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Abstract

We consider three problems in extremal graph theory, namely the degree/diameter

problem, the degree/geodecity problem and Turán problems, in the context of

directed and partially directed graphs.

A directed graph or mixed graph G is k-geodetic if there is no pair of vertices u, v of

G such that there exist distinct non-backtracking walks with length ≤ k in G from u

to v. The order of a k-geodetic digraph with minimum out-degree d is bounded below

by the directed Moore bound M(d, k) = 1 + d+ d2 + · · ·+ dk; similarly the order of a

k-geodetic mixed graph with minimum undirected degree r and minimum directed

out-degree z is bounded below by the mixed Moore bound. We will be interested in

networks with order exceeding the Moore bound by some small excess ε.

The degree/geodecity problem asks for the smallest possible order of a k-geodetic

digraph or mixed graph with given degree parameters. We prove the existence of

extremal graphs, which we call geodetic cages, and provide some bounds on their

order and information on their structure.

We discuss the structure of digraphs with excess one and rule out the existence of

certain digraphs with excess one. We then classify all digraphs with out-degree two

and excess two, as well as all diregular digraphs with out-degree two and excess three.

We also present the first known non-trivial examples of geodetic cages.

We then generalise this work to the setting of mixed graphs. First we address the

question of the total regularity of mixed graphs with order close to the Moore bound

and prove bounds on the order of mixed graphs that are not totally regular. In

particular using spectral methods we prove a conjecture of López and Miret that

mixed graphs with diameter two and order one less than the Moore bound are totally

regular.

Using counting arguments we then provide strong bounds on the order of totally

regular k-geodetic mixed graphs and use these results to derive new extremal mixed

graphs.
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Finally we change our focus and study the Turán problem of the largest possible size

of a k-geodetic digraph with given order. We solve this problem and also prove an

exact expression for the restricted problem of the largest possible size of strongly

connected 2-geodetic digraphs, as well as providing constructions of strongly

connected k-geodetic digraphs that we conjecture to be extremal for larger k. We close

with a discussion of some related generalised Turán problems for k-geodetic digraphs.
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Chapter 1

Introduction

Networks permeate every aspect of our lives. Whilst reading these words electrical

signals pass through the network of neurons in our brains. Our transportation

consists of interconnected networks of roads, railways, streets, cycleways, air routes

and bus lines. We communicate by complicated networks of telephone lines and linked

computers.

Our relationships with other people can be described by networks of friendship,

collaboration and cooperation; this includes online social networks such as Facebook

and Twitter. Plants communicate and obtain nutrients through networks of roots;

slime moulds for example are well known for their ability to create efficient and

reliable networks [7]. Relationships between animals can be described by networks of

predation (the food chain or the food web) or genetic relatedness (such as the tree of

life).

Networks are described mathematically by means of graphs, which are collections of

vertices or nodes that are joined by edges. When designing an interconnection

network, or analysing a naturally occurring network, there are many useful

graph-theoretic parameters that describe desirable properties of the network. For

example

� order : the number of nodes in the network,

� size: the number of connections in the network,

� degree or valency : the number of connections per node,

� diameter : the largest number of connections that must be traversed from one

node to another,

� girth: this describes the ‘local efficiency’ of communication, or the smallest

length of two internally disjoint paths between a pair of nodes,

� connectivity : the smallest number of nodes that must be deleted in order to

split the network up into several parts, and

� symmetry : if the network has a high degree of symmetry, then parts of the

network can be mass-produced and the same routing algorithms can be used for

many nodes.

11 James Tuite



12 1 Introduction

Frequently we need to find a network that has the largest possible value of one or

more of these parameters subject to restrictions on the others. Such problems belong

to the field of extremal graph theory. For example, when designing an integrated

circuit a large number of transistors must be fitted onto each circuit board, which

makes computation faster, subject to having relatively few connections per transistor

for ease of layout and fast connections between each transistor. Similarly, when

constructing a communication network it is desirable to connect a large number of

users or switches, whilst each switch has a relatively low number of connections and

the maximum number of connections needed for communication between any pair of

switches is small.

If we model these situations by means of a graph in which the vertices represent

transistors or switches, then we require the graph to have large order, subject to low

diameter and small degrees for all of the nodes. This mathematical question is known

as the degree/diameter problem. In this thesis we will discuss this problem and some

of its relatives for graphs containing both directed and undirected connections.

1.1 Terminology

We shall begin by establishing the terminology and notation that we shall use; for any

graph-theoretical concepts not defined here we refer to [28] as our standard. A graph

G consists of a set V (G) of vertices together with a set E(G) of unordered pairs of

vertices called edges. We will often denote an edge {u, v} simply by uv. If there is an

edge {u, v} between vertices u and v, then we say that u and v are adjacent and we

write u ∼ v, whereas if u and v are not adjacent we write u 6∼ v. If u ∼ v, then u and

v are neighbours. The edge uv is incident with its endpoints u and v. This definition

is quite abstract; it is often more useful to portray a graph by a drawing, in which

vertices are represented by nodes and edges by lines between nodes that do not pass

through nodes other than its endpoints. One famous graph is displayed in Figure 1.1.

An edge uu from a vertex to itself is called a loop. If a network G contains two edges

that are incident with the same pair of vertices u and v, then there are multiple edges

in G. Our definition of ‘graph’ tacitly rules out both of these scenarios; therefore,

unless stated otherwise, all graphs are assumed to be simple. All graphs considered

here will also be finite, that is V (G) and E(G) will always be finite sets.

The order of a graph G is the cardinality of its vertex set and is typically denoted by

n. The size of a graph G is the number of edges in G and we will often represent the

James Tuite
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Figure 1.1: The Petersen graph

size by m. The number of edges incident to a vertex u is the degree of u, denoted by

d(u). The set N(u) = {v ∈ V (G) : u ∼ v} of all neighbours of a vertex u is the

neighbourhood of u. Therefore for all u ∈ V (G) we have d(u) = |N(u)|. The smallest

value of the degree in a graph G is the minimum degree of G and is typically denoted

by δ; similarly the maximum degree of G is ∆ = max{d(u) : u ∈ V (G)} (note however

that the letter δ is also traditionally used for the defect of a graph, although this

should cause no confusion). If there is some d such that d(u) = d for every vertex u of

G then G is d-regular, or just regular. A 3-regular graph is called cubic. For disjoint

subsets U1, U2 ⊆ V (G) we will denote the set of all edges between U1 and U2 by

E(U1, U2).

In the sum
∑

u∈V (G) d(u) every edge is counted twice; this yields the ‘first theorem’ of

graph theory (frequently called the Handshaking Lemma), which is due to Euler.

Theorem 1.1. If a graph G has size m, then the sum of its vertex degrees satisfies

∑
u∈V (G)

d(u) = 2m.

A walk W of length ` in a graph G is a sequence of vertices u0, u1, . . . , ul−1, u` such

that ui ∼ ui+1 for 0 ≤ i ≤ `− 1. If the edges uiui+1 are distinct for 0 ≤ i ≤ `− 1 then

the walk W is a trail. A path P` of length ` is a walk u0, u1, . . . , u` such that all of the

vertices u0, u1, . . . , u` are distinct. The initial and terminal vertices of W are u0 and

u` respectively and W is a u0, u`-walk (or trail/path as appropriate). W is closed if

its initial and terminal vertices coincide. We will also say that W is non-backtracking

if W does not include three consecutive vertices u, v, u, i.e. if the walk does not

James Tuite



14 1 Introduction

traverse an edge e = uv and then immediately retrace it in the opposite direction. If

the length of a walk is ≤ k, then we will speak of a ≤ k-walk, ≤ k-path, etc. The

graph G is connected if for all u, v ∈ V (G) there is a walk in G from u to v; otherwise

G is disconnected.

The distance d(u, v) between two vertices u and v is the length of a shortest path

from u to v, when such a path exists. The diameter of G is defined to be

max{d(u, v) : u, v ∈ V (G)}.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For any

set U of vertices of G the subgraph 〈U〉 of G induced by U is the graph with vertex

set U in which two vertices of 〈U〉 are adjacent if and only if they are adjacent in G.

A subgraph H of G is an induced subgraph if H = 〈V (H)〉.

The complete graph Kn is the unique graph with n vertices such that all pairs of

distinct vertices are adjacent to each other. Hence the size of Kn is
(
n
2

)
. The graph

with n vertices and no edges is the empty graph En. A complete subgraph of a graph

G is a clique, whereas an induced empty subgraph of G is an independent set ; the size

of the largest clique and independent set are the clique number and independence

number of G respectively. A cycle C` of length ` is a walk u1, u2, . . . , u` such that

u1 ∼ u` and all of the vertices u1, . . . , u` are distinct. The girth of G is the length of

the shortest cycle contained in G. At the other extreme, the longest cycle of G could

pass through every vertex of G; in this case G is Hamiltonian.

The graph G− S formed by deleting a set of vertices S ⊆ V (G) is the subgraph of G

induced by V (G)− S. We can also delete a set E′ ⊆ E(G) of edges: the graph G−E′

is the graph with vertex set V (G) and edge set E(G)− E′. A cutset is a set of

vertices such that G− S is disconnected and an edge cut is a set of edges such that

G−E is disconnected. The connectivity κ(G) of a connected graph G is defined to be

the size of the smallest cutset of G (or n− 1 in the case G = Kn). G is k-connected if

κ(G) ≥ k. The edge connectivity λ(G) is the size of the smallest edge cut of G and G

is k-edge-connected if λ(G) ≥ k. For any vertex u the set of edges incident with u

forms an edge cut, so that λ(G) ≤ δ(G). In fact we have the following inequality due

to Whitney (a proof can be found in [28]):

κ(G) ≤ λ(G) ≤ δ(G). (1.1)

If equality holds throughout Inequality 1.1 then G is maximally connected. If the

edge-connectivity satisfies λ(G) = δ(G) then G is maximally edge-connected. For some

James Tuite
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maximally edge-connected graphs we can make a stronger statement about the

structure of the edge cuts; in [24, 25] a graph G is defined to be edge super-connected

or super-λ if all minimal edge cuts of G are of the form E({u}, V (G)− {u}) for some

vertex u of G. A super-λ graph is maximally edge-connected, but the converse does

not hold.

1.1.1 Directed graphs

Often a real-life network that we wish to model will contain links that are one-way;

for example during the pandemic one-way systems are enforced in many shops. We

can describe this situation mathematically by allowing our network to contain

directed arcs, which are ordered pairs of distinct vertices. A directed graph G, or

digraph for short, consists of a set of vertices V (G) and a set A(G) of directed arcs. If

there is an arc from a vertex u to a vertex v then we will write u→ v and say that v

is an out-neighbour of u and u is an in-neighbour of v. If U1, U2 ⊆ V (G), then the set

of arcs from U1 to U2 will be written as (U1, U2).

Let G be a digraph. The out-neighbourhood N+(u) of a vertex u of G is the set of all

out-neighbours of u, i.e. N+(u) = {v ∈ V (G) : u→ v}. Similarly, the

in-neighbourhood N−(u) of u is the set {v ∈ V (G) : v → u} of all in-neighbours of u.

The out-degree d+(u) of u is the number of out-neighbours of u and the in-degree

d−(u) of u is the number of in-neighbours of u; thus d+(u) = |N+(u)| and

d−(u) = |N−(u)|. A vertex with out-degree zero is called a sink and a vertex with

in-degree zero is a source.

The in-degree sequence of G is the sequence of values of d−(u) for all u ∈ V (G),

arranged in non-decreasing order. If there exists a value of d such that d+(u) = d for

all vertices u of G, then G is out-regular. If furthermore we have d−(u) = d+(u) = d

for all vertices u, then G is diregular. For a diregular digraph we will often shorten

‘out-degree’ to ‘degree’.

We will continue to use many of the definitions introduced for undirected graphs in

the context of directed graphs, with suitable changes made to respect the direction of

arcs. For example, a directed walk W of length ` is a sequence of vertices such that

ui → ui+1 for 0 ≤ i ≤ `− 1; if all of the vertices in W are distinct, then W is a directed

path. A directed cycle of length ` is a sequence u1, u2, . . . , u` of distinct vertices such

that ui → ui+1 for 1 ≤ i ≤ `− 1 and u` → u1. It will be convenient to refer to a walk

of length ` as a ≤ `-walk and similarly a path of length ≤ ` as a ≤ `-path.

James Tuite



16 1 Introduction

The distance d(u, v) from vertex u to vertex v in a digraph is the length of the

shortest directed path from u to v. In particular note that, in contrast to the

undirected case, we may have d(u, v) 6= d(v, u). The diameter of G is the largest value

of d(u, v) over all pairs of vertices u, v of G. For all ` ≥ 1 we define

N+`(u) = {v ∈ V (G) : d(u, v) = `} and N−`(u) = {v ∈ V (G) : d(v, u) = `}, so that

N+1(u) = N+(u) and N−1(u) = N−(u). Putting ` = 0 gives N0(u) = {u}. For

0 ≤ ` ≤ k we set T`(u) =
⋃

0≤r≤`N
+r(u) and T−`(u) =

⋃
0≤r≤`N

−r(u). Equivalently,

T`(u) is the set of vertices of G that can be reached from u by paths of length ≤ ` and

T−`(u) is the set of vertices that can reach u by paths of length ≤ `.

The girth of G is the length of the shortest directed cycle contained in G (if such a

cycle exists). A digraph without directed cycles is acyclic. If clear from the context

we will frequently dispose of the adjective ‘directed’ for such subgraphs.

In a digraph we may have arcs between the same pair of vertices, but in opposite

directions, u→ v and v → u. This forms a 2-cycle or digon. A digraph without

2-cycles is an oriented graph; an oriented graph can be obtained by assigning a

direction to every edge of a simple undirected graph. Conversely from any digraph G

we can form the underlying graph of G by removing the directions from the arcs of G

and removing all 2-cycles, i.e. in the underlying graph of G we set u ∼ v if and only if

u→ v or v → u.

An orientation of a complete graph Kn is called a tournament. For every value of n

there exists an acyclic tournament with order n. The complete digraph with order n is

the unique digraph with an arc between each pair of distinct vertices in its vertex set.

The converse of a digraph G is the digraph G′ formed by reversing the direction of

every arc in G. Given a digraph G we can also define a new digraph on the arc set of

G: the line digraph G′ of G is the digraph with vertex set V (G′) equal to the arc set

A(G) of G, with an arc in G′ from an arc (x, y) of G to every arc of G of the form

(y, z).

If the underlying undirected graph of a digraph G is connected then G is weakly

connected ; otherwise we can divide G into weak components, the vertex sets of which

coincide with the connected components of the underlying graph of G. If G has the

stronger property that for all pairs of vertices u, v of G there is a directed path from u

to v then G is strongly connected or simply strong. An induced subdigraph of G that

is maximal subject to strong-connectivity is a strong component of G; the relation of

being ‘mutually reachable’ in G is an equivalence relation, so the strong components

partition the vertex set of G.
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Figure 1.2: Digraphs with low geodetic girth

The size of the smallest set of vertices S such that G− S is not strongly connected is

the strong connectivity of G, which we will continue to denote by κ(G); if κ(G) ≥ k,

then G is k-connected. We also define the weak connectivity of G to be the size of the

smallest set S ⊂ V (G) such that G− S is not weakly connected; if a digraph G has

weak connectivity at least k, then G is k-weakly-connected.

Similarly the arc-connectivity λ(G) is the size of the smallest set A′ of arcs such that

G−A′ is not strongly connected; such a set is an arc cut and a digraph G is

k-arc-connected if λ(G) ≥ k. The nice inequality κ(G) ≤ λ(G) ≤ δ(G) continues to

hold for directed graphs if δ(G) is interpreted to be

min({d−(u) : u ∈ V (G)} ∪ {d+(u) : u ∈ V (G)}) [77]. If equality holds, we will, as for

undirected graphs, say that G is maximally connected. If all minimal arc cuts of G

consist of all the arcs from a vertex u or the arcs to u, then G is arc-superconnected or

super-λ.

A digraph G is k-geodetic if for each pair u, v of vertices of G there is at most one

walk of length ≤ k from u to v. For every vertex u there is a trivial walk of length

zero from u to u, so in particular the girth of a k-geodetic digraph is at least k + 1.

We shall refer several times to a family of digraphs called the permutation digraphs.

These digraphs were introduced in [71] and more of their properties were derived

in [36]. For d, k ≥ 2 the permutation digraph P (d, k) is defined as follows. The

vertices of P (d, k) are all permutations x0x1 . . . xk−1 of length k of symbols from the

set [d+ k] = {0, 1, . . . , d+ k − 1}. A vertex x0x1 . . . xk−1 has an arc to all

permutations of the form x1x2 . . . xk−1xk for any xk 6∈ {x0, x1, . . . , xk−1}. An

example, P (2, 2), is shown in Figure 3.2. It is simple to verify that P (d, k) is diregular

with out-degree d and is k-geodetic. The order of P (d, k) is

n = (d+ k)(d+ k − 1) · · · (d+ 1) and has size m = nd ∼ n
k+1
k .
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Figure 1.3: A mixed graph

1.1.2 Mixed graphs

More generally, a network may include both undirected links and directed arcs. A

good example is the network of streets in a city, which will typically contain both

two-way and one-way streets. A mixed graph G consists of a set V (G) of vertices, a

set E(G) of undirected edges as well as a set of directed arcs A(G). An example is

shown in Figure 1.3. If for any pairs of vertices u, v there is an undirected edge

between u and v or a directed arc from u to v then we will continue to write u ∼ v
and u→ v respectively. We will require all of our mixed graphs to be simple: we do

not allow multiple arcs in the same direction (i.e. the arc (u, v) cannot occur more

than once) or multiple edges between a pair of vertices, and we also will not admit

mixed graphs in which there is both an edge and an arc between a pair of vertices, i.e.

we do not allow both u ∼ v and u→ v. However digons are permissible; we can have

u→ v and v → u in G.

We can view a mixed graph as the union of two parts:

� The undirected subgraph of a mixed graph G is the undirected graph with vertex

set V (G) and edge set E(G) and will be denoted by GU .

� The directed subgraph of G is the directed graph with vertex set V (G) and arc

set A(G) and will be denoted by GZ .

Occasionally it will be helpful to work with these two subgraphs separately. To

indicate the distance between two vertices u and v in the undirected subgraph and

the directed subgraph we will write dU (u, v) and dZ(u, v) respectively.
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As in the case of directed graphs, all definitions related to walks in mixed graphs

must respect the direction of the arcs. In particular, a walk W of length ` in a mixed

graph is a sequence u0, u1, u2, . . . , u` such that for each i in the range 0 ≤ i ≤ `− 1 we

have either ui ∼ ui+1 or ui → ui+1. As for undirected graphs, W is non-backtracking

if W does not contain three consecutive vertices u, v, u such that there is an

undirected edge u ∼ v (i.e. an undirected edge cannot be crossed and then

immediately retraced in the opposite direction). We will abuse notation slightly for

the sake of convenience and call a non-backtracking mixed walk a mixed path. The

distance d(u, v) from u to v is the length of the shortest mixed walk in G from u to v

and the diameter of G is the maximum value of d(u, v) over all pairs u, v of vertices.

A mixed graph G is k-geodetic if for any pair u, v of vertices there is at most one

mixed path (i.e. non-backtracking mixed walk) in G of length ≤ k from u to v. In

accordance with our abuse of notation, a k-geodetic mixed graph cannot contain any

non-trivial closed mixed walks of length ≤ k.

The undirected degree of a vertex of G is the number of undirected edges of G that are

incident with u. The undirected degree of u will be written simply as d(u) and the

collection of all undirected neighbours of u is U(u); thus U(u) is the neighbourhood of

u in the undirected subgraph of G. The directed out-degree d+(u) of u is the number

of directed arcs with u as initial vertex and the in-degree d−(u) of u is the number of

arcs with u as terminal vertex. When bounding the vertex degrees of G we will tend

to denote the undirected degree by the letter r and the directed out-degree by the

letter z.

If there exist r and z such that every vertex of G has d(u) = r and d+(u) = z, then G

is out-regular. If we have the stronger property that d(u) = r and d−(u) = d+(u) = z

for every vertex u, then G is totally regular. Equivalently, G is totally regular if and

only if GU is regular and GZ is diregular.

The directed out-neighbourhood Z+(u) of u in G is the out-neighbourhood of u in the

directed subgraph of G and the directed in-neighbourhood Z−(u) of u in G is the

in-neighbourhood of u in the directed subgraph. Therefore

U(u) = {v ∈ V (G) : u ∼ v}, Z+(u) = {v ∈ V (G) : u→ v}, Z−(u) = {v ∈ V (G) : v → u}.

For convenience, we also set

N+(u) = U(u) ∪ Z+(u), N−(u) = U(u) ∪ Z−(u).

Thus N+(u) is the set of vertices that can be reached by a mixed path of length one
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from u and N−(u) is the set of vertices that can reach u by a mixed path of length

one. If u is not contained in any digons then we will have N+(u) ∩N−(u) = U(u).

1.1.3 Automorphisms

An isomorphism of a (directed, undirected or mixed) graph G to a graph H is a

bijection φ : V (G)→ V (H) such that for all u, v ∈ V (G) we have u ∼ v if and only if

φ(u) ∼ φ(v) and u→ v if and only if φ(u)→ φ(v); in this case G and H are

isomorphic. We will typically not distinguish between isomorphic graphs, except, for

example, when counting the number of subgraphs of a graph G that are isomorphic to

a graph H. An isomorphism from G to itself is an automorphism of G. The collection

Aut(G) of automorphisms of a graph G forms a group under composition.

A graph G is vertex-transitive if for any two vertices u, v of G there exists an

automorphism φ of G such that φ(u) = v. In particular, a vertex-transitive undirected

graph is regular, a vertex-transitive digraph is diregular and a vertex-transitive mixed

graph is totally regular; the converse however does not hold. A digraph is

arc-transitive if the automorphism group Aut(G) of G acts transitively on the arcs of

G, i.e. for any two arcs (u, v), (u′, v′) ∈ A(G) there is an automorphism φ of G such

that φ(u) = u′ and φ(v) = v′. Every arc-transitive digraph without sinks must be

vertex-transitive. More generally, a digraph is r-arc-transitive if for any two directed

walks u0 → u1 → u2 → · · · → ur and v0 → v1 → v2 → · · · → vr of length r there exists

an automorphism φ that maps ui to vi for 0 ≤ i ≤ r.

A convenient way to construct vertex-transitive graphs is to define a graph using a

group. Given a group H and any identity-free subset S ⊆ H that generates the group,

we define the Cayley digraph Cay(H,S) to be the digraph with vertex set H with an

arc from h ∈ H to h′ ∈ H if and only if h′ = hs for some s ∈ S. If S contains an

element s as well as its inverse s−1 (for example, s could be an involution) then

Cay(H,S) will contain the digon h→ hs→ h. Invertible elements in S allow us to

introduce undirected edges. In the context of Cayley mixed graphs we will not allow

digons, instead regarding any such digon as an edge. More formally, a Cayley mixed

graph Cay(H,A,B) consists of a group H, which also constitutes the vertex set, an

inverse-closed set A (i.e. a ∈ A implies a−1 ∈ A) and an inverse-free set B (b ∈ B
implies that b−1 6∈ B), such that the union A ∪B generates H and does not contain

the group identity; then we define the edge and arc sets of Cay(H,A,B) by inserting

an edge u ∼ ua for each u ∈ H and a ∈ A and an arc u→ ub for each u ∈ H and

b ∈ B. A Cayley graph of a cyclic group is called a circulant.
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1.1.4 The adjacency matrix

It often happens that listing the vertices and edges of a graph, or alternatively

presenting a drawing, is not the most efficient way of specifying a network. We can

also uniquely determine a graph up to isomorphism by means of a single matrix, the

adjacency matrix. For maximum generality, let G be a mixed graph; the definition of

the adjacency matrix of undirected and directed graphs is a special case.

Definition 1.2. If a mixed graph G has order n, then the adjacency matrix A(G) is

the n× n matrix with rows and columns indexed (in the same order) by the vertices

of G, with (u, v)-entry Auv defined to be one if there is an edge u ∼ v or an arc

u→ v, and zero otherwise.

Observe that if A is an undirected graph, then its adjacency matrix is symmetric; if G

contains directed arcs this will typically not be the case. Representing graphs by

matrices will also allow us to bring to bear the powerful methods of matrix algebra to

the study of extremal graphs; this is possible thanks to the following theorem that

connects the existence of walks of specified lengths with the entries of powers of the

adjacency matrix.

Theorem 1.3. If a mixed graph G (possibly purely undirected or directed) has

adjacency matrix A, then the number of walks of length r from a vertex u to a vertex

v of G is given by the (u, v)-entry of the matrix Ar.

A proof for undirected graphs is given in [41] and this is not difficult to extend to

directed and mixed graphs.

The adjacency matrix A of a graph G has an associated spectrum of n eigenvalues; we

will refer to these as the eigenvalues of G (their value is evidently independent of the

labelling of the vertices of G). The characteristic polynomial of G is the degree n

polynomial det (xI −A). As the trace of a matrix is the sum of its eigenvalues, we

have the following useful relation.

Lemma 1.4. If G is a graph with order n and spectrum λi, 1 ≤ i ≤ n, then if we let

W (u, `) be the number of closed u, u-walks of length ` in G, then

∑
u∈V (G)

W (u, `) =

n∑
i=1

λ`i .

Proof. By Theorem 1.3 the (u, u)-entry of A` is W (u, `). The spectrum of A` is λ`i ,
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1 ≤ i ≤ n, so the trace of A` is equal to the sum of W (u, `) over all vertices u of G

and the sum of the `-th powers of the eigenvalues of G.

1.2 Outline

In Chapter 2 we review the fundamental results of the three extremal problems that

serve as the foundation and inspiration for this research: the degree/diameter

problem, the degree/girth problem and Turán problems.

In Chapter 3 we motivate the degree/geodecity problem for directed graphs as an

extension of the degree/girth problem for undirected graphs. We prove the existence

of extremal digraphs, which we call geodetic cages, provide elementary upper and

lower bounds on their order and discuss the problem of monotonicity of geodetic

cages.

In Chapter 4 we study the natural first question for k-geodetic digraphs: do there

exist k-geodetic digraphs with order one more than the directed Moore bound? We

prove results on the structure of such digraphs and their automorphism groups and

use this information to prove the non-existence of certain digraphs with excess one.

We also provide strong divisibility conditions for the existence of a vertex-transitive

digraph with excess one and conclude the classification of 2-geodetic digraphs with

excess one.

Chapter 5 discusses the issue of regularity of extremal networks. It is easier to analyse

the structure of k-geodetic digraphs that are diregular; therefore we use relatively

complex counting arguments to show that all digraphs with out-degree two and excess

two must be diregular to set the stage for our classification of such digraphs in the

following chapter.

Chapter 6 begins with the proof of a connection between out-neighbourhoods and

outlier sets in digraphs with small excess called the Neighbourhood Lemma. We use

this result to complete the classification of digraphs with out-degree two and excess

two that we began in Chapter 5 and as a result present the first non-trivial examples

of geodetic cages. We then stretch our methods further to prove the non-existence of

diregular digraphs with out-degree two and excess three.

We then generalise our discussion to mixed graphs in Chapter 7; these are networks

containing both undirected links and directed arcs. We give a review of the

degree/diameter problem for mixed graphs and thereby motivate our definition of the
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degree/geodecity problem for mixed graphs. As in Chapter 3, we prove the existence

of mixed geodetic cages and prove some monotonicity relations.

Chapter 8 deals with the question of total regularity of mixed graphs with order close

to the Moore bound. We answer an open question of López and Miret by showing

that any mixed graph with diameter two and defect one must be totally regular and,

as a by-product, prove the same result for 2-geodetic mixed graphs with excess one.

We also discuss total regularity of mixed graphs with defect or excess one for some

values of the degree parameters for larger values of the diameter or geodecity.

In Chapter 9 we introduce a powerful counting argument that yields a strong lower

bound on the excess of totally regular k-geodetic mixed graphs. This also allows us to

extend the result that the outlier function of a digraph with excess one is an

automorphism to mixed graphs with excess one. We then generalise our counting

argument to give a slightly weaker bound that does not assume total regularity. We

make practical application of these results by classifying some 2-geodetic mixed

graphs with excess one. We also build on a result of Dalfó et al. by deriving a new

lower bound on the defect of mixed graphs with undirected degree one, directed

out-degree one and diameter k ≥ 3. Finally we present the results of a computer

search that identifies new mixed geodetic cages and gives upper bounds for some

values of the degree parameters and geodetic girth for which geodetic cages have not

yet been identified.

We change direction in Chapter 10 and take a different approach to studying geodetic

girth in digraphs. Instead of bounding the out-degree and geodetic girth of a digraph,

we ask the following Turán-type problem: what is the largest possible number of arcs

in a k-geodetic digraph with given order n? We solve this problem completely. It

turns out that the restriction of the problem to strongly-connected k-geodetic

digraphs is much more complex; we offer a conjecture on the maximum size of such

digraphs and prove it for k = 2. Finally we discuss some generalised Turán problems

for k-geodetic digraphs.

We conclude our discussion in Chapter 11 by summarising the main results of the

thesis, gathering together the main open problems that have arisen and suggesting

some directions for future research.
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Chapter 2

Background

In this chapter we provide some background material on the three problems that are

the foundation for this research: the degree/diameter problem, the degree/girth

problem and Turán problems. As three of the cornerstones of modern extremal graph

theory, each of these problems has an extremely large and rapidly growing literature.

Therefore we make no attempt at an exhaustive survey of any of these fields, but refer

the reader to survey papers for each problem. For an introduction to all three

questions see also the classic work [26] of Bollobás.

2.1 The undirected degree/diameter problem

The problem now known as the degree/diameter problem was first raised by Edward

Forrest Moore. It was inspired by the design of efficient interconnection networks. A

survey of the degree/diameter problem for both undirected and directed graphs is

given in [119], which lists more than 350 references in the 2013 edition.

Problem 2.1 (Degree/diameter problem for undirected graphs). What is the largest

possible order of a graph with maximum degree d and diameter k?

Moore pointed out the following simple upper bound for the order of a graph G with

given maximum degree d and diameter k. Fix a vertex u of G; we are going to grow a

tree (the Moore tree) of depth k rooted at u. Call the root vertex Level 0 of the tree.

Below u at Level 1 draw the ≤ d neighbours u1, u2, . . . , ud(u) of u. For each of these

neighbours ui draw their other neighbours (i.e. apart from u) below them at Level 2

of the tree. In general for 1 ≤ t ≤ k − 1 each vertex v at Level t will have an edge to a

vertex v′ at Level t− 1 and we draw edges from v to Level t+ 1 to every neighbour of

v apart from v′. As G has diameter k, every vertex of G is contained at least once in

this tree. The Moore tree for a 3-regular graph with diameter k = 3 is shown in

Figure 2.1.

Observe that the root vertex u has at most d neighbours in Level 1 and every vertex

at Level t (where 1 ≤ t ≤ k − 1) has an edge to Level t− 1 and hence has at most

d− 1 edges to Level t+ 1. In general there are at most d(d− 1)t−1 vertices at distance
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Figure 2.1: The Moore tree for d = 3 and diameter k = 3.

t from the root u for 1 ≤ t ≤ k. It follows that the order of the graph is bounded

above by

1 + d+ d(d− 1) + d(d− 1)2 + · · ·+ d(d− 1)k−1.

This upper bound is named the Moore bound (for undirected graphs). In particular

the Moore bound for a graph with maximum degree d and diameter two is given by

d2 + 1. We will not introduce special notation for this bound, as we will make more

use of the analogous Moore bound for directed graphs (see Section 2.3).

A graph that meets this bound is called a Moore graph. It is easily seen that a graph

G meets the Moore bound if and only if i) it is d-regular, ii) G has diameter k and iii)

all of the vertices in the Moore tree are distinct. Condition iii) will be met if and only

if the girth of G is at least 2k + 1.

The first paper that appeared on the subject of Moore graphs was [91] by Hoffman

and Singleton. They used elegant spectral methods to show that the only possible

values of the degree d for which a Moore graph with diameter two can exist are

d = 2, 3, 7 or 57. Moore graphs with diameter two and degrees d = 2, 3 and 7 do exist;

these graphs are given by the 5-cycle C5 for d = 2, the Petersen graph (shown in

Figure 1.1) with order 10 for d = 3 and the Hoffman-Singleton graph with order 50

for d = 7. The existence of a Moore graph with diameter two, degree 57 and order

3250 is a famous open problem in graph theory; this hypothetical graph is known as

the missing Moore graph. The three Moore graphs with diameter two and degrees

d = 2, 3 and 7 are all vertex-transitive. By contrast, it is known that if the missing

Moore graph does exist, then it has at most 375 automorphisms [109], which is a very

small number compared with the order of the graph.
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In [91] the authors also showed that the unique Moore graph with diameter k = 3 is

the 7-cycle C7. This result was extended to show that the only Moore graphs with

diameter k ≥ 3 are the cycles with length 2k + 1. This was proven independently by

Damerell [52] using results on distance-regularity and by Bannai and Ito [11] using

spectral methods.

As Moore graphs are so scarce, we are forced to consider graphs with order less than

the Moore bound by some defect δ. Erdős et al. proved that apart from C4 there are

no graphs with diameter two and defect one, i.e. order one less than the Moore

bound [61]. This non-existence result was later extended by Bannai and Ito [12] and

Kurosawa and Tsujii [94], showing that graphs with defect one exist only trivially in

the form of cycles. There is a large literature on the existence of graphs with small

defect δ ≥ 2, for which we refer the reader to [119]. Notable highlights include the

following theorems.

Theorem 2.2.

� There are exactly two cubic graphs with diameter k = 2 and defect δ = 2 and a

unique cubic graph with defect δ = 2 and diameter k = 3, but there are no such

cubic graphs with diameter k ≥ 4 ([96]).

� There is a unique graph with degree d = 4, diameter k = 2 and defect δ = 2

([34]), but no graphs with degree d = 4, defect δ = 2 and larger diameter k ≥ 3

([69]).

� There are no cubic graphs with defect δ ≤ 4 and diameter k ≥ 5 ([117]).

� There are no graphs with diameter k = 2, defect δ = 2 and degree d in the range

6 ≤ d ≤ 49 ([44]).

An alternative approach to searching for graphs with small defect is to try to

construct families of graphs with large order. The family of de Bruijn graphs have

degree d, diameter k and order asymptotically equal to (d2)k (see [54]). For odd

diameter, this can be improved to order approximately 2(d2)k using graphs on

alphabets [81]. Canale and Gómez provide an asymptotic improvement to this bound

in [40] by constructing graphs of order approximately ( d
1.6)k for infinitely many pairs

d, k. It is also known that the Moore bound for diameters k = 2, 3 and 5 can be

approached asymptotically as d tends to infinity [55]. For example, in [135] graphs

with diameter k = 2, suitably large degree d and order at least d2 − 2d1.525 are

constructed by making suitable modifications to the Brown graphs.

As noted in Chapter 1, it is frequently desirable for a network to have a large degree

of symmetry; it is therefore significant that the preceding result can be strengthened
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to show that the Moore bounds for diameters two and three can be approached

asymptotically by Cayley graphs [8, 130]. Other families of large Cayley graphs are

given in [67]; however, these typically have order only a small fraction of the Moore

bound.

2.2 The undirected degree/girth problem

As we saw in Section 2.1, there are very few Moore graphs. In the degree/diameter

problem we widened our view to include graphs in which the Moore tree contains

some repeated vertices, or equivalently, in which the girth is ≤ 2k. It is easily seen

that a graph is Moore if and only if it is d-regular, has diameter k and girth 2k + 1.

We can also take the ‘converse’ approach to studying graphs with a ‘Moore-like’

structure: instead of keeping the diameter condition and relaxing the requirement on

the girth, we can demand that the girth of the graph be 2k + 1, but allow the

diameter to be ≥ k+ 1; this corresponds to requiring all of the vertices in an arbitrary

Moore tree of depth k for the graph to be distinct, but without the condition that the

tree should contain all vertices of the graph. This gives rise to the undirected

degree/girth problem.

Problem 2.3 (Degree/girth problem for undirected graphs). What is the smallest

possible order of a graph with minimum degree d and girth g = 2k + 1?

By the same counting argument that we used to obtain an upper bound on the order

of a graph with given degree and diameter, we see that the undirected Moore bound

1 + d+ d(d− 1) + · · ·+ d(d− 1)k−1 also serves as a lower bound on the order of a

graph with minimum degree d and girth 2k + 1. With the exception of the rare cases

in which there exists a Moore graph, the order of the graph will exceed the Moore

bound by some (hopefully small) excess ε. We are particularly interested in the

extremal graphs.

Definition 2.4. A smallest possible graph with minimum degree d and girth g is a

(d, g)-cage; if the degree and girth are clear from the context, then we call such a

graph simply a cage.

The classic survey of the degree/girth problem is [68]; see also [23] for the definitive

paper on the degree/girth problem for cubic graphs. The degree/girth problem is

traditionally defined for regular graphs, but in the context of graphs with small excess

this is not a significant restriction. It must also be pointed out that smallest graphs

with given degree and even girth g = 2k are also of interest in the degree/girth
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Figure 2.2: The McGee graph, the unique (3, 7)-cage

problem (in which case the lower bound is derived by hanging a Moore tree from an

edge rather than a vertex), but we will not touch further on this case here, except to

say that the existence of a Moore graph with even girth is connected with the

existence of generalised n-gons. The smallest cubic cage that is not also a Moore

graph is the unique (3, 7)-cage called the McGee graph, which is displayed in

Figure 2.2. The Moore bound for degree d = 3 and girth g = 7 is n = 22, whereas the

McGee graph has order 24 and hence excess ε = 2.

Using quite involved spectral techniques Bannai and Ito demonstrated that there are

no graphs with excess one and girth g ≥ 5 apart from cycles. Therefore if g ≥ 6 or

g = 5 and d 6∈ {2, 3, 7, 57}, then the smallest possible order of a d-regular graph with

girth g is at least two more than the Moore bound. In fact this remains the only

completely general lower bound.

Theorem 2.5 ([12]). For d ≥ 3 and g ≥ 5 there are no regular graphs with excess one.

One subtle point that does not arise in the degree/diameter problem is that it is not

immediately clear that cages exist for all values of d and g; therefore it is necessary to

prove that for any d ≥ 2 and g ≥ 3 there exists a graph with degree d and girth g.

This result was first shown in 1963 by Sachs in [126] by a recursive construction. The

upper bound in [126] was subsequently improved in a joint paper by Sachs and

Erdős [62]. An approachable presentation of these proofs is given in an appendix

of [68]. These upper bounds were further improved in 1967 by Sauer; we present his
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result only for odd girth.

Theorem 2.6 ([127]). For all d ≥ 2 and odd g ≥ 3, the order of a (d, g)-cage does not

exceed 2(d− 2)g−2.

Thus we have the unfortunate situation that the best known general constructions are

orders of magnitude away from the Moore bound. The best known general upper

bound on the order of cages is due to a construction of Lazebnik, Ustimenko and

Woldar.

