immediately determined by the

coordinates of v0 and then finding values for a, b, c works exactly as in the n = 3

case.

Since there exists a swapping automorphism in the case where n 6≡ 3 (mod 4), in that

case we conclude that any path of length 3 starting in P may be mapped to any path

of length 3 starting in L. Additionally, D(n, q) consists of a number of mutually

isomorphic copies of CD(n, q). We therefore have the following corollary.

Corollary 7.9. Let n > 3 with n 6≡ 3 (mod 4) and let q be any prime power. Then

the graph D(n, q) is 3-arc transitive.

7.2.5 Summary of automorphisms of D(n, q)

Theorems 7.4 and 7.8 together imply that if n 6≡ 3 (mod 4), then there is a group of

automorphisms of CD(n, q) of order 2qm+1(q − 1)2 where m = n− bn−24 c. However,

these may not be the only automorphisms of CD(n, q).

It is easy to see that any automorphism of the field GF (q) induces an automorphism

of CD(n, q) by acting on P,L in the natural way. Such an automorphism will of

course preserve the vertex partition, but any non-trivial field automorphism induces a

graph automorphism which is not in our matrix form from Theorem 7.1. To see why,

let q = pk where p is prime and consider the subset P ∗ of P consisting of those vectors

where each component p1, . . . , pn is contained in the prime subfield GF (p). Then any

non-trivial automorphism σ of GF (q) fixes the prime subfield, and hence fixes all

elements of the set P ∗. But an examination of the form of the matrices M
(n)
P from

Section 7.2.2 shows that no non-identity matrix of this form can fix all elements of P ∗.

If q = pk where p is prime, then there are k such field automorphisms, and so we have

a group of order 2kqm+1(q − 1)2.

To investigate the full automorphism group of CD(n, q) for small values of n and q we

used the GRAPE [69] package within GAP [35] to construct the graphs. This package

uses nauty [55] to compute the automorphism group. The results are tabulated in

Table 7.1.

For cubic graphs (q = 3) we may verify our results for small values of n by comparing

with the Foster census [22] of cubic arc-transitive graphs. For n = 4, the graph
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CD(4, 3) has order 162 and appears as entry F162C in the census, which gives the

order of its automorphism group as 1944 in agreement with our table. Isomorphism

testing with GRAPE [69] confirms that CD(4, 3) and F162C are isomorphic. Similarly,

CD(5, 3) appears as entry F486C with automorphism group of order 5832. (Since

CD(3, 3) is not arc-transitive it does not appear in the Foster census.)

In most cases, the full automorphism group has order equal to the subgroup we

computed above. The exceptions are for even q where it is known [43] that the split of

D(n, q) into connected components behaves slightly differently, and for q = 3 where

the properties of D(n, 3) for some values of n are not fully understood [44]. In

addition, for odd q it appears from the computational experiments that there is no

swapping automorphism if n ≡ 3 (mod 4). We therefore make the following

conjecture.

Conjecture 7.10. Let n ≥ 3, let m = n− bn−24 c and let q = pk be an odd prime

power larger than 3. Then the automorphism group of a connected component

CD(n, q) of the graph D(n, q) has exact order:kq
m+1(q − 1)2 if q ≡ 3 (mod 4)

2kqm+1(q − 1)2 if q ≡ 0, 1, 2 (mod 4)

In particular, if q 6≡ 3 (mod 4) then Aut(CD(n, q)) acts regularly on the 3-arcs of

CD(n, q).

7.2.6 Extension to other degrees

Recall that in the diameter problem, we had a number of constructions of Cayley

graphs which were valid only for degrees related to prime powers. Our strategy in

that case was to add edges to our graphs by adding generators to our set, to cover

remaining degrees.

In a similar way, it is immediate from the definition of the graphs D(n, q) that the

construction is only valid for degrees which are prime powers. However, we can

amend the graphs by removing vertices in a controlled way to produce graphs of any

required degree. We do this by finding a perfect dominating set in our graph: that is,

a set of vertices S such that any vertex not in S is adjacent to precisely one vertex in

S. Removal of such a vertex set results in a regular graph of degree one less than the

original, and of course this process cannot decrease the girth.

Lemma 7.11. Let q be a prime power and let g ≥ 8 be an even number. Let d be any

desired degree with d ≤ q. Then there exists a d-regular graph of girth at least g and
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n q = pk m |Aut(CD(n, q))| Interpretation

3 3 3 1296 kqm+1(q − 1)2 × 4
3 4 3 18432 2kqm+1(q − 1)2 × 2
3 5 3 10000 kqm+1(q − 1)2

3 7 3 86436 kqm+1(q − 1)2

3 8 3 1204224 2kqm+1(q − 1)2

3 9 3 839808 kqm+1(q − 1)2

3 11 3 1464100 kqm+1(q − 1)2

3 13 3 4112784 kqm+1(q − 1)2

3 16 3 117964800 2kqm+1(q − 1)2

3 17 3 21381376 kqm+1(q − 1)2

3 19 3 42224004 kqm+1(q − 1)2

4 3 4 1944 2kqm+1(q − 1)2

4 4 4 18432 2kqm+1(q − 1)2 × 2
4 5 4 100000 2kqm+1(q − 1)2

4 7 4 1210104 2kqm+1(q − 1)2

4 8 4 1849688064 2kqm+1(q − 1)2 × 2
4 9 4 15116544 2kqm+1(q − 1)2

4 11 4 32210200 2kqm+1(q − 1)2

4 13 4 106932384 2kqm+1(q − 1)2

5 3 5 5832 2kqm+1(q − 1)2

5 4 5 36864 2kqm+1(q − 1)2 × 4
5 5 5 500000 2kqm+1(q − 1)2

5 7 5 8470728 2kqm+1(q − 1)2

5 8 5 77070336 2kqm+1(q − 1)2

6 3 5 5832 2kqm+1(q − 1)2

6 4 5 36864 2kqm+1(q − 1)2 × 4
6 5 5 500000 2kqm+1(q − 1)2

6 7 5 8470728 2kqm+1(q − 1)2

6 8 5 77070336 2kqm+1(q − 1)2

7 3 6 34992 kqm+1(q − 1)2 × 4
7 4 6 73728 2kqm+1(q − 1)2 × 8

8 3 7 52488 2kqm+1(q − 1)2

9 3 8 157464 2kqm+1(q − 1)2

10 3 8 157464 2kqm+1(q − 1)2

11 3 9 236196 kqm+1(q − 1)2

Table 7.1: Automorphisms of CD(n, q)
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order 2qg−5 − 2q(q − d).

Proof. Let n = g − 5. Then the graph D(n, q) has girth at least g and is q-regular.

Let P,L be the vertex partitions of D(n, q). Recall that for any β ∈ GF (q), a vertex

p ∈ P has precisely one neighbour Nβ(p) ∈ L with first coordinate β. Likewise, a

vertex ` ∈ L has precisely one neighbour Nβ(`) ∈ P with first coordinate β. Thus the

set of vertices with first coordinate β forms a perfect dominating set for D(n, q).

This vertex set of size 2q may be removed from the graph, leaving a (q − 1)-regular

graph of order 2qn − 2q and girth at least g. This process can be repeated q − d times

to yield the desired graph.

We note that a similar construction is described in the recent preprint of Lazebnik

and Sun [44].

7.2.7 Voltage lifts

We conclude our discussion of the properties of the graphs CD(n, q) by describing

another method for their construction by means of iterated voltage lifts. We begin

with some background and notation.

Let Γ be an undirected graph which we call a base graph. In contrast to our

convention to date, we allow Γ to have loops and multiple edges. Although Γ is

undirected, we think of its edges as being formed by pairs of oppositely directed arcs

which in this context we call darts. If e is a dart then e−1 will denote its reverse. If

D(Γ) is the dart set of Γ, then |D(Γ)| = 2|E(Γ)|.

For a finite group G, a mapping α : G→ D(Γ) is called a voltage assignment if

α(e−1) = (α(e))−1 for all e ∈ D(Γ). Given a voltage assignment α, we define the

voltage lift Γα as follows.

The vertex set V (Γα) is the Cartesian product V (Γ)×G, and the dart set is

D(Γ)×G. Let e be a dart in Γ from vertex u to v. We define the dart (e, g) to have

initial vertex (u, g) and terminal vertex (v, gα(e)). Note that by the definition of

voltage assignments, Γα is an undirected graph.

An example base graph is shown in Figure 7.2. It consists of a pair of vertices with

three edges (pairs of darts) between them. The darts from u to v are assigned

voltages 0, 1, 3 from the group Z7. (Naturally, their respective inverses are assigned

0,−1,−3.) The lifted graph is depicted in Figure 7.3.
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u v

0

1

3

Figure 7.2: Base graph Γ

(u, 0) (v, 0)

(u, 1) (v, 1)

(u, 2) (v, 2)

(u, 3) (v, 3)

(u, 4) (v, 4)

(u, 5) (v, 5)

(u, 6) (v, 6)

Figure 7.3: Lifted graph Γα
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u v

0

1

2

Figure 7.4: Base dipole graph Γ

(u, 0)

(u, 1)

(u, 2)

(v, 0)

(v, 1)

(v, 2)

Figure 7.5: Lifted graph Γα ∼= K3,3
∼= CD(1, 3)

Notice that the lifted graph is regular of degree 3, as was the base graph. In fact this

graph turns out to be the Heawood graph, which is the unique graph attaining the

Moore bound at degree 3 and girth 6.

Our aim now is to construct our graphs CD(n, q) via an iterated sequence of voltage

lifts. Our base graph Γ will be a graph with two vertices u, v and q pairs of darts

between them. The voltage assignment α assigns each element of GF (q) to exactly

one of the darts from u to v.

It is not hard to see that the lifted graph Γα is isomorphic to the complete bipartite

graph Kq,q. We may equivalently view this graph as D(1, q) or CD(1, q) since the

operation of the adjacency rules places no restriction on the first (in this case, only)

coordinate of an adjacent vertex. The base and lifted graphs in the case q = 3 are

shown in Figures 7.4 and 7.5.

Now we proceed to construct CD(2, q) as a lift from a base graph of CD(1, q). In

CD(1, q) we identify the vertex p = (p1) with the vertex (u, p1) in our first lifted

graph, and similarly ` = [`1] with (v, `1).

Our second lifted graph will have vertices of the forms (u, p1, p2) and (v, `1, `2) which

we will identify with vertices (p1, p2) and [`1, `2] of CD(2, q) in the obvious way. It
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(u, 0)

(u, 1)

(u, 2)

(v, 0)

(v, 1)

(v, 2)

0

0

0

0

1

2

0

2

1

Figure 7.6: The second base graph CD(1, 3)

remains now to find a voltage assignment α so that the lifted graph will be isomorphic

to CD(2, q).

Recall that the adjacency rule for CD(2, q) is that `2 = p2 + p1`1. Suppose we have a

dart e = (u, p1)→ (v, `1) in the base graph CD(1, q). All that is required is to assign

a voltage α(e) = p1`1 in the additive group GF (q)+ to this dart, and then the lifted

graph will have the correct adjacencies. The second base graph with voltage

assignments is shown in Figure 7.6, and the resulting lift in Figure 7.7.

It is now clear how to proceed. To lift CD(2, q) to CD(3, q) we notice that the second

adjacency rule in CD(3, q) is `3 = p3 + p1`2. Thus the voltage on a dart

(u, p1, p2)→ (v, `1, `2) is p1`2. We would then recover the graph of Figure 7.1.

In general, to move from CD(n, q) to CD(n+ 1, q) via a voltage lift we need only to

notice that the final adjacency relation is of the form `n+1 = pn+1 + pi`j for some

1 ≤ i, j ≤ n and so we assign a voltage pi`j on the dart (u, p1, . . . , pn)→ (v, `1, . . . , `n).

The exception is if n is of the form 4k + 1 for k ≥ 1, where we know that in fact

CD(n+ 1, q) is isomorphic to CD(n, q) since the graph splits into further connected

components as in Lemma 7.3. We therefore have the following result.

Proposition 7.12. Let n be a positive integer not of the form 4k + 1 for k ≥ 1. Let q

be a prime power. Let Γ = CD(n, q). Then there is a voltage assignment

α : D(Γ)→ GF (q)+ such that the lifted graph Γα is isomorphic to CD(n+ 1, q).

Grahame Erskine



110 7 The degree-girth problem

(u, 0, 0)

(u, 0, 1)

(u, 0, 2)

(u, 1, 0)

(u, 1, 1)

(u, 1, 2)

(u, 2, 0)

(u, 2, 1)

(u, 1, 1)

(v, 0, 0)

(v, 0, 1)

(v, 0, 2)

(v, 1, 0)

(v, 1, 1)

(v, 1, 2)

(v, 2, 0)

(v, 2, 1)

(v, 2, 2)

Figure 7.7: The second lifted graph graph D(2, 3)
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Chapter 8

Filled groups

We turn now to a different though somewhat related problem in group theory. The

idea is to investigate product-free sets S in a group G, particularly in the case where

the set and its products cover the whole group, that is to say G \ {1} ⊆ S ∪ SS. Since

this condition is equivalent to saying that the digraph Cay(G,S) has diameter two,

we can see that there is a link to the degree-diameter problem. Indeed in Section 8.4

we will use the ideas we develop to derive a new bound on the asymptotic order of a

certain family of Cayley graphs.

8.1 Preliminaries

Let S be a non-empty subset of a group G. We say S is product-free if S ∩ SS = ∅,
where SS = {ab : a, b ∈ S}. Note that we do not require a and b to be distinct. A

product-free set S is said to be locally maximal if whenever Σ is product-free in G

and S ⊆ Σ, then S = Σ. A product-free set S fills G if G∗ ⊆ S ∪ SS (where G∗ is the

set of all non-identity elements of G). Product-free sets that fill G are also called

complete sum-free sets, for example in [20]. We say G is a filled group if every locally

maximal product-free set in G fills G. This definition, due to Street and

Whitehead [70], was motivated by the observation that a product-free set in an

elementary abelian 2-group A is locally maximal if and only if it fills A, and hence the

elementary abelian 2-groups are filled groups. They asked which other groups, if any,

are filled. They classified the filled abelian groups and some small dihedral groups. In

this chapter, we classify filled groups of various kinds. In Section 8.2.1 we deal with

dihedral groups. Section 8.2.2 covers nilpotent groups. Section 8.2.3 looks at groups

of order 2np where p is an odd prime and n is a positive integer. Finally in Section 8.3

we describe an algorithm which we have implemented in GAP [35], which allows us to

check for filled non-nilpotent groups of all orders up to 2000. In the rest of this

section we establish notation and state some known results.

Throughout this chapter, we write Cn for the cyclic group of order n and D2n for the

dihedral group of order 2n. Let S be a subset of a group G. We define S−1, T (S) and
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√
S as follows.

S−1 = {s−1 : s ∈ S}

T (S) = S ∪ SS ∪ SS−1 ∪ S−1S;
√
S = {x ∈ G : x2 ∈ S}.

We end this preliminary section with the following result, which gathers together

some useful facts that we will need.

Theorem 8.1. (i) [37, Lemma 3.1] Let S be a product-free set in a finite group G.

Then S is locally maximal if and only if G = T (S) ∪
√
S.

(ii) [70, Lemma 1] If G is a filled group, and N is a normal subgroup of G, then

G/N is filled.

(iii) [70, Theorem 2] A finite abelian group is filled if and only if it is C3, C5 or an

elementary abelian 2-group.

(iv) [4, Lemma 2.3] The only filled group with a normal subgroup of index 3 is C3.

(v) [4, Lemma 2.5] If G is a filled group with a normal subgroup N of index 5 such

that not every element of order 5 is contained in N , then G ∼= C5.

(vi) [4, Theorem 2.6] The only filled groups of odd order are C3 and C5.

(vii) [4, Prop 2.8] For n ≥ 2, the dicyclic group of order 4n is not filled.

For convenience and to give a flavour of the techniques used in analysis of this

problem, we repeat below brief proofs of some of the above results.

The proof of (i) is immediate by noting that T (S) and
√
S represent the elements of

G which, if added to S, would cause it to cease to be product-free.

Item (ii) is crucial to our later analysis and classification of filled groups. To prove it,

we suppose that we have some non-filling locally maximal product-free set in the

quotient G/N . Then it is easy to see that the corresponding union (in S) of cosets of

N would be product-free, locally maximal and non-filling in S, contrary to our

assumption that G is filled.

For (iii), we prove the result in one direction which is that any elementary abelian

2-group G must be filled. To see this, note that if S is a locally maximal product-free

set in G, then since all elements of G have order 2 we must have S−1 = S and
√
S = ∅. Thus T (S) ∪

√
S = S ∪ SS and so G = S ∪ SS by part (i).
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We prove (vii) by constructing a non-filling locally maximal product-free set. Let G

be the dicyclic group of order 4n with presentation

〈a, b | a2n = b4 = 1, an = b2, ab = ba−1〉. Then G has an index 2 cyclic subgroup

C = 〈a〉 and every element x ∈ bC has order 4 and satisfies x2 = an ∈ C. We choose a

locally maximal product-free set S ⊆ C containing the element an. (It is immediate

that any element of a group is contained in some locally maximal product-free set.)

Then, since bC ⊆
√
S, it follows that S is also a locally maximal product-free subset

of G. But S ⊆ C and so clearly does not fill G.

8.2 Classification of filled groups

8.2.1 Dihedral groups

A list of non-abelian filled groups of order less than or equal to 32 was given in [4].

There are eight such groups: six are dihedral, and the remaining two are 2-groups.

The dihedral groups on the list are those of order 6, 8, 10, 12, 14 and 22. Our aim in

this section is to show that these are in fact the only filled dihedral groups. The

arguments in this section are originally by Anabanti and Hart, and are contained in

our joint paper [3]. We include this short section here for completeness, and to

illustrate the fact the the argument for dihedral groups is somewhat more awkward

than that for the dicyclic groups.

We write D2n = 〈a, b | an = b2 = 1, ab = ba−1〉 for the dihedral group of order 2n

(where n > 2). In D2n, the elements of 〈a〉 are called rotations and the elements of

〈a〉b are called reflections. For any subset S of D2n, we write A(S) for S ∩ 〈a〉, the set

of rotations of S, and B(S) for S ∩ 〈a〉b, the set of reflections of S.

Observation 8.2. Suppose S is a subset of D2n. Let A = A(S) and B = B(S).

Then, because of the relations in the dihedral group, we have AA−1 = A−1A,

AB = BA−1 and B−1 = B. Therefore

SS = AA ∪BB ∪AB ∪BA;

SS−1 = AA−1 ∪BB ∪AB;

S−1S = AA−1 ∪BB ∪BA;

T (S) = A ∪B ∪AA ∪AA−1 ∪BB ∪AB ∪BA

= S ∪ SS ∪AA−1.

We also note that
√
S =

√
A ⊆ 〈a〉.

Proposition 8.3. Let n be an odd integer, with n ≥ 13. Then D2n is not filled.
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Proof (Anabanti). Let n be an odd integer with n ≥ 13. Then there is an odd number

k for which n is either 5k − 6, 5k − 4, 5k − 2, 5k or 5k + 2.

Suppose first that n is 5k − 2 for an odd integer k. Since n ≥ 13, we note that k ≥ 3.

Now consider the following set S:

S := {ak, ak+2, · · · , a3k−2; b, ab, · · · , ak−1b}

We calculate that

A(SS) = {a2k, a2k+2, · · · , a5k−3} ∪ {1, a, · · · , ak−1} ∪ {a4k−1, a4k, · · · , 1} and

B(SS) = 〈a〉b−B(S). Observe that a3k /∈ S ∪ SS; so S does not fill G.

Let A = A(S). Then AA−1 = {1, a2, a4, · · · , a2k−2} ∪ {a3k, a3k+2, · · · , a5k−4, 1}. Thus

T (S) = G. By Theorem 8.1(i) therefore, S is locally maximal product-free in G, but

we have noted that S does not fill G.

Next we suppose n = 5k for an odd integer k, and again since n ≥ 13, we have k ≥ 3.

Taking the same set S = {ak, ak+2, · · · , a3k−2; b, ab, · · · , ak−1b} we find that S is

locally maximal product-free but does not fill G.

Now suppose n = 5k + 2 for k ≥ 3 and odd. The set U given by

U = {ak−2, ak, · · · , a3k−2; b, ab, · · · , ak−3b}

is locally maximal product-free in G (again using Theorem 8.1(i)), but does not fill G

since for example a3k /∈ U ∪ UU .

Next suppose n = 5k − 6 for k ≥ 5 and odd. Then the set U given by

V = {ak, ak+2 · · · , a3k−2; b, ab, · · · , ak−1b}

is a locally maximal product-free set in G that does not fill G.

Finally, consider the case n = 5k − 4 for k ≥ 5 and odd. The set W given by

W = {ak−2, ak, · · · , a3k−4; b, ab, · · · , ak−3b}

is a locally maximal product-free set in G which does not fill G. We have now covered

all possibilities for n, and have shown that in each case D2n is not filled.

Theorem 8.4. The only filled dihedral groups are D6, D8, D10, D12, D14 and D22.

Proof (Anabanti). Let G be dihedral of order 2n. The filled groups of order up to 32
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were classified in [4]. The only filled dihedral groups of order up to 32 are D6, D8,

D10, D12, D14 and D22. It remains to show that if n > 16, then D2n is not filled.

Suppose n > 16. By Proposition 8.3, if n is odd then D2n is not filled, so we can

assume n is even. We will show by induction on m, that if G ∼= D4m for some integer

m greater than 3, then G is not filled. Note that by [4] D16, D20, D24, D28 and D32

are not filled. So we can assume m > 8.

Observe that the quotient of G by its centre is dihedral of order 2m. If G is filled,

then by Theorem 8.1(ii), this dihedral group of order 2m must be filled. If m is odd,

then by Proposition 8.3, and our assumption that m > 8, we have m = 9 or m = 11.

We know that D18 is not filled, so m = 11, meaning G is D44. However a

straightforward calculation shows that {a2, a5, a8, a18, a21, a5y, a16b} is locally

maximal product-free in D44, but does not fill D44. Thus if m is odd, then G is not

filled. Suppose m is even, so m = 2t for some t with t > 4. Inductively D4t is not

filled, so G is not filled. This completes the proof.

8.2.2 Nilpotent Groups

In this section we classify the filled nilpotent groups. The bulk of the work involved

here is in determining the filled 2-groups, as it will turn out that there are only two

filled nilpotent groups that are not 2-groups.

We briefly recap some notation and basic results. Recall first that a group is nilpotent

if and only if it can be expressed as the internal direct product of its Sylow subgroups.

(Put more simply, a group is nilpotent if and only if it is a direct product of p-groups.)

For a group G we write G′ for the derived subgroup (so G′ = [G,G]) and Φ(G) for the

Frattini subgroup (the intersection of the maximal subgroups of G). An extraspecial

group is a non-abelian p-group G with the property that Z(G) ∼= Cp and G/Z(G) is

elementary abelian. We will be concerned only with the extraspecial 2-groups.

Standard results from group theory tell us that G′ is the smallest normal subgroup of

G with abelian quotient, and that, since G is a p-group, Φ(G) is the smallest normal

subgroup with elementary abelian quotient. It follows that a 2-group G is extraspecial

if and only if Z(G) = G′ = Φ(G) ∼= C2.

It is known (see for example [9]) that the order of any extraspecial 2-group is an odd

power of 2, and there are exactly two nonisomorphic extraspecial 2-groups for any

given odd power of 2. To describe these, recall the construction of a central product.

A central product A ∗B is the quotient of the direct product A×B by a central

subgroup of A and B. If G is isomorphic to A ∗B, then it has normal subgroups
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which we may identify with A and B, such that [A,B] = 1 and A ∩B ≤ Z(G). The

extraspecial groups of order 8 are D8 and Q8. If E1 and E2 are the extraspecial

groups of order 22n−1, for n ≥ 1, then the extraspecial groups of order 22n+1 are

isomorphic to E1 ∗Q8 and E2 ∗Q8.

Our first result classifies the 2-groups all of whose quotients are elementary abelian.

This is relevant because every quotient of a filled group must be filled, and it will turn

out that all but finitely many filled 2-groups are elementary abelian.

Theorem 8.5. Suppose every proper nontrivial quotient of a finite nontrivial 2-group

G is elementary abelian. Then G is either elementary abelian, extraspecial, C4 or of

the form E ∗ C4 where E is extraspecial and |G| = 2|E|.

The proof of this result by Hart is elementary and we refer the interested reader to

our joint paper [3] for details. We continue with a few technical lemmas, and again we

refer to the joint paper for proofs.

Lemma 8.6. Let G be a group of the form E ∗ C4 where E is extraspecial and

|G| = 2|E|. Then G is not filled.

A group G of order pm is said to be of maximal class if m > 2 and the nilpotence

class of G is m− 1. It is well known (for example see Theorem 1.2 and Corollary 1.7

of [9]) that the 2-groups of maximal class are dihedral, semidihedral and generalised

quaternion (dicyclic). Moreover [9, Theorem 1.2] if G is a 2-group of maximal class of

order at least 16, then G/Z(G) is dihedral of order 1
2 |G|.

Lemma 8.7. The only filled 2-group of maximal class is D8.

For a p-group G, we define cn(G) to be the number of subgroups of G of order pn.

Theorem 8.8 (Theorem 1.17 of [9]). Suppose a 2-group G is neither cyclic nor of

maximal class. Then c1(G) ≡ 3 mod 4 and for n > 1, cn(G) is even.

We are now ready to state a crucial corollary which will allow us to classify the filled

2-groups.

Corollary 8.9. Suppose G is a filled group of order 2n, where n > 1. If the only filled

groups of order 2n−1 are elementary abelian or extraspecial, then G is either

elementary abelian, extraspecial or the direct product of a filled extraspecial group of

order 2n−1 with a cyclic group of order 2. If the only filled groups of order 2n−1 are

elementary abelian, then G is either elementary abelian or extraspecial.
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Proof (Hart). Note first that if G is a filled 2-group, then G′ = Φ(G). Suppose the

only filled groups of order 2n−1 are elementary abelian or extraspecial. If n is 2 or 3,

then the result holds, so we may assume n ≥ 4. Now G is clearly not cyclic.

Moreover, by Lemma 8.7, G is not of maximal class. Therefore G has an even number

of subgroups of order 4. The length of any conjugacy class of subgroups of order 4 is

either 1 or even. The composition factors of any 2-group are cyclic of order 2, and

hence G has at least one normal subgroup of order 4. Therefore G has at least two

normal subgroups, H and K say, of order 4. Any nontrivial normal subgroup

intersects the centre of G nontrivially, and so H contains a central involution z. The

quotient G/〈z〉 is filled of order 2n−1 and so, by hypothesis, either elementary abelian

or extraspecial. Hence G/H, which is isomorphic to G/〈z〉
H/〈z〉 , is a nontrivial quotient of

an extraspecial or elementary abelian 2-group, and is therefore elementary abelian.

Similarly G/K is elementary abelian. This implies that G′ = Φ(G) ≤ H ∩K. If G is

abelian, then G is elementary abelian.

If G is non-abelian, then G′ = Φ(G) = 〈z〉, where z is a central involution. If Z(G)

contains an involution t other than z, then since t is not contained in Φ(G), there is a

maximal subgroup N which does not contain t. Thus G ∼= N × 〈t〉. Now G/〈t〉 ∼= N ,

which forces N to be filled of order 2n−1. So G is elementary abelian unless there is a

filled extraspecial group E of order 2n−1, in which case we also have the possibility

that G ∼= E × C2. We now deal with the case that z is the only central involution. In

that case, since every nontrivial normal subgroup intersects Z(G) nontrivially, every

nontrivial normal subgroup contains z and hence every proper quotient is elementary

abelian. Therefore, by Theorem 8.5 and Lemma 8.6, G is either elementary abelian or

extraspecial.

We have shown that G is either elementary abelian or extraspecial, except in the case

where there is a filled extraspecial group E of order 2n−1, in which case we have the

further possibility that G ∼= E × C2.

The strategy now is to understand which extraspecial 2-groups are filled. We begin

with a computer-assisted classification of small 2-groups, aided by the following

lemmas.

Lemma 8.10. Let S be a locally maximal product-free set in a group G. If a ∈ S but

a−1 /∈ S, then a−1 ∈ SS ∪
√
S.

Lemma 8.11. Suppose G is a group of exponent 4 all of whose elements of order 4

square to the same central involution z. If S is a locally maximal product-free set that

does not fill G, then S contains z and every element of S is an involution.

Grahame Erskine



118 8 Filled groups

Proposition 8.12. If G is a non-abelian filled 2-group of order up to 128, then G is

either D8, D8 × C2, D8 ∗Q8 or (D8 ∗Q8)× C2.

Proof. Computer search allows us to show that the only non-abelian filled 2-groups of

order up to 32 are D8, D8 × C2 (fitting in with Corollary 8.9) and D8 ∗Q8.

Corollary 8.9 tells us that the only candidates for filled groups of order 64 are C6
2 and

(D8 ∗Q8)× C2. Lemma 8.11 allows us to reduce the work involved in checking that

(D8 ∗Q8)× C2 is filled, by checking only sets of involutions. By this means, it is then

possible to check by machine that (D8 ∗Q8)× C2 is indeed the only filled non-abelian

group of order 64. By restricting the search to non-abelian groups whose quotients

are filled and looking only at product-free sets consisting of involutions, computer

search also confirmed that there are no non-abelian filled groups of order 128. See

Section 8.3 for more detail on the algorithms used.

The remaining argument centres on the following result.

Theorem 8.13. If G is an extraspecial group of order greater than 128, then G is not

filled.

The proof of this result by Hart [3] relies on construction of a particular non-filling

locally maximal product-free set. The details are lengthy, though elementary, so we

refer the interested reader to the joint paper.

Now we are in a position to classify all the filled 2-groups.

Corollary 8.14. Let G be a 2-group. Then G is filled if and only if G is either

elementary abelian, or one of D8, D8 × C2, D8 ∗Q8 or (D8 ∗Q8)× C2.

Proof. The proof is immediate from Corollary 8.9, Proposition 8.12 and

Theorem 8.13.

A complete classification of the filled 2-groups now allows us to extend the result to

all nilpotent groups.

Theorem 8.15. Let G be a finite nilpotent group. Then G is filled if and only if G is

either an elementary abelian 2-group or one of C3, C5, D8, D8 × C2, D8 ∗Q8 or

(D8 ∗Q8)× C2.

Proof (Hart). Suppose G is filled and nilpotent. Then G is the direct product of its

Sylow subgroups. Therefore for any prime p dividing |G|, G has a normal subgroup N
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of index p. Hence, by Theorem 8.1(ii) and (iii), p is one of 2, 3 or 5. If p = 3, then by

Theorem 8.1(iv), G must be cyclic of order 3. So we can assume the only primes

dividing |G| are 2 and 5. If p = 5 and 25 divides |G| then G has a normal subgroup of

index 25, but by Theorem 8.1(iii) there are no filled groups of order 25, a

contradiction. Therefore the normal subgroup N of index 5 in G is either trivial or a

2-group. Either way, N contains no elements of order 5. Hence, by Theorem 8.1(v), G

must be cyclic of order 5. The only remaining possibility is that G is a 2-group.