Theorem 2.7 ([101]). Let d ≥ 2 and g ≥ 5 and let q be the smallest odd prime power

such that d ≤ q. Then the order of a (d, g)-cage does not exceed 2dq
3g
4
−a, where

a = 4, 114 ,
7
2 and 13

4 for g ≡ 0, 1, 2, 3 (mod 4) respectively.

2.2.1 Properties of cages

It is intuitively obvious that the order of (d, g)-cage should grow with increasing d

and g; however, this is surprisingly non-trivial to prove. Monotonicity in g was proven

by Fu, Huang and Rodger in [73]; we will generalise their approach to mixed graphs

in Chapter 7. Monotonicity in the degree remains an open question, but a partial

result is contained in [150]. For the statement of the following theorems let f(d, g) be

the order of (d, g)-cage.

Theorem 2.8 ([73]). For d ≥ 2 and g ≥ 3 the function f(d, g) is strictly increasing in

g, i.e. f(d, g) < f(d, g + 1).

Theorem 2.9 ([150]). For d ≥ 2 and g ≥ 3 we have f(d, g) ≤ f(d+ 2, g). Also

f(2, g) < f(3, g).

It also follows from a result of Tashkinov on 3-factors in [140] that f(3, g) ≤ f(4, g).

Another structural property of cages that has received a great deal of attention is

connectivity. The following conjecture was made by Fu, Huang and Rodger.

Conjecture 2.10 ([73]). All (d, g)-cages are d-connected.

In their paper [73], the authors of this conjecture proved that all cages are at least

2-connected. It was shown independently in [53, 95] that cages are 3-connected.

Whilst we are more concerned with the case of odd girth, it is known that the

(d, g)-cages with girth six and eight are d-connected [112]. A major step towards

Conjecture 2.10 was taken in [10], which showed that (d, g)-cages are at least
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dd2e-connected for odd girth g ≥ 3. However a complete proof of Conjecture 2.10

remains elusive.

By contrast, the edge connectivity of cages is completely understood. In [151] Wang

et al. showed that cages with odd girth are maximally edge-connected, i.e. if G is a

(d, g)-cage for odd g ≥ 3, then λ(G) = d. This result was extended to even girths

in [103]. The edge-connectivity of any cage is thus equal to its degree. However

in [111] Marcote and Balbuena showed the much stronger property that cages with

odd girth are edge-superconnected, i.e. all minimal edge cuts of a (d, g)-cage G for

odd g ≥ 3 are of the form E({u}, V (G)− {u}) for some vertex u of G. The even-girth

version of this result was proven in [102]. For the many papers on connectivity of

cages that we have not had space to mention here we again refer the reader to the

survey [68].

2.3 The degree/diameter problem for directed graphs

2.3.1 Moore digraphs

The degree/diameter problem has also been studied extensively in the setting of

directed graphs in the following form (see the second section of the survey [119]).

Problem 2.11 (Degree/diameter problem for directed graphs). What is the largest

possible order of a directed graph with maximum out-degree d and diameter k?

We can derive a Moore bound for directed graphs using a directed Moore tree. Let G

be a digraph with maximum out-degree d and diameter k. Fix a root vertex u at

Level 0 and for each t in the range 0 ≤ t ≤ k − 1 draw below each vertex v at Level t

an arc to each out-neighbour of v at Level t+ 1. As each vertex of G has ≤ d
out-neighbours, it can be shown by induction that for 0 ≤ t ≤ k there are at most dt

vertices at distance t from u. The directed Moore tree for out-degree d = 3 and

diameter k = 2 is shown in Figure 2.3.

This shows that the order of such a digraph is bounded above by the directed Moore

bound M(d, k) = 1 + d+ d2 + · · ·+ dk. Due to its importance we include this

expression as a separate definition.

Definition 2.12. For d, k ≥ 2 the directed Moore bound is

M(d, k) = 1 + d+ d2 + · · ·+ dk =
dk+1 − 1

d− 1
.
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Figure 2.3: The Moore tree for out-degree d = 3 and diameter k = 2

One feature of the directed degree/diameter problem that distinguishes it from the

undirected version of the problem is the fact that there are no Moore digraphs, except

for directed (k + 1)-cycles with d = 1 and complete digraphs with diameter k = 1,

which we will refer to as trivial Moore digraphs. This was first proven in 1974 by

Plesńık and Znám in [123]. A very elegant independent proof using spectral theory

was presented by Bridges and Toueg in 1980 [33]. As we will later make use of such

spectral arguments we reproduce their proof as an introduction to the method. Again

observe that a digraph is Moore if and only if it is diregular with degree d, has

diameter k and is k-geodetic.

Theorem 2.13 ([33]). There are no non-trivial Moore digraphs.

Proof. Let G be a Moore digraph with out-degree d ≥ 2 and diameter k ≥ 2. Let A

be the adjacency matrix of G. For any two vertices u, v of G there is a unique

directed walk of length ≤ k from u to v. It follows from Theorem 1.3 that

I +A+A2 + · · ·+Ak = J,

where I is the n× n identity matrix and J is the n× n all-one matrix. The

eigenvalues of J are n and 0 with multiplicity n− 1. It follows that the eigenvalues of

G are d together with n− 1 other eigenvalues λi, 1 ≤ i ≤ n− 1, each of which satisfies

1 + λi + λ2i + · · ·+ λki = 0. Hence each λi is a (k + 1)-th root of unity, λk+1
i = 1.

The trace of any matrix is the sum of its eigenvalues. Furthermore, by Theorem 1.3

for 0 ≤ j ≤ k the trace of Aj is the sum over all vertices u ∈ V (G) of the number

W (u, j) of closed u, u-walks of length j; as G is k-geodetic, there can be no such

walks, so that

Tr(Aj) = dj +
n−1∑
i=1

λji = 0.
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For each λi, 1 ≤ i ≤ n− 1, we have λi = λ−1i = λki , so, as d is a real number, it follows

that

−d =
n−1∑
i=1

λi =
n−1∑
i=1

λi =
n−1∑
i=1

λki = −dk.

Thus d = dk, which implies that either d = 1 or k = 1.

2.3.2 Almost Moore digraphs

Given this embarrassing lack of Moore digraphs, we ask instead for digraphs with

out-degree d, diameter k and order M(d, k)− δ, where δ is the defect of the digraph.

We will call such a digraph a (d, k;−δ)-digraph. The obvious question is whether

there exist any non-trivial digraphs with defect one? Such a digraph is called an

almost Moore digraph. Any almost Moore digraph G must be out-regular and so for

any vertex u of G there is exactly one vertex r(u) of G (called the repeat of u) that

occurs twice in the Moore tree rooted at u.

Definition 2.14. The repeat function of a digraph G with maximum out-degree d,

diameter k and order M(d, k)− 1 is the function r : V (G)→ V (G) defined by the

following condition: for any vertex u of G, r(u) is the unique vertex of G such that

there are two distinct u, r(u)-walks in G with length not exceeding k.

It was proven in [15] that the repeat function is actually an automorphism of any

almost Moore digraph. This connection between the existence of short paths in G and

the global symmetries of G has proven to be extremely fruitful. If we represent the

repeat function of G by a permutation matrix P , then Theorem 1.3 shows that the

adjacency matrix A of G satisfies

I +A+A2 + · · ·+Ak = J + P.

It turns out that there are infinitely many almost Moore digraphs. Up to

isomorphism there are three (2, 2;−1)-digraphs [114], which are displayed in

Figure 2.4. In [72] Fiol et al. constructed an almost Moore digraph with diameter

k = 2 and any degree d ≥ 3 by iterating the line digraph operation. The classification

of almost Moore digraphs with diameter two was completed by Gimbert using the

spectral technique; it transpires that the almost Moore digraphs identified in [72] are

the unique digraphs with defect one with these parameters. Interestingly then in the

undirected degree/diameter problem there exist non-trivial Moore graphs, but no
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non-trivial almost Moore graphs, whereas in the directed problem there are no

non-trivial Moore digraphs, but infinitely many digraphs with defect one.

Figure 2.4: The three (2, 2;−1)-digraphs

The picture for larger diameters k ≥ 3 is much less clear. Conde, Gimbert et al.

extended the use of the spectral method to demonstrate a link between the existence

of almost Moore digraphs with diameter k and the irreducibility of the polynomial

Φn(1 + x+ x2 + · · ·+ xk), where Φn is the n-th cyclotomic polynomial [47]. Using this

relationship and some algebraic number theory they proved in [46, 47] that there are

no almost Moore digraphs with diameters k = 3 or 4 and out-degree d ≥ 2. More

generally, it is shown in [45] that the non-existence of almost Moore digraphs with

diameter k ≥ 3 follows from a conjecture concerning the irreducibility of the

aforementioned polynomials; the authors use this to show the non-existence of almost

Moore digraphs with diameter k = 5 and degree d ≤ 6.

Another approach to the existence of almost Moore digraphs is to restrict attention to

a fixed value of the out-degree d. Using counting arguments Miller and Frǐs showed

that there are no almost Moore digraphs with out-degree d = 2 and diameter k ≥ 3.

The next case to consider is the existence of (3, k;−1)-digraphs. The same paper [15]

that showed that the repeat function r is an automorphism gave a strong divisibility

condition for the existence of a (3, k;−1)-digraph, specifically that if such a digraph

exists, then (k + 1) divides 9
2(3k − 1); this rules out the existence of such digraphs for

infinitely many k. A later paper [16] ruled out the existence of almost Moore digraphs

with degree three lying in a certain class of Cayley digraphs. These efforts culminated

in a complete proof of the non-existence of (3, k;−1)-digraphs in [17]. For larger d,

some inroads were made into the problem of the existence of (4, k;−1)- and

(5, k;−1)-digraphs in [48] using the spectral method.

These results were in large measure facilitated by investigations into the permutation

structure of the repeat function of a digraph G with defect one. Viewed as a
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permutation, the repeat function r can contain cycles of length one if a vertex u of G

lies in a directed k-cycle; such a vertex is called a self-repeat. Baskoro et al. showed

in [14] that a (d, k;−1)-digraph contains at most one k-cycle, so that there are either

no self-repeats, or exactly k self-repeats. Choliliy, Baskoro et al. also derived a great

deal of information on the possible cycle structure of r in papers including [13]

and [42], in which these results are again used to produce divisibility conditions for

the existence of an almost Moore digraph.

2.3.3 Digraphs with larger defect

In general, we are forced to consider the possibility of there being many repeated

vertices in the Moore tree; a complicating factor is that one vertex could appear

several times in the tree. For a vertex u of a (d, k;−δ)-digraph G we therefore

consider the repeat multiset R(u) of u (which, by a common abuse of notation, we will

always call the repeat set); we define R(u) by specifying that any vertex v that

appears t ≥ 2 times in the Moore tree of depth k rooted at u appears t− 1 times in

R(u). Thus if G is out-regular, then R(u) has δ elements for any u ∈ V (G).

The first study of digraphs with defect δ ≥ 2 is found in [113], in which Miller uses

quite complex counting arguments to derive an extremely strong divisibility condition

on the possible values of the diameter k of a diregular (2, k;−2)-digraph, i.e. if there

exists such a digraph, then (k+ 1) must divide 2(2k+1− 3). In fact, there are only two

values of k in the range 3 ≤ k ≤ 107 that satisfy this condition [113]. This line of

enquiry was completed in [118], which showed that there are no diregular

(2, k;−2)-digraphs with diameter k ≥ 3; this paper is the inspiration for the research

contained in Chapter 6.

For larger defect δ, we no longer have the nice properties of the repeat automorphism

to work with; however, we do have the next best thing. For any subset U of vertices

of a (d, k;−δ)-digraph, we define N+(U) to be the multiset
⋃
u∈U N

+(u) (so that a

vertex v appears r times in N+(U) if it is an out-neighbour of r vertices in U).

Similarly for a set U of vertices we define R(U) to be the multiset union
⋃
u∈U R(u).

It was proved by Sillasen in her thesis that these multisets obey the following relation,

called the Neighbourhood Lemma, which is an extension of the concept of an

automorphism.

Lemma 2.15 ([131]). If G is a diregular (d, k;−δ)-digraph, then

N+(R(u)) = R(N+(u))
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for all vertices u ∈ V (G).

Sillasen used this powerful result in [131] to give the first result for digraphs with

defect three, namely that the girth of any diregular (2, k;−3)-digraph is at least k.

Experience suggests that it is harder to come close to the Moore bound for increasing

values of the out-degree d and diameter k. However, as we have seen, proving even a

lower bound of two for the defect of digraphs with diameter k ≥ 3 is a difficult

problem. The only progress in providing a larger general bound is due to a recent

result by Filipovski and Jajcay [70], which answers a question of Bermond and

Bollobás by showing that for any positive integer c there is a degree/diameter pair

(d, k) such that any (d, k;−δ)-digraph has defect δ ≥ c.

Rather than looking for digraphs with order very close to the directed Moore bound,

an alternative approach to the directed degree/diameter problem is to ask for families

of large digraphs. Recall that for the undirected degree/diameter problem the largest

known graphs for general d and k have asymptotic order significantly smaller than the

Moore bound. By contrast, in the directed version of the problem we have a family of

digraphs, the Kautz digraphs, with order asymptotically equal to the Moore bound for

fixed diameter.

The Kautz digraph K(d, k) defined in [98] has out-degree d, diameter k and order

dk +dk−1. They can be constructed as follows. Let Ω be an alphabet of size d+ 1. The

vertex set of K(d, k) consists of all strings x0x1 . . . xk−1 of length k of symbols drawn

from Ω, with the sole condition that for 0 ≤ i ≤ k − 2 we have xi 6= xi+1. We define

the arcs by the relation x0x1x2 . . . xk−1 → x1x2 . . . xk−1xk for any xk ∈ Ω− {xk−1}.
Kautz digraphs are essentially iterated line digraphs of complete digraphs and as such

are a generalisation of the almost Moore digraphs considered in [72].

2.3.4 Diregularity of digraphs with small defect

It is easily shown that a (d, k;−δ)-digraph with defect δ < M(d, k − 1) must be

out-regular. However, one major issue that we did not draw attention to in the

preceding subsections is the problem of diregularity: must a (d, k;−δ)-digraph with

small defect δ be diregular? The analysis in Subsections 2.3.2 and 2.3.3 holds only for

diregular digraphs, so it is conceivable that there could be digraphs with small defect

and a more elusive, less ‘balanced’ structure that are not covered by the above

reasoning.
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The first paper to address this problem was [115], in which Miller et al. deduced

relations between the set S = {u ∈ V (G) : d−(u) < d} of vertices with ‘too small’

in-degree and the set S′ = {u ∈ V (G) : d−(u) > d} of vertices with ‘too large’

in-degree to show that any almost Moore digraph must be diregular.

Results on the diregularity of digraphs with defect two are mainly due to Slamin.

In [137] Slamin and Miller prove that (2, k;−2)-digraphs are diregular, so that,

combined with the result of [118], it follows that there are no (2, k;−2)-digraphs with

k ≥ 3. The paper [136] also gives some information on the structure of a

non-diregular (3, k;−2)-digraph, although the existence of non-diregular

(3, k;−2)-digraphs is still an open question. Some more general results on

non-diregular (d, k;−2)-digraphs can be found in [50], which shows that such digraphs

must be ‘nearly diregular’ in a certain precise sense.

In [138] the same authors found a method to derive from a diregular (d, k;−δ)-digraph

a non-diregular (d, k;−(δ + 1))-digraph. A natural conjecture is that largest

(d, k;−δ)-digraphs are all diregular; however, this result shows that the order of the

largest non-diregular digraph with given out-degree and diameter lags behind the

order of the largest diregular digraph by at most one (and could potentially exceed

it). In [131] Sillasen also derives some structural information on non-diregular

(2, k;−3)-digraphs. To the author’s knowledge, the aforementioned conjecture has not

been spelt out explicitly in the literature, so we record it here specially.

Conjecture 2.16. If G is a largest possible digraph with out-degree d and diameter

k, then G is diregular.

2.4 Turán problems

Turán-type problems constitute one of the most investigated areas of extremal graph

theory; these problems are discussed in detail in [26] and a survey is given in [74]. A

Turán problem typically asks for the largest possible size of a graph G with a family

F of forbidden subgraphs. The first Turán-type problem to be solved was published

in 1907 by Mantel. In [110], Mantel proved that the largest possible number of edges

in a triangle-free graph with order n is given by bn2

4 c and this bound is achieved by

the complete bipartite graph Kdn
2
e,bn

2
c. This was later generalised by Turán in 1941 to

the largest possible size of a graph with clique number ≤ r.

Theorem 2.17 ([147]). The number of edges of a Kr+1-free graph H is at most

(1− 1
r )n

2

2 .
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Surprisingly, the more general asymptotic problem for families of non-complete

forbidden subgraphs is not significantly more complicated; Erdős, Stone and

Simonovits showed in [63, 65] that if we set r = min{χ(F ) : F ∈ F} and r ≥ 2, then

the largest possible size of a graph with order n and no subgraphs belonging to F is

asymptotic to (1− 1
r )n

2

2 . However, if F contains a bipartite graph the problem is

much more difficult.

One such question was investigated by Erdős, who asked in 1975 for the largest

possible size of a graph with order n containing no C3 or C4 [60]. If this extremal size

for given order n is denoted by f(n), then his conjecture can be written as

f(n) = (12 + o(1))3/2n3/2. It is shown in [75] that

1

2
√

2
≤ lim inf

n→∞

f(n)

n
3
2

≤ lim sup
n→∞

f(n)

n
3
2

≤ 1

2
. (2.1)

The article [75] finds exact values of f(n) for n ≤ 24 and gives constructive lower

bounds for larger n. The latest results on the problem are given in [29]. However, no

significant progress has been made on reducing the gap between the coefficients in the

upper and lower bounds in Equation 2.1. More generally, one can ask for the largest

size of a graph with order n and girth ≥ g for g ≥ 4; for g ≥ 6 the bounds on this

problem are not well understood. Examples of some of the many papers dealing with

g ≥ 6 are [1, 2, 139].

2.4.1 Looking forward

One of the main goals of this thesis is to investigate a problem, called the

degree/geodecity problem, that is a generalisation of the degree/girth problem to

directed graphs, in which we search for k-geodetic digraphs with order slightly

exceeding the Moore bound. The analogue of the repeat function (or repeat set) for

the degree/geodecity problem is the outlier function (resp. outlier set). We will see

that there is a strong analogy between the notions of repeat and outlier and that we

can learn a great deal about k-geodetic digraphs with order close to the Moore bound

by combining spectral techniques, counting arguments, neighbourhood relations and

permutation structures. In Chapter 10, we will also discuss a directed version of the

Turán problem for graphs with prescribed girth.
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Chapter 3

The degree/geodecity problem

3.1 Motivation

The undirected degree/girth problem asks for the smallest order of a graph with

minimum degree d and girth g. It is of great interest to ask how this problem can be

adapted to the setting of directed graphs. The directed degree/girth problem is a

natural extension of the undirected degree/girth problem.

Question 3.1 (Directed degree/girth problem). What is the smallest possible order

of a digraph with minimum out-degree d and girth g?

Let us denote the order of the smallest digraph with out-degree d and girth g by

f(d, g). In [19] Behzad, Chartrand and Wall proved the upper bound

f(d, g) ≤ d(g − 1) + 1 for all d ≥ 1 and g ≥ 2. This bound is attained by the circulant

digraph on Zd(g−1)+1 with connection set {1, 2, . . . , d}. In the same paper [19] the

authors conjecture that equality holds for diregular digraphs.

Conjecture 3.2. For all d ≥ 1 and g ≥ 2 the smallest order of a diregular digraph

with degree d and girth g is d(g − 1) + 1.

This conjecture was proven for all digraphs with degree d = 2 in [18], digraphs with

degree d = 3 in [20] and digraphs with degree d = 4 as well as all vertex-transitive

digraphs in [85, 86]. Conjecture 3.2 was later extended to all digraphs, diregular or

not, by Caccetta and Häggkvist.

Conjecture 3.3 (Caccetta-Häggkvist Conjecture [39]). Any digraph with order n and

minimum out-degree d contains a directed cycle of length ≤ dnd e.

The fact that it is by no means obvious that Conjecture 3.2 implies Conjecture 3.3

gives us our first taste of the complications involved with working with digraphs that

are not diregular, a theme that we will take up in greater detail in Chapter 5.

However it is easily seen that the Caccetta-Häggkvist Conjecture, combined with the

construction of [19], implies that f(d, g) = d(g − 1) + 1.
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Figure 3.1: An extremal digraph for d = 3, g = 3

Conjecture 3.3 was proven for digraphs with minimum out-degree d = 2 by Caccetta

and Häggkvist in [39], for d = 3 in [84] and for all d ≤ 5 in [90]. Whilst Conjecture 3.3

remains an open question, it is known to be ‘nearly true’. In [43] it is shown that any

digraph with order n and minimum out-degree d contains a cycle of length

≤ dnd e+ 2500 and in [122] this estimate is improved to n
d + 304. Furthermore Shen

has shown in [129] that for any given d there are at most a finite number of

counterexamples to Conjecture 3.3.

In many ways the directed degree/girth problem lacks the flavour of the original

undirected degree/girth problem; there is no analogue of the Moore bound and no

unique path property. The reason for this is that the connection between the girth of

an undirected graph and its geodecity breaks down when directions are assigned to

the edges. In fact, if the Caccetta-Häggkvist Conjecture is true, then the digraphs on

the cyclic group Zd(g−1)+1 with connection set {1, 2, . . . , d} are smallest possible

digraphs with given out-degree d and girth g, but these digraphs are not even

2-geodetic by the commutativity of addition, i.e. the directed Moore tree of depth two

for these digraphs does not have the unique path property. An example of an

extremal digraph for d = 3 and g = 3 is shown in Figure 3.1; there are two distinct

paths (shown in red and blue) from the vertex 0 to the vertex 3, the red path

corresponding to addition of the generator 1 followed by the generator 2 and the blue

path corresponding to addition of 2 followed by addition of 1.

Therefore it is desirable to ask for small digraphs that preserve the unique path

property. This motivates the following definition.
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Definition 3.4. A digraph G is k-geodetic if and only if for any pair u, v of vertices

of G there is at most one directed walk in G from u to v of length not exceeding k.

The geodetic girth (or geodecity for short) of G is the largest value of k such that G is

k-geodetic.

We pose the following problem, which we call the directed degree/geodecity problem.

This problem was first raised in the seminal paper ‘On k-geodetic digraphs with

excess one’ [132] by Sillasen.

Problem 3.5 (Directed degree/geodecity problem). For d ≥ 1 and k ≥ 1 what is the

smallest possible order of a digraph with minimum out-degree d and geodetic girth k?

We shall denote the order of the smallest k-geodetic digraph with minimum

out-degree d by N(d, k). The directed Moore tree of depth k and out-degree d

contains at least M(d, k) = 1 + d+ d2 + · · ·+ dk vertices. For a k-geodetic digraph all

of the vertices in this Moore tree must be distinct; therefore we see that the directed

Moore bound is a lower bound for the order of a k-geodetic digraph with minimum

out-degree d. A digraph will meet this lower bound if and only if it is out-regular with

degree d, is k-geodetic and has diameter k; hence this lower bound is met if and only

if there exists a Moore digraph with out-degree d and diameter k. By Theorem 2.13

this occurs only in the trivial cases d = 1 and k = 1. We record this result as a lemma.

Lemma 3.6 (Moore bound). For all d, k ≥ 1 we have

N(d, k) ≥ 1 + d+ d2 + · · ·+ dk = M(d, k).

Strict inequality holds for d, k ≥ 2.

As there exist Moore digraphs for d = 1 (directed cycles) and k = 1 (complete

digraphs), for the remainder of this work we restrict our attention to the cases

d, k ≥ 2. To quantify the amount by which a digraph exceeds the Moore bound we

define the excess of a digraph.

Definition 3.7. The excess of a digraph with order n, minimum out-degree d and

geodetic girth k is

ε = n−M(d, k).

A k-geodetic digraph with minimum out-degree d and excess ε is a (d, k; +ε)-digraph.

We define ε(d, k) to be the smallest possible excess of a (d, k; +ε)-digraph, i.e. for all
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d, k ≥ 2

N(d, k) = M(d, k) + ε(d, k).

Hence Problem 3.5 is equivalent to finding ε(d, k). We are particularly interested in

the structure of the extremal digraphs for the degree/geodecity problem.

Definition 3.8. A smallest possible k-geodetic digraph with minimum out-degree d

is a (d, k)-geodetic cage.

The adjective ‘geodetic’ is inserted to distinguish these extremal digraphs from the

extremal digraphs for the directed degree/girth problem; however, as we will not be

discussing the directed degree/girth problem further in this work it should cause no

confusion if we drop the ‘geodetic’ and refer to geodetic cages merely as ‘cages’.

Let G be a (d, k; +ε)-digraph. Recall from Subsection 1.1.1 that for all ` ≥ 1 we set

N+`(u) = {v ∈ V (G) : d(u, v) = `} and N−`(u) = {v ∈ V (G) : d(v, u) = `}, so that

N+1(u) = N+(u) and N−1(u) = N−(u). Also we define N0(u) = {u}. As G is

k-geodetic for all i, j in the range −k ≤ i < j ≤ k such that j − i ≤ k we have

N i(u) ∩N j(u) = ∅.

For 0 ≤ ` ≤ k we set T`(u) =
⋃

0≤r≤`N
+r(u) and T−`(u) =

⋃
0≤r≤`N

−r(u), so that

for ` ≥ 0 T`(u) is the set of vertices of G that can be reached from u by paths of

length ≤ ` and T−`(u) is the set of vertices that can reach u by paths of length ≤ `.
In particular we introduce the abbreviation T (u) for Tk−1(u) and T−(u) for

T−(k−1)(u). In diagrams the sets T (u) and T−(u) will be indicated by triangles

(facing downwards and upwards respectively) - for examples see Figures 5.2 and 6.1.

For each vertex u of a (d, k; +ε)-digraph there will be a set O(u) of vertices that lie at

distance ≥ k + 1 from u in G. This is called the outlier set of the vertex u. Hence

O(u) = V (G)− Tk(u). In particular note that unlike the repeat sets discussed in

Section 2.3.3 the outlier sets are sets, not multisets.

Definition 3.9. Let G be a (d, k; +ε)-digraph. For every vertex u of G and integer `

in the range 0 ≤ ` ≤ k we set T`(u) =
⋃

0≤r≤`N
+r(u) and T−`(u) =

⋃
0≤r≤`N

−r(u).

The outlier set O(u) and the inverse outlier set of a vertex u are

O(u) = {v ∈ V (G) : d(u, v) ≥ k + 1} and O−(u) = {v ∈ V (G) : d(v, u) ≥ k + 1}
respectively.

If G is out-regular, then by elementary counting we can assume that each outlier set

James Tuite



3.1 Motivation 43

contains exactly ε vertices. Similarly if G is in-regular (in particular if G is diregular)

then we will also have |O−(u)| = ε for all u ∈ V (G). In fact in almost all situations of

interest here out-regularity is a safe assumption (Theorem 9.9 in Chapter 9 requires a

little more care); the proof of the following lemma is an adaption of results from [131]

and [132].

Lemma 3.10. If ε < M(d, k − 1), then G is out-regular with degree d.

Proof. If G is not out-regular, it must contain a vertex u with out-degree at least

d+ 1. By k-geodecity, it follows that

|V (G)| ≥ |Tk(u)| ≥ 1+(d+1)+(d+1)d+ · · ·+(d+1)dk−1 = M(d, k)+M(d, k−1).

As G has order M(d, k) + ε < M(d, k) +M(d, k − 1), this is a contradiction.

Corollary 3.11 ([132]). For d, k ≥ 2 all (d, k; +1)-digraphs are out-regular and have

diameter k + 1.

If G has excess ε = 1, then instead of an outlier set we can (by Corollary 3.11) think

of an outlier function o : V (G)→ V (G).

Definition 3.12. The outlier function of a k-geodetic digraph G with minimum

out-degree d and order M(d, k) + 1 is the function o : V (G)→ V (G) that satisfies the

following condition: for any vertex of u of G, o(u) is the unique vertex of G such that

there is no u, o(u)-walk with length not exceeding k.

The outlier function is the analogue for the degree/geodecity problem of the repeat

function for (d, k;−1)-digraphs. If we represent the outlier function of a

(d, k; +1)-digraph G with order n = M(d, k) + 1 by the n× n matrix P , which has

(u, v)-entry equal to one if o(u) = v and zero otherwise, then Theorem 1.3 shows that

the adjacency matrix A of G satisfies

I +A+A2 + · · ·+Ak = J − P. (3.1)

Recall from Section 2.3.2 that the repeat function r of a diregular (d, k;−1)-digraph

has the extremely useful property of being a digraph automorphism. It turns out that

its ‘mirror image’, the outlier function of a digraph with excess one, shares this

property. The following short proof of this fact was given in [132].

Theorem 3.13 ([132]). The outlier function o of a diregular (d, k; +1)-digraph G is

an automorphism of G.
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Proof. As G is diregular the all-one matrix J commutes with the adjacency matrix A,

i.e. AJ = JA. As A commutes with every term on the left-hand side of Equation 3.1

as well as with J , it must commute with P , so that PA = AP . This is equivalent to o

being an automorphism of G.

Making use of this result in [132] Sillasen uses a counting argument somewhat similar

to that of [114] to prove the non-existence of diregular (2, k; +1)-digraphs.

Theorem 3.14 ([132]). There are no diregular (2, k; +1)-digraphs for k ≥ 2.

In the same paper [132] Sillasen provides some information on the structure of a

hypothetical non-diregular digraph with excess one. The question of diregularity for

digraphs with excess one was completed in a later paper [116] by Miller, Miret and

Sillasen, which used the approach taken by Miller, Gimbert, Širáň and Slamin in [115]

for digraphs with defect one. We will pick up the topic of diregularity of digraphs

with small excess in Chapter 5.

Theorem 3.15 ([116]). For d, k ≥ 2 all (d, k; +1)-digraphs are diregular.

The spectral method is also applied to great effect in [116] to k-geodetic digraphs

with excess one for small k.

Theorem 3.16 ([116]). There are no (d, 2; +1)-digraphs for d ≥ 8 and no (d, 3; +1)-

or (d, 4; +1)-digraphs for d ≥ 2.

We will address some of the gaps in Theorem 3.16 in Chapter 4.

3.2 Existence of cages

In posing the directed degree/geodecity problem, we have sidestepped one subtle

issue: we have not yet established the existence of a digraph with minimum

out-degree d and geodetic girth k for all d, k ≥ 2, so that N(d, k) is not necessarily

defined for all values of d and k. Recall from Section 2.2 that the existence of cages in

the undirected degree/girth problem was proven in [62, 126].

In the directed degree/geodecity problem we obtain the existence of geodetic cages

and a good estimate of their order almost for free from a nice family of digraphs

called the permutation digraphs. These digraphs were first mentioned in [71] and their

properties further developed in [36]. The vertices of the permutation digraph P (d, k)
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are all permutations of length k of symbols from an alphabet of size d+ k and we

draw an arc from one permutation x0x1 . . . xk−1 to any other permutation formed

from this permutation by deleting the first term x0 and appending a term xk at the

right that is different from all of the symbols x0, x1, . . . , xk−1. The smallest non-trivial

permutation digraph P (2, 2) is displayed in Figure 3.2. We now define this formally.

Definition 3.17. For d, k ≥ 2 the vertex set of the permutation digraph P (d, k)

consists of all sequences x0x1 . . . xk−1 of length k drawn from an alphabet

[d+ k] = {0, 1, 2, . . . , d+ k − 1} such that for 0 ≤ i < j ≤ k − 1 we have xi 6= xj .

The adjacencies of P (d, k) are defined by

x0x1 . . . xk−1 → x1x2 . . . xk−1xk,

where xk ∈ ([d+ k]− {x0, x1, . . . , xk−1}).

It is shown in [36] that permutation digraphs are highly symmetric. The symmetric

group on d+ k symbols acts on P (d, k) in a natural way by permuting the symbols of

the underlying alphabet, meaning that they are arc-transitive, although not

2-arc-transitive. The symmetry groups of the permutation digraphs are derived and

the Cayley permutation digraphs classified in [36].

Theorem 3.18 ([36]). The permutation digraphs P (d, k) are arc-transitive.

The important property of the permutation digraphs from our point of view is that

P (d, k) is k-geodetic and for fixed k ≥ 2 the digraphs P (d, k) have order approaching

the directed Moore bound M(d, k) asymptotically from above.

Lemma 3.19. For d, k ≥ 2 the permutation digraph P (d, k) is diregular with degree

d, has geodetic girth k and has order

d+kPk = (d+ k)(d+ k − 1) . . . (d+ 1).

Hence for fixed k ≥ 2 the excess of P (d, k) is

((d+ k)(d+ k − 1) . . . (d+ 1))− (dk + dk−1 + · · ·+ d+ 1) ∼
(
k(k + 1)

2
− 1

)
dk−1

as d→∞.

Proof. For all d, k ≥ 2 the digraph P (d, k) contains directed cycles of length k + 1, for
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Figure 3.2: P (2, 2)

example

012 . . . (k−1)→ 12 . . . (k−1)k → 23 . . . (k−1)k0→ · · · → k01 . . . (k−2)→ 012 . . . (k−1),

so the geodetic girth of P (d, k) is certainly ≤ k.

By vertex-transitivity of P (d, k), to prove k-geodecity it is sufficient to demonstrate

that if P and Q are ≤ k-paths in P (d, k) from the vertex 012 . . . (k − 1) to a vertex

x0x1 . . . xk−1, then P = Q. All vertices at distance r ≤ k − 1 from 012 . . . (k − 1) have

first symbol r, whereas all vertices at distance k from 012 . . . (k − 1) have a first

symbol that does not lie in {0, 1, . . . , k − 1}. As d(01 . . . (k − 1), x0x1 . . . xk−1) ≤ k by

assumption, it follows that if x0 ∈ {0, 1, . . . , k− 1} then both P and Q have length x0,

whereas if x0 6∈ {0, 1, . . . , k − 1} then both P and Q must have length k; in either case

l(P ) = l(Q).

If x0 = r ∈ {0, 1, . . . , k − 1} then the only path with length r from 01 . . . (k − 1) to

x0x1 . . . xk−1 is the path with initial vertex 01 . . . (k − 1) obtained by successively

deleting the symbol i on the left-hand side and adding the symbol xk−r+i on the right

for i = 0, 1, . . . , r − 1. If x0 6∈ {0, 1, . . . , k − 1}, then the first arc e of both P and Q

must be 012 . . . (k − 1)→ 12 . . . (k − 1)x0. Deleting the arc e from P and Q leaves two

paths P ′ and Q′ of length k − 1 from 12 . . . (k − 1)x0 to x0x1 . . . xk−1; by the above

reasoning P ′ = Q′ and hence P = Q.
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The existence of (d, k)-geodetic cages follows immediately from the properties of

permutation digraphs given in Lemma 3.19.

Corollary 3.20. For all d, k ≥ 1 there exists a (d, k)-geodetic cage.

Corollary 3.21. For d ≥ 2 the excess of a (d, 2)-geodetic cage satisfies

1 ≤ ε(d, 2) ≤ 2d+ 1, (3.2)

where the lower bound can be increased to 2 for d ≥ 8 by Theorem 3.16.

We thus have the incredible situation that for fixed k we can approach the directed

Moore bound asymptotically from above by arc-transitive digraphs! Therefore, it

follows that the directed degree/geodecity problem is already solved in an asymptotic

sense; the difficulty lies in finding exact values. This is analogous to the situation in

the directed degree/diameter problem, in which the Kautz digraphs provide us with a

lower bound that matches the directed Moore bound asymptotically. This is one

feature that strongly distinguishes the directed degree/diameter and degree/geodecity

problems from the undirected degree/diameter and degree/girth problems.

Another useful property of the permutation digraphs from the point of view of the

design of interconnection networks is that for fixed k the diameter does not ‘blow up’.

Theorem 3.22 ([36]). For d ≥ k ≥ 2 the permutation digraph P (d, k) has diameter

2k.

On the other hand if we fix the value of the degree and let k tend to infinity the

diameter seems to behave quite badly; for degree two it is known to grow

quadratically in k. The exact diameter of P (d, k) when 3 ≤ d ≤ k − 1 is unknown.

Theorem 3.23 ([36]). For k ≥ 2 the diameter of the permutation digraph P (2, k) is

1 +
(
k+1
2

)
.

By the arc-transitive property of the permutation digraphs for all d, k ≥ 2 we can also

ask for the smallest arc-transitive k-geodetic digraph with degree d. We will discuss

vertex- and arc-transitive digraphs with excess one in Chapter 4. In general the

permutation digraphs are not the smallest arc-transitive k-geodetic digraphs with

given degree. Using the census of arc-transitive digraphs with degree two contained

in [124] we see that the smallest arc-transitive 2-geodetic digraph with degree two has

order 10, whereas the smallest arc-transitive 3-geodetic digraph with degree two has

order 27; by contrast, the digraphs P (2, 2) and P (2, 3) have orders 12 and 60
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respectively. However, it becomes increasingly difficult to construct arc-transitive

k-geodetic digraphs for larger values of the degree d; we therefore hazard the following

conjecture.

Conjecture 3.24. For fixed k and sufficiently large d, the permutation digraph

P (d, k) is the smallest arc-transitive k-geodetic digraph with degree d.

We revisit this conjecture in Section 4.1. A fortiori the permutation digraphs are

diregular, so we can also define the smallest diregular k-geodetic digraphs with degree

d. The term ‘balanced’ is often used in place of ‘diregular’.

Definition 3.25. A smallest diregular k-geodetic digraph with out-degree d is a

(d, k)-balanced cage.

3.3 Monotonicity of geodetic cages

Recall from Section 2.2.1 that it was proven by Fu, Huang and Rodger in [73] that the

order of undirected cages is strictly monotonic in the value of the girth. The proof

in [73] works by taking a cage G with degree d and girth g + 1, deleting one vertex of

G and introducing new edges in such a way that the resulting graph G′ still has

minimum degree d and girth not less than g.

Theorem 3.26. For all d, k ≥ 2 we have

N(d, k) < N(d, k + 1).

Proof. Let G be a (d, k + 1)-geodetic cage. Fix a vertex u of G. Delete the vertex u

and from each vertex in N−(u) draw one arc to any vertex of N+(u) to form a new

digraph G′ with order N(d, k + 1)− 1; we will call the arcs added at this step new. G′

has minimum out-degree d. We now show that G′ is k-geodetic.

Suppose that there are vertices x and y of G′ such that there exist distinct directed

paths P and Q with length ≤ k in G′ from x to y. As G is (k + 1)-geodetic at least

one of these paths, say P , must use a new arc. Each new arc in G′ can be replaced by

a 2-path through u in G; therefore if both P and Q contain at most one new arc we

can extend them to distinct walks P ′ and Q′ with length ≤ k + 1 from x to y in G. It

follows that we can assume that P contains at least two new arcs. However, looking

at a section of P between consecutive new arcs, this implies that there is a path of

length ≤ k − 2 in G from an out-neighbour of u to an in-neighbour of u, so that there

is a k-cycle in G, which is impossible.
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The question of monotonicity of the order of cages in the value of the degree turns out

to be a highly non-trivial question which remains largely open [150]. We can derive

the analogous result for the directed degree/geodecity problem quite easily and

furthermore give a relatively strong bound.