Theorem 8.15 now follows from Corollary 8.14.

8.2.3 Groups of order 2np

In this section we show that if G is a group of order 2np, where n is a positive integer

and p is an odd prime, then G is filled if and only if G is D6, D10, D12, D14 or D22.

Lemma 8.16. Let p be an odd prime and let k be an integer satisfying k >

∞∑
r=1

⌊ p
2r

⌋
.

Let G be a group of order 2kp. Then G contains a non-trivial normal elementary

abelian 2-subgroup of order no greater than 2p.

Proof. We show first that G contains some non-trivial normal 2-subgroup N .

Consider the set S2 of Sylow 2-subgroups of G. By the Sylow theorems, either

|S2| = 1 or |S2| = p. If |S2| = 1 we take N to be the unique Sylow 2-subgroup. If

|S2| = p then G acts transitively by conjugation on the set S2, and so the kernel N of

this action is a normal subgroup of G which is a 2-group. The condition on k ensures

that G is sufficiently large that N must be non-trivial.

It is a fundamental result that a minimal normal subgroup of a solvable group is

elementary abelian. Thus N contains some non-trivial elementary abelian 2-subgroup

K which is normal in G. Now K is a union of conjugacy classes of G. Since |K| is

even and contains the conjugacy class {1}, it must contain some other conjugacy class

T of odd length. Since |T | must divide |G|, we conclude that either |T | = 1 or |T | = p.

In either case, 〈T 〉 is a normal 2-subgroup of G of order at most 2p, as required.

Corollary 8.17. For any k ≥ 3, there is no filled group of order 3× 2k.

Proof. We proceed by induction. By computer search, we know there are no filled

groups of order 24, 48 or 96. So the statement is true for k = 3, 4, 5. Suppose the

statement is true up to k ≥ 5 and consider the case k + 1. If G is a group of order

3× 2k+1, then by Lemma 8.16 it contains a normal subgroup H of order 2, 4 or 8.

Then G/H has order 3× 2k−2, 3× 2k−1 or 3× 2k and so is not filled by the induction

hypothesis. Thus G is not filled.
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Corollary 8.18. For any k ≥ 2, there is no filled group of order 5× 2k.

Proof. By computer search (see Section 8.3 for details) we know there are no filled

groups of order 20, 40, 80, 160 or 320. So the statement is true for k = 2, 3, 4, 5, 6.

Suppose the statement is true up to k ≥ 6 and consider the case k+ 1. If G is a group

of order 5× 2k+1, then by Lemma 8.16 it contains a normal subgroup H of order 2, 4,

8, 16 or 32. Then G/H has order 5× 2k−4, 5× 2k−3, 5× 2k−2, 5× 2k−1 or 5× 2k and

so is not filled by the induction hypothesis. Thus G is not filled.

Corollary 8.19. For any k ≥ 2, there is no filled group of order 7× 2k.

Proof. By computer search, we know there are no filled groups of order 28, 56, 112,

224, 448, 896 or 1792. So the statement is true for k = 2, 3, 4, 5, 6, 7, 8. Suppose the

statement is true up to k ≥ 8 and consider the case k + 1. If G is a group of order

7× 2k+1, then by Lemma 8.16 it contains a normal subgroup H of order 2, 4, 8, 16,

32, 64 or 128. Then G/H has order 7× 2k−6, 7× 2k−5, 7× 2k−4, 7× 2k−3, 7× 2k−2,

7× 2k−1 or 7× 2k and so is not filled by the induction hypothesis. Thus G is not

filled.

Lemma 8.20. Suppose G is a filled group of order 2np, where n ≥ 2 and p is an odd

prime. If G has a normal subgroup of order p, then G contains a central involution.

Proof. Suppose N is normal of order p in G. Then G = NH where H is any Sylow

2-subgroup of G. This means G/N ∼= H. Since G is filled, G/N must be filled. By

Corollary 8.14 H is either an elementary abelian 2-group, or D8, D8 × C2, D8 ∗Q8 or

D8 ∗Q8 × C2. Since H has order at least 4, it follows that either H contains a Klein

4-group K = 〈a, b〉 such that K is central in H, or H contains a subgroup D which is

dihedral of order 8, whose centre is also the centre of H. In the first scenario, consider

the action of H on N by conjugation. Write N = 〈x〉. Now axa−1 = xi for some i,

and x = a2xa−2 = xi
2
. Thus i = ±1 (because in the cyclic group of units of Z/pZ the

element 1 has exactly 2 square roots). If axa−1 = x−1 and bxb−1 = x−1, then

(ab)x(ab)−1 = x. Therefore at least one involution g in K centralises x. This means

we have g ∈ Z(H) ∩ CG(N). Thus g ∈ Z(G). Now consider the second situation,

where H contains a subgroup D which is dihedral of order 8 whose centre is also the

centre of H. We have D = 〈r, s : r2 = s2 = (rs)4 = 1〉. Again looking at the action on

N by conjugation, we have that rxr−1 = x±1 and sxs−1 = x±1, which implies

(rs)x(sr)−1 = x±1. Let g = (rs)2. Then g ∈ Z(H) and gxg−1 = x, so g ∈ CG(N).

Hence again G contains a central involution.

Proposition 8.21. For any k ≥ 2, there is no filled group of order 11× 2k.
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Proof. We proceed by induction on k ≥ 2. Computer search shows there is no filled

group of order 44. Let G be a group of order 11× 2k for k > 2 and suppose for a

contradiction that G is filled. If G has a normal Sylow 2-subgroup then the quotient

of G by this subgroup would be filled of order 11, which is impossible. So we can

assume G does not have a normal Sylow 2-subgroup. If G has a normal Sylow

11-subgroup N , then by Lemma 8.20 G contains a central involution g. The quotient

G/〈g〉 is filled of order 11× 2k−1. By induction G/〈g〉 is not filled, and so G cannot

be filled. Suppose then that the Sylow subgroups are not normal. The number of

Sylow 11-subgroups divides 2k and is congruent to 1 modulo 11. So the first time this

can arise is when k = 10. A simple counting argument shows that any group of order

11× 210 has either a normal Sylow 11-subgroup or a normal Sylow 2-subgroup, so

there is nothing to check here. There is one group of order 211× 11 with non-normal

Sylow subgroups, and four such groups of order 212 × 11. The package GrpConst in

GAP [35] allows the user to construct all solvable groups of given order, and the

function FrattiniExtensionMethod restricts to those groups with only non-normal

Sylow subgroups. Thus, even though these five groups are not contained in the Small

Groups library of GAP [35], they can be constructed and tested using the methods

described in Section 8.3. The upshot is that no group of order 11× 210, 11× 211 or

11× 212 is filled. We may therefore assume k ≥ 13. By Lemma 8.16 there is a normal

elementary abelian 2-subgroup N of G with order at most 211. Thus G/N is filled of

order 11× 2m where m ≥ 2. Hence G is not filled. The result now follows by

induction.

Theorem 8.22. Let G be a group of order 2np where n ≥ 1 and p is an odd prime. If

G is filled, then G is one of D6, D10, D14 or D22.

Proof. We have dealt with p = 3, 5, 7, 11. It only remains to show that if p > 11 there

are no filled groups of order 2np. We proceed by induction on n. If n = 1 the result

holds by Theorem 8.4. Suppose n ≥ 2. Let N be a minimal normal subgroup of G.

Then N is either cyclic of order p or an elementary abelian 2-group. If N is cyclic of

order p then by Lemma 8.20, G has a central involution g. Now G/〈g〉 has order

2n−1p, so by inductive hypothesis is not filled. Hence G is not filled. So assume N is

an elementary abelian 2-group. Then G/N is either cyclic of order p or has order 2mp

where 1 ≤ m < n. In either case, since p > 11, we know that G/N is not filled.

Therefore G is not filled. By induction no group of order 2np is filled, when p > 11.

This completes the proof.
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8.3 Groups of order up to 2000

In this section we describe the computer algorithms used to determine the filled

status of a group. These algorithms are implemented in GAP [35] and allow us to test

all groups in the library of small groups up to order 2000.

The first algorithm attempts to find a locally maximal product-free set in a given

group G which does not fill G. The strategy is to repeatedly add elements at random

to a product-free set S until S is maximal. At each stage we keep track of the set F

of elements which could be added to S to keep it product-free. If our maximal set S

fills G we discard it and start again, returning the first set S found which does not fill

G. Note that by Lemma 8.11, if G is an extraspecial 2-group we may begin each

search by placing the unique central involution in S. In practice if this algorithm fails

to return a result in a reasonable time we abort and use the exhaustive search method

of Algorithm 8.3.2.

Algorithm 8.3.1 Find a non-filling locally maximal product-free set for a group G

function NFS(G)
repeat

if G is an extraspecial 2-group then
S ← Z(G) \ {1}

else
S ← ∅

end if
F ← G \ ({1} ∪ S ∪

√
S)

repeat
x← Random(F )
S ← S ∪ {x}
F ← F \ (S ∪ SS ∪ SS−1 ∪ S−1S ∪

√
S)

until F = ∅
until {1} ∪ S ∪ SS 6= G
return S

end function

The second algorithm performs an exhaustive search of maximal product-free sets S

in a group G and tests whether any fails to fill G. This algorithm is very expensive,

and is only required when the random method of Algorithm 8.3.1 has failed to return

a result in a reasonable time. The key to making this algorithm run efficiently is the

observation that if φ is an automorphism of G, then S is a locally maximal

product-free subset of G if and only if φ(S) is locally maximal product-free. Thus the

problem of testing all possible sets S is reduced to testing only orbit representatives

under the action of the automorphism group of G.

While these orbits can be readily found using GAP, in practice computing orbits of all
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possible subsets of G is still prohibitively expensive. To get round this problem, we

begin by computing orbits of all product-free sets S of size 3. From each orbit we

choose the minimal representative set (with respect to some arbitrary ordering of the

elements of G). For each such representative set S, we then try to extend S in all

possible ways to obtain a locally maximal product-free set and test whether each

possible extension fills our group G. We need only consider extensions using the set F

of elements larger than any currently in our set S and which keep S product-free, so

again we keep track of this set. Each time we add a new element x to S, we test

whether S is locally maximal and if not, we (recursively) extend this new set. The

algorithm terminates when either a non-filling locally maximal set has been found, or

all possible sets have been examined.

Algorithm 8.3.2 Exhaustive search for locally maximal product-free sets

function ExhaustiveSearch(G)
O ← set of orbit representatives of product-free sets of 3 elements of G under

action of Aut(G)
for each S ∈ O do

F ← G \ (S ∪ SS ∪ SS−1 ∪ S−1S ∪
√
S)

if not ExtendPFS(G,S,F ) then
return false

end if
end for
return true

end function

function ExtendPFS(G,S,F )
if F = ∅ then

if S ∪ SS ∪ SS−1 ∪ S−1S ∪
√
S = G then

if {1} ∪ S ∪ SS 6= G then
return false

end if
end if

else
for each x ∈ F do

S′ ← S ∪ {x}
F ′ ← {f ∈ F |f > x} \ (S′ ∪ S′S′ ∪ S′S′−1 ∪ S′−1S′ ∪

√
S′)

if not ExtendPFS(G,S′,F ′) then
return false

end if
end for

end if
return true

end function

Our final algorithm is used to determine whether a given group G is filled. It uses the

results from previous sections to exclude most groups without the need to resort to

construction of non-filling sets. For those groups which cannot be excluded in this
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way, we use the random method of Algorithm 8.3.1 to find a non-filling set. If all else

fails, we resort to the exhaustive method of Algorithm 8.3.2.

We begin by defining the set G of filled groups of order at most 32, as given in [4,

Table 1]. For larger groups we then apply the simple tests using Theorems 8.1(iii),

8.1(vi), 8.1(vii), 8.4 and 8.13. If these are not sufficient to determine the status of our

group we examine its normal subgroups and invoke Theorems 8.1(ii), 8.1(iv)

and 8.1(v). Finally, if the status of the group is still not resolved we use

Algorithms 8.3.1 then 8.3.2 to search for non-filling sets.

Using this method we have examined all groups in the small groups library in GAP

up to order 2000. The only filled groups are those noted in [4, Table 1] plus the group

(D8 ∗Q8)× C2 of order 64 and the elementary abelian 2-groups. We conclude this

section with the following conjecture.

Conjecture 8.23. Let G be a finite group. Then G is filled if and only if G is either

an elementary abelian 2-group or one of C3, C5, D6, D8, D10, D12, D14, D8 × C2,

D22, D8 ∗Q8 or (D8 ∗Q8)× C2.
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Algorithm 8.3.3 Test whether a group G is filled

function Filled(G)
n← |G|
if n ≤ 32 then

if G ∈ G then
return true

else
return false

end if
else if n is odd then

return false
else if G is elementary abelian then

return true
else if n = 2k where k > 7 then

return false
else if n = 2kp where k > 0 and p is an odd prime then

return false
else if G is abelian, dihedral or generalised quaternion then

return false
else

for each proper non-trivial normal subgroup N CG do
if [G : N ] = 3 or [G : N ] = 5 and not all elements of order 5 are in N

then
return false

end if
if not Filled(G/N) then

return false
end if

end for
end if
if NFS(G) succeeds then

return false
else

return ExhaustiveSearch(G)
end if

end function
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8.4 Application to the degree-diameter problem

We end this chapter with an application of our filled group investigations to the

asymptotics of the degree-diameter problem. In particular, we consider diameter two

Cayley graphs of elementary abelian 2-groups. In the class of such graphs, a folklore

result yields the bound L+(2) ≥ 1
4 .

To see why this holds, we let F = GF (2m) and let G = F+ × F+. Then G is an

elementary abelian 2-group of order 22m. For our connection set S we take

S = {(a, 0) : a ∈ F ∗} ∪ {(0, a) : a ∈ F ∗}. Clearly any element of G can be expressed as

the sum of at most 2 elements of S. Thus Cay(G,S) has diameter 2, order 22m and

degree |S| = 2(2m − 1).

Although this construction is entirely elementary, there is as far as we know no better

published result for this class of graphs. From our knowledge of filled groups, we

know that Cay(G,S) has diameter 2 if and only if S fills G. We also know from

Theorem 8.1(iii) that any locally maximal sum-free set of an elementary abelian

2-group is filling. The question now is whether we can find a family of “small” locally

maximal sum-free sets in an elementary abelian 2-group to improve the bound. Our

main result will be the following.

Theorem 8.24. In the class of Cayley graphs of elementary abelian 2-groups,

L+(2) ≥ 64

225

To prove our result we first need to relate our locally maximal sum-free sets to certain

sets in projective space. Let q be a prime power and let F = GF (q). Recall that the

projective space PG(n, q) can be thought of as consisting of a set of points which we

identify with the 1-dimensional subspaces of Fn+1 and a set of lines which we identify

with the 2-dimensional subspaces. Incidence of points and lines is defined by subspace

inclusion in the natural way.

In projective space PG(n, q), a set of k points is called a k-cap if no 3 points are

collinear. It is called a complete k-cap if it is contained in no k + 1-cap. Our key

observation is the following.

Observation 8.25. A locally maximal sum-free set in Zn2 corresponds to a complete

cap in PG(n− 1, 2).