Theorem 3.27. For d, k ≥ 2 we have N(d, k) < N(d+ 1, k). More precisely, if

h(d+ 1, k) is the maximum size of the set T−(u) over all vertices of all

(d+ 1, k)-geodetic cages, then N(d, k) ≤ N(d+ 1, k)− h(d+ 1, k).

Proof. Let G be a (d+ 1, k)-geodetic cage. If we delete a single out-going arc from

every vertex of G, then we obtain a digraph G′ with minimum out-degree d, which,

being a subdigraph of G, is k-geodetic. In fact, picking any vertex u of G, we can

choose these arcs so that every vertex in T−(u) has in-degree zero in G′. Deletion of

these vertices does not affect the geodetic girth or out-degree of G′; therefore there

must exist a (d, k; +ε)-digraph with order max{|T−(u)| : u ∈ V (G)} less than

N(d+ 1, k).

As the permutation digraphs are diregular, we know that balanced cages, i.e. smallest

diregular (d, k; +ε)-digraphs, exist for any d, k ≥ 2. Interestingly, the proofs of both

Theorems 3.26 and 3.27 can be adapted in a straightforward way to show strict

monotonicity in the order of balanced cages for both the degree and geodecity (in the

construction of Theorem 3.26 the arcs from N−(u) to N+(u) need to be assigned in a

one-to-one manner and in the second construction we delete M(d+ 1, k − 1) vertices).

Corollary 3.28. Let N ′(d, k) be the order of a (d, k)-balanced cage. Then for d, k ≥ 2

we have N ′(d, k) < N ′(d, k + 1) and N ′(d, k) +M(d+ 1, k − 1) ≤ N ′(d+ 1, k).

3.4 Connectivity of geodetic cages

As in the undirected degree/girth problem, it is generally extremely difficult to find

geodetic cages except for quite small values of d and k. Nevertheless, even without

explicitly determining geodetic cages, it is possible to give some results on their

structure. Section 2.2.1 suggests that we should look at the connectivity of geodetic

cages.

Recall from Section 1.1.1 that a digraph G is k-arc-connected if the deletion of

≤ k − 1 arcs from G leaves a strongly-connected digraph and that G is maximally
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connected if it satisfies κ(G) = λ(G) = δ(G), where

δ(G) = min({d−(u) : u ∈ V (G)} ∪ {d+(u) : u ∈ V (G)}).

If all minimal arc cuts are of the form ({u}, V (G)− {u}) or (V (G)− {u}, {u}) then G

is super-arc-connected or super-λ. By analogy with Conjecture 2.10 it seems

reasonable to make the following conjecture.

Conjecture 3.29. All geodetic cages are maximally connected and

super-arc-connected.

To begin with, we need to confirm that geodetic cages are indeed strongly connected.

Weak connectivity is entirely trivial; strong connectivity slightly less so.

Lemma 3.30. Directed geodetic cages are weakly connected.

Proof. Let G be a (d, k)-geodetic cage. If G is not weakly connected, then any of its

weak components is a k-geodetic digraph with minimum out-degree ≥ d and with

smaller order than G, which is impossible.

Theorem 3.31. All directed geodetic cages are strongly connected.

Proof. Let G be a (d, k)-geodetic cage. If G is not strongly connected, we can define

an equivalence relation by u ≡ v if and only if G contains both a directed path from u

to v and a directed path from v to u (see [28]). The equivalence classes Vi, 1 ≤ i ≤ r,
are the strong components of G.

Form the condensation G∗ of G as follows: the vertices of G∗ are the strong

components Vi of G, with an arc from Vi to Vj , i 6= j, if and only if there is an arc

from a vertex of Vi to a vertex of Vj in G. It is easily seen that the condensation is

acyclic. Therefore consider a longest path P in G∗ and let Vr be the terminal vertex

of P . It follows that vertices in the strong component Vr have arcs only to other

vertices in Vr, so the subdigraph induced by Vr is k-geodetic with minimum

out-degree ≥ d, but with order smaller than G, a contradiction.

We can easily extend these results to balanced cages.

Theorem 3.32. All (d, k)-balanced cages are strongly connected.
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Proof. Let G be a balanced cage. That G is weakly connected follows from the same

reasoning as Lemma 3.30. A diregular digraph is strongly connected if and only if it is

weakly connected (see Lemma 2.6.1 of [80]), so G is also strongly connected.

Pushing this reasoning a little further we can obtain a result analogous to the fact

that undirected cages are 2-connected [73].

Theorem 3.33. For d, k ≥ 2, all geodetic cages are 2-weakly-connected.

Proof. Suppose that a (d, k)-geodetic cage G has a 1-cut {x}. Deleting x gives at

least two weak components C1 and C2 in G− x. Assume that |C1| ≤ |C2|. Let A be

the set of vertices in C1 that have arcs to x and B be the set of vertices with arcs

from x. By Theorem 3.31, A and B are non-empty.

Take an isomorphic copy C∗ of C1, with the set A∗ in C∗ corresponding to A and the

set B∗ corresponding to B. Form a new digraph G′ from the disjoint union C1 ∪ C∗

by joining each vertex in A to a vertex of B∗ by an arc and each vertex of A∗ to a

vertex of B by an arc. G′ is a k-geodetic digraph with minimum degree ≥ d, but

smaller order than G, a contradiction.

Some good evidence for the truth of Conjecture 3.29 is that for any fixed k there are

at most a finite number of (d, k)-balanced cages that are not maximally connected.

Theorem 3.34. All (d, k)-balanced cages are maximally connected for sufficiently

large d. In particular all (d, 2)-balanced cages are maximally connected.

Proof. By Theorem 2.5 of [9], if n ≤ 2M(d, k)− d then G is maximally connected. It

follows by the bound in Lemma 3.19 (from the permutation digraphs) that for

sufficiently large d any (d, k)-balanced cage is maximally connected. In particular,

putting k = 2, a (d, 2)-balanced cage will be 2-strongly-connected if

(d+ 2)(d+ 1) ≤ 2(1 + d+ d2)− d, which is true for d ≥ 2.
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Chapter 4

Digraphs with excess one

As there are no Moore digraphs [33] the obvious first question to address in the

directed degree/geodecity problem is the existence of digraphs with excess one.

Throughout this section G will stand for a (d, k; +1)-digraph. Recall from Section 3.1

that we can make the following assumptions about the structure of G.

Lemma 4.1 ([116, 132]). If G is a (d, k; +1)-digraph, then

� G is diregular.

� Either G is a (d, 2; +1)-digraph, where d lies in the range 3 ≤ d ≤ 7, or a

(d, k; +1)-digraph with d ≥ 3 and k ≥ 5, or a directed (k + 2)-cycle.

� The outlier function o of G is an automorphism.

Our conjecture is that, with the trivial exception of directed (k + 2)-cycles, there are

no (d, k; +1)-digraphs for k ≥ 2. This chapter represents a step towards this

conjecture.

Conjecture 4.2. There are no (d, k; +1)-digraphs with d, k ≥ 2.

The fact that a (d, k; +1)-digraph G must be diregular leads to a ‘duality principle’.

This phenomenon has been observed for almost Moore digraphs; in [17] it is shown

that taking the converse of a (d, k;−1)-digraph yields another (d, k;−1)-digraph. The

Duality Principle will allow us to interchange out-neighbourhoods and

in-neighbourhoods in our results. First we define the inverse of the outlier function of

a (d, k; +1)-digraph.

Definition 4.3. Let G be a (d, k; +1)-digraph with outlier function o. Then the

inverse outlier function of G is the function o− : V (G)→ V (G) such that for all

u, v ∈ V (G) we have o−(v) = u if and only if v = o(u).

As the outlier function o is an automorphism, it follows that for a (d, k; +1)-digraph

G the inverse outlier function o− is the group-theoretic inverse of o in Aut(G).

Lemma 4.4 (Duality Principle). Let G be a (d, k; +1)-digraph with outlier function

53 James Tuite



54 4 Digraphs with excess one

o. Taking the converse of G yields another (d, k; +1)-digraph G−. If o′ is the outlier

function of G−, then as a function of V (G) we have o′ = o−.

Proof. Let G be a (d, k; +1)-digraph. By Lemma 4.1 G is diregular, so G− is also

diregular with degree d. Suppose that there are vertices u, v of G− such that there are

two distinct u, v-walks u, u1, u2, . . . , us, v and u, v1, v2, . . . , vt, v in G− with length at

most k; then by reversing each of the arcs in these walks, we see that

v, us, . . . , u2, u1, u and v, vt, . . . , v2, v1, u would be distinct v, u-walks in G with length

≤ k, contradicting the fact that G is k-geodetic. As G− also has order M(d, k) + 1, it

follows that G− is also a (d, k; +1)-digraph.

Let o′ be the outlier function of G′ and fix an arbitrary vertex u of G′. The outlier

o′(u) of u in G− is the unique vertex of G− such that there is no u, o′(u)-walk in G−

of length ≤ k. Reversing all arcs of G′, it follows that there is no o′(u), u-walk in G

with length ≤ k. Thus in G we have o(o′(u)) = u. Applying the automorphism o− of

G to both sides of this identity, we have o′(u) = o−(u).

The plan of this chapter is as follows. Firstly in Section 4.1 we use counting

arguments to deduce some strong conditions on digraphs with excess one and a high

level of symmetry. In Section 4.2 we investigate the structure of digraphs with degree

three and excess one. Then in Section 4.3 we use the approach of Sillasen in [133] to

analyse the set of vertices fixed by an automorphism of a (d, k; +1)-digraph. As the

outlier function o is an automorphism of G these results tell us quite a lot about the

structure of o as a permutation. In the final part of this chapter, Section 4.4, we use a

spectral approach to exploit the results of Section 4.3 to prove the non-existence of

certain (d, k; +1)-digraphs.

4.1 Vertex-transitive digraphs with excess one

All of the known Moore graphs are vertex-transitive. This suggests that it is of

interest to look for digraphs with order close to the directed Moore bound that have a

high degree of symmetry. In her thesis [131] Sillasen uses this approach on digraphs

with defect one; we now emulate this approach for digraphs with excess one. Recall

that here G will stand for any (d, k; +1)-digraph.

In [131] as a basis for her counting arguments Sillasen divides the vertices of an

almost Moore digraph into two types, Type I and Type II. Adapting this notation, we

make the following definition.
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Definition 4.5. A vertex u of a (d, k; +1)-digraph is Type II if o(u)→ u; otherwise u

is Type I.

The type of a vertex is preserved by any automorphism of G. This leads us to the

following observation.

Observation 4.6. If a (d, k; +1)-digraph G is vertex-transitive, then either every

vertex of G is Type I or every vertex of G is Type II.

If every vertex of G is Type I, then we can obtain a strong divisibility condition on d

and k. The reason for this is that all directed (k + 1)-cycles of G are arc-disjoint.

Lemma 4.7. No arc of G is contained in more than one directed (k + 1)-cycle.

Proof. Suppose that an arc (u, v) is contained in two (k + 1)-cycles. Then there are

two distinct k-paths from v to u, which contradicts k-geodecity.

Lemma 4.8. Any arc (u, v) of G such that u 6= o(v) lies in a unique (k + 1)-cycle.

Proof. Let (u, v) be such an arc. As u 6= o(v) there is a path of length k in G from v to

u, so the arc (u, v) is contained in a (k + 1)-cycle, which is unique by Lemma 4.7.

Corollary 4.9. Suppose that every vertex of G is Type I. Then (k + 1) divides

d(M(d, k) + 1) = 2d+ d2 + d3 + · · ·+ dk+1.

Proof. As all vertices of G are Type I, by Lemma 4.7 we can partition the arcs of G

into disjoint (k + 1)-cycles. Therefore the size m = d(M(d, k) + 1) of G is divisible by

k + 1.

Computer search shows that for 3 ≤ d ≤ 12 and 2 ≤ k ≤ 10000 the following values of

d and k satisfy this condition:

d = 3: k = 2, 20, 146, 902, 1028, 6320, 7202,

d = 4: k = 3, 7, 87, 171, 472, 2647,

d = 5: k = 4, 84, 114,

d = 6: k = 2, 3, 5, 7, 11, 23, 32, 51, 203, 347, 1095, 3323, 3767, 4903, 9563,

d = 7: k = 6, 76, 118, 2568,

d = 8: k = 3, 7, 9, 15, 87, 463, 1171,

d = 9: k = 2, 8, 68,

d = 10: k = 3, 4, 7, 9, 15, 19, 39, 79, 555, 1069, 2314, 2986, 4659,
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d = 11: k = 10,

d = 12: k = 2, 3, 5, 7, 11, 13, 23, 55, 91, 163, 236, 1235, 1356.

We see that the condition in Corollary 4.9 is quite strong. On the other hand, if G

contains a Type II vertex then these vertices group themselves into cycles in a natural

way.

Lemma 4.10. Suppose that G contains a Type II vertex u. Then u has a unique

Type II out-neighbour, namely o−(u).

Proof. Applying the automorphism o− to the arc (o(u), u), we see that (u, o−(u)) is

also an arc. By inspection, o−(u) is a Type II vertex. Suppose that u′ is an arbitrary

Type II out-neighbour of u. As (u, u′) is an arc, so is (o(u), o(u′)). As u′ is Type II,

(o(u′), u′) is an arc. We therefore have paths o(u)→ u→ u′ and o(u)→ o(u′)→ u′,

so by k-geodecity we must have o(u′) = u, i.e. u′ = o−(u).

It follows immediately that in a vertex-transitive (d, k; +1)-digraph all vertices must

be Type I.

Lemma 4.11. If G is vertex-transitive, then every vertex of G is Type I.

Proof. Suppose that G contains a Type II vertex; by vertex-transitivity, every vertex

is Type II. But this contradicts Lemma 4.10.

In particular, if G is vertex-transitive, then it must satisfy the divisibility condition in

Corollary 4.9.

Corollary 4.12. Let G be a vertex-transitive (d, k; +1)-digraph. Then (k + 1) divides

2d+ d2 + d3 + · · ·+ dk+1.

In fact, we can significantly extend Corollary 4.9 using the fact that for any vertex u

of a vertex-transitive (d, k; +1)-digraph the vertex o−(u) cannot be close to u.

Lemma 4.13. If G is a vertex-transitive (d, k; +1)-digraph, then for any vertex u of

G we have d(u, o−(u)) ≥ k.

Proof. Suppose that d(u, o−(u)) = t ≤ k − 1. As G is vertex-transitive, the distance

from any vertex v of G to o−(v) is t. Writing N+(u) = {u1, u2, . . . , ud}, let

o−(u) ∈ Tk−2(u1). As d(u2, o
−(u2)) = t ≤ k − 1, we have o−(u2) ∈ T (u2). However, as
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o− is an automorphism of G, there is an arc o−(u)→ o−(u2), so that o−(u2) also lies

in T (u1). As o−(u2) appears twice in the Moore tree, k-geodecity is violated. Hence

t ≥ k.

Theorem 4.14. For 1 ≤ t ≤ k − 1, let Zk+t be the number of distinct directed

(k + t)-cycles in a vertex-transitive (d, k; +1)-digraph G. Then for 2 ≤ t ≤ k − 1 we

have

(M(d, k) + 1)(dt − dt−1) = Zk+t(k + t). (4.1)

Proof. Let u be any vertex of G and draw the Moore tree of depth k rooted at u. By

Lemma 4.13 all vertices in T (u) have a path of length ≤ k to u. For 1 ≤ t ≤ k − 1, let

us say that a vertex v at Level t of the Moore tree is short if d(v, u) ≤ k − 1 and long

if d(v, u) = k.

All vertices of N+(u) must be long by k-geodecity. It is easily seen that for

1 ≤ t ≤ k − 2 every vertex at Level t has one short out-neighbour and d− 1 long

out-neighbours at Level t+ 1. By induction for 2 ≤ t ≤ k − 1 there are dt−1 short

vertices in Level t of the tree. Therefore for 2 ≤ t ≤ k − 1 the vertex u is contained in

dt − dt−1 closed walks of length k + t and these walks must be cycles by k-geodecity.

Equation 4.1 follows by double-counting pairs (u, Z), where u is a vertex of G and Z

is a directed (k + t)-cycle containing u.

By checking that the divisibility conditions in Theorem 4.14 are satisfied for all t such

that 1 ≤ t ≤ k − 1, computer search shows that the only values of d and k in the

range 3 ≤ d ≤ 12 and 2 ≤ k ≤ 10000 for which there can exist a vertex-transitive

(d, k; +1)-digraph are

k = 2: d = 3, 6, 9, 12,

k = 3: d = 6, 10.

Lemma 4.1 shows that in practice there are no (d, 3; +1)-digraphs for d ≥ 2 and no

(d, 2; +1)-digraphs for d ≥ 8, so the only remaining values of d and k in this range are

(d, k) = (3, 2) and (6, 2). In Section 4.6 we will see that such digraphs also do not

exist. This scarcity of vertex-transitive (d, k; +1)-digraphs can be taken as evidence in

favour of Conjecture 4.2.

There are some simple number-theoretic conditions on d and k that force G to

contain a Type II vertex, so that G cannot be vertex-transitive.

Theorem 4.15. If d ≥ 3 and k ≥ 2 satisfy any of the following conditions then any

(d, k; +1)-digraph contains a Type II vertex:
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� i) d and k are odd,

� ii) d ≡ 1 (mod k + 1) or d ≡ −1 (mod k + 1),

� iii) d2|(k + 1), or

� iv) there is an odd prime p such that p|(k + 1) and d ≡ 2 (mod p).

Proof. For part i), suppose that d and k are odd, but G contains only Type I vertices.

By Corollary 4.9, (k + 1) divides d(M(d, k) + 1), so M(d, k) must be odd. However

M(d, k) = 1 + d+ d2 + · · ·+ dk contains an even number of odd summands and hence

is even.

For part ii), suppose that d ≡ 1 (mod k + 1). Then

d(M(d, k) + 1) = d(2 + d+ d2 + · · ·+ dk) ≡ k + 2 ≡ 1 (mod k + 1),

so that (k + 1) does not divide d(M(d, k) + 1). Similarly if d ≡ −1 (mod k + 1), then

d(M(d, k) + 1) ≡ −2 + 1− 1 + 1− · · ·+ (−1)k+1 ≡ −2 (mod k + 1) if k is even and

d(M(d, k) + 1) ≡ −1 (mod k + 1) if k is odd.

For part iii), if d2 divides (k + 1) and (k + 1) divides d(M(d, k) + 1), then d divides

M(d, k) + 1, which implies that d = 2. However, we know that there are no

(2, k; +1)-digraphs by Lemma 4.1 (or see [132]).

Finally, for part iv) suppose that p is an odd prime such that p|(k + 1) and d ≡ 2

(mod p); then if every vertex is Type I we must have

0 ≡M(d, k) + 1 ≡M(2, k) + 1 = 2k+1 (mod p),

implying that p is even, a contradiction.

Deviating momentarily from our focus in this chapter on digraphs with excess one,

this is a suitable place to mention that the same counting arguments apply for a much

larger range of values of the excess ε if we make the additional assumption of

arc-transitivity. Arc-transitivity allows us to further restrict the distance from a

vertex u to elements of O−(u); in fact, the outlier sets O(u) and inverse outlier sets

O−(u) become equivalent in this context.

Lemma 4.16. Let ε < d and let G be an arc-transitive (d, k; +ε)-digraph. Then for

all u ∈ V (G) we have O(u) = O−(u).

Proof. Write N+(u) = {u1, u2, . . . , ud}. Suppose that an element v of O−(u) lies at
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distance t ≤ k from u. We can assume that v ∈ T (u1). By arc-transitivity, there are

d− 1 automorphisms φi of G, i = 2, 3, . . . , d, that map the arc u→ u1 to the arc

u→ ui. Each image φi(v) of v under these automorphisms must also belong to

O−(u), so each branch contains an element of O−(u). As ε < d, one of these elements

must be repeated in the Moore tree rooted at u, violating k-geodecity. Therefore we

must have O−(u) ⊆ O(u) and the result follows.

Corollary 4.17. If G is an arc-transitive (d, k; +ε)-digraph with excess ε < d, then

(k+ 1) divides d(M(d, k) + ε) and (k+ t) divides (M(d, k) + ε)(dt−dt−1) for 2 ≤ t ≤ k.

Proof. Again we denote the number of distinct directed r-cycles in G by Zr. Using

the same reasoning as in the proof of Theorem 4.14, we see that each vertex of G is

contained in d directed (k + 1)-cycles, so that d(M(d, k) + ε) = Zk+1(k + 1), and each

vertex is contained in dt − dt−1 directed (k + t)-cycles for 2 ≤ t ≤ k, so that

(M(d, k) + ε)(dt − dt−1) = Zk+t(k + t).

Corollary 4.17 represents a step towards proving Conjecture 3.24. Continuing this line

of reasoning shows that the divisibility conditions of Corollary 4.17 hold for

2-arc-transitive (d, k; +ε)-digraphs with ε < d2; beyond this, we will not venture.

4.2 Diregular digraphs with excess one and degree three

Sillasen has shown that there are no (2, k; +1)-digraphs [132]; therefore a reasonable

next step is to ask whether there are any (3, k; +1)-digraphs. It was proven in [17]

that there are no (3, k;−1)-digraphs; the strategy of the proof is to show that any two

distinct vertices of a (3, k;−1)-digraph can have at most one common out-neighbour

(and, conversely, at most one common in-neighbour), classify vertices u according to

the distance from u to its repeat r(u) and then count the different types of vertices in

two different ways to arrive at a contradiction. In this section we show that the first

main result of [17], that any two vertices have at most one common out-neighbour,

continues to hold in the setting of digraphs with degree three and excess one.

We begin with a lemma that holds generally for (d, k; +1)-digraphs; it describes the

situation of vertices with identical out-neighbourhoods.

Lemma 4.18. Let u and v be vertices of a (d, k; +1)-digraph such that

N+(u) = N+(v), where u 6= v. Then v = o(u) and u = o(v), i.e. the outlier function o

transposes u and v. The same result holds if N−(u) = N−(v).
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Proof. Suppose that N+(u) = N+(v), but u 6= v. Draw the Moore tree of depth k

rooted at u; by k-geodecity, u appears only at Level 0, the root position, of this tree.

As the Moore tree rooted at v differs from the Moore tree rooted at u only at Level 0,

and u 6= v, it follows that v cannot reach u by a path of length ≤ k, so o(v) = u and,

by symmetry, o(u) = v. The result for in-neighbourhoods follows by the Duality

Principle.

For the remainder of this section let G be a diregular (3, k; +1)-digraph with outlier

function o. Our first goal is to show that no pair of distinct vertices can have identical

out-neighbourhoods; to achieve this we need a lemma for pairs of vertices with

exactly two common out-neighbours.

Lemma 4.19. Let u, v be distinct vertices of G with exactly two common

out-neighbours, i.e. |N+(u) ∩N+(v)| = 2. If we write N+(u) = {u1, u2, u3} and

N+(v) = {v1, v2, v3}, where u1 = v1, u2 = v2 and u3 6= v3, then o(u) = v3 and

o(v) = u3.

Proof. Let u and v be as described. This configuration is shown in Figure 4.1. By

k-geodecity u3 6∈ T (u1)∪T (u2). Hence there are three possible positions for the vertex

u3 in the Moore tree rooted at v: i) u3 = v, ii) u3 ∈ T (v3)− {v3} or iii) u3 = o(v). If

u3 = v, then we have paths u→ u2 and u→ u3 → u2, which is impossible for k ≥ 2.

Suppose that u3 ∈ T (v3)− {v3}. Put ` = d(v3, u3), so that 1 ≤ ` ≤ k − 1. Let w be a

vertex in Nk−1−`(u3); then w ∈ Nk−1(v3). The vertex w has three out-neighbours w1,

w2 and w3. By k-geodecity none of these out-neighbours can lie in T (v3). At most two

of the out-neighbours can lie in {v, o(v)}, so it follows that w has an out-neighbour,

say w1, that lies in T (v1) ∪ T (v2) = T (u1) ∪ T (u2); without loss of generality

w1 ∈ T (u1). Hence there is a path of length ≤ k from u to w1 via u1. There is also a

path from u to w1 with length ≤ k formed from the arc u→ u3, followed by the path

from u3 to w with length k − 1− ` and the arc w → w1. This violates k-geodecity. It

follows that option iii) must hold, i.e. u3 = o(v). Similarly v3 = o(u).

Corollary 4.20. No pair u, v of distinct vertices of G have identical

out-neighbourhoods.

Proof. Suppose that u 6= v but N+(u) = N+(v) = {u1, u2, u3}. The setup is shown in

Figure 4.2. By Lemma 4.18 we know that v = o(u) and u = o(v). For i = 1, 2, 3

denote the in-neighbour of ui that does not lie in {u, v} by u∗i . We cannot have

u∗1 = u∗2 = u∗3, for otherwise by Lemma 4.18 we would have o(u) = u∗1 = v.
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u v

u3 u1 u2 v3

u4 u5 u6 u7 u8 u9 v10 v11 v12u10 u11 u12

Figure 4.1: Vertices with two common out-neighbours

u vu∗1 u∗2 u∗3

u1 u2 u3

u4 u5 u6 u7 u8 u9 u10 u11 u12

Figure 4.2: Configuration for Corollary 4.20

By the Duality Principle taking the converse G− of G yields a diregular

(3, k; +1)-digraph with outlier function o′ = o−. In G− we have N+(ui) = {u∗i , u, v}
for i = 1, 2, 3.

Suppose that u∗i 6= u∗j . Then in G− the pair of vertices ui, uj has exactly two common

out-neighbours, so that by Lemma 4.19 we obtain o−(ui) = u∗j and o−(uj) = u∗i . If

u∗1, u
∗
2, u
∗
3 are all distinct, we would then obtain o−(u1) = u∗2 = u∗3, a contradiction.

We can thus assume that u∗1 = u∗2 6= u∗3. Applying Lemma 4.19 to the pairs u1, u3 and

u2, u3 in turn, we deduce that o−(u1) = o−(u2) = u∗3, again a contradiction, as o is a

permutation.

Having ruled out identical out-neighbourhoods, we can complete the proof of our

desired result.

Theorem 4.21. Any two distinct vertices of a (3, k; +1)-digraph G have at most one

common out-neighbour and at most one common in-neighbour.
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Proof. Suppose that u, v are distinct vertices with more than one out-neighbour in

common. By Corollary 4.20, u and v must have exactly two common out-neighbours.

Write N+(u) = {u1, u2, u3} and N+(v) = {v1, v2, v3}, where u1 = v1, u2 = v2, but

u3 6= v3. We label the remaining vertices in accordance with Figure 4.1; in particular

if k ≥ 3, then N+(u1) = {u4, u5, u6}, N+(u2) = {u7, u8, u9} and

N+(u3) = {u10, u11, u12}. By Lemma 4.19 we know that o(u) = v3 and o(v) = u3.

Let w ∈ T (u3) ∩ T (v3), with d(u3, w) = s and d(v3, w) = t. Suppose that s > t.

Consider the set Nk−s(w). By construction, Nk−s(w) ⊆ Nk(u3), so

Nk−s(w) ∩ T (u3) = ∅. We have k + t− s ≤ k − 1, so Nk−s(w) ⊆ T (v3). Hence by

k-geodecity Nk−s(w)∩ (T (u1)∪ T (u2)) = ∅. As no vertex of Nk−s(w) can lie in any of

the branches of the Moore tree rooted at u, we must have Nk−s(w) ⊆ {u, o(u)}. Thus

the size of the set Nk−s(w) satisfies |Nk−s(w)| = 3k−s ≤ 2, which is impossible for

s ≤ k − 1. Therefore d(u3, w) = d(v3, w) for every w ∈ T (u3) ∩ T (v3).

Consider N+(u3) and N+(v3). By k-geodecity N+(u3) ∩ (T (u1) ∪ T (u2)) = ∅. Also

v3 6∈ N+(u3), as v3 = o(u), and o(v) = u3 6∈ N+(u3). Thus N+(u3) ⊂ {v} ∪N+(v3)

and similarly N+(v3) ⊂ {u} ∪N+(u3). By Corollary 4.20 we cannot have

N+(u3) = N+(v3), so we can assume that u10 = v10, u11 = v11, u12 = v and v12 = u.

If k ≥ 3 then u will have distinct ≤ k-paths to u1 (and u2), namely u→ u1 and

u→ u3 → v → u1, so k = 2. The resulting configuration is displayed in Figure 4.3.

Observe that now u3 and v3 have two out-neighbours in common, namely u10 and u11,

so by Lemma 4.19 we have o(u3) = u and o(v3) = v. Applying the outlier

automorphism to the arcs incident with u, we deduce that o(u) = v3 has arcs to

o(u3) = u and o(u1) and o(u2), so {o(u1), o(u2)} = {u10, u11}. By 2-geodecity u10 can

have arcs only to N+(u1) and N+(u2). As u10 has three out-going arcs and cannot

have the same out-neighbourhood as u1 or u2 by Corollary 4.20, it follows that u10

must have two common out-neighbours with either u1 or u2; without loss of generality

N+(u10) = {u4, u5, u7}. Applying Lemma 4.19 to the pair u1, u10 we see that

o(u1) = u7. As we have already determined that o(u1) ∈ {u10, u11}, this is a

contradiction. The last part of the theorem follows by the Duality Principle.

Theorem 4.21 allows us to prove our first non-existence result for degree three,

namely that there are no (3, 2; +1)-digraphs.

Theorem 4.22. There are no (3, 2; +1)-digraphs.

Proof. Suppose that G is a (3, 2; +1)-digraph; by Lemma 4.1 G is diregular. Fix an
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u v

u3 u1 u2 v3

u4 u5 u6 u7 u8 u9 u10 u11 uu10 u11 v

Figure 4.3: Configuration for Theorem 4.21

a1 a2 b1 b2 c1 c2u

u1 u2 u3

u4 u5 u6 u7 u8 u9 u10 u11 u12

Figure 4.4: The Moore tree for Theorem 4.22

arbitrary vertex u of G with N+(u) = {u1, u2, u3} and draw the Moore tree rooted at

u as shown in Figure 4.4. We set N−(u1) = {u, a1, a2}, N−(u2) = {u, b1, b2} and

N−(u3) = {u, c1, c2}.

At least one of the vertices c1, c2 is not equal to o(u), say c1 6= o(u). By 2-geodecity

c1 6∈ T (u) ∪N+(u3), so without loss of generality we can assume that c1 ∈ N+(u1),

say c1 = u4. By Theorem 4.21 c1 has no arcs to T (u)− {u3}, at most one arc to

N+(u2) and by 2-geodecity has no arcs to N+(u1) ∪N+(u3). It follows that c1 must

have exactly one arc to N+(u2) as well as an arc to o(u). If c2 = o(u) this would yield

two paths of length ≤ 2 from c1 to u3, so c2 6= o(u). By the same reasoning c2 has an

arc to o(u); however, we now have two distinct vertices with at least two common

out-neighbours, contradicting Theorem 4.21.

4.3 Automorphisms of digraphs with excess one

In [133] Sillasen uses counting arguments to deduce information on the form of the

subdigraph of an almost Moore digraph that is induced by the set of vertices fixed by

an automorphism. Using the same approach we can deduce a strong result on the
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action of automorphisms of a digraph with excess one. This will later help us to

analyse the structure of the outlier function of a (d, k; +1)-digraph.

Let G be a (d, k; +1)-digraph and φ ∈ Aut(G) a non-identity automorphism of G.

Denote by Fix(φ) the set of vertices of G that are fixed by φ and let FIX(φ) be the

subdigraph induced by Fix(φ).

Firstly we show that the fix-set Fix(φ) is closed under the action of the outlier

automorphism.

Lemma 4.23. If u ∈ Fix(φ), then oj(u) ∈ Fix(φ) for all j ∈ N.

Proof. Let u ∈ Fix(φ). If d(u, v) ≤ k, then d(φ(u), φ(v)) = d(u, φ(v)) ≤ k, so the only

vertex of V (G) that lies at distance ≥ k + 1 from u is φ(o(u)) and so φ(o(u)) = o(u)

and o(u) ∈ Fix(φ). Iteration of o implies the result.

As the outlier automorphism is fixed-point-free, it follows from Lemma 4.23 that any

fix-set Fix(φ) cannot consist of a single vertex and, if φ fixes just two vertices u, u′ of

G, then these two vertices are outliers of each other, i.e. o(u) = u′ and o(u′) = u.

Corollary 4.24. If |Fix(φ)| ≤ 2, then either Fix(φ) = ∅ and FIX(φ) is the null

digraph, or |Fix(φ)| = 2 and FIX(φ) ∼= 2K1.

We will now assume that Fix(φ) contains at least three vertices.

Lemma 4.25. If u, v ∈ Fix(φ) and P is a path of length ≤ k from u to v, then all

vertices of P are contained in Fix(φ).

Proof. Let u, v and P be as described. Suppose that there is a vertex u′ ∈ V (P ) that

is not fixed by φ. Then P and φ(P ) are distinct ≤ k-paths from u to v, contradicting

k-geodecity.

Lemma 4.26. The digraph FIX(φ) is diregular.

Proof. For any vertex u ∈ Fix(φ) we will denote the out-degree and in-degree of u in

the subdigraph FIX(φ) by d+φ (u) and d−φ (u) respectively. We will show that for any

two (not necessarily distinct) vertices u, v ∈ Fix(φ) we have d+φ (u) = d−φ (v); this

implies the desired result. For this pair u, v we will write N+(u) = {u1, u2, . . . , ud}
and N−(v) = {v1, . . . , vd}.
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Assume that v 6∈ o(N+(u)). Then for 1 ≤ i ≤ d there is a unique ≤ k-path Pi from ui

to v. Suppose that u 6→ v. By k-geodecity, none of the paths Pi pass through the

same in-neighbour of v, so without loss of generality there is a ≤ (k − 1)-path from ui

to vi for 1 ≤ i ≤ d. By Lemma 4.25, it follows that ui ∈ Fix(φ) if and only if

vi ∈ Fix(φ), so that d+φ (u) = d−φ (v). If u→ v, then repeating this reasoning for the

out-neighbours of u other than v shows that we still have d+φ (u) = d−φ (v).

Now suppose that v ∈ o(N+(u)); say v = o(u1). If u 6→ v, then for 2 ≤ i ≤ d we can

assume that there is a ≤ (k − 1)-path from ui to vi and as before ui ∈ Fix(φ) if and

only if vi ∈ Fix(φ) for 2 ≤ i ≤ d. There is an arc u→ u1, so as o is an automorphism

there exists an arc o(u)→ o(u1) = v, giving o(u) ∈ N−(v). There are ≤ k-paths from

u to each vi for 2 ≤ i ≤ d, so we must have o(u) = v1. As o(u) ∈ Fix(φ) by

Lemma 4.23 we have v1 ∈ Fix(φ). Also by Lemma 4.23 we have o−(v) = u1 ∈ Fix(φ),

so again we see that d+φ (u) = d−φ (v). Again the case u→ v is similar.

It follows that FIX(φ) is diregular.

Lemma 4.27. The digraph FIX(φ) is an isometric subdigraph of G and has diameter

k + 1.

Proof. As Fix(φ) is a subdigraph of G we certainly have dFIX(φ)(u, v) ≥ dG(u, v) for

all u, v ∈ Fix(φ). Let u, v ∈ Fix(φ) be arbitrary. If v ∈ Tk(u) ∩ Fix(φ), then by

Lemma 4.25 all vertices of the unique path from u to v with length ≤ k in G also

belong to FIX(φ), so that dG(u, v) = dFIX(φ)(u, v).

By Lemma 4.26, FIX(φ) is diregular with degree ≥ 1 (as we are assuming that

|Fix(φ)| ≥ 3). Hence if v = o(u) in G, then o(u) has an in-neighbour v′ in Fix(φ), so

that by the preceding argument dG(u, v′) = dFIX(φ)(u, v
′) and thus

dFIX(φ)(u, o(u)) = k + 1. Therefore FIX(φ) is an isometric subdigraph of G and, since

o(u) ∈ Fix(φ) for any u ∈ Fix(φ), the diameter of FIX(φ) is exactly k + 1.

Corollary 4.28. The digraph FIX(φ) is a (d′, k; +1)-digraph for some d′ in the range

1 ≤ d′ ≤ d− 1.

Proof. As a subdigraph of G, FIX(φ) is k-geodetic. By Lemma 4.26, FIX(φ) is

diregular with degree d′. We are assuming that Fix(φ) contains at least three vertices,

so by Lemma 4.25 FIX(φ) contains a path and d′ ≥ 1. We are also assuming that φ is

not the identity automorphism, so φ does not fix all vertices of G and d′ ≤ d− 1. By

diregularity and Lemma 4.27, it follows that FIX(φ) has order M(d′, k) + 1, so FIX(φ)

is a (d′, k; +1)-digraph.
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As there are no diregular (2, k; +1)-digraphs by Lemma 4.1 (see [133]), we have the

following result.

Corollary 4.29. If G is a (d, k; +1)-digraph and φ is a non-identity automorphism of

G, then FIX(φ) is either the null digraph, a pair of isolated vertices, a directed

(k + 2)-cycle or a (d′, k; +1)-digraph, where 3 ≤ d′ ≤ d− 1.

4.4 Structure of the outlier function

We will now make use of some of the results from the preceding sections to deduce

useful information on the permutation structure of the outlier function of a digraph

with excess one. Let G be a (d, k; +1)-digraph. Recall by Chapter 3 that we are only

interested in the case k ≥ 2. By Theorem 3.15 G is diregular and by Theorem 3.13

the outlier function of G is an automorphism. Therefore every vertex u of G has an

associated order ω(u), which is the smallest integer such that oω(u) = u. We can

immediately apply reasoning similar to that of [42] to make a connection between the

vertex orders and the existence of short paths.

Lemma 4.30. Let u0, u1, . . . , ur be a path of length r in G, where r ≤ k, and put

t = lcm(ω(u0), ω(ur)). Then ω(ui) divides t for 1 ≤ i ≤ r − 1.

Proof. Suppose that for some 1 ≤ i ≤ r − 1 the order of ui does not divide t. Then

ot(ui) 6= ui, so we obtain two ≤ k-paths u0, u1, . . . , ui, . . . , ur and

ot(u0), o
t(u1), . . . , o

t(ui), . . . , o
t(ur) = u0, o

t(u1), . . . , o
t(ui), . . . , ur from u0 to ur, a

contradiction.

Corollary 4.31. If p is the minimum vertex order of G and W is a walk of length

≤ k between two vertices u, v with order p, then every vertex on W has order p.

Proof. Suppose that there is a vertex w on W such that ω(w) > p. Then W and

op(W ) are two distinct walks of length ≤ k between u and v, contradicting

k-geodecity.

We now make two definitions that will help us to analyse the structure of the

permutation o.

Definition 4.32. The index ω(G) of a (d, k; +1)-digraph G is the value of the

smallest vertex order in G, i.e. ω(G) = min{ω(u) : u ∈ V (G)}.
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Definition 4.33. A (d, k; +1)-digraph G is outlier-regular if its outlier function o is a

regular permutation of V (G), i.e. each cycle in the cycle decomposition of the

permutation o has the same length. If each vertex of G has order ω, then G is

ω-outlier-regular.

As o is an automorphism it follows that any power or of o is also an automorphism of

G. In Section 4.3 we classified the possible fixed sets of any non-identity

automorphism of G. We therefore record the following implication of Corollary 4.29.

Corollary 4.34. For any integer r ≥ 2, the set of vertices of G with order dividing r

induces one of the following:

� the entire digraph G,

� the empty digraph,

� a pair of vertices that form a transposition in o,

� a directed (k + 2)-cycle, or

� a (d′, k; +1)-digraph, where 3 ≤ d′ ≤ d− 1.

In Conjecture 4.2 we claimed that there are no (d, k; +1)-digraphs for d, k ≥ 2; one

approach to proving this conjecture is to study the properties of a minimal

counterexample. Let k ≥ 2 and suppose that there exists a (d, k; +1)-digraph with

d ≥ 2. Then let d′ be the smallest possible value of d ≥ 3 such that there exists a

(d, k; +1)-digraph; we will refer to a (d′, k; +1)-digraph as a minimal

(d, k; +1)-digraph. For a fixed k, Corollary 4.34 strongly restricts the structure of the

outlier automorphism of a minimal (d, k; +1)-digraph.

Corollary 4.35. A minimal (d, k; +1)-digraph G satisfies one of the following:

� G is outlier-regular,

� the outlier function o of G contains a unique transposition, or

� the vertices of G with order ω(G) form a directed (k + 2)-cycle.

In particular this holds for any (3, k; +1)-digraph.

Proof. By Corollary 4.34 the automorphism oω(G) fixes either i) every vertex of G, in

which case every vertex of G has order ω(G) and G is outlier-regular, ii) two vertices

that are outliers of each other, so that ω(G) = 2 and o contains a unique

transposition, or iii) a (k + 2)-cycle.
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If a minimal (d, k; +1)-digraph is not outlier-regular, then Corollary 4.35 allows us to

deduce the subdigraph induced by the set of vertices with smallest order.

Lemma 4.36. If a minimal (d, k; +1)-digraph G is not outlier-regular, then either its

outlier function o contains a unique transposition, or else ω(G) = k + 2 and the

vertices with order k + 2 induce a directed (k + 2)-cycle.

Proof. Suppose that G is a non-outlier-regular minimal (d, k; +1)-digraph with outlier

function that does not contain a unique transposition. Then by Corollary 4.35 the

vertices with order equal to the index ω(G) of G induce a directed (k + 2)-cycle C.

For any vertex u in the cycle its outlier o(u) also has order ω(G), so the outlier of u

must be the vertex preceding u on the cycle C; it follows that ω(G) = k + 2.

We will find the following classification of this behaviour convenient.

Definition 4.37. A minimal (d, k; +1)-digraph G such that the vertices of G with

order ω(G) form a directed (k+ 2)-cycle is Type A, whereas if the outlier function o of

G contains a unique transposition, then G is Type B.

According to this definition, every minimal (d, k; +1)-digraph is either Type A, Type

B or outlier-regular. Let us now return to the problem of digraphs with degree three

and excess one; if any such digraph exists it is minimal.

Lemma 4.38. Let G be a (3, k; +1)-digraph of Type A. Then k+ 2 divides M(3,k)−k−1
2 .

Proof. By Lemma 4.36 we have ω(G) = k+ 2 and the vertices with order k+ 2 induce

a (k+ 2)-cycle C. Pick a vertex u on C and write N+(u) = {u1, u2, u3}, where u1 also

lies on C. The automorphism o(k+2) fixes u and u1, but not u2 and u3, so o(k+2)

transposes u2 and u3. Thus o2(k+2) fixes every vertex in T1(u) and by Corollary 4.34

every vertex of G has order either k + 2 or 2(k + 2). If there are r cycles in o with

length 2(k + 2), then we obtain

M(3, k) + 1 = k + 2 + 2r(k + 2)

and k + 2 divides M(3,k)−k−1
2 .

Lemma 4.39. Let G be a (3, k; +1)-digraph of Type B. Then k 6≡ 3, 5 (mod 6). If

k ≡ 0, 2 (mod 6), then G contains two vertices of order two, with all other vertices of

G having order six.

James Tuite



4.4 Structure of the outlier function 69

Proof. Assume that G is a non-outlier-regular (3, k; +1)-digraph with outlier function

o containing a unique transposition. Let u and o(u) be the vertices of G with order

two, where N+(u) = {u1, u2, u3}. The automorphism o2 fixes u, but fixes no vertex in

{u1, u2, u3}. We can thus assume that o2 permutes u1, u2, u3 in a 3-cycle (u1u2u3).

By Theorem 4.21 u and o(u) have at most one common out-neighbour. Suppose that

N+(u) ∩N+(o(u)) 6= ∅; we can assume that u1 is the common out-neighbour of u and

o(u). However, applying the automorphism o2 to G shows that o2(u1) is a common

out-neighbour of u and o(u) and, since G is Type B we have o2(u1) 6= u1, thereby

violating Theorem 4.21. It follows that o contains the 6-cycle

(u1, o(u1), u2, o(u2), u3, o(u3)).

Therefore {u} ∪N+(u) ⊆ Fix(o6) and hence o6 fixes every vertex of G, so that the

order of every vertex apart from u and o(u) is either 3 or 6.

Suppose that there is a vertex with order 3. Then o3 fixes a (k + 2)-cycle. If there are

r cycles in o of length 6, then

M(3, k) + 1 = 2 + (k + 2) + 6r.

Hence 6|(M(3, k)− k − 3). This implies that k ≡ 1 (mod 3).

On the other hand, suppose that all vertices of G have order six, with the exception

of the two vertices with order two. Then 6|(M(3, k)− 1), which implies that k is even.

Thus if k ≡ 3 (mod 6) or k ≡ 5 (mod 6), then no such digraph can exist.

Corollary 4.40. If k ≥ 2 is such that

� k ≡ 3 or 5 (mod 6),

� k + 2 does not divide M(3,k)−k−1
2 , and

� M(3, k) + 1 is prime,

then there is no (3, k; +1)-digraph.

Proof. Assume that G is a (3, k; +1)-digraph such that k satisfies each of these

conditions. By Lemmas 4.38 and 4.39, G is neither Type A nor Type B and hence

must be outlier-regular. As the order of G is prime, it follows that its outlier function

o consists of a single cycle of length M(3, k) + 1; thus G is vertex-transitive. However,

any vertex-transitive digraph with prime order is a circulant digraph (this follows
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from the result of [148], the argument of which, as noted in [4], applies equally well to

directed graphs), which is not k-geodetic for k ≥ 2. It follows that there is no

(3, k; +1)-digraph for ]such k.

The first k for which Corollary 4.40 applies are k = 3, 15 and 63. This provides an

independent proof of the non-existence of (3, 3; +1)-digraphs (this case is covered by

the result of [116] for k = 3), as well as ruling out the existence of (3, k; +1)-digraphs

for some larger k.

Corollary 4.41. There are no (3, 3; +1), (3, 15; +1)- or (3, 63; +1)-digraphs.

4.5 Spectral results

Now that we have more information about the permutation structure of o, we can

apply some more powerful spectral results developed in [116]. If A is the adjacency

matrix of a (d, k; +1)-digraph G with order n, J is the n× n all-one matrix and P is

the permutation matrix associated with the permutation o, then we know by

Theorem 1.3 that

I +A+A2 + · · ·+Ak = J − P. (4.2)

We will now exploit the connection in Equation 4.2 between the permutation

structure of the outlier function o of a (d, k; +1)-digraph G and the spectrum of G.

We will use the following concise description of the permutation structure of the

outlier function o from [116].

Definition 4.42. For any (d, k; +1)-digraph G and 1 ≤ j ≤M(d, k) + 1, the number

of cycles of length j in the permutation o will be denoted by mj . The

(M(d, k) + 1)-tuple (m1,m2, . . . ,mM(d,k)+1) is the permutation vector of G. For

1 ≤ j ≤M(d, k) + 1 we define

� m′(j) is the number of odd cycles in the permutation o with length divisible by

j,

� m′′(j) is the number of even cycles in the permutation o with length divisible by

j, and

� m(j) = m′(j) +m′′(j) is the total number of cycles in o with length divisible by

j.

Note that as the outlier function is fixed-point-free we always have m1 = 0. We will

also need the following family of polynomials derived from the cyclotomic polynomials.
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Definition 4.43. For n, k ≥ 1 the polynomial Fn,k(x) is defined by

Fn,k(x) = Φn(1 + x+ x2 + · · ·+ xk),

where Φn(x) is the n-th cyclotomic polynomial.

In [116] Miller et al. derive the following relation between the characteristic

polynomial of J − P and the permutation vector of G.

Lemma 4.44 ([116]). The characteristic polynomial of J − P is

(x−M(d, k))(x+ 1)−1
∏

j≥2,j even

(xj − 1)mj
∏

j≥3,j odd

(xj + 1)mj .

Theorem 4.45. There are no 2-outlier-regular (d, k; +1)-digraphs.

Proof. Assume that G is a 2-outlier-regular (d, k; +1)-digraph with order

n = M(d, k) + 1, i.e. the outlier function o of G contains only transpositions. Thus

m2 = n
2 and mi = 0 for i 6= 2. Therefore by Lemma 4.44 the characteristic polynomial

of J − P is

(x−M(d, k))(x+ 1)−1(x2 − 1)n/2 = (x−M(d, k))(x− 1)
n
2 (x+ 1)

n
2
−1.

It follows from Equation 4.2 that the spectrum of G consists of

� one eigenvalue d,

�
n
2 eigenvalues λi, 1 ≤ i ≤ n

2 , such that 1 + λi + λ2i + · · ·+ λki = 1 for 1 ≤ i ≤ n
2 ,

and

�
n
2 − 1 eigenvalues µi such that for 1 ≤ i ≤ n

2 − 1 we have

1 + µi + µ2i + · · ·+ µki = −1.

For any integer r ≥ 0 we define

Λr =

n
2∑
i=1

λri

and

Mr =

n
2
−1∑
i=1

µri .

As for all vertices u of G we have o−(u) = o(u), the reasoning of Theorem 4.14 shows
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that each vertex of G is contained in d directed (k + 1)-cycles. By k-geodecity, any

closed (k + 1)-walk must be a cycle, so it follows from Theorem 1.3 that

Tr(Ar) = dr + Λr +Mr = 0, 1 ≤ r ≤ k, (4.3)

and

Tr(Ak+1) = dk+1 + Λk+1 +Mk+1 = dn. (4.4)

Each eigenvalue λi satisfies 1 + λi + λ2i + · · ·+ λki = 1; summing this geometric series

and rearranging we obtain λi(λ
k
i − 1) = 0, so each λi is either zero or a k-th root of

unity. Hence for 1 ≤ r ≤ k we have Λk+r = Λr. Similarly each eigenvalue µi satisfies

µk+1
i = 2− µi, so that for 1 ≤ r ≤ k we have µk+ri = 2µr−1i − µri . Thus for 1 ≤ r ≤ k

the numbers Mk+r satisfy Mk+r = −Mr + 2Mr−1.

In particular Mk+1 = −M1 + 2M0 = −M1 + n− 2 and Λk+1 = Λ1. Therefore by

Equation 4.4 we have

Λ1 −M1 = dn− dk+1 − n+ 2 = d.

Subtracting this from Equation 4.3 with r = 1 yields

M1 = −d.

For any prime p the polynomial p+ x+ x2 + · · ·+ xk is irreducible over Q [79]. As

each µi is a solution of 2 + x+ x2 + · · ·+ xk = 0, it follows that the roots of

2 + x+ x2 + · · ·+ xk must appear with equal multiplicity among the µi. Therefore k

must divide n
2 − 1. The sum of the roots of 2 + x+ x2 + · · ·+ xk is −1; therefore it

follows that

−d = M1 = −1

k

(n
2
− 1
)
.

Rearranging, we obtain

n = 2 + d+ d2 + d3 + · · ·+ dk = 2kd+ 2,

or, simplifying,

2k = 1 + d+ d2 + · · ·+ dk−1,
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which is impossible for d, k ≥ 2.

In particular, it follows from Lemma 4.16 and Theorem 4.45 that no

(d, k; +1)-digraph with d, k ≥ 2 can be arc-transitive.

4.6 2-geodetic digraphs with excess one

In [116] the authors use spectral techniques to show that there are no 2-geodetic

digraphs with excess one and degree d ≥ 8. Sillasen’s first paper on the subject [132]

proves that there are no (2, 2; +1)-digraphs. Theorem 4.22 of the present work further

showed that there are no (3, 2; +1)-digraphs. This leaves open the existence of

(d, 2; +1)-digraphs for d = 4, 5, 6 and 7. We will see that no (d, 2; +1)-digraphs exist

for these values of d. We first rule out the existence of outlier-regular

(d, 2; +1)-digraphs, then use an inductive approach to deal with the remaining cases.

Accordingly we shall now assume that any (d, 2; +1)-digraph is outlier-regular. Let G

be an outlier-regular (d, 2; +1)-digraph with d in the range 4 ≤ d ≤ 7. Then the index

ω(G) of G must be a non-unit divisor of the order 2 + d+ d2 of G. These divisors are

displayed in Table 4.1.

d Order Divisors > 1

4 22 2,11,22
5 32 2,4,8,16,32
6 44 2,4,11,22,44
7 58 2,29,58

Table 4.1: Nontrivial divisors of the orders of the (d, 2; +1)-graphs

Theorem 4.45 shows that there are no 2-outlier-regular digraphs, so we have already

dealt with the divisors in red. Furthermore, if the index ω(G) of the digraph is equal

to the order 2 + d+ d2 of the digraph G, then G is vertex-transitive and by

Corollary 4.12 the size 2d+ d2 + d3 of G must be divisible by 3; this precludes the

existence of outlier-regular digraphs with the divisors written in blue in Table 4.45.

For the remaining possible structures of the outlier function we will need the exact

factorisation of the characteristic polynomial of a (d, 2; +1)-digraph from [116].

Lemma 4.46 ([116]). The characteristic polynomial of a (d, 2; +1)-digraph factorises
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in Q[x] as

(x− d)xa1(x+ 1)a2(x2 + x+ 2)
m(2)+m′(1)−1

2 (x2 + 1)m(4)

×
∏

j≥3,j odd

Fj,2(x)
m′′(j)

2 F2j,2(x)
m′(j)

2

∏
j≥6,j even

Fj,2(x)
m(j)

2 , (4.5)

where a1 and a2 are non-negative integers that satisfy the simultaneous equations

a1 + a2 = m′′(1) and d2 − d+ 1 = a1 − a2 + 2m(4). (4.6)

Lemma 4.47. An outlier-regular (d, 2; +1)-digraph cannot have odd index ω(G).

Proof. Suppose that ω(G) is odd. Then m(4) = m′′(1) = 0 and a1 = a2 = 0.

Equation 4.6 then gives d2 − d+ 1 = 0, which has no real solutions.

Lemma 4.47 disposes of all of the green entries in Table 4.1.

Lemma 4.48. There are no 22- or 44-outlier-regular (6, 2; +1)-digraphs.

Proof. If a (6, 2; +1)-digraph G is 22-outlier-regular, then m(4) = 0 and m′′(1) = 2, so

the simultaneous equations in Equation 4.6 give a1 + a2 = 2 and a1 − a2 = 31, which

has no solution in non-negative integers.

Similarly, if G is a 44-outlier-regular (6, 2; +1)-digraph, then m′′(1) = 1 and m(4) = 1,

so that Equation 4.6 yields a1 + a2 = 1 and a1 − a2 = 29, which again does not have

non-negative solutions.

Lemma 4.48 disposes of the pink divisors in Table 4.1.

Lemma 4.49. There are no outlier-regular (d, 2; +1)-digraphs.

Proof. First let d = 5 and ω ∈ {4, 8, 16}. Then m′′(1) = m(4) = 32
ω and

d2 − d+ 1 = 21. Equation 4.6 yields a1 + a2 = 32
ω and a1 − a2 = 21− 64

ω . Solving for

a1 shows that

a1 =
1

2

[
21− 32

ω

]
,

which is not an integer for ω ∈ {4, 8, 16}. This gets rid of all of the orange entries in

Table 4.1.
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The only remaining option for an ω-outlier-regular (d, 2; +1)-digraph G is that d = 6

and ω = 4. Then m(4) = m′′(1) = 44/4 = 11 and d2 − d+ 1 = 31. Equation 4.6

becomes a1 + a2 = 11 and a1 − a2 = 9, which has solution a1 = 10 and a2 = 1. It

follows from Lemma 4.46 that the spectrum of G is

{6(1), 0(10),−1(1),

[
−1 +

√
7i

2

](5)
,

[
−1−

√
7i

2

](5)
, i(11), (−i)(11)}

where multiplicities are indicated in round brackets. Summing the third powers of the

eigenvalues, it follows that

Tr(A3) = 240.

A vertex is contained in 6 directed triangles if it is Type I and 5 directed triangles if it

is Type II. If there are α Type I vertices and β Type II vertices in G, it follows that

6α+ 5β = 240 and α+ β = 44. Solving these equations, we have α = 20 and β = 24.

Let A be the subdigraph of G induced by the Type I vertices and B the subdigraph

induced by the Type II vertices. By Lemma 4.10 it follows that B consists of a

collection of 6 directed 4-cycles. Thus |(A,B)| = |(B,A)| = 120. Thus each vertex in

A has out-neighbourhood entirely contained in B. Each vertex in B has just one

out-neighbour in B and so each arc from a vertex u of A allows it to reach just twelve

vertices of B by paths of length ≤ 2, which is impossible.

It follows by Lemma 4.36 that any minimal (d, 2; +1)-digraph must be either Type A

(with a directed 4-cycle C of vertices with order 4 and all other vertices with order

greater than 4) or Type B. We will take an inductive approach. Theorem 4.22 shows

that there is no (3, 2; +1)-digraph, so we can take any (4, 2; +1)-digraph to be

minimal, which allows us to show that (4, 2; +1)-digraphs do not exist, so that any

(5, 2; +1)-digraph is minimal and so on. We make the following two observations from

Lemma 4.46 and Corollary 4.29 respectively.

Lemma 4.50. If G is a minimal (d, 2; +1)-digraph, then m′′(1) is odd.

Proof. By Lemma 4.46 we have a1 + a2 = m′′(1) and a1 − a2 = d2 − d+ 1− 2m(4), so

m′′(1) has the same parity as d2 − d+ 1, which is odd.

Lemma 4.51. There are exactly two non-zero entries in the permutation vector of a

minimal (d, 2; +1)-digraph and both cycle lengths of o are even.

Proof. By Lemma 4.49, a minimal (d, 2; +1)-digraph is either Type A, in which case
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the smallest non-zero entry of the permutation vector is m4 = 1, or Type B, in which

case the smallest entry is m2 = 1.

By Corollary 4.29, for each r ≥ 1 the automorphism or has fix-set of size 0, 2 or 4, or

else fixes every vertex of G. Therefore if for some r ≥ 2 the automorphism or fixes 3

or ≥ 5 vertices of G, then or is the identity automorphism and every vertex of G has

order dividing r. Suppose that the permutation vector contains a non-zero entry

mj = 0, where j ≥ 3 is odd. Then oj fixes either 3 or ≥ 5 vertices of G, but not the

vertices with even order, which is impossible. Likewise, if i < j are both even, i is

greater than ω(G) and mi and mj are both non-zero, then oi fixes at least 6 vertices

with order ω(G) or i, but not the vertices with order j, again a contradiction.

Theorem 4.52. There are no (4, 2; +1)-digraphs.

Proof. Suppose that G is a (4, 2; +1)-digraph. Assume first that G is Type A. Let u

be a vertex on the 4-cycle C of vertices with order 4, with N+(u) = {u1, u2, u3, u4},
where u1 also lies on C. The automorphism o4 fixes u and u1, but has no fixed points

in {u2, u3, u4}, so o2 permutes u2, u3 and u4 in a 3-cycle, say (u2u3u4). Thus o12 fixes

every vertex of T (u); by Corollary 4.29, o12 fixes every vertex of G and so every

vertex of G has order 4, 6 or 12. G has order 22, so we either have m4 = 1,m6 = 3 or

m4 = 1,m6 = 1,m12 = 1. Both are impossible by Lemmas 4.50 and 4.51.

Thus we can assume G to be Type B. Let u be one of the two vertices of G with order

2. The automorphism o2 fixes u, but permutes its out-neighbours u1, u2, u3 and u4

without fixed points. Hence without loss of generality o2 permutes these vertices

either as (u1u2)(u3u4) or (u1u2u3u4); in either case o8 fixes every vertex of T (u) and

hence all of G, so every vertex has order 2, 4 or 8. Hence 22 = 2 + 4m4 + 8m8, or

5 = m4 + 2m8. There are three solutions of this equation: i) m4 = 1,m8 = 2, ii)

m4 = 3,m8 = 1 and iii) m4 = 5,m8 = 0. By Lemma 4.51 only option iii) can hold.

Thus the two non-zero entries of the permutation vector of G are m2 = 1,m4 = 5 and

m′′(1) = 6, which is even, contradicting Lemma 4.50.

Having proved that there are no (4, 2; +1)-digraphs, we know that any

(5, 2; +1)-digraph is minimal.

Theorem 4.53. There is no (5, 2; +1)-digraph.

Proof. Assume that G is a (5, 2; +1)-digraph. G has order 32. By Theorem 4.52, G is

minimal and hence by Lemma 4.49 is either Type A or Type B. Suppose that G is

James Tuite



4.6 2-geodetic digraphs with excess one 77

Type A. As in Theorem 4.52, fix a vertex u on the cycle C of vertices with order 4

and set N+(u) = {u1, u2, u3, u4, u5}, where u1 ∈ V (C). The automorphism o4 must

permute u2, u3, u4 and u5 amongst themselves without fixed points, so o4 acts on

these vertices either as (u2u3u4u5) or (u2u3)(u4u5); in either case o16 fixes all vertices

of G and every vertex order is 4, 8 or 16. We have 32 = 4 + 8m8 + 16m16, or

7 = 2m8 + 4m16. However, the right-hand side is even and the left odd.

Now suppose that G is Type B and let u be a vertex of G belonging to the unique

transposition of o. o2 permutes the vertices of N+(u) = {u1, u2, u3, u4, u5} without

fixed points; without loss of generality, o2 acts on these vertices either as i)

(u1u2u3u4u5) or ii) (u1u2u3)(u4u5).

In case i) o10 fixes every vertex of G and every vertex order is 2, 5 or 10, where

30 = 5m5 + 10m10. By Lemma 4.51, m5 = 0, so the non-zero entries of the

permutation vector are m2 = 1,m10 = 3, yielding m′′(1) = 4, contradicting

Lemma 4.50.

In case ii) o12 is the identity and every vertex has order 2, 3, 4, 6 or 12. Lemma 4.51

shows that m3 = 0. We have 30 = 4m4 + 6m6 + 12m12 and Lemma 4.51 shows that

just one of m4,m6 and m12 is non-zero. By Lemma 4.51, as 12 and 4 do not divide

30, we have m4 = m12 = 0. If m6 > 0, then m2 = 1 and m6 = 5, giving an even value

of m′′(1), which is impossible.

Theorem 4.54. There is no (6, 2; +1)-digraph.

Proof. Suppose that there exists a (6, 2; +1)-digraph G with order 44. Suppose that

G is Type A; as before, let u→ u1 be an arc of the 4-cycle of vertices with order 4.

We can assume that the automorphism o4 permutes the other out-neighbours

{u2, u3, u4, u5, u6} either as i) (u2u3u4u5u6) or ii) (u2u3u4)(u5u6). In case i) every

vertex of G has order 4, 5, 10 or 20; by Lemma 4.51 m5 = 0. If m20 > 0, then by

Lemma 4.51 we have m4 = 1,m10 = 0,m20 = 2. By Lemma 4.46, this yields

a1 + a2 = 3 and a1 − a2 = 25, which would imply that a2 is negative. Therefore

m4 = 1,m10 = 4,m20 = 0, giving a1 + a2 = 5, a1 − a2 = 29, which again is impossible.

In case ii) every vertex order is 4, 6, 8, 12 or 24. We have

40 = 6m6 + 8m8 + 12m12 + 24m24. As none of 6, 12 or 24 are divisors of 40,

Lemma 4.51 shows that m8 = 5,m6 = m12 = m24 = 0, so that m′′(1) = 6 is even,

violating Lemma 4.50.

Now suppose that G is Type B. Let u be a vertex in the unique transposition of o.
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We can assume that o2 permutes the vertices of N+(u) in one of four ways: i)

(u1u2u3u4)(u5u6), ii) (u1u2u3u4u5u6), iii) (u1u2u3)(u4u5u6) or iv) (u1u2)(u3u4)(u5u6).

For Case i), every vertex has order 2, 4 or 8, but neither 4 nor 8 divide 42,

contradicting Lemma 4.51.

In Cases ii), iii) and iv) each vertex order is 2, 3, 4, 6 or 12, with

42 = 3m3 + 4m4 + 6m6 + 12m12. By Lemma 4.51 we know that m3 = 0 and just one

of m4,m6 and m12 is non-zero. As 4 and 12 do not divide 42, we must have

m4 = m12 = 0 and m6 = 7, so that m′′(1) = 8 is even, a contradiction.

Theorem 4.55. There are no (7, 2; 1)-digraphs.

Proof. Assume that G is a (7, 2; +1)-digraph. G has order 58. Suppose that G is

Type A and u→ u1 is an arc of the 4-cycle of vertices with order 4. Then we can

assume that o4 permutes {u2, u3, u4, u5, u6, u7} = N+(u)− {u1} in one of the

following ways: i) (u2u3u4u5)(u6u7), ii) (u2u3)(u4u5)(u6u7), iii) (u2u3u4u5u6u7) or iv)

(u2u3u4)(u5u6u7).

In Cases i) and ii) every vertex order is 4, 8 or 16 and 54 = 8m8 + 16m16. However

neither 8 nor 16 divides 54, violating Lemma 4.51. We can thus assume that either

case iii) or iv) holds and every vertex order is 4, 6, 8, 12 or 24, with

54 = 6m6 + 8m8 + 12m12 + 24m24. Lemma 4.51 shows that m8 = m12 = m24 = 0 and

m6 = 9. Then m′′(1) = 10 is even, contradicting Lemma 4.50.

Therefore assume that G is Type B and let u be a vertex with order 2. o2 permutes

the elements of N+(u) = {u1, u2, u3, u4, u5, u6, u7} in one of the following ways: i)

(u1u2u3u4u5u6u7), ii) (u1u2u3u4u5)(u6u7), iii) (u1u2u3u4)(u5u6u7) or iv)

(u1u2u3)(u4u5)(u6u7).

In Case i) all vertex orders are 2, 7 or 14, so by Lemma 4.51, m2 = 1,m7 = 0,m14 = 4.

Then m′′(1) = 5 and m(4) = 0, so that a1 + a2 = 5 and a1 − a2 = 43, which has no

suitable solutions.

In Case ii) all vertex orders are 2, 4, 5, 10 or 20, m5 = 0 and

56 = 4m4 + 10m10 + 20m20. 10 and 20 do not divide 56, so m2 = 1,m4 = 14. In Cases

iii) and iv) all vertex orders are 2, 3, 4, 6, 8, 12 or 24 and

56 = 3m3 + 4m4 + 6m6 + 8m8 + 12m12 + 24m24. Lemma 4.51 shows that the only

valid solutions are m2 = 1 and m8 = 7 and again m2 = 1,m4 = 14. In the former case

m′′(1) is even, so we have shown that we can assume that m2 = 1 and m4 = 14. Thus

m′′(1) = 15 and m(4) = 14, giving a1 + a2 = 15, a1 − a2 = 43− 28 = 15, giving
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a1 = 15 and a2 = 0. It follows from Lemma 4.46 that the spectrum of G is, counted

by multiplicity,

{7, 0(15),

[
−1 +

√
7i

2

](7)
,

[
−1−

√
7i

2

](7)
, i(14),−i(14)}.

Adding up the third powers of these eigenvalues, we see that the trace of A3 is

Tr(A3) = 378. A vertex lies in 7 directed triangles if it is Type I and 6 if it is Type II;

therefore if there are α Type I vertices in G and β Type II vertices, then Theorem 1.3

shows that

7α+ 6β = 378, α+ β = 58.

Solving these equations gives α = 30, β = 28. As a vertex has the same type as its

outlier, it follows that the subdigraph B induced by the Type II vertices consists of 7

directed 4-cycles and there is a set A of 28 vertices v such that d(v, o−(v)) = 2, the

other two Type I vertices being u and o(u).

B has size 28 and (B, V (G)−B) = (V (G)−B,B) = 168. This means that the

subdigraph induced by A′ = A ∪ {u, o(u)} has size 42. Fix a vertex v ∈ A′. The

outlier o(v) of v also lies in A′, so v can reach every vertex of B by ≤ 2-paths. The

vertex v has 7 out-going arcs. Suppose that the out-degree of v in the subdigraph

induced by A′ is ≤ 2. Each arc from v to B allows v to reach 2 vertices of B;

therefore the largest possible number of vertices of B that v could reach by ≤ 2-paths

would be achieved if v has two out-neighbours in A′, each of which has

out-neighbourhood contained in B ; however, this would still only allow v to reach 24

of the 28 vertices of B. It follows that the minimum out-degree in A′ is ≥ 3, which

implies that the size of the subdigraph induced by A′ is ≥ 90, a contradiction.

This completes the remaining cases in the classification of (d, 2; +1)-digraphs from

Lemma 4.1 (see [116]). Combined with the results in Lemma 4.1, we see that to find a

digraph with excess one, we must look at digraphs that have degree at least three and

are at least 5-geodetic.

Theorem 4.56. If d, k ≥ 2 and ε(d, k) = 1, then d ≥ 3 and k ≥ 5.
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Chapter 5

Diregularity of digraphs with small

excess

5.1 Background

There are various methods for constructing digraphs with small excess, including

voltage graph constructions and searches in the class of Cayley graphs; we will make

use of the latter method in Section 9.5. Such constructions naturally yield diregular

digraphs. As their structure is much weaker than diregular digraphs, it is much more

difficult to construct digraphs with small excess that are not diregular and for the

same reason nice counting arguments that work for diregular digraphs break down in

the general setting.

Experience with searching for geodetic cages suggests that it is harder for a

non-diregular k-geodetic digraph to have order close to the Moore bound. This

motivates the following conjecture.

Conjecture 5.1. All (d, k)-geodetic-cages are diregular (i.e. the geodetic cages

coincide with the balanced cages).

In Section 9.5 we determine the geodetic cages for three pairs of (d, k); we will see that

in these small cases Conjecture 5.1 holds. This conjecture appears to be quite deep.

In fact, our intuition is somewhat misleading, for if Conjecture 5.1 holds then it is

only barely true. In [137] and [138] it is shown that from a diregular digraph of order

n, maximum out-degree d and diameter k that contains a pair of vertices with

identical out-neighbourhoods there can be derived a non-diregular digraph of order

n− 1, maximum out-degree d and diameter ≤ k by means of a ‘vertex deletion

scheme’. By these means large non-diregular digraphs are constructed from Kautz

digraphs in [137]. We now describe a ‘vertex-splitting’ construction that enables us to

derive a non-diregular (d, k; +(ε+ 1))-digraph from a (d, k; +ε)-digraph.

Theorem 5.2 (Vertex-splitting construction). If there exists a (d, k; +ε)-digraph,

then for any 0 ≤ r ≤ d there also exists a non-diregular (d, k; +(ε+ 1))-digraph with
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82 5 Diregularity of digraphs with small excess

minimum in-degree ≤ d− r.

Proof. Let G be a (d, k; +ε)-digraph and choose a vertex u with in-degree ≥ d. Form

a new digraph G′ by adding a new vertex w to G, setting N+(w) = N+(u) and

redirecting d− r arcs that are incident to u to be incident to w. Colloquially, the

vertex u is split into two vertices. G′ is easily seen to also be k-geodetic with

minimum out-degree ≥ d.

It follows from Theorem 5.2 that the order of a smallest possible non-diregular

k-geodetic digraph with minimum out-degree d exceeds N(d, k) by at most one. This

suggests the following strengthened form of Conjecture 5.1.

Conjecture 5.3. All smallest possible non-diregular k-geodetic digraphs with

minimum out-degree d can be derived from a diregular (d, k)-geodetic cage by the

vertex-splitting construction.

We already know from Lemma 4.1 that all digraphs with excess one are diregular. In

this chapter we will use counting arguments to rule out the existence of k-geodetic

digraphs with out-degree two and excess two that are not diregular. This will pave the

way for our complete classification of such digraphs in Chapter 6. This result is the

analogue for the directed degree/geodecity problem of the result of [137] that there are

no non-diregular digraphs with out-degree two and defect two. Finally in Section 5.4

we give some indications of the structure of non-diregular (2, k; +3)-digraphs.

To aid us in our discussion we define the sets S and S′ of a non-diregular

(d, k; +ε)-digraph as follows.

Definition 5.4.

S = {u ∈ V (G) : d−(u) < d}, S′ = {v ∈ V (G) : d+(v) > d}.

Therefore S is the set of vertices with ‘too small’ in-degree and S′ is the set of vertices

with ‘too large’ in-degree. In the following for convenience we will also refer to outlier

sets as Ω-sets.

5.2 Basic structural results

We begin our investigation of non-diregular digraphs with small excess with two

fundamental lemmas that connect the sets S and S′ to outlier sets and

James Tuite



5.2 Basic structural results 83

out-neighbourhoods. We will assume in these lemmas that the digraphs are

out-regular. By Lemma 3.10 this assumption will be true if the excess satisfies

ε < M(d, k − 1); this inequality will hold in all cases of interest in this chapter.

Lemma 5.5. For every vertex u of an out-regular, but non-diregular

(d, k; +ε)-digraph G we have

S ⊆
⋂

u∈V (G)

O(N+(u)).

Proof. Let v ∈ S and u ∈ V (G). Write N+(u) = {u1, u2, . . . , ud} and suppose that

v 6∈ O(ui) for 1 ≤ i ≤ d. Let v 6∈ N+(u). Then for 1 ≤ i ≤ d there is a ≤ k-path from

ui to v and so for 1 ≤ i ≤ d there is a ≤ (k − 1)-path from ui to N−(v). As

d−(v) ≤ d− 1 it follows by the Pigeonhole Principle that there exists an in-neighbour

v∗ of v with two ≤ k-paths from u to v∗, contradicting k-geodecity. Only trivial

changes are necessary to deal with the case v ∈ N+(u).

The second lemma is a generalisation of Lemma 2.2 of [132].

Lemma 5.6. For every vertex u of an out-regular, but non-diregular

(d, k; +ε)-digraph G the set S′ satisfies

S′ ⊆
⋂

u∈V (G)

N+(O(u)).

Proof. Let v′ ∈ S′ and u ∈ V (G). Suppose for a contradiction that v′ 6∈ N+(O(u)).

Then every in-neighbour of v′ is reachable by a ≤ k-path from u. If u 6∈ N−(v′), then

by the Pigeonhole Principle there must exist an out-neighbour u∗ of u with two

≤ (k − 1)-paths to N−(v′), so that there are two ≤ k-paths from u∗ to v′, a

contradiction. The result follows similarly if u ∈ N−(v′).

As every vertex of an out-regular (d, k; +ε)-digraph has exactly ε outliers, this

provides us with a bound on the size of the sets S and S′. This generalises Lemma 2.3

of [132].

Corollary 5.7. The size of the sets S and S′ are bounded above by

|S|, |S′| ≤ εd.

There are also natural restrictions on the in-degrees of vertices in S and S′.
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Lemma 5.8. For every vertex v′ ∈ S′ we have d+ 1 ≤ d−(v′) ≤ d+ ε.

Proof. Let v′ ∈ S′ and consider the Moore tree of depth k rooted at v′. Write

N+(v′) = {v′1, v′2, . . . , v′d}. Every in-neighbour of v′ lies in (
⋃d
i=1 T (v′i))

⋃
O(v′). By

k-geodecity, at most one in-neighbour of v′ lies in any set T (v′i). As there are d such

sets and ε vertices in O(v′), the result follows.

Lemma 5.9.
∑

v∈S(d− d−(v)) =
∑

v′∈S′(d
−(v′)− d).

Proof. By Lemma 3.10, the average in-degree must be d.

Lemma 5.10. If there is a v′ ∈ S′ with d−(v′) = d+ ε, then every Ω-set is contained

in N−(v′).

Proof. Let u ∈ V (G) with N+(u) = {u1, u2, . . . , ud}. Suppose that u 6∈ N−(v′). In

each of the d sets T (ui) there lies at most one in-neighbour of v′. It follows that every

outlier of u must be an in-neighbour of v′. The case u ∈ N−(v′) is similar.

5.3 Digraphs with out-degree two and excess two

In this section we will assume that G is a k-geodetic digraph with minimum

out-degree d = 2 and excess ε = 2, where k ≥ 2. We will occasionally have to consider

the case k = 2 separately. We now state the main result of this chapter.

Theorem 5.11 (Main Theorem). There are no non-diregular (2, k; +2)-digraphs for

k ≥ 2.

We will proceed to derive a list of possible in-degree sequences for G. Analysing each

in turn, we will obtain a contradiction in each case, thereby proving the main

theorem. Before embarking upon this program, we mention a final important lemma

that connects the case of excess two with previous work on digraphs with excess one.

This result generalises the proof strategy of Theorem 2 of [116] and can be viewed as

the ‘reverse operation’ to the vertex-splitting construction in Theorem 5.2.

Lemma 5.12 (Amalgamation Lemma). Suppose that G contains vertices u1, u2 such

that for all vertices u ∈ V (G) we have O(u) ∩ {u1, u2} 6= ∅. Then N+(u1) 6= N+(u2).

Proof. Suppose that N+(u1) = N+(u2). Denote the graph resulting from the

amalgamation of vertices u1, u2 by G∗. Inspection shows that if G∗ is not k-geodetic,
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then neither is G. G∗ is therefore a (2, k; +1)-digraph, contradicting Lemma 4.1.

5.3.1 There are no vertices in G with in-degree four

By Lemma 5.8, all vertices in S′ have in-degree three or four. In this section we shall

prove that all vertices in S′ must have in-degree three. If G contained a vertex with

in-degree zero, deleting this vertex would yield a digraph with out-degree two and

excess one, which is impossible by Lemma 4.1; hence every vertex in S has in-degree

one, so that by Lemma 5.9 we have |S| =
∑

v′∈S′(d
−(v′)− 2). By Corollary 5.7 we

have |S| ≤ 4, so it follows that if G contains a vertex of in-degree four, then the

possible in-degree sequences of G are (1, 1, 2, . . . , 2, 4), (1, 1, 1, 1, 2, . . . , 2, 4, 4),

(1, 1, 1, 2, . . . , 2, 3, 4) and (1, 1, 1, 1, 2, . . . , 2, 3, 3, 4). We can narrow down the

possibilities further as follows.