Proof. Let F = GF (2) and let a, b be two points of PG(n− 1, 2). We think of a and b

as 1-dimensional subspaces of Fn and may identify them with the unique non-zero
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vector in each subspace. The only other point collinear with a and b is the subspace

identified with the vector a+ b. Since Fn can be thought of as an elementary abelian

2-group of order 2n, the result follows.

The question now is how small can a complete k-cap be in PG(n− 1, 2)? At first

sight we have done nothing more than restate our problem in different terms.

However, complete caps in projective space are studied in their own right and we have

the following result.

Theorem 8.26 (Gabidulin, Davydov, Tombak [34]). For m ≥ 5, there exists a

complete k-cap in PG(2m− 1, 2) with k = 15× 2m−3 − 3.

This immediately allows us to prove our main result.

Proof of Theorem 8.24. Let m ≥ 5. By Theorem 8.26 and Observation 8.25, there

exists a locally maximal sum-free set S in G = Z2m
2 of size 15× 2m−3 − 3. Since S is

filling by Theorem 8.1(iii), Cay(G,S) has diameter 2. Since every element of G has

order 2, S = S−1 and so Cay(G,S) is an undirected graph. The graph has order 22m

and asymptotic degree 15× 2m−3. Since we can construct such a graph for infinitely

many degrees, the result follows.

We note that in the paper of Gabidulin, Davydov and Tombak [34], the complete caps

emerge as a by-product of the creation of interesting linear codes of covering radius 2.

For example with m = 5 the authors define the following matrix:

H =



000000000000000000000000000000000000000001111111111111111

000111111110000000000000000000000000000000000000011111111

000000011111111111111111111111111111111110000111100001111

011001100110110011001100000110011001100000011001100110011

101010101011010101010100001010101010100000101010101010101

111111100000110101011000111001010100111000000000000000000

111000011111100011010101010011100101010101111111111111111

111111100000000000111111111111111000000000000000000000000

111111100000001111000011111110000111100000000000000000000

111111100000000000000000001111111111111110000000000000000



They then show that H is the check matrix of a linear code of length 57, dimension

47 and minimum distance 4. The columns of H form the complete cap which we

interpret as a maximal sum-free set in Z10
2 of size 57.
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It is interesting that the solution of this problem in coding theory turns out to have

an application in the degree-diameter problem, via the seemingly only loosely related

topics of projective geometry and sum-free sets in groups.

Our result in Theorem 8.24 is as far as we know the first specific bound for the class

of Cayley graphs of elementary abelian 2-groups. However we can use similar ideas to

those used in our investigations of circulant graphs in Chapter 3 to obtain a result for

diameter 3 graphs in this class.

Theorem 8.27. In the class of Cayley graphs of elementary abelian 2-groups,

L+(3) ≥ 1

16
.

Proof. Let H = Zm2 for some m. (We view H equivalently as either a vector space of

dimension m over GF (2) or as the additive group of GF (2m).) Let

G = (H ×H ×H)× (Z2 × Z2). We define our generating set S to contain the

following.

(x, 0, 0; 0, 0) x ∈ H,x 6= 0

(0, x, 0; 0, 1) x ∈ H

(0, 0, x; 1, 0) x ∈ H

(x, x, x; 1, 1) x ∈ H

All elements of G are self-inverse so S is an inverse-closed set of cardinality 2m+2 − 1.

All elements of G can be expressed as a sum of 3 elements from S, so Cay(G,S) has

diameter 3. So for any d = 2m+2 − 1 we have n(d, 3) ≥ 23m+2 and so

L+(3) ≥ 1
16 = 0.06250.
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Chapter 9

Arc-transitive graphs in the

degree-diameter problem

Chapters 3, 4, 5 and 6 explored the degree-diameter problem for various classes of

undirected, directed and mixed graphs. We conclude our investigations in the

degree-diameter problem by turning to a class of graphs which has been much less

explored in the literature, and consider the problem for undirected arc-transitive

graphs.

The only published result in the literature appears to be a recent result of Zhou [76]

for arc-transitive graphs of diameter 2. This construction yields an infinite family of

such graphs of diameter 2, but for degree d the exponent in the asymptotic order is

5/3 rather than 2. Thus, in our usual notation, this construction does not yield a

useful lower bound for L+(2) in the class of arc-transitive graphs. To obtain such a

bound we would need to find a construction with an exponent of 2 in the diameter 2

case. We now describe a construction which in fact yields an exponent of k in the

general case of diameter k ≥ 2.

Consider a graph Γ with vertex set equal to the set of all words of length k over an

alphabet of size n > 1. Two vertices of Γ are adjacent if they differ in exactly one

coordinate position (that is, the Hamming distance between words is exactly 1).

Clearly this graph has diameter k. Less immediately clear is that it is arc-transitive.

To see why, note first that any permutation of the n symbols in a given coordinate

position induces an automorphism of the graph. Also, permuting the coordinate

positions gives an automorphism. (In fact the wreath product Sn o Sk is a subgroup of

Aut(Γ).)

Using the numbers 1..n as the symbols of the alphabet, it suffices to show that there

is an automorphism mapping the arc from 11 . . . 11 to 11 . . . 12 to any other arc x. If

the initial vertex of x is x1x2 . . . xk then the terminal vertex differs from this in

exactly one position.

Assume first that the terminal vertex of x has the form x1x2 . . . y where y 6= xk. We

create an automorphism of the graph by using a product of the following k
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automorphisms:

1. For i < k, any permutation in coordinate position i sending 1 to xi

2. Any permutation in coordinate position k sending 1 to xk and 2 to y (since

xk 6= y we can always do this)

The other case to consider is where k > 2 and the vertices of x differ in a different

coordinate position, say the second. So the terminal vertex of x has the form

x1yx3 . . . xk where y 6= x2. This time our automorphism is a product of:

1. Any permutation in coordinate position 1 sending 1 to x1

2. Any permutation in coordinate position 2 sending 1 to x3

3. Any permutation in coordinate position 3 sending 1 to x2 and 2 to y (since

x2 6= y we can always do this)

4. Swapping coordinate positions 2 and 3

This completes the proof that Γ is arc-transitive. So for all degrees d = k(n− 1), we

can construct an arc-transitive graph of order nk and diameter k. This immediately

yields the main result of this section.

Theorem 9.1. Let k ≥ 2. Then in the class of undirected arc-transitive graphs,

L+(k) ≥ 1

kk

Alternatively, we can view this graph as a Cayley graph of G = Zkn. Our generating

set is:

S =
⋃
x 6=0

{(x, 0, 0, . . .), (0, x, 0, . . .), . . .}

It is clear that if s ∈ S and g ∈ G, then g + s differs from g in exactly one coordinate

position. Thus Cay(G,S) is isomorphic to our graph Γ above. This yields the

following corollary.

Corollary 9.2. Let k ≥ 2. Then in the class of undirected arc-transitive Cayley

graphs,

L+(k) ≥ 1

kk
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We remark here that in the case of arc-transitive graphs, it is more difficult to convert

a result on L+ into one for L−. In the case of Cayley graphs, our usual trick is to add

additional generators so that we obtain a Cayley graph of the same diameter but

larger degree. Here we would need to do this in such a way as to preserve

arc-transitivity, which is a rather stronger condition.
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Chapter 10

Regular maps

Our final main chapter diverges somewhat from the problems of diameters and girths

of graphs. We turn to the study of graphs embedded on surfaces, and in particular we

focus on regular maps where the embedding in some orientable surface has a

particular automorphism group.

10.1 Introduction

We begin with some definitions and basic concepts. An embedding of a graph Γ in a

surface S is a continuous one-one mapping ϑ from (a topological representation of) Γ

to S. A face or region of the embedding is a connected component of S \ ϑ(Γ). By a

map we mean an embedding of a finite connected graph in some compact and

connected surface in which each face is homeomorphic to an open disc in R2, and we

may refer to this as a cellular or 2-cell embedding.

A vertex-edge-face incident triple in a map M is called a flag of M (we ignore here

some degenerate cases). An automorphism of M is a permutation of the flags which

preserves the incidences between them. The automorphisms form a group Aut(M) in

the natural way. The embedding results in a natural cyclic order of the neighbours of

a vertex v around the vertex. Any automorphism φ maps these neighbours, in order,

to the neighbours of φ(v), and similar arguments apply to the vertices of a face. It

follows by connectedness that an automorphism of M is completely determined by its

action on a single flag of M, and hence we have the well-known fact:

Proposition 10.1. The automorphism group Aut(M) of a map M acts

semi-regularly on the flags of M.

If there is a single orbit of the flags of the map under the action of the automorphism

group, we say the map is regular. Since each edge of the graph is contained in 4 flags,

the order of the automorphism group of a regular map is 4 times the number of edges.

We call a map orientable if the surface S is orientable, otherwise non-orientable. In

the orientable case, an automorphism may either preserve or reverse the orientation of

the embedding. If an orientable map admits an orientation-reversing automorphism

we say the map is reflexible; otherwise chiral. The orientation-preserving
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v

C

x

y

Figure 10.1: Automorphisms of a map

automorphisms form a (not necessarily proper) subgroup Aut+(M) of the full group.

In the orientation-preserving case, we may think of the flags of the map simply as arcs

(ordered pairs of adjacent vertices) since the orientation of the incident faces is fixed

relative to an arc. An orientably-regular map is a map such that Aut+(M) is

transitive, and hence regular, on arcs of the embedded graph.

In a regular map, it follows from transitivity that vertices have the same valency, say

k, and all faces are bounded by closed walks of the same length, say `; the map is

then said to be of type (k, `). The group A = Aut+(M) is generated by two elements

x and y of order k and ` such that x acts as a clockwise rotation of M about a vertex

v by 2π/k and y acts as a clockwise rotation by 2π/` about the centre C of a face

incident with v (see Figure 10.1). The product xy is then a rotation of M about the

centre of an edge that is incident to both the vertex and the face.

Orientably-regular maps can be viewed as maps having the ‘highest level’ of

orientation-preserving symmetry among general maps. Regularity of A on the arc set

of the embedded graph enables one to identify the map M with the triple (A, x, y) in

such a way that arcs, edges, vertices and faces correspond to (say, left) cosets of the

trivial group (that is, to elements of A) and of the subgroups 〈xy〉, 〈x〉 and 〈y〉 of A.

Incidence between arcs, edges, vertices and faces is given by non-empty intersection of

the corresponding cosets, and the action of A on the cosets is simply given by left

multiplication.

It follows that orientably-regular maps are, up to isomorphism, in a one-to-one

correspondence with equivalence classes of triples (G, x, y), where G is a finite group
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admitting a presentation of the form G = 〈x, y | xk = y` = (xy)2 = . . . = 1〉, with two

triples (G1, x1, y1) and (G2, x2, y2) being equivalent if there is a group isomorphism

G1 → G2 taking x1 onto x2 and y1 onto y2. This way, investigation of

orientably-regular maps can be reduced to purely group-theoretic considerations. The

corresponding algebraic theory has been developed in depth by Jones and Singerman

in [40].

Since the concept of an orientably-regular map includes the underlying graph, the

carrier surface and the supporting automorphism group, classification attempts for

such maps in most cases follow one of these three directions. A number of influential

results have been obtained in classification of orientably-regular maps in the first two

directions; we refer to the recent survey by Širáň [67] for details. Here we focus on the

third direction, that is, classification of orientably-regular maps by their

automorphism groups, in which results are much less abundant.

The only family of simple groups for which a classification of the corresponding

orientably-regular maps is known are the groups PSL(2, q) for any prime power

q > 3 [52, 64, 23]. Classification of orientably-regular maps with automorphism group

PGL(2, q), the obvious degree-two extension of PSL(2, q), can be extracted from the

corresponding classification for PSL(2, q2) through the well-understood inclusion

PGL(2, q) < PSL(2, q2), see [64, 23].

For odd q, however, the simple group PSL(2, q2) admits another interesting extension

of degree two, namely, the group M(q2), also known as a twisted linear fractional

group. By a classical result of Zassenhaus [75], the groups PGL(2, q) and M(q2) are

the only finite sharply 3-transitive groups (of degree q + 1 and q2 + 1, respectively).

This motivates the question of classification of orientably-regular maps with

automorphism group isomorphic to M(q2).

In this chapter we present a complete enumeration of (isomorphism classes of)

orientably-regular maps with automorphism group isomorphic to M(q2). The results

are strikingly different from those for the groups PGL(2, q) in many ways. To give

three examples, we note that (a) all the orientably-regular maps for PGL(2, q) are

reflexible, while this is not the case for M(q2); (b) the groups PGL(2, q) are also

automorphism groups of non-orientable regular maps while the groups M(q2) are not;

and (c) for any even k, ` ≥ 4 not both equal to 4 there are orientably-regular maps of

type (k, `) with automorphism group PGL(2, q) for infinitely many values of q, while

for infinitely many such pairs (k, `) there are no orientably-regular maps for M(q2) of

that type for any q.
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By our outline and the algebraic theory of [40], enumeration of orientably-regular

maps with a given automorphism group G reduces to enumeration of all triples

(G, x, y) with G = 〈x, y; xk = y` = (xy)2 = . . . = 1〉 up to conjugation by elements of

Aut(G), that is, by considering triples (G, x, y) and (G, x′, y′) equivalent if there is an

automorphism of G taking (x, y) onto (x′, y′). We do this systematically for the

twisted linear groups G = M(q2). In Sections 10.2 and 10.3 we introduce the group

M(q2) and study its subgroups. Sections 10.4, 10.5 and 10.6 deal with identifying

‘canonical’ forms of elements of G and study their conjugacy in depth. In

Sections 10.7, 10.8 and 10.9 we develop arguments for counting ‘canonical’ pairs of

elements of G. All the auxiliary facts are then processed in Section 10.10 to produce

our main result:

Theorem. Let q = pf be an odd prime power, with f = 2αo where o is odd. The

number of orientably-regular maps M with Aut+(M) ∼= M(q2) is, up to isomorphism,

equal to

1

f

∑
d|o

µ(o/d)h(2αd) ,

where h(x) = (p2x − 1)(p2x − 2)/8 and µ is the Möbius function.

The exposition in this chapter follows closely the structure of our joint paper with

Hriňáková and Širáň [30]. However, for brevity we will omit some detailed

computations and give only outline proofs of some intermediate results where these

were completed principally by the other authors. Full details can be found in [30].

10.2 The twisted linear groups M(q2)

For a finite field F let S(F ) and N(F ) be the set of non-zero squares and non-squares

of F . The general linear group GL(2, F ) is the group of all non-singular 2× 2

matrices with entries in F ; restriction to matrices with determinant 1 gives the special

linear group SL(2, F ). The groups PGL(2, F ) and PSL(2, F ), the quotients of

GL(2, F ) and SL(2, F ) by the corresponding centres, are known as the linear

fractional groups. They can equivalently be described as groups of all transformations

z 7→ (az + b)/(cz + d) of the set F ∪ {∞} (with the obvious rules for calculations with

∞), with ad− bc 6= 0 and ad− bc ∈ S(F ) for PGL(2, F ) and PSL(2, F ), respectively.

The group PSL(2, F ) is an index 2 subgroup of PGL(2, F ) unless F has

characteristic 2, in which case the two groups are the same.