Lemma 5.13. If G contains a vertex v′ with in-degree four, then |S| = 4.

Proof. Suppose that |S| ≤ 3 and let d−(v′) = 4. By k-geodecity, every vertex has at

most one ≤ k-path to v′. The smallest possible number of initial vertices of ≤ k-paths

to v′ is achieved if S ⊂ N−(v′) and d(v′′, v′) ≥ k for v′′ ∈ S′ − {v′}, so that

M(2, k)+2 ≥ |T−k(v′)| ≥ 4+3M(2, k−2)+M(2, k−1) = 2+M(2, k)+M(2, k−2),

which is impossible for k ≥ 2.

The only possible in-degree sequences for G are thus (1, 1, 1, 1, 2, . . . , 2, 4, 4) and

(1, 1, 1, 1, 2, . . . , 2, 3, 3, 4). We need one final piece of structural information and then

we can proceed to analyse the possible in-degree sequences.

Corollary 5.14. If |S| = 4 and there is a vertex v′ ∈ S′ with in-degree four, then

S = N−(v′) and all Ω-sets are contained in S. If Ω ⊂ S is an outlier set, then so is

S − Ω.

Proof. Putting ε = 2 in Lemma 5.10, we see that O(u) ⊆ N−(v′) for all u ∈ V (G).

Hence for any vertex u we have by Lemma 5.5

S ⊆ O(N+(u)) ⊆ N−(v′).

As |S| = |N−(v′)| = 4, we must have equality in the above inclusion, i.e. S = N−(v′).
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Let O(u) = Ω. Write u− ∈ N−(u) and N+(u−) = {u, u+}. By Lemma 5.5 we have

Ω ∪O(u+) = O(u) ∪O(u+) = O(N+(u−)) = S,

so we must have O(u+) = S − Ω.

We are now in a position to show that neither of the remaining in-degree sequences

can arise.

Theorem 5.15. There are no (2, k; +2)-digraphs with in-degree sequence

(1, 1, 1, 1, 2, . . . , 2, 4, 4) for k ≥ 2.

Proof. Let v′1, v
′
2 be the vertices with in-degree four. By Corollary 5.14,

S = N−(v′1) = N−(v′2) and v′1 is not an outlier, so it follows that v′2 ∈ T−(v) for some

v ∈ S. But as N−(v′2) = S, it follows that there is a ≤ k-cycle through v,

contradicting k-geodecity.

Theorem 5.16. There are no (2, k; +2)-digraphs with in-degree sequence

(1, 1, 1, 1, 2, . . . , 2, 3, 3, 4) for k ≥ 2.

Proof. Let v′ be the vertex with in-degree four and let w1, w2 be the vertices with

in-degree three. Write S = {v1, v2, v3, v4}. By Corollary 5.14, N−(v′) = S and no

vertex outside S is an outlier. Without loss of generality, suppose that

O(v′) = {v1, v2}. By Corollary 5.14, {v3, v4} is also an Ω-set. By Lemma 5.6 we can

thus assume that

v1, v3 ∈ N−(w1), v2, v4 ∈ N−(w2).

Again by Lemma 5.6, {v1, v3} and {v2, v4} cannot be Ω-sets. The only other possible

Ω-sets are {v1, v4} and {v2, v3}. We see then that Ω ∩ {v1, v3} 6= ∅ for all Ω-sets and

N+(v1) = N+(v3), contradicting the Amalgamation Lemma.

It follows that no vertex of G has in-degree ≥ 4. By Lemma 5.9 and Corollary 5.7, we

must therefore have |S| = |S′| and |S| ≤ 4, which leaves us with only four in-degree

sequences to analyse, namely (1, 2, . . . , 2, 3), (1, 1, 2, . . . , 2, 3, 3), (1, 1, 1, 2, . . . , 2, 3, 3, 3)

and (1, 1, 1, 1, 2, . . . , 2, 3, 3, 3, 3). For |S| = r, we will write

S = {v1, . . . , vr}, S′ = {v′1, . . . , v′r}.
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v′1

v1 x y

z x1 x2 y1 y2

Figure 5.1: Subdigraph of any (2, 2; +2)-digraph with in-degree sequence
(1, 2, . . . , 2, 3)

5.3.2 Degree sequence (1, 2, . . . , 2, 3)

Theorem 5.17. There are no (2, k; +2)-digraphs with in-degree sequence

(1, 2, . . . , 2, 3) for k ≥ 3.

Proof. We obtain a lower bound for |T−k(v′1)| by assuming that v1 ∈ N−(v′1). By

k-geodecity, all vertices in T−k(v
′
1) are distinct, so

M(2, k)+2 ≥ |T−k(v′1)| ≥ 2+M(2, k−2)+2M(2, k−1) = 1+M(2, k)+M(2, k−2).

This inequality is not satisfied for k ≥ 3.

This leaves open the question of whether there exists a non-diregular

(2, 2; +2)-digraph with the given in-degree sequence. By the argument of the

preceding theorem, such a digraph must contain the subdigraph shown in Figure 5.1,

which also displays the vertex-labelling that we shall employ. We proceed to show

that no such digraph exists.

Evidently v′1 is not an outlier. Note that all arcs added to the subdigraph in

Figure 5.1 must terminate in the set {z, x1, x2, y1, y2}. G is out-regular with degree

d = 2, so we can assume without loss of generality that z → x1. By 2-geodecity,

x1 6→ z and x1 6→ x2, so we can assume that x1 → y1. Similarly, we must either have

y1 → z or y1 → x2.

Lemma 5.18. The out-neighbourhood of y1 is N+(y1) = {y, x2}.

Proof. Assume for a contradiction that y1 → z. x 6→ x1 or x2 by 2-geodecity. Also,

x 6→ z, or we would have two paths x1 → y1 → z and x1 → x→ z. Similarly, x 6→ y1,

or there would be paths x1 → y1 and x1 → x→ y1. Therefore x→ y2. We now
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analyse the possible out-neighbours of y. y 6→ y1, y2 and if y → x1, then there would

be paths y1 → z → x1 and y1 → y → x1. Likewise y 6→ z, so y → x2. We now see that

v′1 6→ x2 or y2; for example, if v′1 → y2, then there would be paths x→ y2 and

x→ v′1 → y2. Since v′1 cannot be adjacent to two vertices linked by an arc, we see

that v′1 cannot have two out-neighbours in N−2(v′1) without violating 2-geodecity.

Hence we are forced to conclude that y1 → x2.

Theorem 5.19. There are no (2, 2; +2)-digraphs with in-degree sequence

(1, 2, . . . , 2, 3).

Proof. By Lemma 5.18, we have y1 → x2. There are five possibilities for N+(v′1),

namely {z, x2}, {z, y1}, {z, y2}, {x1, y2} and {x2, y2}; we discuss each case in turn.

Case i): N+(v′1) = {z, x2}

If v1 → y1, then we have paths z → x1 → y1 and z → v1 → y1, so v1 6→ y1. Likewise,

v1 is not adjacent to z, x1 or x2. Thus v1 → y2. Similarly, x2 → y2. We must now have

x→ y1. However, this gives us paths x1 → y1 and x1 → x→ y1, which is impossible.

Case ii) N+(v′1) = {z, y1}

By 2-geodecity, y → x1; however, this yields paths y → v′1 → y1 and y → x1 → y1.

Case iii): N+(v′1) = {z, y2}

As there are paths x→ v′1 → z, x→ v′1 → y2 we cannot have x→ z or x→ y2.

Obviously x 6→ x1, x2, so x→ y1. Now there are paths x1 → y1 and x1 → x→ y1, a

contradiction.

Case iv): N+(v′1) = {x1, y2}

By 2-geodecity, we have successively v1 → x2, x→ z and y → z. But now as each of

z, x1 and x2 already has in-degree two, we are led to conclude that y2 → y1, violating

2-geodecity.

Case v): N+(v′1) = {x2, y2}

By 2-geodecity, v1 cannot be adjacent to any of z, x1, x2, y1 or y2.

Having exhausted all possibilities, our proof is complete.
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v′1 v′2

x v1 v2 y

v−1 v−2

T−(x)

T−(k−2)(v
−
1 ) T−(k−2)(v

−
2 )

T−(y)

Figure 5.2: Configuration for in-degree sequence (1, 1, 2, . . . , 2, 3, 3)

5.3.3 Degree sequence (1, 1, 2, . . . , 2, 3, 3)

We shall assume firstly that k ≥ 3 and deal with the special case of k = 2 separately.

Lemma 5.20. If k ≥ 3, then for each v′ ∈ S′ we have S ⊂ N−(v′).

Proof. Let v′ ∈ S′ and consider T−k(v
′). Suppose that neither v1 nor v2 lies in

N−(v′). Then for k ≥ 2, by k-geodecity

M(2, k) + 2 ≥ 4 + 2M(2, k − 3) + 2M(2, k − 1) = 2 +M(2, k) +M(2, k − 2),

a contradiction. Now suppose that |S ∩N−(v′)| = 1. We would then have

M(2, k) + 2 ≥ 3 + 2M(2, k − 1) +M(2, k − 3) = 2 +M(2, k) +M(2, k − 3),

which again is impossible for k ≥ 3.

Hence we can set N−(v′1) = {v1, v2, x}, N−(v′2) = {v1, v2, y}. This situation is

displayed in Figure 5.2, where N−(vi) = {v−i } for i = 1, 2. As the in-neighbourhoods

of v′1 and v′2 have at least v1 and v2 in common, we immediately obtain the following

corollary on the positions of v′1 and v′2.

Corollary 5.21. d(v′1, v
′
2) ≥ k and d(v′2, v

′
1) ≥ k. If d(v′1, v

′
2) = k, then

v′1 ∈ N−(k−1)(y), and similarly if d(v′2, v
′
1) = k, then v′2 ∈ N−(k−1)(x).

Corollary 5.22. |O−(v1)| = |O−(v2)| = 2k + 1.
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Proof. By k-geodecity, v2, v
′
1, v
′
2 6∈ T−(v1), so |T−k(v1)| = 1 +M(2, k − 1), yielding

|O−(v1)| = M(2, k) + 2− (1 +M(2, k − 1)) = 2k + 1. Similarly for v2.

Corollary 5.23. If d(v′1, v
′
2) = k, then |O−(y)| = 1 and if v′2 ∈ O(v′1), then

|O−(y)| = 2. Similarly, |O−(x)| = 1 if d(v′2, v
′
1) = k and |O−(x)| = 2 if v′1 ∈ O(v′2).

Proof. Similar to the proof of Corollary 5.22.

Lemma 5.24. |O−(v′1)| = |O−(v′2)| = 1.

Proof. Consider |T−k(v′)|, where v′ ∈ S′. Counting distinct vertices of G,

M(2, k) + 2 = 3 + 2M(2, k − 2) +M(2, k − 1) + |O−(v′)| = 1 +M(2, k) + |O−(v′)|.

Rearranging, we obtain |O−(v′)| = 1.

Lemma 5.25. The vertices x and y are distinct.

Proof. Suppose that x = y. Then N−(v′1) = N−(v′2), so that we must have

v′1 ∈ O(v′2), v
′
2 ∈ O(v′1) and hence by Corollary 5.23 |O−(x)| = 2. As

N+(v1) = N+(v2) = N+(x), by k-geodecity we have

O(v1) = {v2, x}, O(v2) = {v1, x}, O(x) = {v1, v2}, so O−(x) = {v1, v2}. By

Lemma 5.6, every Ω-set must intersect {v1, v2, x}, so it follows that every Ω-set

contains an element of {v1, v2}, contradicting the Amalgamation Lemma.

Lemma 5.26. Let Ω be an outlier set. Then either Ω∩ S 6= ∅ or Ω = {x, y}. {x, y} is

an Ω-set.

Proof. By Lemma 5.6 and the Amalgamation Lemma.

Let α denote the number of vertices of G with outlier set {v1, v2} and β the number

of vertices with outlier set {x, y}.

Lemma 5.27. α = β + 1.

Proof. By Corollary 5.22, v1 and v2 appear in 2(2k + 1)− α = 2k+1 + (2− α) Ω-sets.

By Lemma 5.26, any Ω-set that does not contain either v1 or v2 must equal {x, y}. It

follows that

M(2, k) + 2 = 2k+1 + 1 = 2k+1 + 2− α+ β,
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implying the result.

Corollary 5.28. v2 ∈ O(v1), v1 ∈ O(v2) and d(v′1, v
′
2) = d(v′2, v

′
1) = k.

Proof. Suppose that d(v1, v2) ≤ k. Then we must have

S′ ∩ T−(v2) = N+(v1) ∩ T−(v2) 6= ∅,

contradicting k-geodecity. Thus v2 ∈ O(v1) and similarly v1 ∈ O(v2).

Suppose that v′2 ∈ O(v′1). Then v1 and v2 have no out-neighbours in T−(y), so

O(v1) = {v2, y}, O(v2) = {v1, y}.

By Corollary 5.23, |O−(y)| = 2, so {x, y} is not an Ω-set, contradicting Lemma 5.26.

v′1 ∈ O(v′2) is impossible for the same reason.

Theorem 5.29. There are no (2, k; +2)-digraphs with in-degree sequence

(1, 1, 2, . . . , 2, 3, 3) for k ≥ 3.

Proof. It follows from Corollaries 5.23 and 5.28 and Lemma 5.26 that there is a

unique vertex z such that O(z) = {x, y}. Furthermore, no other Ω-set contains x or y.

Hence, by Lemma 5.27, α = 2, β = 1. Denote the two vertices with Ω-set {v1, v2} by

w,w′. Write N+(w) = {w1, w2}, N+(w′) = {w′1, w′2}.

It is easily seen that {w,w′} ∩ {x, y} = ∅. Suppose that w = x and set w2 = v′1. By

Corollary 5.28, we must have y ∈ Nk−1(v′1), so by k-geodecity x, y, v1, v2 6∈ T (w1), so

O(w1) = {v′1, v′2}, contradicting Lemma 5.26. The other cases are identical.

As O(w) = {v1, v2}, x, y ∈ T (w1) ∪ T (w2). Suppose that x and y lie in the same

branch, e.g. x, y ∈ T (w1). By k-geodecity and the definition of w,

{x, y, v1, v2} ∩ ({w} ∪ T (w2)) = ∅, so that O(w2) = {v′1, v′2}, which is impossible by

Lemma 5.26. Hence we can assume x ∈ T (w1), y ∈ T (w2). Then

N−(v′2)∩T (w1) = N−(v′1)∩T (w2) = ∅, so v′2 ∈ O(w1), v
′
1 ∈ O(w2). Applying the same

analysis to w′, we see that we can assume v′2 ∈ O(w′1), v
′
1 ∈ O(w′2). By Lemma 5.24, it

follows that w1 = w′1 and w2 = w′2, so that N+(w) = N+(w′). As O(w) = {v1, v2}, we

must have w′ ∈ Tk(w). Hence there is a ≤ k-cycle through either w1 or w2.

Now we turn to the case k = 2. The argument of Lemma 5.20 shows that each

member of S′ has an in-neighbour in S. This allows us to deduce the following lemma.
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Lemma 5.30. Neither element of S′ is adjacent to the other.

Proof. Suppose that v′2 → v′1. If |N−(v′1) ∩ S| = 1, then the order of G would be at

least 10, whereas |V (G)| = M(2, 2) + 2 = 9. Hence |N−(v′1) ∩ S| = 2 and since v′2 also

has an in-neighbour in S, there would be an element of S with two ≤ 2-paths to

v′1.

Theorem 5.31. There are no (2, 2; +2)-digraphs with in-degree sequence

(1, 1, 2, . . . , 2, 3, 3).

Proof. If S ⊂ N−(v′1) ∩N−(v′2), then the argument for k ≥ 3 remains valid, so we can

assume that N−(v′1) = {v1, x, y}, where {x, y} ∩ (S ∪ S′) = ∅. Simple counting shows

that O−(v′1) = ∅. We will write N−(x) = {x1, x2}, N−(y) = {y1, y2}, N−(v1) = {z}.
Without loss of generality, there are four possibilities: i) v2 = z, v′2 = x1, ii)

v2 = x1, v
′
2 = z, iii) v2 = y1, v

′
2 = x1 and iv) v2 = x1, v

′
2 = x2.

Case i) v2 = z, v′2 = x1:

v′2 has three in-neighbours. By Lemma 5.30, v′1 6∈ N−(v′2). By 2-geodecity,

N−(v′2) ∩ T−(x) = ∅. v1 and z = v2 cannot both be in-neighbours of v′2, so v′2 must

have exactly two in-neighbours in T−(y); necessarily y1, y2 ∈ N−(v′2) but y 6∈ N−(v′2).

If v2 → v′2, then there is no vertex other than x that v′2 can be adjacent to without

violating 2-geodecity, so we must have v1 → v′2 and v′2 → v2. As we already have a

2-path v2 → v1 → v′2, v2 cannot be adjacent to v′2, y1 or y2, so v2 → x2. As all

in-neighbours of v2 and v′2 are accounted for, we must have y → x2. But now the only

possible out-neighbourhood of v′1 is {y1, y2}, which gives two 2-paths from v′1 to v′2.

Case ii) v2 = x1, v
′
2 = z:

As v1 6→ v′2, Lemma 5.20 shows that v2 → v′2. Without loss of generality, N−(v′2)

must be one of {v2, x2, y1}, {v2, x2, y} or {v2, y1, y2}. Suppose that

N−(v′2) = {v2, x2, y1}. Then v′2 → y2 and N+(v′1) is either {v2, y2} or {x2, y2}. If

N+(v′1) = {v2, y2}, then we can deduce that x→ y1, y → x2 and y2 → x2, so that

there are paths y2 → x2 and y2 → y → x2, so assume that N+(v′1) = {x2, y2}. As y

can already reach x2 by a 2-path, there is an arc y → v2. v2 has a unique

in-neighbour, so y2 → x2 and hence there are paths v′1 → x2 and v′1 → y2 → x2.

If N−(v′2) = {v2, x2, y}, then y1 cannot be adjacent to any of v′2, v2, x2 or y2 without

violating 2-geodecity. Hence we can assume that N−(v′2) = {v2, y1, y2}. Now we must
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have v′2 → x2. Without loss of generality, x2 → y1 and x→ y2. We cannot have

y → x2, or there would be paths y1 → y → x2 and y1 → v′2 → x2, so y → v2. v
′
1

cannot be adjacent to both y1 and y2, so v′1 → x2 and hence also v′1 → y2. Now the

only possible remaining arc is v1 → y1, so that we have paths v′2 → v1 → y1 and

v′2 → x2 → y1, which is impossible.

Case iii) v2 = y1, v
′
2 = x1:

N−(v′2) must be either {z, v2, y2} or {v1, v2, y2}. In the first case, there are no vertices

other than x that v′2 can be adjacent to without violating 2-geodecity, so

N−(v′2) = {v1, v2, y2}. By 2-geodecity, v′2 → z. If y → z, then there would be distinct

≤ 2-paths from v2 to z, so y → x2. v
′
1 is not adjacent to both v2 and y2 and is not

adjacent to x2, or there would be two ≤ 2-paths from y to x2, so we see that v′1 → z,

implying that there are paths v1 → v′2 → z and v1 → v′1 → z.

Case iv) v2 = x1, v
′
2 = x2:

As v2 6→ v′2, we have v1 → v′2 and N−(v′2) = {v1, y1, y2}. Hence v′2 → z. As y1 can

already reach z by a 2-path, y 6→ z, so y → v2. z must be adjacent to y1 or y2, but

can already reach v′2 via v1, yielding a contradiction.

Having dealt with every possibility, the result is proven.

5.3.4 Degree sequence (1, 1, 1, 2, . . . , 2, 3, 3, 3)

This represents the most difficult case to deal with. Again, we will discuss the cases

k = 2 and k ≥ 3 separately.

Lemma 5.32. If k ≥ 2, then for every u ∈ V (G) we have |O(u) ∩ S| = 1 or 2. There

exists an Ω-set contained in S.

Proof. Let u ∈ V (G) be arbitrary. Let u− be an in-neighbour of u and let u+ be the

other out-neighbour of u−. By Lemma 5.5, if S ∩O(u) = ∅, then we would have

S ⊆ O(u+). Since |S| = 3 and |O(u+)| = 2, this is impossible. In fact, as

S ⊆ O(u) ∪O(u+), at least one of O(u) and O(u+) must be entirely contained in

S.

Lemma 5.33. If k ≥ 2, then for each v′ ∈ S′, S ∩N−(v′) 6= ∅.

Proof. Assume that v′ is an element of S′ such that S ∩N−(v′) = ∅. Then we obtain
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a lower bound for |T−k(v′)| by assuming that all members of S lie in N−2(v′), whilst

v′ is at distance ≥ k from the remaining members of S′. Recalling that M(2, k) = 0

for k < 0, this yields

|T−k(v′)| ≥ 6+3M(2, k−3)+M(2, k−2)+M(2, k−1) = 3+M(2, k)+M(2, k−3),

a contradiction.

For i = 1, 2, 3, we will say that a vertex v′ ∈ S′ is Type i if |S ∩N−(v′)| = i. As each

member of S has out-degree two, it follows that if for i = 1, 2, 3 there are Ni vertices

of Type i then N1 + 2N2 + 3N3 ≤ 6. We now determine the number of vertices of each

type.

Lemma 5.34. Let k ≥ 2. Suppose that v′ ∈ S′ is Type 1, with N−(v′) ∩ S = {v}.
Then for v∗ ∈ S − {v} we have d(v∗, v′) = 2 and for v′′ ∈ S′ − {v′} we have

d(v′′, v′) = k. Also O−(v′) = ∅.

Proof. The results for k = 2 follow by simple counting, so assume that k ≥ 3. Let v′, v

be as described. Consider T−k(v
′). We obtain a lower bound for |T−k(v′)| by

assuming that S − {v} ⊂ N−2(v′) and that (S′ − {v′}) ∩ T−(v′) = ∅. Hence

|V (G)| ≥ |T−k(v′)| ≥ 5+2M(2, k−3)+M(2, k−2)+M(2, k−1) = 2+M(2, k) = |V (G)|.

Clearly, if v′ were any closer to the remaining members of S′ or if v′ were any further

from the vertices in S − {v}, |T−k(v′)| would have order greater than 2 +M(2, k),

which is impossible by k-geodecity. Evidently all vertices of G lie in T−k(v
′), so

O−(v′) = ∅.

Our reasoning for the cases k ≥ 3 and k = 2 must now part company, so we will now

assume that k ≥ 3 and return to the case k = 2 presently.

Lemma 5.35. For k ≥ 3, no two elements of S′ are adjacent to one another.

Proof. Suppose that there is an arc (v′, v′′) in G, where v′, v′′ ∈ S′. Consider T−k(v
′′).

We obtain a lower bound for |T−k(v′′)| by assuming that v′′ is Type 2 and that v′ is

Type 1, whilst v′′ lies at distance ≥ k from the remaining vertex in S′. Then by

inspection

|T−k(v′′)| ≥ 4+M(2, k−1)+2M(2, k−2)+M(2, k−3) = 2+M(2, k)+M(2, k−3),
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which is impossible for k ≥ 3.

Lemma 5.36. There are no Type 3 vertices.

Proof. Suppose for a contradiction that v′1 ∈ S′ is a Type 3 vertex, i.e. N−(v′1) = S.

As N1 + 2N2 + 3N3 ≤ 6, S′ must contain a Type 1 vertex. We can assume that v′2 is

Type 1 and N+(v1) = {v′1, v′2}, N+(v2) = {v′1, v′3}. It follows by Lemma 5.34 that

v2 ∈ N−2(v′2). Therefore we must have N+(v2) ∩N−(v′2) = {v′1, v′3} ∩N−(v′2) 6= ∅,
which contradicts Lemma 5.35.

Lemma 5.37. There is a Type 2 vertex.

Proof. Assume for a contradiction that each vertex in S′ is Type 1. Suppose that the

sets S ∩N−(v′i), i = 1, 2, 3 are not all distinct; say (v1, v
′
1) and (v1, v

′
2) are arcs in G.

Since v1 has out-degree two, we can assume that (v2, v
′
3) is also an arc. By

Lemma 5.34, we have v1 ∈ N−2(v′3). As the out-neighbours of v1 are v′1 and v′2, it

follows that either (v′1, v
′
3) or (v′2, v

′
3) is an arc, contradicting Lemma 5.35.

Hence we can assume that N+(vi) = {v′i, v
+
i } for i = 1, 2, 3 where v+i 6∈ S′ for

i = 1, 2, 3. By Lemma 5.32, there is an outlier set Ω contained in S. By Lemma 5.6,

S′ must be contained in N+(Ω); by inspection this is impossible.

Lemma 5.38. There is a Type 1 vertex.

Proof. Suppose that N2 = 3. We can set N−(v′i) ∩ S = S − {vi} for i = 1, 2, 3. Then

for i 6= j we must have d(v′i, v
′
j) ≥ k, as N−(v′i) ∩N−(v′j) 6= ∅. As N+(v3) = {v′1, v′2},

it follows that v′3 ∈ O(v3). By Lemma 5.6, S′ ⊆ N+(O(v3)). By Lemma 5.35,

N+(v′3) ∩ S′ = ∅, so, as G has out-degree d = 2, this is not possible.

Lemma 5.39. Let v′ be a Type 2 vertex. Then S ∩N−(v′) is not an Ω-set. Also,

every vertex in G can reach exactly one member of S ∩N−(v′) by a ≤ k-path. If

v′, v′′ ∈ S′ are both Type 2 vertices, then S ∩N−(v′) 6= S ∩N−(v′′).

Proof. For definiteness, suppose that v′1 is a Type 2 vertex, with

S ∩N−(v′1) = {v1, v2}. Suppose that {v1, v2} is an Ω-set. By Lemma 5.6,

S′ ⊆ N+{v1, v2}. We can thus suppose that there are arcs (v1, v
′
2) and (v2, v

′
3) in G.

By Lemma 5.38 we can assume that v′2 is Type 1. By Lemma 5.34, v2 ∈ N−2(v′2) so

that N+(v2) ∩N−(v′2) = {v′1, v′3} ∩N−(v′2) 6= ∅, contradicting Lemma 5.35. Therefore

{v1, v2} is not an Ω-set.
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Let u be a vertex that can reach both v1 and v2 by a ≤ k-path. Let u− ∈ N−(u) and

N+(u−) = {u, u+}. By Lemma 5.5 we must then have O(u+) = {v1, v2}, a

contradiction. Suppose now that v′1 and v′2 are Type 2 vertices and

S ∩N−(v′1) = S ∩N−(v′2) = {v1, v2}. Then N+(v1) = N+(v2), which by the

preceding argument contradicts the Amalgamation Lemma.

Corollary 5.40. There are two Type 1 vertices and a unique Type 2 vertex.

Proof. Suppose that v′1 and v′2 are Type 2 vertices, so that v′3 is Type 1. By

Lemma 5.39 we can assume that S ∩N−(v′1) = {v1, v2}, S ∩N−(v′2) = {v1, v3} and

v2 ∈ N−(v′3). By Lemma 5.34, we then have v1, v3 ∈ N−2(v′3). It follows that v1 has

an out-neighbour in N−(v′3), contradicting Lemma 5.35.

We can therefore assume for the remainder of this subsection that v′1 and v′2 are Type

1 and v′3 is Type 2. Write x for the in-neighbour of v′3 that does not lie in S.

Lemma 5.41. S ∩N−(v′1) = S ∩N−(v′2).

Proof. Suppose that S ∩N−(v′1) 6= S ∩N−(v′2). By Lemma 5.34, without loss of

generality we can put

v1 ∈ N−(v′1), v2, v3 ∈ N−2(v′1), v2 ∈ N−(v′2) and v1, v3 ∈ N−2(v′2).

We cannot have N+(v1) ⊂ S′, or v1 ∈ N−2(v′2) would imply that two vertices of S′ are

adjacent. Thus v1 6∈ N−(v′3). Similar reasoning applies to v2. However, there are two

members of S in N−(v′3), a contradiction.

We can now set without loss of generality v1 ∈ N−(v′1) ∩N−(v′2),

v2, v3 ∈ N−2(v′1) ∩N−2(v′2) and S ∩N−(v′3) = {v2, v3}. It follows from Lemma 5.39

that for every vertex u we have |O(u) ∩ {v2, v3}| = 1. We can assume that

v3 ∈ O(v1), v2 6∈ O(v1). Write N+(v2) = {v′3, v
+
2 } and N+(v3) = {v′3, v

+
3 }. By the

Amalgamation Lemma v+2 6= v+3 .

Lemma 5.42. v′3 is not an outlier.

Proof. Suppose that for some outlier set we have v′3 ∈ Ω. By Lemma 5.35,

N+(v′3) ∩ S′ = ∅, so that we cannot have S′ ⊆ N+(Ω), contradicting Lemma 5.6.
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As there is a ≤ k-path from v1 to v2, either v′1 or v′2 lies in T−(v2); assume that

v′1 ∈ T−(v2). Suppose that d(v′1, v2) ≤ k − 2. There is a path of length 2 from v2 to

v′1, so there would be a ≤ k-cycle through v′1, which is impossible. It follows that

d(v′1, v2) = k − 1, so that d(v′1, v
′
3) = k.

As v1 must lie in T−k(v
′
3), we must have v′2 ∈ T−(v′3). If d(v′2, v

′
3) ≤ k − 2, then there

would be two ≤ k-paths from v2 and v3 to v′3. Thus d(v′2, v
′
3) = k − 1. If v′2 lies in

N−(k−2)(v2) or N−(k−2)(v3), there would be a ≤ k-cycle in G through v2 or v3

respectively. Hence v′2 ∈ N−(k−2)(x) and v′1 6∈ T−(x).

Corollary 5.43. x is not an outlier.

Proof. As v′2 ∈ N−(k−2)(x) and v′1, v
′
3, v2, v3 6∈ T−(x), |T−k(x)| = M(2, k) + 2.

Lemma 5.44. v1 6∈ {v+2 , v
+
3 }, i.e. v1 is not an out-neighbour of v2 or v3.

Proof. Suppose that v1 = v+2 . Denote the in-neighbour of v′1 that does not belong to

{v1, v+3 } by v∗1 and the in-neighbour of v′2 that does not belong to {v1, v+3 } by v∗2. By

Lemma 5.34, v′1 and v′2 are not outliers and d(v′2, v
′
1) = d(v′3, v

′
1) = k. We cannot have

v′2 ∈ T−(v1), or there would be a k-cycle through v1. Also v′2 6∈ T−(v+3 ), or there

would be a k-cycle through v+3 . Likewise, v′3 6∈ T−(v1), or there would be a

(k − 1)-cycle through v2, and v′3 6∈ T−(v+3 ), or there would be two ≤ k-paths from v3

to v+3 . It follows that v′2, v
′
3 ∈ N−(k−1)(v∗1) and likewise we have v′1, v

′
3 ∈ N−(k−1)(v∗2).

As S ∩ T−(v∗1) = S ∩ T−(v∗2) = ∅, it follows that |T−k(v∗1)| = |T−k(v∗2)| = M(2, k) + 2,

so that O−(v∗1) = O−(v∗2) = ∅. By Lemma 5.6, possible Ω-sets are

{v2, v1}, {v2, v+3 }, {v3, v1}, {v3, v
+
3 }.

But then every Ω-set contains either v1 or v+3 and N+(v1) = N+(v+3 ), contradicting

the Amalgamation Lemma.

Theorem 5.45. There are no (2, k; +2)-digraphs with in-degree sequence

(1, 1, 1, 2, . . . , 2, 3, 3, 3) for k ≥ 3.

Proof. By Lemma 5.44, N−(v′1) = N−(v′2) = {v1, v+2 , v
+
3 }. By Lemma 5.34, we have

v′2 ∈ N−k(v′1). But it is easy to see that whether v′2 lies in T−(v1), T
−(v+2 ) or T−(v+3 ),

there will be a k-cycle through v1, v
+
2 or v+3 respectively.

It remains only to deal with the case k = 2. First we need to prove the equivalent of

Lemma 5.35, i.e. that S′ is an independent set.
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Lemma 5.46. For k = 2, no two members of S′ are adjacent.

Proof. Suppose that v′2 → v′1. By 2-geodecity, v′1 must be Type 2, v′2 is Type 1 and

O−(v′1) = ∅. By the same reasoning, if v′3 → v′2, then v′2 would be Type 2, a

contradiction. Hence we can assume that

N−(v′1) = {v1, v2, v′2}, N−(v′2) = {v3, x, y}, N−(v1) = {z} and N−(v2) = {v′3}, where

d−(x) = d−(y) = d−(z) = 2.

Obviously v2 6→ v′3, so v′3 is either Type 1 or Type 2. Suppose that v3 → v′3. Then v′2

cannot be adjacent to v′3, or there would be two ≤ 2-paths from v3 to v′3. Hence

v′2 → z. This implies that x and y are not adjacent to z, as they can already reach z

via v′2. Therefore x and y are adjacent to v′3. Now v′3 cannot be adjacent to any of

v3, x or y, so v′3 → z, thereby creating paths v3 → v′3 → z and v3 → v′2 → z.

Alternatively, one can see that N−(v′2) = N−(v′3), which is impossible, since

|T−2(v′2)| = 9. Therefore v3 6→ v′3. Applying the same approach to x and y, we see

that these vertices also have no arcs to v′3. Hence all of v3, x and y are adjacent to z.

However, as d−(z) = 2, this is not possible.

Lemma 5.47. Every vertex in S′ is Type 2.

Proof. Suppose that S′ contains a Type 1 vertex; say v′1 is Type 1, with

N−(v′1) = {v1, x, y}, where d−(x) = d−(y) = 2. Write

N−(v1) = {z}, N−(x) = {x1, x2}, N−(y) = {y1, y2}.

Note that we cannot have |N−(x) ∩ S′| = 2 or |N−(y) ∩ S′| = 2. For suppose that

y1 = v′2, y2 = v′3. v
′
1 is not an in-neighbour of either of these vertices by Lemma 5.46.

By 2-geodecity no in-neighbourhood can contain both end-points of an arc, so the

in-neighbourhoods of v′2 and v′3 must consist of one vertex from {z, v1} and both of

x1, x2. However, x1 and x2 have out-degree two, so this is not possible. The same

argument shows that we cannot have |N−(x)∩ S′| = |N−(y)∩ S′| = 1, for then v′2 and

v′3 would have to be adjacent, in violation of Lemma 5.46. There are thus two

possibilities up to isomorphism: i) v′2 = z, v′3 = x1, v2 = x2, v3 = y1 or ii)

v′2 = z, v′3 = x1, v2 = y1, v3 = y2.

In case i), as S′ is independent we must have N−(v′3) = {v1, v3, y2}. However, no arc

from v′3 can be inserted to N−2(v′1) without violating either 2-geodecity or

Lemma 5.46.

In case ii), we must have N−(v′3) = S, so that v′2 cannot have any in-neighbours in S,
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contradicting Lemma 5.33. Therefore S′ contains no Type 1 vertices. From

N1 + 2N2 + 3N3 ≤ 6, it now follows that every vertex of S′ is Type 2 and N+(vi) ⊂ S′

for i = 1, 2, 3.

Distinct vertices from S cannot have identical out-neighbourhoods; for example, if

N+(v1) = N+(v2) = {v′1, v′2}, then v′3 could not be Type 2. For i = 1, 2, 3, we can

therefore set N−(v′i) = (S − {vi}) ∪ {xi}, where d−(xi) = 2. As S′ ∩N−(S′) = ∅, we

see that N+(vi) ∩ T−(v′i) = ∅ for i = 1, 2, 3, so that O−(v′i) = {vi} for i = 1, 2, 3. We

now have enough information to complete the proof.

Theorem 5.48. There are no (2, 2; +2)-digraphs with in-degree sequence

(1, 1, 1, 2, 2, 2, 3, 3, 3).

Proof. Write N−(vi) = {zi} for i = 1, 2, 3 and put N−(x1) = {y1, y2}. There are three

distinct cases to consider, depending on the position of v′2 and v′3 in T−2(v
′
1): i)

v′2 = z2, v
′
3 = z3, ii) v′2 = z2, v

′
3 = y1 and iii) v′2 = y1, v

′
3 = y2.

Consider case i). v′1 is adjacent to neither v′2 nor v′3 by Lemma 5.46 and cannot be

adjacent to both elements of N−(x1) by 2-geodecity. Hence we can assume that

N+(v′1) = {v1, y2}. Hence v′1 has paths of length two to v′2 and v′3 via v1. It follows

that y2 cannot be adjacent to any of v1, v
′
2, v
′
3 or y1 without violating 2-geodecity.

In case ii), the only vertex other than v1 and v2 that can be an in-neighbour of v′3 is

z3, but in this case v′3 cannot be adjacent to any of y2, z3, v1 or v′2, so we have a

contradiction. Finally, in case iii) there are two 2-paths from v1 to x1.

5.3.5 Degree sequence (1, 1, 1, 1, 2, . . . , 2, 3, 3, 3, 3)

We turn to our final in-degree sequence. In this case the abundance of elements in S

and S′ enables us to easily classify all Ω-sets of G. A parity argument based on the

number of occurrences of the outlier sets then allows us to obtain a contradiction.

Lemma 5.49. For every vertex u, O(N+(u)) = S, N+(O(u)) = S′ and O(u) ⊂ S. If

Ω is an outlier set, so is S − Ω.

Proof. By Lemmas 5.5 and 5.6 we have S ⊆ O(N+(u)) and S′ ⊆ N+(O(u)). As

|S| = |S′| = 4, we must have equality in the inclusions. If O(u) = Ω, let u−, u+ be

such that N+(u−) = {u, u+}; then we must have O(u)∪O(u+) = S, so that O(u) ⊂ S
and O(u+) = S − Ω.
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Corollary 5.50. For all v′ ∈ S′, |N−(v′) ∩ S| = 2.

Proof. Let N+(v′) = {w1, w2}. Let O(w1) = Ω1, O(w2) = Ω2, where Ω1 ∪ Ω2 = S.

Write N+(w1) = {w3, w4} and N+(w2) = {w5, w6}. By k-geodecity, at most one

in-neighbour of v′ lies in T (w3) and at most one lies in T (w4) and furthermore

w1 6∈ N−(v′). It follows that an in-neighbour of v′ lies in Ω1. Applying the argument

to w2, another in-neighbour of v′ lies in Ω2. Hence |N−(v′) ∩ S| ≥ 2 for all v′ ∈ S′.

Suppose that |N−(v′1) ∩ S| = 3. As |N−(v′i) ∩ S| ≥ 2 for i = 2, 3, 4, we must have∑4
i=1 d

+(vi) ≥ 9, which is impossible.

Lemma 5.51. No two elements of S have the same out-neighbourhood.