Suppose now that F admits an automorphism σ of order 2, which happens if and only
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if |F | = q2 for some prime power q, and σ is then given by x 7→ xq for every x ∈ F . If,

in addition, q is odd, then one may ‘twist’ the transformations described above by

considering the permutations of F ∪ {∞} defined by z 7→ (az + b)/(zc+ d) if

ad− bc ∈ S(F ) and z 7→ (azσ + b)/(czσ + d) if ad− bc ∈ N(F ). These transformations

form a group under composition, denoted M(F ) or M(q2), and called the twisted

fractional linear group. Observe that PSL(2, F ) is a subgroup of M(F ) of index two,

again. By a well-known result due to Zassenhaus [75], the groups PGL(2, F ) for an

arbitrary finite field F , and M(F ) for fields of order q2 for an odd prime power q, are

precisely the finite, sharply 3-transitive permutation groups (on the set F ∪ {∞} in

both cases).

In this chapter we will focus on the twisted fractional linear groups, with the goal to

classify the orientably-regular maps they support. For our purposes, however, it will

be useful to work with a different representation of these groups. From this point on,

let F = GF (q2) for some odd prime power q and let F0
∼= GF (q) be its unique

subfield of order q; let F ∗ and F ∗0 be the corresponding multiplicative groups.

Further, let σ be the unique automorphism of F of order 2; we have xσ = xq for any

x ∈ F , and xσ = x if and only if x ∈ F0. If A ∈ GL(2, F ), by Aσ we denote the matrix

in GL(2, F ) obtained by applying σ to every entry of A.

Let J = GL(2, F ) o Z2, where multiplication in the semidirect product is defined by

(A, i)(B, j) = (ABσi , i+ j); equivalently, J is an extension of GL(2, F ) by the

automorphism σ. To introduce a ‘twisted’ subgroup of J , for every A ∈ GL(2, F ) we

define ιA ∈ Z2 = {0, 1} by letting ιA = 0 if det(A) ∈ S(F ) and ιA = 1 if

det(A) ∈ N(F ). We now let K = {(A, ιA); A ∈ GL(2, F )}; multiplication in K is, of

course, given by (A, ιA)(B, ιB) = (ABσιA , ιA + ιB) for any A,B ∈ GL(2, F ). The

group K and its quotient groups will be of principal importance in what follows.

Let K0 = {(A, 0); A ∈ GL(2, F ), ιA = 0} be the subgroup of K index 2 of K. The

centre L of K0 consists of elements of the form (D, 0), where D ∈ GL(F ) is a scalar

matrix; obviously L is also a normal subgroup of both K and J . It can be checked

that the factor group G = K/L is isomorphic to M(q2), and since K has index 2 in J ,

the group G = M(q2) is (isomorphic to) a subgroup of index 2 of G = J/L. The

group G can alternatively be described as G〈σ〉, the split extension of G by 〈σ〉 ' Z2.

Observe also that the factor group G0 = K0/L is isomorphic to PSL(2, F ), and if q is

a prime, the group J/L is isomorphic to PΓL(2, q2).

Elements (A, i)L, that is, cosets {(δA, i); δ ∈ F ∗}, of the factor groups G = K/L and

G = J/L will throughout be denoted [A, i]; they will be called untwisted if i = 0 and

twisted if i = 1.
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For our final enumeration it will be necessary to determine the automorphism group

of M(q2). While the result appears to be ‘obvious’ we provide a simple proof based

on a fact which may be folklore to group-theorists.

Lemma 10.2. Let U be a characteristic subgroup of a group Ũ of index 2. Suppose

that the centre of U is trivial and every automorphism of U extends to an

automorphism of Ũ . Then Aut(U) ∼= Aut(Ũ).

Proof (Širáň). The assumption of U being characteristic in Ũ implies that every

h ∈ Aut(Ũ) restricts to an hU ∈ Aut(U). Since each automorphism of U extends to

an automorphism of Ũ , the assignment h 7→ hU is a group epimorphism

ϑ : Aut(Ũ)→ Aut(U). Suppose that h ∈ Aut(Ũ) is in the kernel of ϑ, so that hU is

the identity mapping on U . For every x ∈ U and every y ∈ Ũ\U we have y−1xy ∈ U
and hence y−1xy = h(y−1xy) = h(y)−1xh(y), which implies that h(y)y−1 commutes

with x for all x ∈ U . Observe that h(y)y−1 ∈ U , since U was assumed to have index 2

in Ũ . By triviality of the centre of U we have h(y)y−1 = 1 and as this is valid for all

y ∈ Ũ\U we conclude that h is the identity on Ũ . It follows that the kernel of ϑ is

trivial and so Aut(U) ∼= Aut(Ũ).

We now apply Lemma 10.2 to U = G0 = PSL(2, q2) and Ũ = G = M(q2) for q = pf ,

where p is an odd prime and f a positive integer. Being a simple subgroup of M(q2),

the group G0 is characteristic (and of index two) in G. It is well known (see e.g. [36])

that Aut(G0) ∼= PΓL(2, q2) ' PGL(2, q2) o Z2f , with an element

(C,ϕ) ∈ PGL(2, q2) o Z2f acting on G0 by X 7→ (C−1XC)ϕ. Now, any (C,ϕ) is

easily seen to extend to G by [X, ιX ] 7→ ([C, 0]−1[X, ιX ][C, 0])ϕ. By Lemma 10.2 we

now obtain:

Proposition 10.3. The automorphism group of M(q2) is isomorphic to PΓL(2, q2).

10.3 Twisted subgroups of M(q2)

Let q = pf for an odd prime p and a positive integer f ; these will be fixed throughout.

In this section we will focus on the twisted subgroups of M(p2f ), that is, those

isomorphic to M(p2e) for suitable e ≤ f . From now on we will use the notation

Fm = GF (pm) for a Galois field of order pm for m ≤ f but keep letting F = GF (p2f ).

We begin by identifying the possible values of e.

Lemma 10.4. A group M(p2e) is isomorphic to a subgroup of M(p2f ) if and only if e

is a divisor of f such that f/e is odd.
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Outline proof. If f/e is odd, we consider the automorphism x 7→ xp
f

of GF (p2f ) onto

GF (p2e) and show that its restriction to the subfield GF (p2e) corresponds to the map

x 7→ xp
e

on the subfield.

For the reverse implication, if M(p2e) is a subgroup of M(p2f ) then e divides f , and

we prove f/e is odd by induction on f/e.

If f/e is odd, a particularly important copy of M(p2e) in M(p2f ) is formed by all the

pairs [X, ιX ] with X ∈ GL(2, p2e) such that all entries of X lie in the subfield F2e of

F ; this copy will be called canonical. The copy of PSL(2, p2e) in M(p2f ) formed by

all the pairs [X, 0] with X ∈ SL(2, F2e) will be called canonical as well. We now prove

a useful auxiliary result on canonical subgroups.

Proposition 10.5. Let f/e be an odd integer and let H ∼= M(p2e) be a subgroup of

G = M(p2f ) such that H contains the canonical copy of PSL(2, p2e). Then H is equal

to the canonical copy of M(p2e) in G.

Proof (Hriňáková, Širáň). Let H be a copy of M(p2e) in G such that

H0 = H ∩ PSL(2, p2f ) is equal to the canonical copy of PSL(2, p2e) in G. Obviously,

H0 is a normal subgroup of H of index two. Let [A, 1] be an element of H\H0, where

A is the 2× 2 matrix with rows (a, b) and (c, d) for some a, b, c, d ∈ F with

δ = ad− bc ∈ N(F ). We may assume that the entry c in the lower left corner of A is

non-zero. Indeed, if c = 0 and b 6= 0, letting D be an off-diagonal matrix with entries

−1 and 1 we may replace [A, 1] with the product [D, 0][A, 1] ∈ H\H0, and if A is a

diagonal matrix we may replace [A, 1] with the product [D′, 0][A, 1] ∈ H\H0 for a

matrix D′ with rows (1, 0) and (1, 1). Then, since we are working with projective

groups, we may assume that c = 1, so that δ = ad− b.

By our assumption the group H0 also contains the element [C, 0] with C having rows

(1, 1) and (0, 1). Normality of H0 in H implies that

[A, 1][C, 0][A, 1]−1 = [ACA−1, 0] ∈ H0 and also

[A, 1]−1[C, 0][A, 1] = [(Aσ)−1CAσ, 0] ∈ H0. Evaluating the products we obtain

εACA−1 =

a b

1 d

1 1

0 1

 d −b
−1 a

 =

δ − a a2

−1 δ + a

 , and

ε′(Aσ)−1CAσ =

dσ −bσ

−1 aσ

1 1

0 1

aσ bσ

1 dσ

 =

δσ + dσ (dσ)2

−1 δσ − dσ


for some ε, ε′ ∈ F ∗. Since H0 is assumed to be equal to the canonical copy

PSL(2, p2e) in G, all the remaining entries of the two matrices on the right-hand sides

Grahame Erskine



140 10 Regular maps

above must lie in F2e. This readily implies that both a, δ, dσ ∈ F2e, and since F2e is

setwise preserved by σ we also have d ∈ F2e and so b = ad− δ ∈ F2e as well. We

conclude that A ∈ GL(2, p2e) and hence the subgroup H generated by [A, 1] and H0 is

identical with the canonical copy of M(p2e) in G.

As a consequence we prove that all twisted subgroups of G are conjugate. Recall that

G0 denotes the (unique) subgroup of G isomorphic to PSL(2, p2f ).

Proposition 10.6. If f/e is an odd integer, then all subgroups of G = M(p2f )

isomorphic to M(p2e) are conjugate in G0.

Outline proof. We let H ∼= M(p2e) be a subgroup of G. Consider

H ∩G0
∼= PSL(2, pe). By the known classification of the subgroups of PSL(2, p2f ),

we may conclude that all such subgroups are conjugate in G0, then apply

Proposition 10.5.

We conclude with a sufficient condition for a subgroup of G to be twisted; this result

will be of key importance later. In order to state it, we will say that a subgroup H of

G stabilises a point if, in the natural action of G on the set F ∪ {∞} via linear

fractional mappings from Section 10.2, there exists a point in F ∪ {∞} fixed by all

linear fractional mappings corresponding to elements of H. Also, for any positive

divisor g of 2f let Gg be the canonical copy of PSL(2, pg) in the group G = M(p2f ).

Moreover, if g is even, we let G∗g denote the copy of PGL(2, pg/2) in Gg formed by

(equivalence classes of) non-singular 2× 2 matrices over GF (pg/2).

Proposition 10.7. Let H be a subgroup of G = M(p2f ) not contained in the

subgroup G0 = PSL(2, p2f ) and let H0 = H ∩G0. If H0 does not stabilise a point and

is neither dihedral nor isomorphic to A4, S4 or A5, then H is conjugate in G to a

subgroup isomorphic to M(p2e) for some positive divisor e of f such that f/e is odd.

Outline proof. By a summary [48] of Dickson’s classification of subgroups of

projective special linear groups over finite fields, subgroups of G0 comprise point

stabilisers, dihedral groups, A4, S4, A5, and PSL(2, pg) for divisors g of 2f together

with PGL(2, pg/2) for even divisors g of 2f . Our assumptions imply that H0 must be

isomorphic to one of the last two types of subgroups. We now use arguments from the

proof of Proposition 10.5 to conclude that H ∼= M(p2e) for some e.
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10.4 Representatives of twisted elements

A key element of our strategy is to understand the conjugacy classes of twisted

elements. In this section and the next, we develop this understanding. Although

many of the detailed calculations were completed by the other authors of our joint

paper [30], we include these details here because of their importance to the overall

result.

Recalling the notation introduced in Section 10.2, we begin by identifying elements in

conjugacy classes of K\K0 that have a particularly simple form. To facilitate the

description here and also in the sections that follow, we let dia(α, β) and off(α, β),

respectively, denote the 2× 2 matrix with diagonal entries α, β (from the top left

corner) and zero off-diagonal entries, and the 2× 2 matrix with off-diagonal entries

α, β (from the top right corner) and zero diagonal entries.

For every element (A, 1) ∈ K\K0 we have (A, 1)2 = (AAσ, 0). In the study of

conjugacy in K\K0 it turns out to be important to understand the behaviour of the

products AAσ. Observe that if δ = det(A) ∈ N(F ), then det(AAσ) = δδσ ∈ N(F0).

Let (A, 1) ∈ K\K0 and let {λ1, λ2} be the spectrum of AAσ in a smallest extension

F ′ of F of degree at most two in which σ may still be assumed to be given by x 7→ xq.

Since AσA is both a conjugate and also a σ-image of AAσ, we have

{λ1, λ2}σ = {λ1, λ2}. This means that either (1) λσi = λi for i = 1, 2, or (2) λσ1 = λ2

and λσ2 = λ1. Note that (2) implies λq
2

1 = (λq1)
q = λq2 = λ1 and, similarly, λq

2

2 = λ2.

We conclude that F ′ = F in both the situations (1) and (2) and so both λ1, λ2 are in

F . Observe that λ1 6= λ2, as otherwise we would have λ1 = λσ1 ∈ F0 and

det(AAσ) = λ21 ∈ S(F0), a contradiction. Moreover, it follows that in the case (1) we

have λi ∈ F0 for i = 1, 2 with λ1λ2 ∈ N(F0), and in the case (2) λi ∈ N(F ) ⊂ F\F0

since det(AAσ) = λ1λ
σ
1 ∈ N(F0).

We will now refine our considerations of AAσ. As before, let q = pf for some odd

prime p and let e be the smallest positive divisor of f with f/e odd such that

AAσ = εC for some C ∈ SL(2, p2e) and for some ε ∈ F ∗. In other words, we look for

the smallest subfield F2e of F , with f/e odd, such that all entries of C lie in F2e; note

that we may assume C to have determinant 1 since the determinant of AAσ is a

non-zero square of F . If {µ, µ−1} is the spectrum of C, we have, without loss of

generality, λ1 = εµ and λ2 = εµ−1. Observe that since λ1, λ2, ε ∈ F , we have

µ, µ−1 ∈ F . Now, µ, µ−1 are roots of a quadratic polynomial over F2e and therefore

both belong to F2e or to a quadratic extension of F2e. But as f/e is odd, the field F

does not contain a quadratic extension of F2e. We conclude that µ, µ−1 ∈ F2e.
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The facts in the previous paragraphs imply that if (A, 1) ∈ K\K0, then the matrix

AAσ is diagonalisable over F and C is diagonalisable over F2e. In particular, there

exists a P ∈ GL(2, p2e) such that P−1CP = D′ for D′ = dia(µ, µ−1); multiplying by ε

then gives P−1AAσP = D for D = dia(λ1, λ2). Here, either λ1, λ2 ∈ F0 with

λ1λ2 ∈ N(F0), or λ1, λ2 ∈ F\F0 and λσ1 = λ2. With A, P , D and D′ as above, in K

we let (B, 1) = (P, 0)−1(A, 1)(P, 0) = (P−1AP σ, 1). Then,

(BBσ, 0) = (P, 0)−1(A, 1)(A, 1)(P, 0) = (P−1AAσP, 0) = (D, 0) = (εD′, 0)

and it follows that BBσ = D = εD′.

We now derive more details about the matrix B = P−1AP σ; recall that

P ∈ GL(2, p2e). Let u1, u2 be linearly independent (column) eigenvectors of C and

AAσ for the eigenvalues µ, µ−1 and λ1, λ2, respectively; we have Cu1 = µu1,

Cu2 = µ−1u2, and AAσui = λiui for i ∈ {1, 2}. Taking the σ-image of the last

equation and then multiplying by A from the left we obtain AAσ(Auσi ) = λσi (Auσi ) for

i = 1, 2. This means that the column vectors Auσi are also eigenvectors of AAσ for the

eigenvalues λσi , i = 1, 2. It follows that if λi = λσi for i = 1, 2, then we must have

Auσi = εiui, and if λi = λσ3−i, then Auσi = ε3−iu3−i, in both cases for some ε1, ε2 ∈ F .