Proof. Suppose that V ⊂ S, |V | = 2 and |N+(V )| = 2. By Lemma 5.49, V is not an

Ω-set, as N+(V ) 6= S′. Suppose that there exists a vertex u that can reach both

vertices of V by ≤ k-paths. Then by Lemma 5.49 O(u) = S − V , so that

S − (S − V ) = V must be an Ω-set, a contradiction. Now we have a pair of vertices

with identical out-neighbourhoods and with non-empty intersection with every Ω-set,

violating the Amalgamation Lemma.

Lemma 5.52. There are only two distinct Ω-sets.

Proof. Let u ∈ V (G) and N+(u) = {u1, u2} and write O(u1) = Ω1, O(u2) = Ω2, where

Ω1 ∪ Ω2 = S. By Lemma 5.51, for 1 ≤ i, j ≤ 4 and i 6= j

N−(v′i) ∩ S 6= N−(v′j) ∩ S.

None of the sets N−(v′i) ∩ S can be Ω-sets, since any such set has at most three

out-neighbours. There are
(
4
2

)
two-element subsets of S, all of which are accounted for

by the two outlier sets Ω1 and Ω2 and the four sets N−(v′i) ∩ S.

Theorem 5.53. There are no (2, k; +2)-digraphs with in-degree sequence

(1, 1, 1, 1, 2, . . . , 2, 3, 3, 3, 3) for k ≥ 2.

Proof. Let the distinct outlier sets of G be Ω1 and Ω2. As G has odd order 2k+1 + 1,

one of these sets must occur more frequently as an Ω-set than the other. Take an

arbitrary vertex u with O(u) = Ω1 and consider Tk(u) ∪ Ω1, which contains all

vertices of G without repetitions. By Lemmas 5.49 and 5.52, for every vertex w of G

with out-neighbours w1, w2, we have O(w1) = Ω1, O(w2) = Ω2 or vice versa, so half of
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the vertices in Tk(u)− {u} have outlier set Ω1 and half have outlier set Ω2. As

O(u) = Ω1 and each element of Ω1 has outlier-set Ω2, it follows that the set Ω2 occurs

2k + 1 times as an Ω-set and Ω1 occurs 2k times. However, repeating the argument

with a vertex u with O(u) = Ω2 leads to the opposite conclusion, a contradiction.

This concludes the proof of the main theorem of this chapter.

5.4 Digraphs with degree two and excess three

In the preceding section we saw that all (2, k; +2)-digraphs are diregular. This raises

the question of whether a (2, k; +3)-digraph must be diregular for k ≥ 3. In this

section we briefly indicate our best results on the structure of a non-diregular

(2, k; +3)-digraph.

Suppose that G is a non-diregular (2, k; +3)-digraph. By Corollary 5.7, the size of the

sets S and S′ is bounded above by 6 and by Lemma 5.8 the largest possible in-degree

of a vertex in S′ is 5. Firstly we show that this upper limit on the in-degree cannot be

met.

Theorem 5.54. The largest possible in-degree of a vertex in S′ is 4.

Proof. Suppose that v′ ∈ S′ has in-degree d−(v′) = 5. We can obtain a lower bound

for the number of vertices in T−k(v
′) by assuming that every vertex in N−(v′) lies in

S, as well as one vertex in N−2(v′); this yields

|T−k(v′)| ≥ 7 + 4M(2, k − 2) +M(2, k − 3) = 2k+1 + 2k−2 + 2,

which is too large.

Now we examine the case of a vertex v′ in S′ with in-degree 4.

Theorem 5.55. If v′ ∈ S′ has in-degree d−(v′) = 4, then |S| ≥ 4.

Proof. If |S| ≤ 3, then we get a lower bound for the size of T−k(v
′) by assuming that

S ⊂ N−(v′); this gives the bound

|T−k(v′)| ≥ 4 +M(2, k − 1) + 3M(2, k − 2) = 2k+1 + 2k−1,

which is too large for k ≥ 3.
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Theorem 5.56. If there is a vertex v′ ∈ S′ with in-degree d−(v′) = 4 and |S| = 4,

then S = N−(v′).

Proof. Suppose that N−(v′) 6= S. Then we get a lower bound for |T−k(v′)| by

assuming that |S ∩N−(v′)| = 3 and the other member of S lies in N−2(v′); this yields

|T−k(v′)| ≥ 5 +M(2, k − 3) + 2M(2, k − 2) +M(2, k − 1) = 2k+1 + 2k−2 + 1,

which is too large for k ≥ 3. Therefore S = N−(v′).

The size of S also cannot be too small.

Theorem 5.57. The set S has size at least two.

Proof. Suppose that |S| = 1. Then S′ consists of a single vertex v′ with in-degree 3.

We obtain a lower bound on the size of T−k(v
′) by assuming that the single vertex v

of S satisfies v → v′, which yields the bound

M(2, k) + 3 ≥ |T−k(v′)| ≥M(2, k) +M(2, k − 2) + 1,

which is impossible for k ≥ 3.

These results significantly restrict the possible in-degree sequences of a non-diregular

(2, k; +3)-digraph; however, the large number of remaining in-degree sequences means

that we as yet have no proof that (2, k; +3)-digraphs must be diregular.
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Chapter 6

Diregular digraphs with small excess

In Section 5 we showed that any digraphs with out-degree two and excess two must

be diregular. In this chapter we use this result as a stepping stone to a complete

classification of digraphs with out-degree two and excess two. In Section 6.2 we prove

that there are no (2, k; +2)-digraphs for k ≥ 3. We consider the case k = 2 separately

in Section 6.3; we will see that there do exist (2, 2; 2)-digraphs, which will give our

first non-trivial examples of geodetic cages. In Section 6.4 we push our method

further to classify diregular (2, k; +3)-digraphs for k ≥ 4. The case k = 3 is considered

separately in Section 6.5.

We also record here the labelling convention that we will employ for vertices at

distance ≤ k from a vertex u of G. The out-neighbours of u will be labelled according

to N+(u) = {u1, u2} and vertices at a greater distance from u are labelled inductively

as follows: N+(u1) = {u3, u4}, N+(u2) = {u5, u6}, N+(u3) = {u7, u8} and so on. See

Figure 6.1 for an example. In this chapter we will also say that a vertex u can reach a

vertex v in a digraph G if there is a ≤ k-path from u to v.

6.1 The Neighbourhood Lemma

By Lemma 4.1, the outlier function of a digraph G with excess one is an

automorphism of G [132]. This parallels the result of [15] that the repeat function of

a digraph with defect one is also an automorphism. As was demonstrated in

Chapter 4, this is a very useful result. However for larger values of the defect δ or

excess ε this result no longer holds. For small defect it was shown in [131] that a more

general multiset relation N+(R(u)) = R(N+(u)) holds. We now prove the

Neighbourhood Lemma for digraphs with small excess, which will be our fundamental

tool in this chapter. For a set-valued function Ψ of the vertices of a digraph G and a

subset U ⊆ V (G) we define the multiset Ψ(U) to be the union of the sets Ψ(u), u ∈ U ,

counted by multiplicity.

Lemma 6.1 (Neighbourhood Lemma). Let G be a diregular (d, k; +ε)-digraph for any

d, k ≥ 2 and ε ≥ 1. Then for any vertex u of G we have O(N+(u)) = N+(O(u)) as

multisets.
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Proof. As G is diregular, any vertex can occur at most d times in either multiset.

Suppose that a vertex v occurs t times in N+(O(u)). Let

N−(v) = {v1, v2, . . . , vt, vt+1, . . . , vd} and N+(u) = {u1, u2, . . . , ud}, where

O(u)∩N−(v) = {v1, v2, . . . , vt}. Suppose that u 6∈ N−(v). Since no set T (ui) contains

more than one in-neighbour of v by k-geodecity, there are exactly d− t
out-neighbours of u that can reach v by a ≤ k-path, so that v occurs t times in

O(N+(u)). A similar argument deals with the case u ∈ N−(v). As both multisets

have size dε, this implies the result.

6.2 Diregular digraphs with degree two and excess two

We will now make use of the Neighbourhood Lemma in order to show that there are

no diregular (2, k; +2)-digraphs for k ≥ 3. We know from Chapter 5 that all digraphs

with out-degree two and excess two are diregular, so this implies that ε(2, k) ≥ 3 for

k ≥ 3. The case k = 2 will need to be handled separately in the next section.

The strategy used in [118] to deal with digraphs with degree two and defect two is to

use counting arguments on two directed Moore trees rooted at vertices that share a

unique common out-neighbour. We commence our analysis of (2, k; +2)-digraphs by

showing that there must exist such a pair of vertices. For even ε this follows from a

simple parity argument; in Section 6.4 we will have to use a slightly more

sophisticated approach to establish the existence of such a pair.

Lemma 6.2. If G is a diregular (2, k; +ε)-digraph, where ε is even, then G contains a

pair of vertices u, v with a single common out-neighbour, i.e. |N+(u) ∩N+(v)| = 1.

Proof. Suppose for a contradiction that G contains no such pair of vertices. Define a

map φ : V (G)→ V (G) as follows. Let u+ be an out-neighbour of a vertex u and let

φ(u) be the in-neighbour of u+ distinct from u. By our assumption, it is easily verified

that φ is a well-defined bijection with no fixed points and with square equal to the

identity. It follows that G must have even order, whereas M(2, k) + ε is odd.

On the other hand, it is conceivable that a digraph with small excess could contain a

pair of vertices with identical out- or in-neighbourhoods (we will see that this does

actually occur for geodetic cages - see Figure 6.7); however in such a case the outlier

sets of these vertices are strongly constrained. The following lemma is a generalisation

of Lemma 4.18.

Lemma 6.3. For k ≥ 2, let u and v be distinct vertices of a (2, k; +2)-digraph such
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u

u1 u2 v1

u4 u5 u6

v

u3 v3 v4

Figure 6.1: Configuration for k ≥ 3

that N+(u) = N+(v) = {u1, u2}. Then u1 ∈ O(u2), u2 ∈ O(u1) and there exists a

vertex x such that O(u) = {v, x}, O(v) = {u, x}.

Proof. Suppose that u can reach v by a ≤ k-path. Then v ∈ T (u1) ∪ T (u2). As

N+(v) = N+(u), it follows that there would be a ≤ k-cycle through v, contradicting

k-geodecity. If O(u) = {v, x}, then x 6= v and x 6∈ T (u1) ∪ T (u2), so that v cannot

reach x by a ≤ k-path. Similarly, if u1 can reach u2 by a ≤ k-path, then we must have

{u, v} ∩ T (u1) 6= ∅, which is impossible.

We will now prove the following classification of (2, k; +2)-digraphs.

Theorem 6.4. There are no diregular (2, k; +2)-digraphs for k ≥ 3.

For the remainder of this section G will stand for a diregular (2, k; +2)-digraph, where

k ≥ 2; we will investigate the properties of G and arrive at a contradiction, thereby

proving Theorem 6.4. By Lemma 6.2 we can fix a pair of vertices u, v of G with a

unique common out-neighbour. In accordance with our vertex-labelling convention,

we have the situation in Figure 6.1. A triangle based at a vertex x represents the set

T (x).

We now proceed to determine the possible outlier sets of u and v.

Lemma 6.5. We have v ∈ Nk−1(u1) ∪O(u) and u ∈ Nk−1(v1) ∪O(v). Furthermore,

if v ∈ O(u), then u2 ∈ O(u1), whilst if u ∈ O(v), then u2 ∈ O(v1).

Proof. The vertex v cannot lie in T (u), or else the vertex u2 would be repeated in

Tk(u). Also, v 6∈ T (u2), or there would be a ≤ k-cycle through v. Therefore, if
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v 6∈ O(u), then v ∈ Nk−1(u1). Likewise for the other result. If v ∈ O(u), then neither

in-neighbour of u2 lies in T (u1), so that u2 ∈ O(u1).

Lemma 6.6. Let w ∈ T (v1), with d(v1, w) = l. Suppose that w ∈ T (u1), with

d(u1, w) = m. Then either m ≤ l or w ∈ Nk−1(u1). The analogous result obtained by

interchanging the roles of u1 and v1 also holds.

Proof. Let w be as described and suppose that m > l. Consider the set Nk−m(w). By

construction, Nk−m(w) ⊆ Nk(u1), so by k-geodecity Nk−m(w) ∩ T (u1) = ∅. At the

same time, we have l + k −m ≤ k − 1, so Nk−m(w) ⊆ T (v1). This implies that

Nk−m(w)∩ T (v2) = Nk−m(w)∩ T (u2) = ∅. As V (G) = {u} ∪ T (u1)∪ T (u2)∪O(u), it

follows that Nk−m(w) ⊆ {u} ∪O(u). Therefore |Nk−m(w)| = 2k−m ≤ 3. By

assumption 0 ≤ m ≤ k − 1, so it follows that m = k − 1.

Corollary 6.7. If w ∈ T (v1), then either w ∈ {u} ∪O(u) or w ∈ T (u1) with

d(u1, w) = k − 1 or d(u1, w) ≤ d(v1, w).

Proof. By k-geodecity and Lemma 6.6.

Corollary 6.8. v1 ∈ Nk−1(u1) ∪O(u) and u1 ∈ Nk−1(v1) ∪O(v).

Proof. We prove the first inclusion. By Corollary 6.7,

v1 ∈ {u} ∪O(u) ∪ {u1} ∪Nk−1(u1). By k-geodecity, v1 6= u and by construction,

v1 6= u1.

We now have enough information to identify one member of O(u) and O(v).

Lemma 6.9. v1 ∈ O(u) and u1 ∈ O(v).

Proof. We prove that v1 ∈ O(u). Suppose that neither v1 nor v lies in O(u). Then by

Lemma 6.5 and Corollary 6.8 we have v, v1 ∈ Nk−1(u1). As v1 is an out-neighbour of

v, it follows that v1 appears twice in Tk(u1), violating k-geodecity. Therefore

O(u) ∩ {v, v1} 6= ∅.

Now assume that v1, v3 ∈ Tk(u). Again by Corollary 6.8, v1 ∈ Nk−1(u1). By

k-geodecity we also have v3 ∈ T (u1). However, v3 ∈ N+(v1), so v3 appears twice in

Tk(u1), which is impossible. Hence O(u) ∩ {v1, v3} 6= ∅. Similarly, O(u) ∩ {v1, v4} 6= ∅.
Therefore, if v1 6∈ O(u), then {v, v3, v4} ⊆ O(u). Since these vertices are distinct, this

is a contradiction and the result follows.
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Lemma 6.9 allows us to conclude that for vertices sufficiently close to v1 one of the

potential situations mentioned in Corollary 6.7 cannot occur.

Lemma 6.10. Tk−3(v1) ∩Nk−1(u1) = Tk−3(u1) ∩Nk−1(v1) = ∅.

Proof. Let w ∈ Tk−3(v1) ∩Nk−1(u1). Consider the position of the vertices of N+(w)

in Tk(u) ∪O(u). As v1 6∈ N+(w), it follows from Lemma 6.9 that at most one of the

vertices of N+(w) can be an outlier of u, so let us write w1 ∈ N+(w)−O(u). By

k-geodecity, w1 6∈ T (u1) ∪ {u}. Hence w1 ∈ T (u2) = T (v2). However, w1 also lies in

T (v1), so this violates k-geodecity.

Corollary 6.11. There is at most one vertex in Tk−3(v1)− {v1} that does not lie in

T (u1); for all other vertices w ∈ Tk−3(v1)− {v1}, d(u1, w) = d(v1, w). A similar result

for Tk−3(u1)− {u1} also holds.

Proof. By Corollary 6.7 and Lemma 6.10 any vertex of Tk−3(v1)− {v1} that does not

lie in T (u1) must lie in {u} ∪O(u). By k-geodecity, u 6∈ Tk−3(v1). Furthermore by

Lemma 6.9 we have v1 ∈ O(u), so at most one vertex of Tk−3(v1)− {v1} can belong to

O(u). Thus, with at most one exception, every vertex w ∈ Tk−3(v1)− {v1} must lie in

Tk−2(u1) and d(u1, w) ≤ d(v1, w). Since any such w does not belong to

{v} ∪Nk−1(v1) ∪O(v), we can interchange the roles of u and v in this argument to

conclude that d(v1, w) ≤ d(u1, w), so that d(u1, w) = d(v1, w).

Corollary 6.11 does not tell us anything in the case k = 3; thus in the next lemma we

extend Corollary 6.11 to yield information on k = 3.

Lemma 6.12. For k = 3, N+(u1) ∩N2(v1) = N+(v1) ∩N2(u1) = ∅.

Proof. Suppose that v3 = u7. By the reasoning of Lemma 6.10 we can set u = v7 and

O(u) = {v1, v8}. v 6∈ O(u) and by 3-geodecity v 6∈ N+(u3), so we can assume that

v = u9. u3 → v3 implies that u3 6∈ T (v1), so O(v) = {u1, u3}. We must have

{u4, u8, u10} = {v4, v9, v10}. As u4 → v, it follows that v4 = u8 and hence

{u4, u10} = {v9, v10}, which is impossible.

By Lemma 6.9 u1 is an outlier of v for k ≥ 3, so that neither v3 nor v4 can be equal to

u1. It follows from Corollary 6.11 and Lemma 6.12 that either N+(u1) = N+(v1) or

u1 and v1 have a single common out-neighbour, with one vertex of N+(v1) being an

outlier of u.
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Lemma 6.13. N2(u) 6= N2(v)

Proof. Let N2(u) = N2(v), with N+(u1) = N+(v1) = {u3, u4}. Suppose that

v 6∈ O(u). By Lemma 6.5, v ∈ Nk−2(u3) ∪Nk−2(u4). But then there is a k-cycle

through v. It follows that O(u) = {v, v1}, O(v) = {u, u1}. By Lemma 6.5 it follows

that u2 ∈ O(u1) ∩O(v1). Therefore by Lemma 6.3 O(u1) = {u2, v1}, O(v1) = {u2, u1}.

Consider the in-neighbour u′ of u1 that is distinct from u. We have either

|N+(u′) ∩N+(u)| = 1 or |N+(u′) ∩N+(u)| = 2. In the first case, it follows from

Lemma 6.9 that u2 ∈ O(u′). Every vertex of G is an outlier of exactly two vertices, so

u′ = u1 or v1. In either case, we have a contradiction. Therefore N+(u′) = N+(u). It

now follows from Lemma 6.3 that u′ ∈ O(u) = {v, v1}, which is impossible.

By Lemma 6.13 we have N+(u1) 6= N+(v1), implying that u1 and v1 have a unique

common out-neighbour, so that we can assume that u3 = v3, O(u) = {v1, v4} and

O(v) = {u1, u4}. As u1, v1 have a unique common out-neighbour u3, we can apply the

above analysis to the pair u1, v1 to conclude that we can set u9 = v9, O(u1) = {v4, v10}
and O(v1) = {u4, u10} without loss of generality. This yields the following corollary.

Corollary 6.14. Without loss of generality,

u3 = v3, u9 = v9, O(u) = {v1, v4}, O(v) = {u1, u4}, O(u1) = {v4, v10} and

O(v1) = {u4, u10}.

We are now in a position to complete the proof of Theorem 6.4 by deriving a

contradiction.

Theorem 6.4. There are no diregular (2, k; +2)-digraphs for k ≥ 3.

Proof. Let u, v be a pair of vertices with a unique common out-neighbour in a

diregular (2, k; +2)-digraph G. By Corollary 6.14 we can label the vertices of G as in

Figure 6.2, where O(u) = {v1, v4}, O(v) = {u1, u4}, O(u1) = {v4, v10} and

O(v1) = {u4, u10}. It follows that u, v 6∈ {u1, u4, v1, v4}, so by Lemma 6.5 we have

d(u, v) = d(v, u) = k. In fact, u3 = v3 implies that v ∈ Nk−2(u4) and u ∈ Nk−2(v4).

Let k ≥ 4. Then u, v 6∈ {u10, v10}, so u, v ∈ Tk(u1) ∩ Tk(v1). If u ∈ T (u3) = T (v3),

then u would appear twice in Tk(v1), so u ∈ Nk−1(u4). However, as u and v have a

common out-neighbour, this violates k-geodecity.

Finally, suppose that k = 3. The above analysis will hold unless u = v10 and v = u10.

Let N−(u1) = {u, u′}, N−(v1) = {v, v′}. It is evident that v′ 6∈ {v1, v4}, so that

James Tuite



6.3 Classification of (2, 2; +2)-digraphs 109

u

u1 u2 v1

u4 u5 u6

v

u3 u3 v4

u7 u9 u11 u13 v7 u9u8 u10 u12 u14 v8 v10

Figure 6.2: Labelling for proof of Theorem 6.4

v′ ∈ T3(u). As v ∈ N+(u4), we must have v′ ∈ N2(u2). Similarly u′ ∈ N2(u2). Since

u1 and v1 have a common out-neighbour, we can assume that u′ ∈ N+(u5) and

v′ ∈ N+(u6). v4 can be the outlier of only two vertices, namely u and u1, so

v4 ∈ N3(u2) and likewise u4 ∈ N3(u2). By 3-geodecity v4 ∈ N2(u5) and u4 ∈ N2(u6).

It follows that u, v 6∈ N3(u2), so u 6∈ T3(u1) ∪ T3(u2). Hence O(u) = N−(u) = {v1, v4},
which again is impossible.

6.3 Classification of (2, 2;+2)-digraphs

We now classify the (2, 2; +2)-digraphs up to isomorphism. We will prove the

following theorem.

Theorem 6.15. There are exactly two (2, 2; +2)-digraphs, which are displayed in

Figures 6.4 and 6.7.

Let G be an arbitrary diregular (2, 2; +2)-digraph. G has order M(2, 2) + 2 = 9. By

Lemma 6.2, G contains a pair of vertices u, v such that |N+(u) ∩N+(v)| = 1; we will

assume that u2 = v2, so that we have the situation shown in Figure 6.3.

We can immediately deduce some information on the possible positions of v and v1 in

T2(u).

Lemma 6.16. If v 6∈ O(u), then v ∈ N+(u1). If v1 6∈ O(u), then v1 ∈ N+(u1).

Proof. v 6∈ T (u2) by 2-geodecity. v 6= u by construction. If we had v = u1, then there
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u

u1 u2 v1

u4 u5 u6

v

u3 v3 v4

Figure 6.3: The vertices u and v

would be two distinct ≤ 2-paths from u to u2. Also v1 6∈ {u} ∪ T (u2) by 2-geodecity

and by assumption u1 6= v1.

Since v and v1 cannot both lie in N+(u1) by 2-geodecity, we have the following

corollary.

Corollary 6.17. O(u) ∩ {v, v1} 6= ∅.

We will call a pair of vertices u, v with a single common out-neighbour bad if at least

one of

O(u) ∩ {v1, v3} = ∅, O(u) ∩ {v1, v4} = ∅, O(v) ∩ {u1, u3} = ∅, O(v) ∩ {u1, u4} = ∅.

holds. Otherwise such a pair will be called good.

Lemma 6.18. There is a unique (2, 2; +2)-digraph containing a bad pair.

Proof. Assume that there exists a bad pair u, v. Without loss of generality,

O(u) ∩ {v1, v3} = ∅. By Lemma 6.16 we can set v1 = u3. By 2-geodecity v3 = u. We

cannot have v4 = v3 = u, so v4 must be an outlier of u. By Corollary 6.17 it follows

that O(u) = {v, v4}.

Consider the vertex u1. By Lemma 6.16, if u1 6∈ O(v), then u1 ∈ N+(v1). However, as

v1 = u3, there would be a 2-cycle through u1. Hence u1 ∈ O(v). As O(u) = {v, v4},
we have V (G) = {u, u1, u2, u3 = v1, u4, u5, u6, v, v4} and O(v) = {u1, u4}. As neither u

nor v lies in T (u1), we must also have u2 ∈ O(u1). As u1 can reach u1, v1, u4, u and

v4, it follows that without loss of generality we either have O(u1) = {u2, v} and

N+(u4) = {u5, u6} = N+(u2) or O(u1) = {u2, u6} and N+(u4) = {v, u5}. In either

case, v, u1 is a good pair.

Suppose firstly that N+(u2) = N+(u4). Then v is an outlier of u and u1. As each

vertex is the outlier of exactly two vertices, v1 must be able to reach v by a ≤ 2-path.
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u

u1

u2

v1

u4

u5

u6

v

v4

Figure 6.4: The unique (2, 2; +2)-digraph containing a bad pair

Hence v4 → v. Likewise u2 can reach v, so without loss of generality u5 → v. Suppose

that O(u2) ∩ {u, u1} = ∅. As u and v have a common out-neighbour, we must have

u6 → u. Since u→ u1, by 2-geodecity we must have u5 → u1. However, this is a

contradiction, as v and u1 also have a common out-neighbour. Therefore, at least one

of u, u1 is an outlier of u2. By Lemma 6.3 u4 is an outlier of u2. Therefore either

O(u2) = {u, u4} or O(u2) = {u1, u4}. If O(u2) = {u, u4}, then u2 must be able to

reach u1, v1 and v4. u5 → v and v → v1, so v1 ∈ N+(u6). As u1 → v1, we must have

N+(u5) = {v, u1}. As v and u1 have a common out-neighbour, this violates

2-geodecity. Hence O(u2) = {u1, u4} and u2 can reach u, v1 and v4. As v → v1,

v1 ∈ N+(u6). As v1 → v4, it follows that N+(u5) = {v, v4}. However, v4 → v, so this

again violates 2-geodecity.

We are left with the case O(u1) = {u2, u6} and N+(u4) = {v, u5}. Then v1 ∈ O(u2),

as neither v nor u1 lies in T (u2). Observe that u2 and u4 have a single common

out-neighbour, so by Corollary 6.17 O(u2) ∩ {u4, v} 6= ∅. Therefore either

O(u2) = {v1, u4} or O(u2) = {v1, v}. Suppose firstly that O(u2) = {v1, u4}. Then

N2(u2) = {u, v, u1, v4}. As N+(u4) = {v, u5}, u5 6→ v, so u6 → v. As

N+(u) ∩N+(v) 6= ∅, u5 → u. u→ u1, so necessarily N+(u6) = {v, u1}. However,

v1 ∈ N+(u1) ∩N+(v), contradicting 2-geodecity.

Hence O(u2) = {v1, v} and N2(u2) = {u, u1, u4, v4}. As u4 → u5, u5 6→ u4. Thus

u6 → u4. Now u1 → u4 and u→ u1 implies that N+(u5) = {u1, v4} and

N+(u6) = {u, u4}. Finally we must have N+(v4) = {v, u6}. This gives us the

(2, 2,+2)-digraph shown in Figure 6.4.
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u

u1 u2 v1

u4 u5 u6

v

u3 u u4

Figure 6.5: Case 1 configuration

We can now assume that all pairs given by Lemma 6.2 are good. Let us fix a pair u, v

with a single common out-neighbour. It follows from Corollary 6.17 and the definition

of a good pair that v1 ∈ O(u); otherwise O(u) would contain v, v3 and v4, which is

impossible. Likewise u1 ∈ O(v).

Considering the positions of v3 and v4, we see that there are without loss of generality

four possibilities: 1) u = v3, u4 = v4, 2) u = v3, O(u) = {v1, v4}, 3) N+(u1) = N+(v1)

and 4) u3 = v3, O(u) = {v1, v4}. A suitable relabelling of vertices shows that case 4 is

equivalent to case 1.a) below, so we will examine cases 1 to 3 in turn.

Case 1: u = v3,u4 = v4

Depending upon the position of v, we must either have O(u) = {v1, v} and

O(v) = {u1, u3} or v = u3.

Case 1.a): O(u) = {v1,v},O(v) = {u1,u3}

In this case V (G) = {u, u1, u2, u3, u4, u5, u6, v, v1}. u1 and v1 have a single common

out-neighbour, namely u4, so, as we are assuming all such pairs to be good, we have

u3 ∈ O(v1), u ∈ O(u1). By 2-geodecity, N+(u4) ⊂ {u5, u6, v}, so without loss of

generality either N+(u4) = {u5, u6} or N+(u4) = {u5, v}.

Suppose that N+(u4) = {u5, u6}. By elimination, O(v1) = {v, u3}. As G is diregular,

every vertex is an outlier of exactly two vertices; v is an outlier of u and v1, so both

u1 and u2 can reach v by a ≤ 2-path. Hence v ∈ N+(u3). As v → v1, we see that v1 is

an outlier of u1; as u is also an outlier of u1, we have O(u1) = {u, v1} and

N+(u3) = {v, u2}. As v → u2, this is impossible.

Now consider N+(u4) = {u5, v}. We now have O(v1) = {u3, u6}. Thus

u3 ∈ O(v) ∩O(v1), so u3 ∈ T2(u4). v is not adjacent to u3, so u3 ∈ N+(u5). u2 and u4

have u5 as a unique common out-neighbour, so u6 ∈ O(u4), v ∈ O(u2). As
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u

u1 u2 v1

u4 u5 u6

v

v u v4

Figure 6.6: Case 2 configuration

u6 ∈ O(v1) ∩O(u4), u1 can reach u6. Hence u6 ∈ N+(u3). Neither u nor v lie in

T (u1), so u2 ∈ O(u1). Therefore either O(u1) = {u, u2} or O(u1) = {u2, v1}. If

O(u1) = {u, u2}, then N+(u3) = {u6, v1}. u2 can’t reach v1, since v, u3 6∈ T (u2), so

O(u2) = {v, v1} and N2(u2) = {u, u1, u3, u4}. As u4 → u5, u4 ∈ N+(u6). u1 → u4, so

N+(u5) = {u1, u3}. As u1 → u3, this is a contradiction. Thus O(u1) = {u2, v1}, so

that N+(u3) = {u, u6}. u1 must have an in-neighbour apart from u, which must be

either u5 or u6. As u1 → u3, we have u1 ∈ N+(u6). By elimination, v and v1 must

also have in-neighbours in {u5, u6}. As u1 and v1 have a common out-neighbour, we

have N+(u5) = {u3, v1}, N+(u6) = {u1, v}. However, both u3 and v1 are adjacent to

u, violating 2-geodecity.

Case 1.b): v = u3

There exists a vertex x such that V (G) = {u, u1, u2, v, u4, u5, u6, v1, x}, O(u) = {v1, x}
and O(v) = {u1, x}. As x ∈ O(u) ∩O(v), u1 and u2 can reach x, so without loss of

generality x ∈ N+(u4) ∩N+(u5). As u5 and u4 have a common out-neighbour,

u5 ∈ O(u1). Also, u1 and v1 have u4 as a unique common out-neighbour, so u ∈ O(u1)

and O(u1) = {u, u5}. Thus N+(u4) = {x, u6}. Observe that u2 and u4 have the

out-neighbour u6 in common. Thus x ∈ O(u2), whereas we already have

x ∈ O(u) ∩O(v), a contradiction.

Case 2: u = v3,O(u) = {v1,v4}

As v is not equal to v1 or v4, v must lie in T2(u). Without loss of generality, v = u3.

Hence V (G) = {u, u1, u2, v, u4, u5, u6, v1, v4} and O(v) = {u1, u4}. We have the

configuration shown in Figure 6.6. Hence u1 can reach u1, v, u4, u2 and v1, so we have

without loss of generality one of the following: a) O(u1) = {u, v4}, N+(u4) = {u5, u6},
b) O(u1) = {u, u5}, N+(u4) = {u6, v4}, c) O(u1) = {u5, u6}, N+(u4) = {u, v4} or d)

O(u1) = {u5, v4}, N+(u4) = {u, u6}.
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v4

u4

v1

u5

u1

u6

v

u

u2

Figure 6.7: A second (2, 2; +2)-digraph

Case 2.a): O(u1) = {u,v4},N+(u4) = {u5,u6}

As v4 ∈ O(u) ∩O(u1), u2 can reach v4 and without loss of generality v4 ∈ N+(u5).

N+(u2) = N+(u4), so by Lemma 6.3 u2 ∈ O(u4), u4 ∈ O(u2), u5 ∈ O(u6) and

u6 ∈ O(u5). Hence u4 ∈ O(v) ∩O(u2), so v1 can reach u4, so u4 ∈ N+(v4). Neither u5

nor u6 lies in N+(v4), so O(v1) = {u5, u6} and N+(v4) = {u4, v}. Hence

O(v4) = {u, u1}. Observe that N+(u1) = N+(v4), so that v ∈ O(u4). Therefore

v 6∈ N+(u5) ∪N+(u6), yielding O(u2) = {u4, v}, N2(u2) = {v4, v1, u, u1}. As v1 → v4

and N+(u1) = N+(v4), we must have N+(u5) = {v4, u}, N+(u6) = {v1, u1}. This

yields the digraph in Figure 6.7. Unlike the digraph in Figure 6.4, this digraph

contains pairs of vertices with identical out-neighbourhoods, so the two are not

isomorphic.

Case 2.b): O(u1) = {u,u5},N+(u4) = {u6,v4}

As u4 → v4, u4 6∈ N+(v4), so u4 ∈ O(v1). Hence u4 ∈ O(v) ∩O(v1), so u2 can reach

u4. As u4 → u6, we must have u5 → u4. u2 and u4 have u6 as a common

out-neighbour, so v4 ∈ O(u2), u5 ∈ O(u4). Therefore v4 ∈ O(u) ∩O(u2), so that u6

can reach v4, but v4 6∈ T (u6), so N+(u6) contains an in-neighbour of v4. u4 6∈ N+(u6),

so we must have u6 → v1. We have u5 ∈ O(u4) ∩O(u1), so v1 can reach u5 and hence

v4 → u5. v1 cannot reach u6, as u2, u4 6∈ T (v1), so O(v1) = {u4, u6}, N+(v4) = {u5, v}.
Now u2 and v4 have u5 as a unique common out-neighbour, so u6 ∈ O(v4), v ∈ O(u2).

Thus O(u2) = {v, v4} and N2(u2) = {u4, v1, u, u1}. Taking into account adjacencies

between members of N2(u2), it follows that N+(u5) = {u4, u}, N+(u6) = {u1, v1}.
However, u2, u4 now constitutes a bad pair, contradicting our assumption.
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Case 2.c): O(u1) = {u5,u6},N+(u4) = {u,v4}

As u4 → v4, u4 6∈ N+(v4). Hence u4 ∈ O(v) ∩O(v1), implying that u2 can reach u4.

Without loss of generality, u5 → u4. There are three possibilities: i)

O(v1) = {u4, u6}, N+(v4) = {v, u5}, ii) O(v1) = {u4, u5}, N+(v4) = {v, u6} and iii)

O(v1) = {u4, v}, N+(v4) = {u5, u6}.

i) O(v1) = {u4, u6}, N+(v4) = {v, u5}

u1 and v4 have v as a unique common out-neighbour, so u4 ∈ O(v4). However, this

contradicts v4 → u5 → u4.

ii) O(v1) = {u4, u5}, N+(v4) = {v, u6}

Neither u4 nor v1 lie in T (u2), so v4 ∈ O(u2). Now observe that u2 and v4 have u6 as

unique common out-neighbour, so v ∈ O(u2), yielding O(u2) = {v, v4} and

N2(u2) = {u4, u1, u, v1}. As u4 → u and u→ u1, we must have

N+(u5) = {u4, u1}, N+(u6) = {u, v1}, a contradiction, since u1 → u4.

iii) O(v1) = {u4, v}, N+(v4) = {u5, u6}

We now have N+(u2) = N+(v4), so u2 ∈ O(v4), v4 ∈ O(u2), u5 ∈ O(u6), u6 ∈ O(u5).

Also N+(u4) = N+(v1), so u4 ∈ O(v1), v1 ∈ O(u4) and u ∈ O(v4). u ∈ O(v4) implies

that u 6∈ N+(u5) ∪N+(u6), so we see that u ∈ O(u2) and hence O(u2) = {u, v4} and

N2(u2) = {u4, u1, v, v1}. As u1 → u4 and u1 → v, we have

N+(u5) = {u4, v}, N+(u6) = {u1, v1}. It is not difficult to show that this yields a

(2, 2,+2)-digraph isomorphic to that in Figure 6.7.

Case 2.d): O(u1) = {u5,v4},N+(u4) = {u,u6}

In this case v4 ∈ O(u) ∩O(u1), so u2 can reach v4. u4 and v1 have unique common

out-neighbour u, so v4 ∈ O(u4), u6 ∈ O(v1). If u6 → v4, then we would have

u4 → u6 → v4, contradicting v4 ∈ O(u4), so u5 → v4. This also implies that

u5 6∈ N+(v4), so u5 ∈ O(v1), yielding O(v1) = {u5, u6} and

N+(v4) = {v, u4} = N+(u1). Now v4, u1 6∈ T (u2), so O(u2) = {v, u4} and

N2(u2) = {v1, v4, u, u1}. As v1 → v4 and v1 → u, it follows that

N+(u5) = {v4, u}, N+(u6) = {u1, v1}. However, we now have paths u4 → u→ u1 and

u4 → u6 → u1, which is impossible.
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Case 3: N+(u1) = N+(v1)

It is easy to see by 2-geodecity that V (G) = {u, u1, u2, u3, u4, u5, u6, v, v1},
O(u) = {v, v1} and O(v) = {u, u1}. As u1, v1 6∈ T (u2), we have O(u2) = {u3, u4} and

N2(u2) = {u, u1, v, v1}. Without loss of generality,

N+(u5) = {u, v1}, N+(u6) = {v, u1}. u and v have in-neighbours apart from u5 and

u6 respectively, so without loss of generality u3 → u, u4 → v. Likewise, u5 and u6 have

in-neighbours other than u2, so, as u5 → u and u6 → v, we must have

N+(u3) = {u, u6}, N+(u4) = {v, u5}. But now we have paths u3 → u→ u1 and

u3 → u6 → u1, violating 2-geodecity.

Corollary 6.19. There is a unique (2, 2; +2)-digraph containing no bad pairs.

This completes our analysis of diregular (2, 2; +2)-digraphs and, by the results of the

preceding chapter, we have now classified all (2, 2, ; +2)-digraphs. By Theorem 5.2

smallest non-diregular (2, 2; +ε)-digraphs have excess ε = 3.

6.4 Diregular digraphs with degree two and excess three

In the preceding sections we succeeded in classifying all digraphs with out-degree two

and excess two. We will now bring the approach of Section 6.2 to bear on diregular

digraphs with out-degree two and excess three to prove the following result.

Theorem 6.20. There are no diregular (2, k; +3)-digraphs for k ≥ 4.

Therefore in this section G will stand for a diregular (2, k; +3)-digraph for some

k ≥ 3. We will show now that there are no diregular (2, k; +3) digraphs for k ≥ 4; the

case k = 3 is dealt with separately in the next section.

An important step in our argument for (2, k; +2)-digraphs was to find a pair of

vertices with exactly one common out-neighbour. We accomplished this for even ε in

Lemma 6.2. This is slightly more difficult for odd ε; for ε = 3 we can accomplish this

using Heuchenne’s characterisation of line digraphs [88], which tells us that a digraph

is a line digraph if and only if any two out-neighbourhoods are either disjoint or

identical, i.e. if and only if the out-neighbourhoods constitute a partition of V (G).

Theorem 6.21. For k ≥ 3, any diregular (2, k; +3)-digraph G contains a pair of

vertices u, v with exactly one common out-neighbour.