The last bit we need is the fact that for the matrix P we may take P = (u1, u2), i.e.,

the matrix formed by the columns u1, u2, with entries in F2e. Now, for i = 1, 2, in the

case λi = λσi we have AP σ = (Auσ1 , Au
σ
2 ) = (ε1u1, ε2u2) = P dia(ε1, ε2), and in the

case λi = λσ3−i a similar calculation gives

AP σ = (Auσ1 , Au
σ
2 ) = (ε2u2, ε1u1) = P off(ε1, ε2). This shows that our matrix

B = P−1AP σ is equal to dia(ε1, ε2) or to off(ε1, ε2) for suitable ε1, ε2 ∈ F , depending

on whether λσ1 is equal to λ1 or λ2. In both cases, of course, ε1ε2 ∈ N(F ).

Recalling our notation [A, i] for the cosets (A, i)L = {(δA, i); δ ∈ F ∗}, the above

calculations lead to the following result.

Proposition 10.8. Let G = M(p2f ) for some odd prime p. Then, every element of

the form [A, 1] ∈ G is conjugate in G to [B, 1] with B = dia(λ, 1) or B = off(λ, 1) for

some λ ∈ N(F ). If, in addition, [AAσ, 0] = [C, 0] for some C ∈ SL(2, p2e) with f/e

odd, then [B, 1] = [P, 0]−1[A, 1][P, 0] for some P ∈ GL(2, p2e), and λλσ ∈ F2e or

λ/λσ ∈ F2e, depending on whether B is equal to dia(λ, 1) or to off(λ, 1).

Proof. We have proven everything except for the last assertion. We have seen that if

[AAσ, 0] = [C, 0] for some C ∈ SL(2, p2e) with f/e odd, then

BBσ = P−1(AAσ)P = εdia(µ, µ−1) for some ε ∈ F ∗, µ ∈ F2e and some

P ∈ GL(2, p2e). If B = dia(λ, 1), then we have
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dia(λλσ, 1) = BBσ = εC = εdia(µ, µ−1), which implies that ε = µ and

λλσ = µ2 ∈ F2e. In the case when B = off(λ, 1) we have

off(λ, λσ) = BBσ = εC = εdia(µ, µ−1), from which we obtain λ/λσ = µ2 ∈ F2e.

Let us have another look at conjugation in the group G = J/L. Observe that if

(P, i) ∈ J , then (P, i)−1 = ((P σ
i
)−1, i). Conjugates of (B, 1) ∈ K by (P, i) have the

form (P, 0)−1(B, 1)(P, 0) = (P−1BP σ, 1) if i = 0, and

(P, 1)−1(B, 1)(P, 1) = ((P σ)−1BσP, 1) if i = 1. It follows that two elements (B, 1) and

(B′, 1) of K are conjugate in J if and only if B′ = P−1BP σ or B′ = (P σ)−1BσP for

some P ∈ GL(2, F ). Taking the σ-image in the second case and passing onto

G = K/L we have:

Proposition 10.9. Two elements [B, 1] and [B′, 1] of G are conjugate in G if and

only if P−1BP σ = εB′ or P−1BP σ = εB′σ for some ε ∈ F ∗ and some P ∈ GL(2, F ).

We will write the two conditions of Proposition 10.9 in the unified form

P−1BP σ = εB′(σ), or, equivalently, BP σ = εPB′(σ) where B′(σ) is equal to B′ or B′σ,

depending on whether i = 0 or i = 1 when using the element [P, i] for conjugation.

10.5 Conjugacy of representatives of twisted elements

We continue with identification of elements of G that conjugate a diagonal (or an

off-diagonal) element from Proposition 10.8 to another such element. As a by-product

we will be able to identify G-stabilisers of our representatives of twisted elements in G.

We begin with the case when B = dia(λ, 1) and B′ = dia(λ′, 1); by Proposition 10.9 it

is sufficient to find the nonsingular matrices P ∈ GL(2, F ) and ε ∈ F ∗ for which

BP σ = εPB′(σ) in the sense of the notation introduced at the end of Section 10.4.

Throughout the computation we will use the symbols λ(σ) and λ′(σ) in an analogous

way as explained for B′(σ). Assuming that P has entries α, β, γ, δ, the above condition

says thatλ 0

0 1

ασ βσ

γσ δσ

 = ε

α β

γ δ

λ′(σ) 0

0 1

 .

Evaluating the products we obtain:

λασ = ελ′(σ)α , λβσ = εβ , γσ = ελ′(σ)γ , δσ = εδ .
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By straightforward manipulation this gives the following system of four equations:

α(λλσ − εεσλ′λ′σ) = 0 , β(λλσ − εεσ) = 0 , γ(εεσλ′λ′σ − 1) = 0 , δ(εεσ − 1) = 0 .

From non-singularity of P it follows that δ 6= 0 or β 6= 0, that is, εεσ = 1 or εεσ = λλσ.

Consider first the case εεσ = 1, that is, εq+1 = 1 for q = pf . Since λ, λ′ ∈ N(F ), we

have λλσ 6= 1 6= λ′λ′σ. Our equations together with εεσ = 1 then imply that

β = γ = 0. Hence α, δ 6= 0, by non-singularity of P ; in particular, λλσ = λ′λ′σ, or,

equivalently, (λ′/λ)q+1 = 1. We are interested in conjugation in the group G = J/L

and so we may assume that δ = 1, which reduces the relations below our matrix

equation to ε = 1 and αq−1 = λ′(σ)/λ. Since (λ′/λ)q+1 = 1, the equation ηq−1 = λ′/λ

has q − 1 solutions η ∈ F ∗ (note that |F ∗| = q2 − 1). If λ′(σ) = λ′, then all solutions of

the equation αq−1 = λ′(σ)/λ have the form α = η, and if λ′(σ) = λ′σ = λ′λ′q−1, then all

solutions of this equation are α = ηλ′.

The second case to consider is εεσ = λλσ (6= 1), which implies that α = δ = 0, and

also λλσλ′λ′σ = 1 since γ, β now must be non-zero. By the same token as above we

may let γ = 1 without loss of generality. Then, our equations for γ and β in this case

reduce to ελ′(σ) = 1 and λβσ = εβ, the latter now being equivalent to

βq−1 = 1/(λλ′(σ)). Since now (λλ′)q+1 = 1, there are q − 1 solutions ζ of the equation

ζq−1 = 1/(λλ′) in F ∗. If λ′(σ) = λ′, then we have β = ζ, and if λ′(σ) = λ′σ = λ′λ′q−1,

we have β = ζ/λ′. Summing up, we arrive at the following:

Proposition 10.10. Let B = dia(λ, 1) and B′ = dia(λ′, 1) for λ, λ′ ∈ N(F ). If an

element [P, i] ∈ G conjugates [B, 1] to [B′, 1], then, without loss of generality,

P = dia(ω, 1) or P = off(ω, 1) for suitable ω ∈ F ∗. Moreover:

1. If P = dia(ω, 1), then λλσ = λ′λ′σ, and if this condition is satisfied, then [B, 1]

conjugates to [B′, 1] in G exactly by the q − 1 elements [P, 0] such that ω = η and the

q − 1 elements [P, 1] with ω = ηλ′, where η ∈ F ∗ is one of the q − 1 solutions of the

equation ηq−1 = λ′/λ.

2. If P = off(ω, 1), then λλσλ′λ′σ = 1, and if this holds, then [B, 1] conjugates to

[B′, 1] in G exactly by the q − 1 elements [P, 0] with ω = ζ and the q − 1 elements

[P, 1] such that ω = ζ/λ′, where ζ ∈ F ∗ is one of the q − 1 solutions of the equation

ζq−1 = 1/(λλ′).

We now repeat this process but now with matrices B = off(λ, 1) and B′ = off(λ′, 1).

Conjugating by [P, i] and assuming that P has entries α, β, γ, δ, the unified form

BP σ = εPB′(σ) of the condition of Proposition 10.9 now translates into the matrix
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equation0 λ

1 0

ασ βσ

γσ δσ

 = ε

α β

γ δ

0 λ′σ
i

1 0

 .

It follows that

ασ = εδ , βσ = ελ′σ
i
γ , λγσ = εβ , λδσ = ελ′σ

i
α ,

which, after some manipulation, yield the following two equations:

γ(λσ − εεσλ′σi) = 0 and δσ(λ− εεσλ′σi) = 0 .

This all means that either (a) λ = εεσλ′σ
i
, and then β = γ = 0 and we may assume

δ = 1, or else (b) λσ = εεσλ′σ
i
, and then we have α = δ = 0 and, without loss of

generality, γ = 1. Since εεσ, λλσ ∈ F ∗0 , these conditions are equivalent to λ/λ′ ∈ F ∗0 or

λλ′ ∈ F ∗0 , independently of the value of i, but in our analysis below it is still useful to

refer to i.

In the case (a), when λ/λ′σ
i

= εεσ ∈ F ∗0 , for every i ∈ {0, 1} there are q + 1 (q + 1)th

roots η(i) of λ/λ′σ
i

in F ∗. From δ = 1 we have aσ = ε and λ = ελ′σ
i
α, that is,

αq+1 = λ/λ′σ
i
. This implies that α = η(i) is one of the (q + 1)th roots of λ/λ′σ

i
, giving

q + 1 conjugation elements [P, i] such that P = dia(η(i), 1). In the case (b),

λσ/λ′σ
i

= εεσ ∈ F ∗0 and since also λλσ ∈ F ∗0 , we have λλ′σ
i ∈ F ∗0 . It follows that for

every i ∈ {0, 1} there are q + 1 (q + 1)th roots ζ(i) of λλ′σ
i

in F ∗. From γ = 1 we

obtain λ = εβ and βσ = ελ′σ
i
, which means that βq+1 = λλ′σ

i
. Consequently, β = ζ(i)

and we have in this second case q + 1 conjugation elements [P, i] such that

P = off(ζ(i), 1). Realising that the condition (a) for i = 0 is equivalent to (b) for i = 1

(and equivalent to λ/λ′ ∈ F ∗0 ) and, similarly, the condition (a) for i = 1 is equivalent

to (b) for i = 0 (and equivalent to λλ′ ∈ F ∗0 ), we conclude that:

Proposition 10.11. Let B = off(λ, 1) and B′ = off(λ′, 1) for λ, λ′ ∈ N(F ). Further,

for i ∈ {0, 1}, let η(i), ζ(i) ∈ F ∗ be any of the q + 1 roots of the equation ηq+1
(i) = λ/λ′σ

i

and ζq+1
(i) = λλ′σ

i
, respectively. Then, an element [P, i] ∈ G conjugates [B, 1] to [B′, 1]

if and only if λ/λ′σ
i

or λλ′σ
i

are elements of F ∗0 . In an equivalent form, [B, 1] is

conjugate to [B′, 1] if and only if either

1. λ/λ′ ∈ F ∗0 , in which case the conjugation is realised by exactly q + 1 elements [P, 0]

with P = dia(η(0), 1) and exactly q + 1 elements [P, 1] with P = off(ζ(1), 1), or

2. λλ′ ∈ F ∗0 , by the conjugation realised by exactly q + 1 elements [P, 0] with

P = dia(η(1), 1) and exactly q + 1 elements [P, 1] with P = off(ζ(0), 1).
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10.6 Conjugacy classes of twisted elements

With the help of the calculations in the previous section we can now prove a useful

result about identification of suitable representatives of conjugacy classes (in the

group G) of elements of G\G0.

Theorem 10.12. Let ξ be a primitive element of F and let [A, 1] be an element of G.

Then, exactly one of the following two cases occur:

1. There exists exactly one odd i ∈ {1, 2, . . . , (q − 1)/2} such that [A, 1] is conjugate

in G to [B, 1] with B = dia(ξi, 1); the order of [A, 1] in G is then

2(q − 1)/ gcd{q − 1, i}.

2. There exists exactly one odd i ∈ {1, 2, . . . , (q + 1)/2} such that [A, 1] is conjugate

in G to [B, 1] with B = off(ξi, 1), and the order of [A, 1] in G is

2(q + 1)/ gcd{q + 1, i}.

Furthermore, we have:

3. The stabiliser of [B, 1] for B = dia(λ, 1), λ ∈ N(F ), in the group G is

isomorphic to the cyclic group Z2(q−1) generated by (conjugation by) [P, 1] for

P = dia(µλ, 1) with a suitable (q − 1)th root of unity µ, except when λ is a

(q + 1)th root of −1 and q ≡ −1 mod 4, in which case the stabiliser is

isomorphic to Z2(q−1) · Z2.

4. The stabiliser of [B, 1] for B = off(λ, 1), λ ∈ N(F ), in the group G is

isomorphic to the cyclic group Z2(q+1) generated by (conjugation by) [P, 1] for

P = off(µλ, 1), where µ is a suitable (q + 1)th root of unity, except when λ is a

(q − 1)th root of −1 and q ≡ 1 mod 4, when the stabiliser is isomorphic to

Z2(q+1) · Z2.

Outline proof. By Proposition 10.8, each element [A, 1] ∈ G is conjugate in G to [B, 1]

with B = dia(λ, 1) or B = off(λ, 1) for some λ ∈ N(F ). Parts 1 and 3 follow from

some detailed combination of this with Proposition 10.10, and parts 2 and 4 similarly

using Proposition 10.11.

Let us remark that the exceptional cases in the items 3 and 4 above correspond

precisely to elements [B, 1] of order 4 in G. By inspecting possible orders of [B, 1] we

also have:

Corollary 10.13. Every element of G\G0 has order divisible by 4.
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10.7 Non-singular pairs and twisted subgroups

Our aim in this and the following two sections is to determine representatives of

selected conjugacy classes {(x, y)g; g ∈ G = G〈σ〉} of elements x, y ∈ G satisfying

(xy)2 = 1, and make important conclusions about subgroups the corresponding pairs

(x, y) generate. We note that the action of σ need not be considered separately,

because [I, 1][A, i][I, 1] = [Aσ, i] for i ∈ {0, 1}, which means that the action of σ is

equivalent to conjugation by the element [I, 1] ∈ G.

Since we want xy to have order 2, both x and y as above must lie in G\G0 because,

by Corollary 10.13, there are no involutions in G\G0. By Theorem 10.12 we may

assume that y = [B, 1] for B = dia(λ, 1) or B = off(λ, 1) for a suitable λ ∈ N(F ).

Letting x = [A, 1], the pair x, y may in general generate a proper subgroup of

G = M(p2f ); such cases will still be of interest for our intended classification of

orientably-regular maps as long as the subgroup 〈x, y〉 is twisted, that is, isomorphic

to M(p2e) for a suitable divisor e of f .

We now identify conditions on A implied by the requirement that ([A, 1][B, 1])2 be

the identity in G and begin with the case when B = dia(λ, 1). Let A ∈ GL(2, F ) have

rows (a, b) and (c, d), with determinant ad− bc ∈ N(F ). Then, [A, 1][B, 1] = [ABσ, 0],

where

ABσ =

aλσ b

cλσ d

 .

Since ABσ lies in PSL(2, F ), it has order 2 if and only if its trace aλσ + d is equal to

zero. If one of a, d was equal to zero, both would have to be zero and then [A, 1] and

[B, 1] would clearly not generate a twisted subgroup of G. Therefore both a, d are

non-zero and we may assume without loss of generality that a = −1 and d = λσ. We

will thus consider only elements [A, 1] ∈ G of the form

A =

−1 b

c λσ

 , u = bc+ λσ ∈ N(F ) . (10.1)

Next, consider the case when B = off(λ, 1). For a matrix A ∈ GL(2, F ) with rows

(a, b) and (c, d) such that ad− bc ∈ N(F ) we now have [A, 1][B, 1] = [ABσ, 0], where

ABσ =

b aλσ

d cλσ

 .