Proof. Let G be a diregular (2, k; +3)-digraph without the required pair of vertices.
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u

u1 u2 v1

u4 u5 u6

v

u3 v3 v4

u7 u9 u11 u13 v7 v9u8 u10 u12 u14 v8 v10

u− v−

u+ v+

Figure 6.8: Configuration for k ≥ 3

Then all out-neighbourhoods are either disjoint or identical. Then by Heuchenne’s

condition G is the line digraph of a digraph H with degree two [88]. H must be at

least (k − 1)-geodetic. As 2|V (H)| = |V (G)|, H must be a (2, k − 1; +2)-digraph.

Since the line digraphs of the (2, 2)-geodetic-cages derived in Section 6.3 are not

3-geodetic and there are no (2, k; +2)-digraphs for k ≥ 3 by Theorem 6.4, we have a

contradiction.

We have seen that there exists a (2, 2)-cage in which distinct vertices share identical

out-neighbourhoods. We will therefore need the following trivial extension of

Lemma 6.3 (the proof is similar, so we omit it).

Lemma 6.22. Let z, z′ be vertices of a (d, k; +ε)-digraph H for some ε ≥ 1. If

N+(z) = N+(z′), then there exists a set X of ε− 1 vertices of H such that

O(z) = {z′} ∪X,O(z′) = {z} ∪X.

We now fix an arbitrary pair of vertices u, v of G with a unique out-neighbour in

common. We will assume that u2 = v2, so that, following the vertex labelling

convention established earlier, we have the situation shown in Figure 6.8. We will also

write N−(u1) = {u, u−}, N−(v1) = {v, v−}, N+(u−) = {u1, u+} and

N+(v−) = {v1, v+}. It is easily seen that u− 6= v, v− 6= u.

We can make some immediate deductions concerning the position of the vertices u, v

and u2 in the diagram in Figure 6.8.

Lemma 6.23. v ∈ Nk−1(u1) ∪O(u) and u ∈ Nk−1(v1) ∪O(v). If v ∈ O(u), then

u2 ∈ O(u1) and if u ∈ O(v), then u2 ∈ O(v1).
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Proof. v cannot lie in T (u), or the vertex u2 would be repeated in Tk(u). Also,

v 6∈ T (u2), or there would be a ≤ k-cycle through v. Therefore, if v 6∈ O(u), then

v ∈ Nk−1(u1). Likewise for the other result. If v ∈ O(u), then neither in-neighbour of

u2 lies in T (u1), so that u2 ∈ O(u1).

The following lemma is the main tool in our analysis.

Lemma 6.24 (Contraction Lemma). Let w ∈ T (v1), with d(v1, w) = l. Suppose that

w ∈ T (u1), with d(u1, w) = m. Then either m ≤ l or w ∈ Nk−1(u1). A similar result

holds for w ∈ T (u1).

Proof. Let w be as described and suppose that m > l. Consider the set Nk−m(w). By

construction, Nk−m(w) ⊆ Nk(u1), so by k-geodecity Nk−m(w) ∩ T (u1) = ∅. At the

same time, we have l + k −m ≤ k − 1, so Nk−m(w) ⊆ T (v1). This implies that

Nk−m(w)∩ T (v2) = Nk−m(w)∩ T (u2) = ∅. As V (G) = {u} ∪ T (u1)∪ T (u2)∪O(u), it

follows that Nk−m(w) ⊆ {u} ∪O(u). Therefore |Nk−m(w)| = 2k−m ≤ 4, so either

m = k − 1 or m = k − 2. Suppose that m = k − 2; then N2(w) = {u} ∪O(u). Neither

v nor v1 lies in N2(w), so that neither v nor v1 lies in O(u). By k-geodecity and

Lemma 6.23, v ∈ Nk−1(u1) and v1 ∈ T (u1), so that v1 appears twice in Tk(u1). Thus

m = k − 1.

The Contraction Lemma has the following immediate consequence.

Corollary 6.25. If w ∈ T (v1), then either w ∈ {u} ∪O(u) or w ∈ T (u1) with

d(u1, w) = k − 1 or d(u1, w) ≤ d(v1, w).

This allows us to restrict the possible positions of u1 and v1 in Figure 6.8.

Corollary 6.26. v1 ∈ Nk−1(u1) ∪O(u) and u1 ∈ Nk−1(v1) ∪O(v).

Proof. We prove the first inclusion. By Corollary 6.25,

v1 ∈ {u} ∪O(u) ∪ {u1} ∪Nk−1(u1). By k-geodecity v1 6= u and by construction

v1 6= u1.

Corollary 6.27. If v1 6∈ O(u), then O(u) = {v, v3, v4}, with a similar result for v.

Proof. Suppose that v1 6∈ O(u), so that v1 ∈ Nk−1(u1) by Corollary 6.26. If v 6∈ O(u),

then by Lemma 6.23 we would have v ∈ Nk−1(u1), so that u1 has a path of length k
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to v1; however, as u1 has a path of length k − 1 to v1, this would violate k-geodecity.

As a result, we must conclude that if v1 6∈ O(u), then v ∈ O(u).

Consider now the vertex v3. By k-geodecity, v3 6∈ {u} ∪ T (u2), so if v3 6∈ O(u), then

v3 ∈ T (u1); however, as u1 has a path of length k to v3 via v1, this again violates

k-geodecity. Therefore v3 ∈ O(u) and similarly v4 ∈ O(u). There are three vertices in

O(u), so we must have O(u) = {v1, v3, v4} if v1 6∈ O(u).

Lemma 6.28. For k ≥ 3, either v1 ∈ O(u) or u1 ∈ O(v).

Proof. Suppose that O(u) = {v, v3, v4}, O(v) = {u, u3, u4}. By the Neighbourhood

Lemma,

O({u1, u2}) = O(N+(u)) = N+(O(u)) = {u2, v1, v7, v8, v9, v10}

and

O({v1, u2}) = O(N+(v)) = N+(O(v)) = {u2, u1, u7, u8, u9, u10}.

By Corollary 6.26, v1 ∈ Nk−1(u1) and u1 ∈ Nk−1(v1), so we must have u1, v1 ∈ O(u2).

As O(u2) ⊂ N+(O(u)), it follows that u1 ∈ N2(v1), so k ≤ 3. Now set k = 3. We can

put u9 = v1, v9 = u1. As N2(v1) ∩O(u) = ∅ and u 6∈ N2(v1),

{v7, v8, v10} = {u7, u8, u10}. u10 ∈ N2(v1) implies that there are two distinct

≤ 3-paths from u4 to u10, contradicting 3-geodecity.

We will now identify an outlier of u and v using the Neighbourhood Lemma.

Theorem 6.29. For k ≥ 3, v1 ∈ O(u) and u1 ∈ O(v).

Proof. Assume for a contradiction that O(v) = {u, u3, u4} and v1 ∈ O(u). Let k ≥ 4.

v can reach u1 by a ≤ k-path, so by Corollary 6.26 u1 ∈ Nk−1(v1). Suppose that

x ∈ (Tk−2(u1)− {u1}) ∩Nk−1(v1) and write N+(x) = {x1, x2}. Clearly

x1, x2 6∈ {u, u3, u4}, so x1, x2 ∈ Tk(v). However, by k-geodecity x1, x2 6∈ T (u2) ∪ T (v1),

so we are forced to conclude that x1 = x2 = v, which is absurd. It follows from the

Contraction Lemma that for any vertex w ∈ Tk−2(u1)− {u1, u3, u4} we have

d(u1, w) = d(v1, w). In particular, N2(u1) = N2(v1). However, as u1 ∈ Nk−1(v1), this

implies the existence of a (k − 1)-cycle through u1.

Now set k = 3. We can put v9 = u1. N
2(u1) ∩O(v) = ∅, so

N2(u1) ⊂ {v, v3, v4, v7, v8, v10}. v4 has paths of length 3 to every vertex in N2(u1), so
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v4, v10 6∈ N2(u1), yielding N2(u1) = {v, v3, v7, v8}. Without loss of generality, u7 = v3.

u7 6→ u8, so u8 = v and N+(v3) = N+(u7) = N+(u4), which is impossible.

The next stage of our approach is to show that exactly one member of N+(v1) is also

an outlier of u and similarly for v. This will be accomplished by analysing the

possible positions of u3, u4, v3, v4 in Figure 6.8. The possibilities are described in the

following lemma.

Lemma 6.30. For k ≥ 4, {u3, u4} ⊂ {v3, v4} ∪O(v) and {v3, v4} ⊂ {u3, u4} ∪O(u).

Proof. Let u3 6∈ N+(v1) ∪O(v). By Corollary 6.25 and Theorem 6.29, u3 ∈ Nk−1(v1).

By k-geodecity, u7, u8 6∈ T (u2) ∪ T (v1). Also for k ≥ 4 we cannot have v ∈ N+(u3).

Therefore O(v) = {u1, u7, u8}. Hence v can reach u4 by a ≤ k-path. We cannot have

u4 ∈ Nk−1(v1), or the same argument would imply that

N+(u4) ⊂ O(v) = {u1, u7, u8}. By Corollary 6.25 we can assume that u4 = v4. As

u 6∈ O(v), u ∈ Nk−1(v1). Since u4 = v4, to avoid k-cycles we must conclude that

u ∈ Nk−2(v3). Likewise u3 ∈ Nk−2(v3). However, as there is a path u→ u1 → u3, v3

has a (k − 2)-path and a k-path to u3, which violates k-geodecity.

Firstly, we show using the Neighbourhood Lemma that O(u) does not contain both

out-neighbours of v1 and vice versa.

Lemma 6.31. For k ≥ 4, N+(u1) ∩N+(v1) 6= ∅.

Proof. Suppose that {u3, u4} and {v3, v4} are disjoint. Then by Theorem 6.29 and

Lemma 6.30 we have O(u) = {v1, v3, v4}, O(v) = {u1, u3, u4}. The Neighbourhood

Lemma yields

N+(O(v)) = {u3, u4, u7, u8, u9, u10} = O(v1) ∪O(u2).

Recall that N−(u1) = {u−, u}, N−(v1) = {v−, v}, N+(u−) = {u1, u+} and

N+(v−) = {v1, v+}. Then as u2 6∈ {u+, v+}, it follows by Theorem 6.29 that

u+ ∈ O(u) and v+ ∈ O(v). If u+ = v1, then, as T (u2) ∩ (T (u1) ∪ T (v1)) = ∅,
examining Tk(u

−) we see that we would have T (u2) ⊆ {u−} ∪O(u−), so that

M(2, k − 1) ≤ 4, which is impossible. Without loss of generality, u+ = v3, v
+ = u3.

Then v1 and u− have v3 as a unique common out-neighbour, so by Theorem 6.29

u1 ∈ O(v1) ⊂ {u3, u4, u7, u8, u9, u10},

which contradicts k-geodecity.
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It will now be demonstrated that u cannot reach both out-neighbours of v1 by

≤ k-paths, so that O(u) contains exactly one out-neighbour of v1, again with a similar

result for v.

Lemma 6.32. For k ≥ 4, N+(u1) 6= N+(v1).

Proof. Let N+(u1) = N+(v1) = {u3, u4}. If u can reach v by a ≤ k-path, so that

v ∈ Nk−1(u1), then there would be a k-cycle through v, so v ∈ O(u) and u ∈ O(v).

Hence by Lemmas 6.22 and 6.23, there exists a vertex x such that O(u1) = {v1, u2, x}
and O(v1) = {u1, u2, x}. Since u1, v1 6∈ T (u2), u3, u4 ∈ O(u2). Applying Theorem 6.29

to the pairs u, u− and u, v, we see that u+, v1 ∈ O(u). As N+(u1) = N+(v1), we

cannot have u+ ∈ {v, v1}. Therefore O(u) = {v, v1, u+} and similarly

O(v) = {u, u1, v+}.

Suppose that u+ = v+. Then u− and v− have a single common out-neighbour, so that

v1 ∈ O(u−), u1 ∈ O(v−). Hence u1 ∈ O(v) ∩O(v1) ∩O(v−). As G is diregular, a

simple counting argument shows that every vertex is an outlier of exactly three

distinct vertices. As u2 6∈ {v, v1, v−}, it follows that u2 can reach u1 by a k-path;

likewise u2 can reach v1. Therefore u−, v− ∈ Nk−1(u2); however, as u+ = v+, this is

impossible. Hence u+ 6= v+.

The Neighbourhood Lemma gives

N+(O(u)) = {v1, u2, u3, u4} ∪N+(u+) = O(u1) ∪O(u2)

and

N+(O(v)) = {u1, u2, u3, u4} ∪N+(v+) = O(v1) ∪O(u2).

It follows that O(u2) contains a vertex z ∈ N+(u+) ∩N+(v+). Therefore

u+, v+ 6∈ T (u2). Examining Tk(u
−), we see that u+ does not lie in

T (u1)− {u1} = T (v1)− {v1}. As already mentioned, u+ 6= v, v1. Therefore v cannot

reach u+ by a ≤ k-path, so u+ ∈ O(v) = {u, u1, v+}, a contradiction.

Since u, v was an arbitrary pair of vertices with a unique common out-neighbour,

Lemmas 6.30, 6.31 and 6.32 imply the following result.

Corollary 6.33. For k ≥ 4, if u, v are vertices with a single out-neighbour u2 in

common, then v1 ∈ O(u), u1 ∈ O(v) and |O(u) ∩N+(v1)| = |O(v) ∩N+(u1)| = 1.
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Thanks to Corollary 6.33 we can assume that u3 = v3, u4 6= v4, v1, v4 ∈ O(u) and

u1, u4 ∈ O(v). Repeated applications of Corollary 6.33 allow us to prove that there

are no diregular (2, k; +3)-digraphs for k ≥ 4 by inductively identifying outliers of u2.

Theorem 6.20. There are no diregular (2, k; +3)-digraphs for k ≥ 4.

Proof. Let k ≥ 5. As u3 ∈ N+(u1) ∩N+(v1), u3 ∈ O(u2). The pair u1, v1 have u3 as a

unique common out-neighbour, so by Corollary 6.33 we can assume that u9 = v9,

u10 6= v10. u4, v4, u9 6∈ T (u2), so u9 ∈ O(u2). The pair u4, v4 have u9 as a unique

common out-neighbour, so we can assume that u21 = v21, u22 6= v22. As

u10, v10, u21 6∈ T (u2), u21 ∈ O(u2). Continuing further we see that u45 ∈ O(u2). In

fact, it follows inductively that O(u2) contains at least k− 1 distinct vertices, which is

impossible, as G has excess ε = 3.

Now set k = 4. By the foregoing reasoning, we can write

O(u2) = {u3, u9, u21}, O(u) = {v1, v4, z}, O(v) = {u1, u4, z′} for some vertices z, z′ and

assume that u3 = v3, u9 = v9, u21 = v21 and that u22 and v22 have a single common

out-neighbour. By 4-geodecity, u, v, u1, v1, u4, v4 6∈ O(u2). Taking into account

adjacencies among u, v, u1 and v1, we can assume that u23 → u, u25 → v1, u27 → v and

u29 → u1. As u1 → u4, u4 6∈ N3(u6). If u4 ∈ N2(u11), then u11 has two distinct

≤ 4-paths to u4. Thus u4 ∈ N2(u12). However, now there are distinct ≤ 4-paths from

u12 to u9, violating 4-geodecity.

6.5 Classification of (2, 3;+3)-digraphs

The methods of Section 6.4 do not settle the issue of the existence of a

(2, 3; +3)-digraph. We now demonstrate how these ideas can be extended to show

that there are no such digraphs.

Let G be a diregular (2, 3; +3)-digraph and fix an arbitrary pair of vertices u and v

with a single out-neighbour u2 in common. Theorem 6.29 identifies v1 as an outlier of

u and u1 as an outlier of v. As in the preceding section, we will analyse the possible

positions of u3, u4, v3 and v4 in T3(u) and T3(v). Our first goal is to show that at least

one out-neighbour of v1 is an outlier of u and vice versa. Call a pair of vertices u, v

with |N+(u) ∩N+(v)| = 1 bad if either O(u) ∩N+(v1) = ∅ or O(v) ∩N+(u1) = ∅.
Suppose that G contains a bad pair u, v; without loss of generality

u3, u4 ∈ T (v1)− {v1}.

Lemma 6.34. If G contains a bad pair, then |{u3, u4} ∩N2(v1)| ≤ 1.
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Proof. Suppose that u3, u4 ∈ N2(v1). By 3-geodecity applied to T3(v1) and T3(u), we

have N2(u1) ∩ T (v1) = N2(u1) ∩ T (u2) = ∅, so that N2(u1) = {v} ∪O(v). As

u1 ∈ O(v), there would thus be a 2-cycle through u1.

As at most one vertex in {u3, u4} can lie in N2(v1) by Lemma 6.34 and there is no arc

between u3 and u4, we can make the following assumption.

Corollary 6.35. If u, v is a bad pair, then without loss of generality either

u3 = v3, u4 = v4 or u3 = v3, u4 = v9.

Lemma 6.36. If u, v is a bad pair, then we can assume that u3 = v3, u4 = v4.

Proof. Let u3 = v3, u4 = v9. u1 and v1 have u3 as unique common out-neighbour, so

by Theorem 6.29 u4 ∈ O(v1), whereas there is a 2-path from v1 to u4.

Theorem 6.37. There are no bad pairs.

Proof. u, v 6∈ T (u1)− {u1} = T (v1)− {v1}, so O(u) = {v, v1, x}, O(v) = {u, u1, x} for

some vertex x. By the Neighbourhood Lemma

O(u1)∪O(u2) = {u2, v1, u3, u4}∪N+(x) and O(v1)∪O(u2) = {u2, u1, u3, u4}∪N+(x).

As u1 can reach u3 and u4, we have u3, u4 ∈ O(u2). Applying Lemma 6.22 to u1 and

v1, we see that u1 ∈ O(v1), v1 ∈ O(u1), u3 ∈ O(u4), u4 ∈ O(u3). Therefore

O(u1) = {u2, v1, x1}, O(u2) = {u3, u4, x2}, O(v1) = {u2, u1, x1},

where N+(x) = {x1, x2}. Let N−(u1) = {u, u−} and N−(v1) = {v, v−}. Obviously

|N+(u) ∩N+(u−)| = |N+(v) ∩N+(v−)| = 1, so u2 ∈ O(u1) ∩O(v1) ∩O(u−) ∩O(v−).

u−, v− 6∈ {u1, v1}, so it follows that u− = v− and N+(u−) = {u1, v1}. As

N+(u1) = N+(v1), this contradicts 3-geodecity.

Theorem 6.37 shows that we can assume that v1, v4 ∈ O(u) and u1, u4 ∈ O(v). The

next step is to show that u has exactly one outlier in N+(v1) and v has exactly one

outlier in N+(u1).

Lemma 6.38. Either O(u) 6= T1(v1) or O(v) 6= T1(u1).

Proof. Let O(u) = {v1, v3, v4} and O(v) = {u1, u3, u4}. Applying the Neighbourhood

Lemma to u and v yields N+(O(u)) = {v3, v4, v7, v8, v9, v10} = O(u1) ∪O(u2) and
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N+(O(v)) = {u3, u4, u7, u8, u9, u10} = O(v1) ∪O(u2). If u3 ∈ O(u2), then

u3 ∈ {v3, v4, v7, v8, v9, v10}, contradicting u3 ∈ O(v). Similarly u4, v3, v4 6∈ O(u2). We

can thus assume that

O(u1) = {v3, v4, v7}, O(u2) = {u8, u9, u10} = {v8, v9, v10}, O(v1) = {u3, u4, u7}.

As v 6∈ O(u), v ∈ N2(u1). {u8, u9, u10} = {v8, v9, v10} implies that v = u7. Likewise

u = v7. Therefore N3(u2) = {u, u1, u3, u4, u7 = v, v1, v3, v4}. u and v have a common

out-neighbour, so we can set u11 → u, u13 → v. We have u→ u1, so u1 ∈ N2(u6). If

u13 → u1, then u13 would have two ≤ 3-paths to v, so u14 → u1 and similarly

u12 → v1. v1 ∈ N2(u5) implies that v3, v4 ∈ N2(u6). u13 can already reach v3 and v4

by 3-paths via v, so we are forced to conclude that N+(u14) = {v3, v4}, contradicting

u14 → u1.

Lemma 6.39. O(u) 6= T1(v1) and O(v) 6= T1(u1).

Proof. By the preceding lemma at least one of these inequalities is valid. Let

O(u) = {v1, v3, v4} and u1, u3 ∈ O(v) but u4 6∈ O(v). u4 must lie in N2(u1), say

u4 = v7. We have {v, v8, v9, v10} ⊆ {u, u7, u8, u9, u10}. As u4 = v7,

N+(u4) ∩ {v8, v9, v10} = ∅, so u4 → v, say u9 = v, and {v8, v9, v10} = {u, u7, u8}. If

v8 = u, then v3 would have two distinct ≤ 3-paths to u4; hence we can set

u = v9, u7 = v8, u8 = v10. As u1 and v3 have unique common out-neighbour u4, from

Theorem 6.29 it follows that u7 ∈ O(u1), which is plainly false.

By Theorem 6.37 O(u) contains v1 and at least one vertex of N+(v1), but

Lemma 6.39 shows that O(u) 6= {v1} ∪N+(v1), so that we must have

|O(u) ∩N+(v1)| = 1, with a similar result for v.

Corollary 6.40. |O(u) ∩N+(v1)| = |O(v) ∩N+(u1)| = 1.

Without loss of generality, we can assume that u3 ∈ T3(v), v3 ∈ T3(u), u4 ∈ O(v) and

v4 ∈ O(u). There are now two possibilities, depending upon the distance from v to u3:

either u3 = v3 or we can put u3 = v9, v3 = u9.

Case 1: u3 = v3

We can define the vertex x by O(u) = {v1, v4, x}. Also u1, u4 ∈ O(v). Let

N+(x) = {x1, x2}. As v, v9, v10 6∈ {v1, v4}, there are three essentially different

possibilities: a) x 6∈ {v, v9, v10}, b) x = v and c) x = v9.
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Case 1.a): x 6∈ {v, v9, v10}

In this case O(u) = {v1, v4, x}, O(v) = {u1, u4, x}. u can reach each of v, v9, v10, so

{v, v9, v10} = {u, u9, u10}. We can assume that u = v9, v = u9 and u10 = v10. It is

obvious that u3, u10 ∈ O(u2). u1 and v1 have the single out-neighbour u3 in common,

so v4, u ∈ O(u1), u4, v ∈ O(v1). Applying the Neighbourhood Lemma to u and v,

N+(O(u)) = O(u1) ∪O(u2) = {u3, v4, u, u10, x1, x2}, and

N+(O(v)) = O(v1) ∪O(u2) = {u3, u4, v, u10, x1, x2}, so without loss of generality

O(u1) = {u, v4, x1}, O(u2) = {u3, u10, x2} and O(v1) = {u4, v, x1}. Now,

u+ ∈ O(u) = {v1, v4, x} and by 3-geodecity u+ 6= v1, v4, so that u+ = x. Similarly

v+ = x, so by 3-geodecity applied to u− and v−, x2 ∈ T (u2), contradicting x2 ∈ O(u2).

Case 1.b): x = v

Now O(u) = {v, v1, v4}. v9 and v10 are not outliers of u, so N+(u4) ∩N+(v4) 6= ∅. By

Theorem 6.29, u+ ∈ O(u) = {v, v1, v4}, so that u− has distinct ≤ 3-paths to either u3

or a vertex in N+(u4) ∩N+(v4).

Case 1.c): x = v9

In this case O(u) = {v1, v4, v9}. As v10 6∈ O(u), without loss of generality, either i)

v10 = u or ii) v10 = u10.

Case 1.c)i): x = v9, v10 = u

Without loss of generality v = u10, so that O(v) = {u1, u4, u9}. Evidently u3 ∈ O(u2).

u1 and v1 have a single common out-neighbour, so v4 ∈ O(u1), u4 ∈ O(v1) and

|O(u1) ∩ {v9, u}| = |O(v1) ∩ {u9, v}| = 1. Applying the Neighbourhood Lemma,

N+(O(u)) = O(u1) ∪O(u2) = {u3, v4, v9, u} ∪N+(v9) and

N+(O(v)) = O(v1) ∪O(u2) = {u3, u4, u9, v} ∪N+(u9). If u ∈ O(u2), then u9 → u and

there are distinct ≤ 3-paths from u4 to u2, so u ∈ O(u1). Similarly v ∈ O(v1). Hence

d(u1, v9) = d(v1, u9) = 3. If v9 ∈ N2(u3), then there are two ≤ 3-paths from v1 to v9,

so u9 → v9 and, by the same reasoning v9 → u9, so that G would contain a digon.

Case 1.c)ii): x = v9, v10 = u10

Now u9 = v,O(v) = {u, u1, u4} and u3, u10 ∈ O(u2). From N+(u1) ∩N+(v1) = {u3},
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it follows that v4, v9 ∈ O(u1), u4, v ∈ O(v1). The Neighbourhood Lemma yields

N+(O(u)) = O(u1) ∪O(u2) = {u3, v4, v9, u10} ∪N+(v9) and

N+(O(v)) = O(v1) ∪O(u2) = {u1, u2, u3, u4, v, u10}. As u2 6∈ O(u2), the second

equation implies that O(v1) = {u4, v, u2}, O(u2) = {u1, u3, u10} and

O(u1) = {v4, v9, y}, where N+(v9) = {u1, y}. u+ ∈ O(u) = {v1, v4, v9}. This implies

the existence of distinct ≤ 3-paths from u− to u3, u10 or u1.

Case 2: u3 = v9, v3 = u9

Write O(u) = {v1, v4, x}, O(v) = {u1, u4, y}. By 3-geodecity, v7, v8 and v10 do not lie

in {u3, v3, u7, u8}, so {v7, v8, v10} = {u, u10, x}. Likewise {u7, u8, u10} = {v, v10, y}.
u 6= v10 and v 6= u10, so without loss of generality u = v7, v = u7 and

{v8, v10} = {u10, x}, {u8, u10} = {v10, y}. Suppose that u10 6= v10. Then u10 = v8 = y

and v10 = u8 = x, so that u8 ∈ O(u), which is absurd. It follows that u10 = v10,

v8 = x and u8 = y, so that O(u) = {v1, v4, v8}, O(v) = {u1, u4, u8}. By the

Neighbourhood Lemma, N+(O(u)) = O(u1) ∪O(u2) = {v3, v4, u3, u10} ∪N+(v8) and

N+(O(v)) = O(v1) ∪O(u2) = {u3, u4, v3, u10} ∪N+(u8). u1 can reach v3, u3 and u10,

so O(u1) = {v4} ∪N+(v8), O(u2) = {u3, v3, u10} and O(v1) = {u4} ∪N+(u8). Thus

N3(u2) = {u, u1, u4, u8, v, v1, v4, v8}. We can set u11 → u, u12 → v1, u13 → v and

u14 → u1. However, wherever u4 lies in N3(u2) we have a violation of 3-geodecity. In

conclusion, we have the following theorem.

Theorem 6.41. There are no diregular (2, 3; +3)-digraphs.

Note that Theorem 6.41 does not immediately tell us that ε(2, 3) ≥ 4, as there could

be a non-diregular (2, 3; +3)-digraph. We determine the true value of ε(2, 3) in

Section 9.5.
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Chapter 7

The degree/geodecity problem for

mixed graphs

7.1 Mixed Moore graphs

It is often of practical interest to consider networks that include both undirected

edges and directed arcs. For example, the road network of a city typically contains

both two-way and one-way streets. Such networks are represented mathematically by

mixed graphs. Mixed graphs are used in job scheduling, with nodes representing tasks

that need to be completed, edges connect jobs that are incompatible in the sense that

they cannot be processed simultaneously and there is an arc from task a to task b if

task a must be completed before task b is begun [125]. Mixed graphs also have

applications in the study of Bayesian inference; undirected links model correlation

and directed arcs represent causation [49].

We remind the reader of the following notational conventions for a mixed graph G

from Subsection 1.1.2. The set of undirected neighbours of a vertex u is denoted by

U(u) = {v ∈ V (G) : u ∼ v} and the number of undirected neighbours of u is the

undirected degree d(u) of u. The directed out-neighbourhood of u is

Z+(u) = {v ∈ V (G) : u→ v} and the directed in-neighbourhood of u is

Z−(u) = {v ∈ V (G) : v → u}. The directed out-degree and directed in-degree of u are

given by d+(u) = |Z+(u)| and d−(u) = |Z−(u)| respectively. Finally we set

N+(u) = U(u) ∪ Z+(u) and N−(u) = U(u) ∪ Z−(u).

The degree/diameter problem can also be studied for mixed graphs. A survey of this

problem is given in [121].

Problem 7.1 (Degree/diameter problem for mixed graphs). What is the largest

possible order of a mixed graph with maximum undirected degree r, maximum directed

out-degree z and diameter k?

A mixed Moore graph is an out-regular mixed graph G such that for every pair of

vertices u, v of G there is a unique mixed path of length ≤ k form u to v. We can
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128 7 The degree/geodecity problem for mixed graphs

draw a mixed Moore tree to deduce an upper bound on the order of a mixed graph G

with maximum undirected degree r, maximum directed out-degree z and diameter k.

Fix a vertex u and call this root vertex Level 0 of the tree. Draw edges from Level 0

to Level 1 from u to all of the undirected neighbours of u and arcs from Level 0 to all

of the directed out-neighbours of u. In general, once we have added all vertices at

Level t, where 0 ≤ t ≤ k− 1, we add the next level to the tree by the following rule for

each vertex ui in Level t:

� Draw arcs from Level t to Level t+ 1 from ui to all directed out-neighbours of ui.

� If ui appears in Level t as the terminal vertex of an arc from Level t− 1 then

draw edges from Level t to Level t+ 1 from ui to all undirected neighbours of ui.

� If ui appears in Level t as the endpoint of an edge from a vertex uj in Level

t− 1, then below ui in the Moore tree draw an edge from ui to all undirected

neighbours of ui apart from uj .

We continue this process until we have a tree of depth k. As G has diameter k all

vertices of G are contained in the mixed Moore tree. An example for a mixed graph

with maximum undirected degree r = 3, maximum directed out-degree z = 3 and

diameter k = 2 is shown in Figure 7.1. For each t in the range 0 ≤ t ≤ k − 1 each

vertex ui at Level t has at most z directed out-neighbours below it at Level t+ 1, r

undirected neighbours below it at Level t+ 1 if ui appears in the tree as the terminal

vertex of an arc from level t− 1 and r − 1 undirected neighbours beneath it at Level

t+ 1 if ui appears in the Moore tree as the endpoint of an edge from Level t− 1.

This reasoning was first employed to give the upper bound on the order of such a

mixed graph in [120]. However, the argument in [120] actually overestimates the

number of vertices in the Moore tree. An exact expression for the Moore bound for

mixed graphs was derived in [37] using recurrence relations.

Theorem 7.2 ([37]). [Mixed Moore bound] The order of a mixed graph with maximum

undirected degree r, maximum out-degree z and diameter k is bounded above by

M(r, z, k) = A
uk+1
1 − 1

u1 − 1
+B

uk+1
2 − 1

u2 − 1
,

where

v = (z + r)2 + 2(z − r) + 1, u1 =
z + r − 1−

√
v

2
, u2 =

z + r − 1 +
√
v

2
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0
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Figure 7.1: The Moore tree for r = 3, z = 3, k = 2

and

A =

√
v − (z + r + 1)

2
√
v

,B =

√
v + (z + r + 1)

2
√
v

.

If r = 0 or z = 0 then this expression reduces to the undirected and directed Moore

bounds respectively. We record separately the special case of the mixed Moore bound

for diameter k = 2.

Corollary 7.3. The mixed Moore bound for mixed graphs with maximum undirected

degree r, maximum directed out-degree z and diameter two is given by

M(r, z, 2) = (r + z)2 + z + 1.

A graph that meets the mixed Moore bound is called a mixed Moore graph. Recall

that a mixed graph G is k-geodetic if and only if for any pair u, v of vertices of G

there is at most one mixed path (i.e. non-backtracking mixed walk) of length ≤ k
from u to v in G. It is easily seen that a mixed graph is Moore if and only if it

satisfies the following conditions.

Theorem 7.4. A mixed graph G is Moore if and only if

� G is totally regular with undirected degree r and directed degree z,

� the diameter of G is k, and
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Undirected degree r Directed degree z Order n

1 any r2 + 2r + 3

3 1 18
3 40
4 54
6 88
7 108
. . . . . .

7 2 84
5 150
7 204
. . . . . .

13 4 294
6 368
. . . . . .

21 1 486
. . . . . .

. . . . . . . . .

Table 7.1: Values of r and z not covered by Theorem 7.5

� G is k-geodetic.

Mixed Moore graphs with diameter k = 2 were first investigated by Bosák in the

seventies [30, 31, 32]. In [32] he proved that any mixed Moore graph is totally regular

and used spectral methods to prove that the undirected degree r and directed

out-degree z of a mixed Moore graph with diameter two satisfy a very special

condition.

Theorem 7.5 ([32]). Apart from trivial cases, if there exists a mixed Moore graph

with diameter two, undirected degree r and directed out-degree z, then there exists a

positive odd integer c such that c|(4z − 3)(4z + 5) and c2 + 3 = 4r.

However, Theorem 7.5 leaves an infinite number of pairs r, z for which the existence of

a mixed Moore graph with undirected degree r, directed out-degree z and diameter

two is undecided. The smallest orders not covered by Theorem 7.5 are displayed in

Table 7.1.

There is one known infinite family of mixed Moore graphs with diameter two, formed

by collapsing all digons in the Kautz digraph K(d, k) discussed in Subsection 2.3.3

into edges. This mixed graph can be described quite easily. Take an alphabet Ω of

size z + 2. For the vertex set of the mixed graph we take the words ab, where a, b ∈ Ω

and a 6= b. For all a, b, c ∈ Ω with a 6= b and b 6= c we introduce an arc ab→ bc when

c 6= a and an edge ab ∼ ba. It is easily verified that this yields a mixed Moore graph

with undirected degree r = 1, directed out-degree z and diameter k = 2. In fact it

shown in [78] using spectral techniques that these are the unique mixed Moore graphs
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with these parameters.

Theorem 7.6 ([78]). For all z ≥ 1 there is a unique mixed Moore graph with

undirected degree r = 1, directed out-degree z and diameter k = 2.

In [32] Bosák identified a further mixed Moore graph with undirected degree r = 3,

directed out-degree z = 1, diameter k = 2 and order M(3, 1, 2) = 18. The uniqueness

of this graph was proven in [121].

One method of searching for mixed Moore graphs is to restrict the search space to

Cayley mixed graphs. By carrying out a computer search for Cayley mixed graphs

that meet the Moore bound Jørgensen found two Cayley mixed Moore graphs with

undirected degree r = 3, directed out-degree z = 7, diameter k = 2 and order

n = 108 [97]. However, it has been shown that there are no further Cayley mixed

Moore graphs with diameter two and order ≤ 485 [66, 107]. A search using a SAT

solver has also completely ruled out the existence of mixed Moore graphs with

diameter two and orders 40, 54 or 84 [105].

It is natural to ask whether there exist any mixed Moore graphs with diameter

greater than two? It was shown by a counting argument in [121] that the answer to

this question is negative, except in trivial cases. We will extend this style of argument

to give better bounds on the order of mixed graphs in the next two chapters.

Theorem 7.7 ([121]). There are no mixed Moore graphs with diameter k ≥ 3, except

for undirected and directed cycles.

Whilst there remain an infinite number of open cases, it is evident that it is very

difficult for a mixed graph to meet the mixed Moore bound. In general the mixed

Moore tree of depth k will either not contain all vertices of G (in which case the

diameter of G is larger than k) or there will be vertices repeated in the Moore tree (in

which case G is not k-geodetic). It is therefore of interest to study the structure of

mixed graphs with order close to the mixed Moore bound. To this end in the

conditions in Theorem 7.4 we can either relax the requirement that all of the vertices

in the Moore tree be distinct or the requirement that the Moore tree contains all of

the vertices of G. This motivates the following definitions.

Definition 7.8.

� A mixed graph with maximum undirected degree r, maximum directed

out-degree z, diameter k and order M(r, z, k)− δ is an (r, z, k;−δ)-graph and

has defect δ. A mixed graph with defect one is an almost mixed Moore graph.
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� A k-geodetic mixed graph with minimum undirected degree r, minimum

directed out-degree z and order M(r, z, k) + ε is an (r, z, k; +ε)-graph and has

excess ε. The smallest possible value of ε such that there exists an

(r, z, k; +ε)-graph will be written ε(r, z, k). We set

N(r, z, k) = M(r, z, k) + ε(r, z, k).

7.2 Mixed graphs with positive defect

The degree/diameter problem for mixed graphs is equivalent to finding the smallest

possible defect of an (r, z, k;−δ)-graph for all r, z ≥ 0 and k ≥ 2. If z = 0 then this

becomes the undirected degree/diameter problem and if r = 0 we recover the directed

degree/diameter problem; hence the mixed degree/diameter problem is a

generalisation of both the undirected and directed degree/diameter problems.

The mixed Moore tree rooted at a vertex u of an out-regular (r, z, k;−δ)-graph will

contain δ repeated vertices. Let R(u) be the multiset of repeated vertices in the

Moore tree rooted at u, i.e. any vertex that features t times in the Moore tree

appears t− 1 times in the multiset R(u). With a slight abuse of notation, we call

R(u) the repeat set of u.

It is easily shown that any (r, z, k;−1)-graph is out-regular. For defect δ = 1 instead

of the repeat set we have a repeat function r : V (G)→ V (G). Hence for any vertex u

of an (r, z, k;−1)-graph the vertex r(u) is the unique vertex that appears twice in the

Moore tree of depth k rooted at u; we call r(u) the repeat of u. For any subset

W ⊆ V (G) we let r(W ) = {r(w) : w ∈W}. For almost mixed Moore graphs with

diameter two it is shown in [104] that the repeat function of an (r, z, 2;−1)-graph G is

an automorphism if and only if G is totally regular.

Relatively little is known about mixed graphs with small defect. The only known

non-trivial almost mixed Moore graph with diameter two is shown in Figure 7.2. This

mixed graph has degree parameters r = 2, z = 1, diameter k = 2 and order n = 10.

In [38] it is proven that this is the unique almost mixed Moore graph with these

parameters. A simple parity argument also shows that there are no almost mixed

Moore graphs with diameter two and odd undirected degree r [104].

López and Miret used spectral theory to derive the following necessary condition for

the existence of a totally regular almost mixed Moore graph with diameter k = 2

in [104].
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Figure 7.2: An almost mixed Moore graph

Theorem 7.9 ([104]). Let G be a totally regular (r, z, 2;−1)-graph. Then r is even

and one of the following three possibilities holds:

i) r = 2,

ii) there exists an odd integer c such that c2 = 4r + 1 and c|(4z + 1)(4z − 7), or

iii) there exists an odd integer c such that c2 = 4r − 7 and c|(16z2 + 40z − 23).

The analysis in [104] does not cover the case of almost mixed Moore graphs that are

not totally regular. In the same paper López and Miret pose the following question.