Grahame Erskine



148 10 Regular maps

Again, ABσ ∈ PSL(2, F ) has order 2 if and only if its trace b+ cλσ is equal to zero.

If one of b, c was equal to zero, we would have b = c = 0, but then [A, 1] and [B, 1]

would again not generate a twisted subgroup of G. Therefore both b and c are

non-zero and we may assume that c = −1 and b = λσ. It follows that, without loss of

generality, we only need to consider elements [A, 1] ∈ G such that

A =

 a λσ

−1 d

 , u = ad+ λσ ∈ N(F ) . (10.2)

With A and B as above we can still identify obvious instances when [A, 1] and [B, 1]

do not generate a twisted subgroup of G. This is certainly the case if

(i) both [A, 1] and [B, 1] have order 4, as then the two elements generate a solvable

group, cf. [24], or

(ii) B = dia(λ, 1) and A is an upper- or a lower-triangular matrix, as then [A, 1] and

[B, 1]) generate a triangular subgroup of G, or else

(iii) B = off(λ, 1) and A is an off-diagonal matrix, as then [A, 1] and [B, 1] clearly do

not generate a twisted subgroup of G.

For B = dia(λ, 1) and A given by (10.1) and for B = off(λ, 1) and A given by (10.2),

an ordered pair ([A, 1], [B, 1]) not satisfying any of (i), (ii) and (iii) will be called

non-singular.

We are now in position to classify the subgroups of G = M(p2f ) generated by

non-singular pairs. To do so we will again use knowledge of the situation in the

subgroup G0 ' PSL(2, p2f ) of G. Recall that a subgroup H of G = M(p2f ) was said

to stabilise a point if there exists an element in F ∪ {∞} fixed by all linear fractional

mappings corresponding to elements of H; also, G0 denotes the (unique) copy of

PSL(2, p2f ) in G.

Proposition 10.14. Let H be a subgroup of G generated by a non-singular pair

([A, 1], [B, 1]). Then H is isomorphic to M(p2e) for some positive divisor e of f such

that f/e is odd.

Outline proof. Let H0 = H ∩G0. The classification of [48] tells us that subgroups of

G0 fall into the following categories: point stabilisers, dihedral groups, A4, S4, A5,

and PSL(2, pg) for divisors g of 2f together with PGL(2, pg/2) for even divisors g of

2f . For our subgroup H0 we rule out all but the penultimate case.
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We then apply Proposition 10.7 to the subgroup H0 to conclude that H is conjugate

in G to a subgroup isomorphic to M(p2e) for some positive divisor e of f such that

f/e is odd, completing the proof.

It follows that a pair ([A, 1], [B, 1]) of elements of G as above generates a twisted

subgroup of G if and only if the pair is non-singular.

10.8 Orbits of non-singular pairs: The diagonal case

We will identify representatives of G-orbits of non-singular pairs ([A, 1], [B, 1]),

dealing with B = dia(λ, 1) and A as in (10.1) here and deferring the case B = off(λ, 1)

to the next section.

Instead of working with matrices, the form of A in (10.1) suggests to look at the

corresponding quadruples (λ, b, c, u), also called non-singular, under the induced

action of the stabiliser of [B, 1] in G. We recall that the values of λ and identification

of the stabiliser are in items 1 and 3 of Theorem 10.12. To simplify the notation in

what follows, for any ω ∈ F we will use the symbol r
√
ω to denote the set of all rth

roots of ω in F = GF (q2), q = pf . The analysis in the third part of the proof of

Theorem 10.12 tells us that the stabiliser of [B, 1] in G consists exactly of the

following elements of G:

[P1(η), 0], where P1 = dia(η, 1) and η ∈ F ∗0 ;

[P2(η), 1], where P2 = dia(ηλ, 1) and η ∈ F ∗0 ;

[P3(ζ), 0], where P3 = off(ζ, 1) if λ ∈ q+1
√
−1 and ζ ∈ q−1

√
λ−2;

[P4(ζ), 1], where P4 = off(ζ/λ, 1) if λ ∈ q+1
√
−1 and ζ ∈ q−1

√
λ−2.

To find the corresponding orbit of [A, 1] we first evaluate the products

[Pj(η), 0]−1[A, 1][Pj(η), 0] for A as in (10.1) and j ∈ {1, 2, 3, 4}:

[P1(η), 0]−1[A, 1][P1(η), 0] = [C1, 1], where C1 =

−1 bη−1

cη λσ

 ;

[P2(η), 1]−1[A, 1][P2(η), 1] = [C2, 1], where C2 =

 −1, bσ(ηλ)−1

cσηλσ λσ

 ;

[P3(ζ), 0]−1[A, 1][P3(ζ), 0] = [C3, 1], where C3 =

 −1 cζ/λ

bλ/ζ λσ

 ; and

[P4(ζ), 1]−1[A, 1][P4(ζ), 1] = [C4, 1], where C4 =

 −1 −cσζ/λ2

bσ/ζ λσ

 .

Let λ = ξi for a fixed primitive element ξ ∈ F and some odd i such that
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1 ≤ i ≤ (q − 1)/2; note that here λ ∈ q+1
√
−1 if and only if i = (q − 1)/2. It follows

that we have either (q − 1)/4 such odd values of i if q ≡ 1 mod 4 and all are smaller

than (q − 1)/2, or else (q − 3)/4 such odd i < (q − 1)/2 together with i = (q − 1)/2 if

q ≡ −1 mod 4.

The strategy now is to count the number of G-orbits for each such i, by bringing

together the information found so far. For each such i < (n− 1)/2 we obtain, after

some manipulation:

n1 = (q + 1)

⌊
q − 1

4

⌋
q2 − 3

4
. (10.3)

If q ≡ −1 (mod 4), then we also need to consider i = (q − 1)/2 and in that case the

count turns out to be:

n2 =
(q2 − 1)(q − 1)2/4 + ((q2 − 3)/2− (q2 − 1)/4)(q2 − 1)

4(q − 1)

=
1

8

(
(q + 1)(q2 − 3)− (q2 − 1)

)
.

(10.4)

10.9 Orbits of non-singular pairs: The off-diagonal case

The counting of orbits in the off-diagonal case proceeds in an analogous manner. In

this case the result for i < (q + 1)/2 is:

n3 = (q − 1)

⌊
q + 1

4

⌋
q2 + 1

4
. (10.5)

If q ≡ 1 (mod 4) then we must also consider i = (q + 1)/2 and in that case the count

turns out to be:

n4 =
(q2 − 1)(q + 1)(q − 3)/4 + ((q2 − 3)/2− (q2 − 1)/4)(q2 − 1) + 2(q2 − 1)

4(q + 1)
,

which simplifies to

n4 =
1

8

(
(q − 1)(q2 + 1)− (q2 − 1)

)
. (10.6)

10.10 Enumeration of orientably-regular maps on M(q2)

We have seen in Section 10.7 that a pair ([A, 1], [B, 1]) of elements of G, with diagonal

B and A given by (10.1) or with off-diagonal B and A given by (10.2), and with
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product of order two, generates a twisted subgroup of G if and only if the pair is

non-singular. In the previous two sections we have counted orbits of non-singular

pairs in G under conjugation in G, with no regard to subgroups the pairs generate.

The number of these orbits turns out to be n1 + n3 + n4 if q ≡ 1 mod 4 and

n1 + n2 + n3 if q ≡ −1 mod 4; in both cases the sum is equal to (q2 − 1)(q2 − 2)/8.

We state this as a separate result.

Proposition 10.15. The number of G-orbits of non-singular pairs in G = M(q2) is

equal to (q2 − 1)(q2 − 2)/8. �

We will now refine our considerations and take into account subgroups generated by

non-singular pairs. For our group G = G2f = M(p2f ) and for any positive divisor e of

f such that f/e is odd we let G2e denote the canonical copy of M(p2e) in G. In

Lemma 10.4 we saw that the automorphism σ of F = F2f = GF (p2f ) of order two

restricts to an automorphism σ2e of order two of the subfield F2e = GF (p2e) of F . We

recall that G = G2f = G2f 〈σ〉 and we similarly introduce G2e for every e as above by

letting G2e = G2e〈σ2e〉.

Let orbf (e) denote the number of G2f -orbits of non-singular pairs ([A, 1], [B, 1]) of G

that generate a subgroup of G isomorphic to M(p2e). At the same time, let orb(e) be

the number of orbits of non-singular pairs of G2e which generate G2e. The two

quantities, are, in fact, equal, which is fundamental for our enumeration.

Proposition 10.16. For each positive divisor e of f with f/e odd, we have

orbf (e) = orb(e).

Outline proof. It is clear that every G2e-orbit of a non-singular pair in the canonical

copy G2e
∼= M(p2e) in G2f is contained in a G2f -orbit of the same pair. In the reverse

direction, let a non-singular pair in G generate a subgroup isomorphic to M(p2e).

Since, by the important Proposition 10.6, all such subgroups are G2f -conjugate in

G2f , we may assume that the non-singular pair is contained in G2e. But then the

G2f -orbit of this pair obviously contains a G2e-orbit of the same pair. The proof now

proceeds by establishing the following fact:

Let ([A, 1], [B, 1]) and ([A′, 1], B′, 1]) be two non-singular pairs of G2e both generating

G2e and lying in the same G2f -orbit of G2f . Then the two pairs are contained in the

same G2e-orbit of G2e.

For positive integers x let us define a function h by h(x) = (p2x − 1)(p2x − 2)/8. In

terms of h and the numbers orbf (e), Proposition 10.15 simply says that
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∑
e orbf (e) = h(f), where summation is taken over all positive divisors e of f such

that f/e is odd. By Proposition 10.16 we may replace orbf (e) with orb(e) and obtain∑
e orb(e) = h(f), with the same summation convention. This miniature but

important detail enables us to make a substantial advance in the enumeration.

Let f = 2αo where o is an odd integer and let e be a divisor of f such that f/e is odd;

equivalently, e = 2αd where d is a positive (and necessarily odd) divisor of o. Taking

the above notes into account, Proposition 10.15 may then be restated as follows:

∑
d|o

orb(2αd) = h(2αo) . (10.7)

Using the Möbius inversion we obtain orb(f) = orb(2αo) =
∑

d|o µ(o/d)h(2αd), where

µ is the classical number-theoretic Möbius function µ on positive integers. We thus

arrive at our first main result.

Theorem 10.17. Let q = pf for an odd prime p, let G = M(q2), and let f = 2αo

with o odd. The number of G-orbits of non-singular generating pairs of G is equal to

∑
d|o

µ(o/d)h(2αd) , where h(x) = (p2x − 1)(p2x − 2)/8 .

The last step is to study conjugacy of non-singular pairs of M(q2) under the action of

the group Aut(M(q2)) which, as we know by Proposition 10.3, is isomorphic to

PΓL(2, q2). Since for q = pf we have PΓL(2, q2) ∼= PGL(2, q2) o Z2f
∼= Go Zf , it is

sufficient to investigate the induced action of the Galois automorphisms σj : z 7→ zp
j

for z ∈ F = GF (p2f ) and 1 ≤ j ≤ f − 1 on the G-orbits of our non-singular pairs

([A, 1], [B, 1]). We will use the natural notation Oσj for the σj-image of a G-orbit O

of a pair ([A, 1], [B, 1]) of elements of G. Note that σf = σ, and we also have

Oσf = O, by the remark made at the beginning of Section 10.7. Clearly, if

Oσj ∩O 6= ∅, then Oσj = O.

Proposition 10.18. Let O be the orbit of a non-singular pair ([A, 1], [B, 1]) of

elements of G under conjugation in G and let j be the smallest positive integer for

which Oσj = O. If [A, 1] and [B, 1] generate G, then j = f .

Proof (Hriňáková, Širáň). We may assume that f ≥ 2, otherwise the result is trivial.

Suppose that the pair ([A, 1], [B, 1])σj = ([A, 1]σj , [B, 1]σj ) is G-conjugate to the pair

([A, 1], [B, 1]), that is, there exists some C ∈ GL(2, q2) and i ∈ Z2 such that

[A, 1]σj = [C, i]−1[A, 1][C, i] and [B, 1]σj = [C, i]−1[B, 1][C, i]. It follows that for every

[X, 1] ∈ 〈[A, 1], [B, 1]〉 we have [X, 1]σj = [C, i]−1[X, 1][C, i]. Using our assumption
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that 〈[A, 1], [B, 1]〉 = G, we conclude that the above is valid also for X = dia(ξ, 1),

where ξ is a primitive element of F = GF (p2f ). Letting C have elements α, β, γ, δ in

the usual order, the equivalent form [C, i][dia(ξp
j
, 1), 1] = [dia(ξ, 1), 1][C, i] of the

above equation yieldsα β

γ δ

(ξp
j
)(σ) 0

0 1

 = ε

ξ 0

0 1

ασ βσ

γσ δσ


for some ε ∈ F ∗; here we used the (σ)-convention introduced at the end of section

10.4. This gives the system of equations

α(ξp
j
)(σ) = εξασ , β = εξβσ , γ(ξp

j
)(σ) = εγσ , δ = εδσ .

Consider first the case δ 6= 0; without loss of generality we then may assume δ = 1.

Then ε = 1, and the equation for α gives (ξp
j
)(σ)ξ−1 = ασα−1, or, equivalently,

ξp
j+if−1 = αp

f−1. It follows that pf − 1 is a divisor of pj+if − 1, which implies that f

divides j + if and hence f divides j, which, since j ≤ f , shows that j = f . If δ = 0

then, without loss of generality, β = 1 and so ε = ξ−1. The equation for γ now implies

ξp
j+if+1 = γp

f−1. It follows that pf − 1 divides pj+if + 1 and hence also p2(j+if) − 1

and so f must divide 2(j + if). Thus, f is a divisor of 2j and as j ≤ f , we have either

j = f or j = f/2 (assuming f is even). But the last case is easily seen to be impossible

since pf − 1 is not a divisor of pf/2 + 1 or p3f/2 + 1. This completes the proof.

Proposition 10.18 tells us that if a non-singular pair ([A, 1], [B, 1]) of elements of G

actually generates G and gives rise to an orbit O under conjugation in G, then the

action of the group Aut(M(q2)) fuses the f orbits Oσj for j ∈ {0, 1, . . . , f − 1} into a

single orbit. Recalling the one-to-one correspondence between isomorphism classes of

orientably-regular maps supported by the group G = M(q2) and orbits of (necessarily

non-singular) generating pairs of G under conjugation by Aut(G), Theorem 10.17

then immediately implies our second main result.

Theorem 10.19. Let q = pf for an odd prime p and let f = 2αo with o odd. The

number of orbits of non-singular generating pairs of M(q2) under the action of the

group Aut(M(q2)), and hence the number of isomorphism classes of orientably-regular

maps M with Aut+(M) ∼= M(q2), is equal to

1

f

∑
d|o

µ(o/d)h(2αd) , where h(x) = (p2x − 1)(p2x − 2)/8 .
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10.11 Enumeration of reflexible maps

Recall that a map is called reflexible if it admits an automorphism reversing the

orientation of the surface. For orientably-regular maps represented by triples (G, x, y)

as indicated in Section 10.1, reflexibility is equivalent with the existence of an

automorphism θ of the group G such that θ(x) = x−1 and θ(y) = y−1. Note that if

such a θ exists, then θ2 = id.

In the specific situation considered in this chapter, namely, when G = M(q2) for

q = pf , we established in Proposition 10.3 that Aut(G) ∼= PΓL(2, q2). Moreover, it is

well known that every automorphism in PΓL(2, q2) ∼= PGL(2, q2) o Z2f is a

composition of a conjugation by some element of PGL(2, q2) and a power of the

Frobenius automorphism z 7→ zp of the Galois field F = GF (p2f ). It follows that an

involutory automorphism θ of G = M(q2) is a composition of a conjugation as above

with σi for i ∈ {0, 1}, where σ is the automorphism of F sending z to zq. By the

remark at the beginning of Section 10.7, however, the action of σ is equivalent to

conjugation in G = G〈σ〉 by the element [I, 1]. Consequently, an orientably-regular

map on the group G = M(q2) generated by a pair of elements x = [A, 1] and

y = [B, 1] is reflexible if and only if the ordered pairs (x, y) and (x−1, y−1) are

conjugate by an involutory element of G.

In this section we will count the number of reflexible orientably-regular maps on

M(q2). In particular, we will see that not all orientably-regular maps with

automorphism group M(q2) are reflexible, in contrast with the position for

PGL(2, q2), see e.g. [23]. We will use techniques similar to the main enumeration in

previous sections and structure our explanations accordingly.

10.11.1 Conjugating involutions

By writing out the conjugating equations, it follows after some tedious but

elementary algebraic manipulation that the possible conjugating involutions as

described above can take only certain well-defined forms.

In the case B = dia(λ, 1) the possible conjugating elements can have the following

forms.

[C, 0]; C =

0 β

1 0

 ; βq−1 = λq−1 (10.8)
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[C, 1]; C =

0 β

1 0

 ; β ∈ F ′∗ (10.9)

In the case B = off(λ, 1) the possible conjugating elements can have the following

forms.

[C, 0]; C =

0 β

1 0

 ; βq+1 = λq+1 (10.10)

[C, 1]; C =

1 0

0 δ

 ; δ ∈ q+1
√

1 (10.11)

10.11.2 Enumeration

We now proceed to the actual enumeration and follow the same strategy as we used

for general maps, namely, counting orbits in the diagonal and off-diagonal cases for B

as in Sections 10.8 and 10.9 and then deriving the final enumeration result using the

Möbius inversion formula as in Section 10.10.

10.11.2.1 Counting orbits: The case B = dia(λ, 1)

The first possibility is that the conjugating element has the form [C, 0] with

C =

0 β

1 0

 for some β such that βq−1 = λq−1. Following some detailed

computations, the number of orbits, summed over all i ≤ (q − 1)/2, turns out to be:

r1 =
(q2 − 1)(q − 2)

8
(10.12)

The second possibility is that the conjugating element has the form [C, 1] with

C =

0 β

1 0

 for some β ∈ F ′∗. The number of orbits in this case is:

r2 =
(q2 − 1)(q − 1)

16
(10.13)

10.11.2.2 Counting orbits: The case B = off(λ, 1)

The first possibility is that the conjugating element has the form [C, 0] with

C =

0 β

1 0

 for some β such that βq+1 = λq+1. The number of orbits, summed over
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all i ≤ (q + 1)/2, is:

r3 =
q(q2 − 1)

8
(10.14)

The remaining possibility is that the conjugating element has the form [C, 1] with

C =

1 0

0 δ

 for some δ such that δq+1 = 1. In this case the number of orbits is:

r4 =
(q + 1)(q2 − 1)

16
(10.15)

10.11.2.3 Summary of counting orbits

For B = dia(λ, 1) the total number of G-orbits of generating pairs for reflexible maps

is

R1 = r1 + r2 =
(q2 − 1)(3q − 5)

16
(10.16)

For B = off(λ, 1) the total number of such orbits is

R2 = r3 + r4 =
(q2 − 1)(3q + 1)

16
(10.17)

The total number of orbits is therefore:

R = R1 +R2 =
(q2 − 1)(3q − 2)

8
(10.18)

10.11.3 Counting reflexible maps

We may enumerate the orientably-regular reflexible maps on M(q2) by using the

above calculations in conjunction with the logic of Section 10.10. Since details of this

process are exactly as in Section 10.10 except for using the input on counting orbits

from Subsection 10.11.2.3 we present just the final result.

Theorem 10.20. Let q = pf be an odd prime power, with f = 2αo where o is odd.

The number of orientably-regular reflexible maps M with Aut+(M) ∼= M(q2) is, up to

isomorphism, equal to

1

f

∑
d|o

µ(o/d)h̃(2αd) ,

where h̃(x) = (p2x − 1)(3px − 2)/8 and µ is the Möbius function.
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10.12 Remarks

As stated in Section 10.1, orientably-regular maps have been enumerated for a few

classes of non-trivial groups, including the linear fractional groups PSL(2, q) and

PGL(2, q) [23, 64]. It should be noted, however, that the available results for

PSL(2, q) and PGL(2, q) are more detailed by giving ‘closed formulae’ for the number

of orientably-regular maps of every given type, whereas our main results in

Theorems 10.19 and 10.20 contain formulae for the total number of such maps.

In order to obtain a refined version of our enumeration of orientably-regular maps

with automorphism group isomorphic to a twisted linear fractional group G = M(q2)

one could follow [39], which requires setting up both a character table for G and the

Möbius function for the lattice of subgroups of G. The number of orientably-regular

maps on the group G is then obtained as a combination of a character-theoretic

formula for counting solutions of the equation xyz = 1 for x, y, z in given conjugacy

classes of G (a special case of a general formula of Frobenius [33]) combined with

Möbius inversion, which is a forthcoming project of the authors. Whether the project

will return a ‘nice’ formula, however, is not clear due to another significant difference

between the family of orientably-regular maps on M(q2) compared to those on

PGL(2, q). Namely, in the case of PGL(2, q), for any even k, ` ≥ 4 not both equal to

4 there is an orientably-regular map for infinitely many values of q, cf. [23]. Our next

result shows that this fails to hold in the case of M(q2).

Proposition 10.21. If k, ` ≡ 0 (mod 8) and k 6≡ ` (mod 16) then there is no

orientably-regular map of type (k, `) on M(q2) for any q.

Proof. By Theorem 10.12, orders of elements in G\G0 are oi = 2(q − 1)/gcd{q− 1, i}
and o′i = 2(q + 1)/gcd{q + 1, i} for odd i such that 1 ≤ i ≤ (q − 1)/2 and

1 ≤ i ≤ (q + 1)/2, respectively. Note that if oi ≡ 0 mod 8 then o′i ≡ 4 mod 8 and

vice versa. Further, if oi ≡ 8 mod 16 then q − 1 ≡ 4 mod 8 since i is odd, and if

oi ≡ 0 mod 16 then q − 1 ≡ 0 mod 8. It follows that for a given q we cannot have a

non-singular generating pair of orders oi ≡ 0 mod 16 and oj ≡ 8 mod 16. The

argument for orders of the form o′i is similar.

Besides reflexibility, another frequently studied property of orientably-regular maps is

self-duality. In general, an oriented map is positively self-dual if it is isomorphic to its

dual with the same orientation, and negatively self-dual if it is isomorphic to its

oppositely oriented dual map. In terms of orientably-regular maps represented by

triples (G, x, y), positive and negative self-duality is equivalent to the existence of an
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B = dia(λ, 1) B = off(λ, 1)
q #(k=`) + self-dual − self-dual both #(k=`) + self-dual − self-dual both
3 0 0 0 0 3 3 3 3
5 15 15 5 5 10 10 6 6
7 28 28 8 8 78 42 14 14
9 95 45 9 9 68 36 10 10
11 276 132 24 24 265 165 33 33
13 469 273 39 39 666 234 42 42
17 2556 612 68 68 1312 544 72 72
19 1960 760 80 80 2799 855 95 95

Table 10.1: Numbers of self-dual maps on M(q2)

(involutory) automorphism of G sending the ordered pair (x, y) onto (y, x) and

(y−1, x−1), respectively. By the same arguments as in the second paragraph of

Section 10.11 one concludes that for our group G = M(q2), an orientably-regular map

defined by a generating pair [A, 1], [B, 1] will be positively self-dual if and only if there

exists an involution [C, i] ∈ G conjugating the two generators, and the map will be

negatively self-dual if there is such an involution conjugating [A, 1] to [B, 1]−1.

Setting up the corresponding matrix equations for such conjugations, however, lead to

enormously complicated formulae from which we were not able to extract ‘nice’ closed

formulae. Clearly in a self-dual map we have k = ` so that the orders of [A, 1] and

[B, 1] must be equal. We used GAP[35] to construct all the regular maps on M(q2),

for small values of q, with the generators of equal order, and then tested for

self-duality by determining if a conjugating element [C, i] as above exists. The results

of this computation are given in Table 10.1, showing the numbers #(k=`) of maps

that have generators of equal orders, those which are positively or negatively

self-dual, and those which are both.

Note that the computational evidence suggests that a negatively self-dual map on

M(q2) is also positively self-dual.
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Conclusion

Our final chapter begins by summarising the asymptotic results in the degree-diameter

problem, highlighting those areas where we have been able to improve the entries in

the table. We then conclude with some discussion and ideas for future research.

11.1 Revised table of asymptotic results

Chapters 3, 4, 5 and 8 all presented new asymptotic results in the undirected version

of the degree-diameter problem. We present here an updated and expanded version of

Table 2.1 summarising the new position. New results are highlighted in blue with a

reference to the corresponding result from earlier chapters.

It is worth noting that our focus on highly symmetric graphs, in particular Cayley

graphs, results in most progress being made on those sections of the table. Typically,

apart from Cayley graphs of abelian groups, dihedral groups and the like, no better

upper bound than 1 is known for the value of L+(k). Thus there are still many areas

where the gap between the upper and lower asymptotic bounds is large.

159 Grahame Erskine



160 11 Conclusion

Type Diam 2 Diam 3 Diam 4 Diam 5 Diam k
General graphs

All graphs
L− 1.00000 0.29629 0.18750 0.08192 1/2k

L+ 1.00000 1.00000 0.25000 1.00000 1/1.6k

Vertex-transitive
L− 0.68762a 0.25000b 0.09600c 0.05859c k/3k

L+ 1.00000 1.00000 0.09600c 0.05859c 1/2k

Arc-transitive
L− — — — — —
L+ 0.25000d 0.03703d 0.00390d 0.00032d 1/kkd

Cayley graphs

All groups
L− 0.68762a 0.25000b 0.09600c 0.05859c k/3k

L+ 1.00000 1.00000 0.09600c 0.05859c k/3k

Circulant
L− 0.36111e 0.05600f 0.00815m 0.00081f 1.20431k/kkg

L+ 0.36111 0.05700f 0.00815m 0.00081f 1.20431k/kkg

General abelian
L− 0.39062 0.07031 0.00815m 0.00081f 1.20431k/kkg

L+ 0.44444 0.07031 0.00815m 0.00081f 1.20431k/kkg

Elementary abelian L− — — — — —
2-groups L+ 0.28444h 0.06250l — — —

Dihedral
L− 0.50000†i 0.31059‡j 0.10983‡k — —
L+ 0.50000†i 0.31059‡j 0.10983‡k — —

a Theorem 5.8 b Theorem 5.4 c Theorem 5.6 d Theorem 9.1 e Theorem 3.7
f Theorem 3.11 g Theorem 3.20 h Theorem 8.24 i Theorem 4.5 j Theorem 4.8
k Theorem 4.9 l Theorem 8.27 m Corollary 3.17 † exact value ‡ upper bound

Table 11.1: Revised asymptotic lower bounds on orders of undirected graphs

11.2 Concluding remarks and future research

We have seen that graphs with a high degree of symmetry are a fruitful area of

research in the degree-diameter problem, as well as in related areas such as the girth

problem and the group-theoretical study of product-free sets. We conclude with some

final remarks and possible future research, structured according to the topics of the

preceding chapters.

In Chapter 3 we proved new asymptotic lower bounds on the orders of circulant

graphs of diameters greater than 2. The diameter 2 case seems to be resistant to

complete understanding, and the current best bound of 13/36 is some way away from

the theoretical limit of 1/2. A future research project could usefully try to extend the

ideas of this chapter to general abelian groups, for diameters 3 and above.

In Chapter 4 we completely settled the asymptotic position for diameter 2 Cayley

graphs of dihedral groups. However, it would be interesting to attempt a construction

for, say, dicyclic groups where we proved an upper bound of 1/2, to try to arrive at a

similar closed position. For diameters 3 and 4 we have an upper asymptotic bound,

but our diameter 2 construction cannot readily be extended to larger diameters to

provide a lower bound. Given our progress in Chapter 3 on cyclic groups at diameters

3 and 4, it would be interesting to try to extend similar techniques to the dihedral

case.
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Chapter 5 introduced a new generalised construction providing new asymptotic

bounds for Cayley graphs of diameters 3 and above. This relies heavily on computer

search for feasible solutions, and it would be preferable to prove some general results

about existence of solutions. A current project is investigating the existence of

solutions for Cayley graphs of groups of the form Hk oK, in the case where the right

hand side group K is either cyclic or dihedral.

In the mixed graph problem, Chapter 6 introduced a correction to the published

formula for the Moore bound, and ruled out the possibility of existence of mixed

Cayley Moore graphs in a number of open cases. There are still infinitely many open

cases, and the topic is an active area of current research. While some limited further

progress may be made with computational investigations, it is likely that new

combinatorial ideas will be required to understand the problem fully. One direction in

which the Cayley graph search technique might be extended is the problem of mixed

almost Moore graphs, that is with order one less than the Moore bound. Although

again there are infinitely many open cases, this problem seems just as intractable as

in the Moore case.

In the girth problem, Chapter 7 derived new information about the graphs of

Lazebnik, Ustimenko and Woldar. We have an open conjecture on the automorphism

groups of these graphs, and it would be profitable to pursue this, perhaps by studying

the stabilisers of 3-arcs in the graphs. Since these are still the best graphs known in

an asymptotic sense, any new information might lead to useful research avenues.

The study of filled groups in Chapter 8 made substantial progress towards a

classification of groups with this property. Filled groups, and the more general

question of product-free sets in groups, have links to other areas of combinatorics

including the degree-diameter problem, as we saw in the chapter. Partitions of a

group into symmetric product-free sets (equivalent to the decomposition of a

complete graph into edge-disjoint Cayley graphs) is an interesting topic in its own

right, and has links to mainstream research areas such as Ramsey problems.

From Chapter 9, a promising line of research would be to try to improve the current

position for arc-transitive graphs in the diameter problem. This is a new area, and it

seems likely that constructions along similar lines to ones we have used for other

related problems might improve our initial bounds.

In Chapter 10 we took a slight detour into the area of embeddings of maps on

surfaces, although the underlying theme of studying graphs with a high degree of

symmetry is constant. The groups M(q2) of this chapter are less studied in the
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literature than their better-known cousins PSL(2, q) and PGL(2, q). One project will

be to completely document the conjugacy classes and character tables of these groups.

In addition, our understanding of the numbers of positively and negatively self-dual

maps is currently based only on computational evidence, and seems resistant to

theoretical attack using the same methods we used for the main enumeration. It

would be interesting to try to resolve this.
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twisted linear fractional groups, arXiv preprint arXiv:1701.05781.

[31] Geoffrey Exoo and Robert Jajcay, Dynamic cage survey, Electronic Journal of
Combinatorics DS16v3 (2013), 55pp.

[32] Ramiro Feria-Puron, Hebert Perez-Roses, and Joe Ryan, Searching for large circulant
graphs, arXiv preprint arXiv:1503.07357, 2015.

[33] Ferdinand Georg Frobenius, Über Gruppencharaktere, (1896).
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