Question 7.10 ([104]). Are all almost mixed Moore graphs with diameter two totally

regular?

We answer this question in the affirmative in Chapter 8. We will also show that all

(1, 1, k;−1)-graphs with k ≥ 3 are totally regular.

In [51] Dalfó et al. use counting arguments to derive a lower bound for the defect of a

totally regular (r, z, k;−δ)-graph for k ≥ 3.

Theorem 7.11 ([51]). For r, z ≥ 1 and diameter k ≥ 3, the defect of a totally regular

(r, z, k;−δ)-graph satisfies

δ ≥ r.

Note however that Theorem 7.11 does not give us a bound for the smallest possible

defect of an (r, z, k;−δ)-graph, as there could potentially be non-totally-regular mixed

graphs that are closer to the Moore bound than the largest totally regular

(r, z, k;−δ)-graph. We will revisit this problem in Chapter 8.
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The bound in Theorem 7.11 is tight; in [51] the authors show that there are exactly

three totally regular (1, 1, 3;−1)-graphs. In Chapter 9 we will improve their bound in

the case r = z = 1.

7.3 The mixed degree/geodecity problem: cages and monotonicity

In the previous section we described one approach to studying the structure of mixed

graphs with order close to the Moore bound. If instead of allowing repeats in the

Moore tree we preserve the k-geodecity condition in Theorem 7.4, then we obtain the

mixed degree/geodecity problem.

Problem 7.12 (Degree/geodecity problem for mixed graphs). For r, z ≥ 1 and k ≥ 2

what is the smallest possible order of a k-geodetic mixed graph with minimum

undirected degree r and minimum directed out-degree z?

Again we will be particularly interested in the structure of the extremal mixed graphs.

Definition 7.13. A smallest possible k-geodetic mixed graph with minimum

undirected degree r and minimum directed out-degree z is an (r, z, k)-cage or mixed

geodetic cage.

With the caveat that the term mixed cage is also used in the mixed degree/girth

problem [6] we will, as with the directed geodetic cages, simply speak of mixed cages

here. The mixed degree/girth problem, which has seen some recent interesting

progress in [5], bears much the same relation to the mixed degree/geodecity problem

as the directed degree/girth problem does to the directed degree/geodecity problem.

We begin our discussion of the mixed degree/geodecity problem by proving the

existence of mixed geodetic cages for all values of r, z ≥ 1 and k ≥ 2.

Theorem 7.14. There exists a mixed geodetic (r, z, k)-cage for all r, z ≥ 1 and k ≥ 2.

Their order satisfies

N(r, z, k) ≤ min{N(r, 0; k)N(0, N(r, 0; k)z; k), N(0, z; k)N(N(0, z; k)r, 0; k)}.

Proof. We employ a truncation argument. Let H be an undirected cage with degree

r, girth g = 2k + 1 and order n (which exists by the result of [126]). Let H ′ be a

directed geodetic cage with geodetic girth k and directed out-degree nz (H ′ exists by

Lemma 3.19). We form a mixed graph G by identifying each vertex u of H ′ with an
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isomorphic copy Hu of H and connecting the copies of H by arcs in accordance with

the topology of H ′; specifically, for each vertex u of H ′ partition the nz arcs from u in

H ′ into n sets A1, A2, . . . , An of z arcs and assign a set Ai of arcs to each of the n

vertices in Hu, such that if an arc in Ai goes to a vertex v in H ′, then in G it is

directed to any vertex of Hv. The resulting mixed graph G obviously has geodetic

girth k. A similar construction starting with directed cages substituted for vertices of

an undirected cage establishes the other part of the theorem.

As in the undirected degree/girth problem, the bounds given in Theorem 7.14 are

much too large to be of any practical help. We also note that by using regular graphs

with girth 2k+ 1 (which exist by the result of [126]) and diregular k-geodetic digraphs

(we can use the permutation digraphs), the truncation argument in Theorem 7.14 also

shows the existence of a smallest totally regular k-geodetic mixed graph with

undirected degree r and directed degree z.

Corollary 7.15. For all r, z ≥ 1 and k ≥ 2 there exists a smallest totally regular

k-geodetic mixed graph with undirected degree r and directed degree z.

Now that the existence of mixed geodetic cages has been established, the question of

monotonicity arises. Intuition suggests that the order of a cage should grow strictly

with increasing r, z and k. Recall that monotonicity of the order of cages in the

undirected degree/girth problem was proven by Fu, Huang and Rodger [73] and

degree monotonicity of undirected cages was discussed in [150], but appears to be a

difficult problem. We combine the method of [73] with our proof of Theorem 3.26 to

prove strict monotonicity of the order of mixed cages in the geodetic girth k.

Theorem 7.16. N(r, z, k) < N(r, z, k + 1) for all k ≥ 2.

Proof. Let G be an (r, z, k + 1)-cage. Suppose that there exists a vertex u of G with

even undirected degree d(u). Write U(u) = {u1, u2, . . . , u2r−1, u2s}. Define the graph

G′ as follows: delete u from G, join u2i−1 to u2i by an undirected edge for 1 ≤ i ≤ s
and for every vertex u− in Z−(u) insert an arc from u− to some vertex u+ in Z+(u).

This construction is shown in Figure 7.3, with the new arcs and edges in red. Call the

added arcs and edges new elements.

Suppose that G′ is not k-geodetic; let w and w′ be vertices of G′ with distinct mixed

paths P and Q of length ≤ k from w to w′. As each new element in G′ can be

extended to a walk of length two in G whilst preserving the non-backtracking

property and G is (k + 1)-geodetic, we can assume that the mixed path P contains at
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least two new elements. Examining a mixed path with length ≤ k − 2 between

consecutive new elements in P (i.e. there is no third new element between these two

new elements in P ), we see that there exists a non-backtracking closed walk of length

≤ k through u in G, which is impossible. Thus G is at least k-geodetic and, having

order smaller than the (r, z, k + 1)-cage G, its geodetic girth must be exactly k.

Thus we can assume that every vertex of G has odd undirected degree. Let u ∼ v be

an undirected edge of G. Let U(u) = {v, u1, u2, . . . , u2s} and

U(v) = {u, v1, v2, . . . , v2t}. Form a new graph G′′ by deleting u and v and matching

up the remaining neighbours of u and v by new elements as in the previous

construction, i.e. setting u2i−1 ∼ u2i for 1 ≤ i ≤ s, v2j−1 ∼ v2j for 1 ≤ j ≤ t and

inserting an arc from each vertex of Z−(u) to Z+(u) and an arc from each vertex of

Z−(v) to Z+(v). Assuming k ≥ 2, notice that the sets U(u)− {v}, U(v)− {u},
Z−(u), Z+(u), Z−(v) and Z+(v) are pairwise disjoint.

If G′′ has geodetic girth ≤ k− 1, with two distinct mixed paths P and Q from a vertex

w to a vertex w′, then as before we can assume that P contains two new elements.

Consider consecutive new elements in P . By the preceding argument these new

elements cannot be associated with same vertex in G, for example a new edge

between undirected neighbours of u and an arc from Z−(u) to Z+(u) would yield a

contradiction as above. By symmetry we can assume that the first element is

associated with u and the second with v; for example, these elements could be a new

arc from Z−(u) to Z+(u) followed by a new edge in U(v). Looking at the mixed

subpath of P between these consecutive new elements, we see that in G there is a

mixed path of length ≤ k − 2 from N+(u) to N−(v); it follows that there are distinct

mixed paths of length ≤ k from u to v in G, a contradiction, so G′′ is k-geodetic.

Applying the procedure of Theorem 7.16 to a smallest totally regular k-geodetic

mixed graph with given undirected and directed degrees (which we know to exist by

Corollary 7.15) by joining vertices of Z−(u) to Z+(u) by arcs in a one-to-one fashion,

we see that strict monotonicity in the geodetic girth k also holds for the order of

smallest possible totally regular k-geodetic mixed graphs. Monotonicity in the

directed out-degree is simple to demonstrate.

Theorem 7.17. N(r, z, k) ≤ N(r, z + 1, k). If r = 0, then strict inequality holds.

Proof. Let G be an (r, z + 1, k)-cage. Delete an arc from every vertex; the resulting

graph has minimum undirected degree r, minimum directed out-degree z and, as a
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u

u1 u2 u3 u4 v+
1 v+

2 v+
3

v−1 v−2 v−3 v−4

Figure 7.3: The construction in Theorem 7.16

subgraph of G, is obviously still k-geodetic. The statement for r = 0 is a result of the

proof of Theorem 3.26.

We note that by adapting the spectral method of [104] from the case of

(r, z, 2;−1)-graphs to (r, z, 2; +1)-graphs we also have a strong restriction on the

possible combinations of values of r and z for which a totally regular 2-geodetic mixed

graph with excess one can exist. We omit the proof, as it is a relatively

straightforward application of the reasoning of [104] combined with the results

of [116].

Theorem 7.18. Let G be a totally regular (r, z, 2; +1)-graph. Then either

� r = 2,

� 4r + 1 = c2 for some c ∈ N and c|(16z2 − 24z + 25), or

� 4r − 7 = c2 for some c ∈ N and c|(16z2 + 40z + 9).

Finally we make the following conjecture that generalises Conjecture 5.1.

Conjecture 7.19. All mixed geodetic cages are totally regular.

We present several mixed geodetic cages in Chapter 9, all of which are totally regular,

thereby adding some weight to Conjecture 7.19.
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Chapter 8

Total regularity of mixed graphs

with order close to the Moore bound

8.1 Introduction

In Chapter 5 we saw that it is difficult to analyse the structure of digraphs with order

close to the Moore bound that are not diregular. A similar phenomenon occurs for

mixed graphs. Recall that a mixed graph is totally regular if its undirected subgraph

GU is a regular graph and its directed subgraph GZ is diregular; for other notation,

see Section 1.1.2.

For an example of the problems caused by the issue of total regularity, consider

Theorem 7.9 due to López and Miret [104], cited in Chapter 7, which gave very strong

necessary conditions on the degree parameters r and z for the existence of an almost

mixed Moore graph with diameter two; however, this analysis depends on the

assumption of total regularity. Previously there was no information at all on almost

mixed Moore graphs that are not totally regular. Therefore López and Miret posed

the following question in [104]:

Question 8.1. Are almost mixed Moore graphs with diameter two totally regular?

In Section 8.2 we answer this question affirmatively. The problem of the total

regularity of almost mixed Moore graphs with diameters greater than two is more

difficult; in Section 8.3 we use counting arguments to show total regularity for the

special case of r = z = 1 and diameters k ≥ 3. Starting in Section 8.4 we apply these

methods to the ‘mirror image’ problem of 2-geodetic mixed graphs with excess one;

this turns out to be a simpler problem than the total regularity of almost mixed

Moore graphs. In Section 8.5 we also prove that all mixed graphs with excess one and

directed out-degree z = 1 are totally regular; this will prove to be a valuable result in

the analysis contained in the next chapter.

For a mixed graph G with sufficiently small excess or defect it is trivial to show that

G is out-regular; in the context of our investigation it is almost always safe to assume
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out-regularity (we will have to be slightly more careful in the proof of Theorem 9.9).

Lemma 8.2. If G is an (r, z, k;−δ)- or (r, z, k; +ε)-graph with defect/excess strictly

less than M(r, z, k − 1), then the directed subgraph GZ of G is out-regular.

Furthermore, if δ or ε satisfies

δ, ε <
k∑
t=1

(−1)t+1M(r, z, k − t),

then G is out-regular.

Proof. We prove the result for mixed graphs with small excess; the case of small

defect is very similar. Let G be an (r, z, k; +ε)-graph with ε < M(r, z, k − 1). If there

is a vertex u of G with directed out-degree d+(u) ≥ z + 1, then the mixed Moore tree

of depth k rooted at u contains an extra directed branch, which contains at least

M(r, z, k − 1) vertices, a contradiction.

Now we show that the undirected subgraph GU is regular. Let µ(r, z, t) be the

number of vertices contained in an undirected branch of the mixed Moore tree of

depth t+ 1 of an out-regular (r, z, t+ 1; +ε)-graph. For example, µ(r, z, 2) is the

number of vertices in an undirected branch of the Moore tree of depth 3 of an

out-regular (r, z, 3; +ε)-graph; thus

µ(r, z, 2) = (r + z)2 − r + 1 = M(r, z, 2)− (r + z) = M(r, z, 2)− µ(r, z, 1).

An undirected branch of depth t of a Moore tree of depth t+ 1 is has the same

structure as a Moore tree of depth t with one undirected branch of depth t− 1

deleted; therefore we have the recurrence relation µ(r, z, t) = M(r, z, t)− µ(r, z, t− 1).

If a vertex u of G has undirected degree d(u) ≥ r+ 1, then the Moore tree rooted at u

has at least one extra undirected branch and G has excess at least µ(r, z, k − 1).

Expanding this expression using the recurrence relation gives the alternating sum in

the statement of the lemma.

By analogy with our notation in Chapter 5, we define the sets with ‘too small’

in-degree and ‘too large’ in-degree as follows for a given (r, z, k; +ε)- or

(r, z, k;−δ)-graph

S = {v ∈ V (G) : d−(v) < z}; S′ = {v′ ∈ V (G) : d−(v′) > z}.
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8.2 (r, z, 2;−1)-graphs are totally regular

We will now proceed to answer the question of López and Miret by showing that any

(r, z, 2;−1)-graph is totally regular. Suppose that G is an (r, z, 2;−1)-graph that is

not totally regular, where r, z ≥ 1. Recall from Section 7.2 that the repeat r(u) of a

vertex u of G is the unique vertex of G such that there are two distinct

non-backtracking mixed walks with length ≤ 2 from u to r(u) in G. Our strategy is to

use a purely combinatorial argument to deduce structural information about G and

then apply spectral theory to obtain a contradiction. First we show that G must be

out-regular.

Lemma 8.3. G is out-regular with undirected degree r and directed out-degree z.

Proof. It follows from Lemma 8.2 that if G is not out-regular, then it has defect at

least M(r, z, 1)−M(r, z, 0) = r + z ≥ 2.

We now prove two fundamental lemmas that show the relationship between the sets

S, S′, out-neighbourhoods and repeats in G; these are generalisations of Lemmas 5.5

and 5.6 from Chapter 5 to mixed graphs. The result that the repeat function is an

automorphism for totally regular almost mixed Moore graphs with diameter two [104]

can again be viewed as a ‘limiting case’ of these results.

Lemma 8.4. If v ∈ S, then d−(v) = z − 1 and for all u ∈ V (G) we have

S ⊆ N+(r(u)).

Proof. Let v ∈ S and u ∈ V (G). Consider the Moore tree rooted at u. Suppose that

d(u, v) = 2. As each vertex of N+(u) can reach v by paths of length ≤ 2, each branch

of the Moore tree must contain an element of N−(v). However, there are r + z

branches, whereas v has ≤ r + z − 1 in-neighbours, so at least one in-neighbour must

be repeated in the tree. Hence v is an out-neighbour of r(v). Evidently d−(v) = z − 1,

for otherwise more than one in-neighbour of v would be repeated and the defect of G

would be at least two. The cases u ∼ v, u→ v and u = v can be dealt with

similarly.

Corollary 8.5.
∑
v′∈S′

(d−(v′)− z) =
∑
v∈S

(z − d−(v)) = |S|.

Proof. By Lemma 8.3, the average directed in-degree must be z. The final equality

follows from Lemma 8.4.
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Lemma 8.6. For all u ∈ V (G) we have S′ ⊆ r(N+(u)).

Proof. Let v′ ∈ S′, u ∈ V (G). Suppose that d(u, v′) = 2. Then u 6∈ N−(v′). There are

r+ z branches of the Moore tree at u, but v′ has ≥ r+ z + 1 in-neighbours, so at least

one branch contains more than one in-neighbour of v′, so that v′ ∈ r(N+(u)). The

remaining cases are similar.

Lemmas 8.4 and 8.6 not only yield important information on the structure of G, but

also show that the order of both sets S, S′ is bounded above by r + z. A counting

argument will now allow us to ascertain the exact size of S.

Lemma 8.7. |S| = r + z.

Proof. Let v ∈ S. By Lemma 8.4 we have d−(v) = z − 1. We obtain an upper bound

on the number of vertices that are initial points of paths of length ≤ 2 that terminate

at v by assuming that S′ ⊆ N−(v). As G has diameter two, this yields by

Corollary 8.5

n ≤ 1 + r + (z − 1) + r(r + z − 1) + (z − 1)(r + z) + |S|.

Rearranging, |S| ≥ r + z. Combined with the result of Lemma 8.4, we see that

|S| = r + z.

As S ⊆ N+(r(u)) for each u ∈ V (G) and both sets have size r + z, we must have

equality.

Corollary 8.8. S = N+(r(u)) for all u ∈ V (G).

We say that a vertex w is a repeat in G if there exists a vertex u such that r(u) = w.

The preceding corollary allows us to determine both the value of the undirected

degree r and the number of distinct repeats in G.

Lemma 8.9. r = 2 and there are exactly two repeats in G.

Proof. Suppose that there is only one repeat, call it R. As R is the only repeat, we

must have r(R) = R. It is easily seen that there must be u ∈ N+(R) such that

R→ u→ R. But u now lies in a 2-cycle and hence is a repeat, contradicting our

hypothesis. Hence G has at least two repeats, call them R1 and R2.
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R1

v1 v2 v3 v4 v5 v6

R2

Figure 8.1: If r ≥ 3

If r = 1, then G contains a perfect matching, so that G must have even order,

whereas |V (G)| = z2 + 3z + 1 would be odd. Suppose that r ≥ 3. By Corollary 8.8,

N+(R1) = N+(R2) = S. R1 thus has at least r ≥ 3 paths of length two to R2, as

shown in Figure 8.1, contradicting δ = 1. Therefore r = 2. By the foregoing

reasoning, r(R1) = R2 and r(R2) = R1. If there were a third repeat R3, this argument

could be repeated with R3 in place of R2 to give r(R1) = R3, so that R2 = R3, a

contradiction. Therefore there are exactly two repeats R1 and R2.

This provides us with all of the structural information necessary to complete our

proof. We now adopt a spectral approach.

Theorem 8.10. Almost mixed Moore graphs with diameter two are totally regular.

Proof. Suppose that there are m1 vertices with repeat R1 and m2 vertices with repeat

R2; we shall call vertices with repeat Ri Type i. Let us label the vertices of G

u1, u2, . . . , un, so that u1 = R1, u2 = R2, u2+s is Type 2 for 1 ≤ s ≤ m2 − 1 and

u1+m2+t is Type 1 for 1 ≤ t ≤ m1 − 1. If A is the adjacency matrix of G, then by

Theorem 1.3 the (i, j)-entry of the sum I +A+A2 is the number of distinct walks of

length ≤ 2 from vertex ui to vertex uj . Hence

I +A+A2 = J + 2I + P,

where I is the n× n identity matrix, J is the n× n all-one matrix and P is the matrix
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with entries given by

Pij =

1, if r(ui) = uj ,

0, otherwise.
(8.1)

Observe that all non-zero entries of P occur in the first two columns. Inspection

shows that the matrix J + P has the following eigenvalues:

i) eigenvalue n+ 1 with multiplicity one.

Corresponding eigenvector: all-one vector of length n.

ii) eigenvalue −1 with multiplicity one.

Corresponding eigenvector:

f(uj) =

1, if uj is Type 1,

−(m1 + 1)/(m2 + 1), if uj is Type 2.
(8.2)

iii) eigenvalue 0 with multiplicity n− 2.

Corresponding eigenvectors:

fi(uj) =


1, if j = i+ 2,

−1, if j = n,

0, otherwise.

(8.3)

for 1 ≤ i ≤ n− 3 and

g(uj) =


1, if j = 1 or 2,

−3, if j = n,

0, otherwise.

(8.4)

It follows that I +A+A2 has spectrum {n+ 3, 1, 2(n−2)}, so that G must have

spectrum σ(G) = {λ1, . . . , λn}, where

� λ1 is a solution of λ2 + λ− (n+ 2) = 0,

� λ2 is a solution of λ2 + λ = 0, and

� λi is a solution of λ2 + λ− 1 = 0 for 3 ≤ i ≤ n.

The solutions of the first equation are λ1 = −1±
√
4n+9

2 . As the undirected degree is

r = 2 by Lemma 8.9, it follows from the Moore bound given in Corollary 7.3 for

diameter two that the order of G is n = z2 + 5z + 4, so
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4n+ 9 = 4z2 + 20z + 25 = (2z + 5)2, yielding λ1 = z + 2 or −z − 3. Trivially λ2 = 0 or

−1. Finally the third equation has solutions −1±
√
5

2 .

G has no loops, so the trace of its adjacency matrix is Tr(A) = 0. It follows that the

sum of the eigenvalues of G is also zero. In order that this sum be rational, one half of

the eigenvalues λ3, . . . , λn must take the plus sign and half the negative sign. The

sum of the eigenvalues λ3, . . . , λn is thus −(n/2) + 1. Depending upon the values of

λ1, λ2, this leaves us with four possibilities for the sum of the eigenvalues, namely

z + 3− (n/2), z + 2− (n/2), −z − 2− (n/2) and −z − 3− (n/2). The final two are

clearly strictly negative, whilst the first two yield no feasible solutions for z > 0.

8.3 Total regularity of (1, 1, k;−1)-graphs for k ≥ 3

The problem of the total regularity of almost mixed Moore graphs with diameter

k ≥ 3 is difficult and we consider it here only in the case r = z = 1. Let G be a

(1, 1, k;−1)-graph that is not totally regular. If a vertex u of G has undirected degree

d(u) = 0, then the order of G is at most M(r, z, k − 1) + 1, which is too small for

k ≥ 3; similarly, if a vertex u has directed out-degree d+(u) = 0, then the order of G

is at most M(r, z, k)−M(r, z, k − 1), which again is too small. Therefore, G is

out-regular, so that every vertex u has a unique undirected neighbour, which we will

denote by u∗, and a unique directed out-neighbour, which will be written u+. For

these parameters S = {v ∈ V (G) : d−(v) = 0}, S′ = {v′ ∈ V (G) : d−(v′) ≥ 2}; hence

vertices in S have no directed in-neighbours, i.e. Z−(v) = ∅ for v ∈ S.

Let F0 = F1 = 1, F2 = 2, F3 = 3, F4 = 5 . . . be the sequence of Fibonacci numbers. It

is easily verified that G has order n = Fk+3 − 3. Since the order of G must be even,

no almost mixed Moore graph exists with these parameters for k ≡ 2 (mod 3). We

will draw a Moore tree rooted at a vertex u as shown in Figure 8.2 for k = 5. In

general, for 0 ≤ ` ≤ k − 1 the children in level `+ 1 of a vertex at level ` of the tree

are drawn below it, with the undirected neighbour (if the vertex has its undirected

neighbour at level `+ 1 and not `− 1) to the left and the directed out-neighbour on

the right, where vertices are labelled u0, u1 . . . etc. in increasing order from top to

bottom and left to right. This process is continued until the tree reaches depth k.

We begin with an elementary consideration on the length of the paths from a vertex

to its repeat.

Lemma 8.11. If there are two distinct mixed paths P1, P2 from x to y of length ≤ k,

then at least one of them has length k.
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u0

u1 u2

u3 u4 u5

u6 u7 u8 u9 u10

u11 u12 u13 u14 u15 u16 u17 u18

u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 u31

Figure 8.2: The Moore tree for r = z = 1 and k = 5

Proof. Suppose that there are mixed paths P1 6= P2 from x to y and that both paths

have length ≤ k − 1. Draw the Moore tree of depth k rooted at x. y appears twice in

this tree, as does y+, so that the defect would be at least two.

Colloquially, there cannot be two ‘short’ mixed paths between any pair of vertices.

Corollary 8.12. No v ∈ S is a repeat and S is an independent set.

Proof. Let v ∈ S. Suppose that there exists a vertex u such that v = r(u). If u 6= v,

then u must have two paths of length ≤ k − 1 to v∗, contradicting Lemma 8.11. If

u = v, then v is contained in a mixed cycle of length ≤ k, so that there are again two

short paths from v to v∗.

By definition no arc can have both endpoints in S. If there are v, w ∈ S such that

v ∼ w, then no other vertex of G would be able to reach v or w. Hence S is

independent.

We next deduce the relationship between repeats and the undirected neighbours of

elements of S.

Lemma 8.13. For every vertex u of G and v ∈ S, either v∗ = r(u) or v∗ = r(u∗).

Proof. Draw the Moore tree rooted at u. As u2 = u+ has a directed in-neighbour,
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obviously u2 6∈ S. G has diameter k and so, since u2 can reach v only through v∗, we

have d(u2, v
∗) ≤ k − 1. If u = v, then u1 = v∗, so that v∗ occurs in both branches and

v∗ = r(u). If v belongs to the u1-branch, then either v∗ also lies in that branch or

u = v∗, so that again v∗ = r(u). We may thus assume that v occurs only in the

u2-branch.

Suppose that d(u2, v) = k − 1. Then u1 cannot reach v through u and so v∗ occurs in

both branches of the Moore tree. Finally assume that d(u2, v) ≤ k − 2, so that

d(u2, v
∗) ≤ k − 3. As d(u3, v) ≤ k, it follows that d(u3, v

∗) ≤ k − 1, so that u1 = u∗

has two mixed paths to v∗ with length ≤ k, one through u3 and the other through u

and u2, so that v∗ = r(u∗).

This yields an upper bound on the size of S.

Corollary 8.14. |S| ≤ 2.

Proof. Obviously |S| ≤ |{v∗ : v ∈ S}|. Fix a vertex u. By Lemma 8.13,

{v∗ : v ∈ S} ⊆ {r(u), r(u∗)}.

As the average directed in-degree of vertices in G is one, Corollary 8.14 shows that

there are three possible situations:

i) S = {v}, S′ = {v′}, d−(v′) = 2;

ii) S = {v, w}, S′ = {v′}, d−(v′) = 3;

iii) S = {v, w}, S′ = {v′, w′}, d−(v′) = d−(w′) = 2.

We complete the proof of the theorem by examining these cases in turn. Observe that

in the final two cases, v∗ 6= w∗, {v∗, w∗} ∩ {v, w} = ∅ by Corollary 8.12 and

r(u) ∈ {v∗, w∗} for all u ∈ V (G) by Lemma 8.13.

Theorem 8.15. For k ≥ 3, (1, 1, k;−1)-graphs are totally regular.

Proof. We refer the reader to Figure 8.2 for clarity. Suppose that option i) holds. By

Corollary 8.12 each vertex has a unique mixed path of length ≤ k to v. We therefore

obtain an upper bound on the order of G by assuming that v′ ∼ v and counting the

vertices with paths of length ≤ k to v. There are M(1, 1, k − 2) = Fk+1 − 3 vertices

that can reach each of the directed in-neighbours of v′ by paths of length ≤ k − 2, so,

counting also v and v′, the maximum possible order of G would be

2(Fk+1 − 3) + 2 = 2Fk+1 − 4, which is too small for k ≥ 3.
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Now let us examine option ii). We can see that v′ is a repeat as follows. Draw the

Moore tree rooted at v′. We can assume that r(v′) 6= v′, so that all directed

in-neighbours of v′ lie at distance k from v′. One branch of the Moore tree must

contain two elements of Z−(v′), so that v′ is the repeat of a vertex in N+(v′).

As all repeats lie in {v∗, w∗}, we can set v′ = v∗. Hence d−(w∗) = 1. If k = 3, then w

has a unique in-neighbour w∗, which in turn has a unique directed in-neighbour; hence

at most 7 vertices can reach w by paths of length ≤ 3, this bound being achieved

when v′ ∈ N−(w∗), whereas M(1, 1, 3)− 1 = 10. Thus k ≥ 4. Draw the Moore tree

rooted at v. Then v1 = v′. Neither v3 nor v7 is equal to v′, or there would be a cycle

of length ≤ 2 through v′, contradicting Lemma 8.11. Hence, since v2 can reach both

of these vertices by paths of length ≤ k, but all vertices in N−(v3) = {v1, v6} and

N−(v7) = {v3, v12} already appear in the v1-branch, r(v) must occur in both N−(v3)

and N−(v7), so that v1 = v′ has two short paths to r(v) in violation of Lemma 8.11.

Finally assume that iii) holds. As in ii), we can show that both v′ and w′ are repeats,

so we can take v∗ = v′ and w∗ = w′. If k = 3, counting initial vertices of paths of

length ≤ 3 to v shows that the order of G is at most 9, whereas |G| = 10. Similarly, if

k = 4 the order is at most 16, whereas |G| = 18. Assume that k ≥ 5 and let u be an

arbitrary vertex. Consider u3, u7, u11 and u13. A directed in-neighbour and the

undirected neighbour of each of these vertices already occur in the u1-branch.

However, u2 can reach all of these vertices by paths of length ≤ k. Therefore

� if u3 6∈ S′, then r(u) ∈ {u1, u6};
� if u7 6∈ S′, then r(u) ∈ {u3, u12};
� if u11 6∈ S′, then r(u) ∈ {u6, u19};
� if u13 6∈ S′, then r(u) ∈ {u7, u22}.

By Lemma 8.11 the above sets are disjoint, with the exception of {u1, u6} and

{u6, u19}. Hence the five sets {u3, u7}, {u3, u13}, {u7, u11}, {u7, u13} and {u11, u13}
intersect S′. These vertices are distinct and |S′| = 2, so the only solution is

S′ = {u7, u13}, u3, u11 6∈ S′. Thus r(u) ∈ {u1, u6}∩ {u6, u19}, so r(u) = u6. All repeats

lie in {v∗, w∗} = S′ = {u7, u13}, so u6 ∈ {u7, u13}, contradicting Lemma 8.11

8.4 Total regularity of 2-geodetic mixed graphs with excess one

We turn now to the question of the total regularity of mixed graphs with small excess.

Recall that a mixed graph is an (r, z, k; +ε)-graph if it has minimum undirected degree

r, minimum directed out-degree z, is k-geodetic and has order equal to M(r, z, k) + ε;
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ε is the excess of G. We will show that (r, z, 2; +1)-graphs are totally regular.

Let G be an (r, z, 2; +1)-graph that is not totally regular. The graph G has order

(r + z)2 + z + 2 and it follows from Lemma 8.2 that G is out-regular. Therefore for

every vertex u of G there is a unique vertex o(u) that cannot be reached by a path of

length ≤ 2 from u. We call o(u) the outlier of u. The proof of the next lemma is

similar to that of Lemma 8.4 and hence is omitted.

Lemma 8.16. S ⊆
⋂

u∈V (G)

o(N+(u)), S′ ⊆
⋂

u∈V (G)

N+(o(u)) and d−(v′) = z + 1 for all

v′ ∈ S′.

Lemma 8.17. S′ = N+(o(u)) for all u ∈ V (G) and S ⊆ N−(v′) for all v′ ∈ S′.

Proof. Fix v′ ∈ S′. By 2-geodecity, every vertex has at most one path of length ≤ 2 to

v′. By Lemma 8.16, S′ is contained in the out-neighbourhood of any outlier, so by

2-geodecity v′ is not an outlier and V (G) = T−2(v
′). Each vertex of S that lies in

N−(v′) reduces the number of vertices in N−2(v′); by Lemma 8.16 each vertex in S′

has directed in-degree z + 1, so that

Σv∈S(z − d−(v)) = |S′|,

so it follows that the vertices of S in N−(v′) can reduce the number of vertices in

N−2(v′) by at most |S′|. Hence we obtain a lower bound for the order of G by

assuming that S ⊆ N−(v′) and counting paths of length ≤ 2 to v′, yielding

|V (G)| ≥ 1 + r + z + 1 + r(r − 1 + z) + (z + 1)(r + z)− |S′|. (8.5)

Rearranging, we obtain |S′| ≥ r + z. By Lemma 8.16, r + z is also an upper bound on

the size of S′, so we must have |S′| = r + z. Since S′ ⊆ N+(o(u)) for any vertex u by

Lemma 8.16 and |N+(o(u))| = r + z, it follows that S′ = N+(o(u)) for all u ∈ V (G).

As we have equality in Equation 8.5, every vertex of S must be contained in N−(v′),

implying the second half of the result.

Theorem 8.18. All (r, z, 2; +1)-graphs are totally regular.

Proof. As no vertex is its own outlier, G contains at least two distinct outliers o1 and

o2. If G is not totally regular, then by Lemma 8.17, N+(o1) = N+(o2) (= S′).

Suppose that r ≥ 2; then there are two distinct paths of length two from o1 to o2,

contradicting 2-geodecity. Therefore r = 1. However, this implies that G contains a
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perfect matching and hence has even order, whereas the order z2 + 3z + 3 is odd.

Therefore G must be totally regular.

8.5 Total regularity of (r, 1, k; +1)-graphs for k ≥ 3

As in the case of almost mixed Moore graphs, showing total regularity of k-geodetic

mixed graphs with excess one for k ≥ 3 is a more difficult problem. We solve it for

directed out-degree z = 1. Let G be an (r, 1, k; +1)-graph that is not totally regular,

where k ≥ 3. By Lemma 8.2 G is out-regular. As before, for any vertex u the unique

directed out-neighbour of u will be written u+. We first make an observation

concerning the relationship between the position of vertices in the Moore tree rooted

at u and the outlier of the vertex u+.

Lemma 8.19. Draw the Moore tree of depth k for an arbitrary vertex u. Let w be

such that d(u,w) ≤ k − 1 and the mixed path from u to w does not begin with a

directed arc (this includes the possibility w = u). Then if either

i) w ∈ S or

ii) w 6∈ S′ and w appears in the Moore tree as the endpoint of an arc,

then w = o(u+).

Proof. Condition ii) is illustrated in Figure 8.3, where dotted rectangles represent

trees of depth k − 1 ≥ 2. We suppose that w /∈ S′; in-neighbours of w are shown in

black. If w satisfies either of these conditions i) or ii), then, as in Figure 8.3, every

vertex of N−(w) appears in the undirected branches of the tree. In particular, if

w = u ∈ S, then u has no in-neighbours apart from those in U(u) = N+(u)− {u+}.
Therefore by k-geodecity there are no in-neighbours of w within distance k − 1 of u+,

so that d(u+, w) > k.

Corollary 8.20. o(v+) = v for all v ∈ S.

Proof. As v ∈ S, all of the in-neighbours of v are contained in undirected branches of

the Moore tree rooted at v. Therefore by Lemma 8.19 the outlier of v+ must be v

itself.

We may now deduce the relative size of the sets S and S′ and restrict the existence of

edges and arcs in S ∪ S′.

Lemma 8.21. |S| = |S′| and o(v′) ∈ Z−(v′) for all v′ ∈ S′.
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u

u+

w

X1 X2 Z

Figure 8.3: Diagram for Lemma 8.19

Proof. Every vertex in S has directed in-degree zero. Let v′ be a vertex in S′ and

consider the Moore tree of depth k rooted at v′. By k-geodecity, none of the r + 1

branches of the tree can contain more than one in-neighbour of v′, so it follows that

d−(v′) = 2 and o(v′) lies in Z−(v′). As the average directed in-degree of G is one, S

and S′ must have the same size.

Lemma 8.22. S is an independent set. For each v ∈ S we have v+ ∈ S′.

Proof. By definition S contains no arc. Suppose that v ∼ w, where v, w ∈ S. Draw

the Moore tree of depth k rooted at v. By Corollary 8.20, o(v+) = v. But as w ∈ S is

at distance ≤ k − 1 from u and lies in an undirected branch, Lemma 8.19 implies that

w would also be an outlier of v+, so that v = w, which is impossible. Suppose now

that v → w, where v ∈ S and d−(w) = 1. Let u ∈ U(v), so that there is a path

u ∼ v → w. Applying Lemma 8.19 to u shows that both v and w would be outliers of

u+, again a contradiction. Thus v+ ∈ S′ for all v ∈ S.

These lemmas allow us to readily deduce the total regularity of (r, 1, k; +1)-graphs for

k ≥ 4.

Theorem 8.23. (r, 1, k; +1)-graphs are totally regular for k ≥ 4.

Proof. Let v ∈ S. We know from Lemma 8.22 that v has no out-neighbours in S and

that v+ ∈ S′. We now show that in fact all out-neighbours of v lie in S′. Suppose for

a contradiction that there is an edge v ∼ w, where d−(w) = 1. Choose a path

x ∼ y → w. Applying Lemma 8.19 to the Moore tree rooted at x shows that v and w
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v

v′ v+

v′+

w

X1 X2 Z

Figure 8.4: Diagram for Theorem 8.23 for k ≥ 4

would both be outliers of x+, an impossibility. Hence there can be no such edge and

so U(v) ⊆ S′ for all v ∈ S. S and S′ have the same size by Lemma 8.21, so we also

have U(v′) ⊆ S for all v′ ∈ S′.

Let v ∈ S and draw the Moore tree of depth k rooted at v. Recall that o(v+) = v. Let

v′ ∈ S′ ∩ U(v). (v′)+ appears as the endpoint of an arc in an undirected branch of the

tree, so by Lemma 8.19 (v′)+ must be in S′, or it would be another outlier of v+.

Hence U((v′)+) ⊆ S, so (v′)+ has an undirected neighbour w in S at level three of the

tree. This situation is depicted in Figure 8.4. By Lemma 8.19, w must be the outlier

of v+, so w = v, in violation of k-geodecity. Therefore G must be totally regular.

The case k = 3 is more challenging. For the remainder of this section, assume G to be

an (r, 1, 3; +1)-graph that is not totally regular. We first establish an upper bound on

the size of the sets S and S′.

Lemma 8.24. |S| = |S′| ≤ r + 2.

Proof. Fix v ∈ S. Drawing a Moore tree rooted at v+ and applying Lemma 8.19, we

see that at most one element of S is contained in N+(v+), for any such vertex in

U(v+) would be an outlier of (v+)+. Now considering the Moore tree rooted at v, we

see from Lemma 8.19 that any element of S lying in an undirected branch of the tree

lying at distance ≤ 2 from v would be an outlier of v+, whereas we already know from

Corollary 8.20 that o(v+) = v; it follows by 3-geodecity that there can be at most 2

vertices of S at distance ≤ 2 from v, including v itself.
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Now let w be a vertex of S that lies at distance ≥ 3 from v. There are more branches

in the Moore tree rooted at v than there are in-neighbours of w, so there must be an

out-neighbour x of v such that the branch of the Moore tree associated with x

contains no in-neighbour of w, yielding o(x) = w. Since o(v+) = v, we can in fact say

that x ∈ U(v). Therefore {w ∈ S : d(v, w) ≥ 3} ⊆ {o(x) : x ∈ S}. It follows that there

are at most r vertices of S lying at distance ≥ 3 from v. In total, there are thus at

most r + 2 vertices in S.

Lemma 8.25. r = 2.

Proof. Draw the Moore tree of depth 3 rooted at some v ∈ S, numbering vertices in

accordance with our convention. Suppose that r = 1. As v3 is not the outlier of

v2 = v+, we must have v3 ∈ S′ by Lemma 8.19. By Lemma 8.21, o(v3) 6= v, for

otherwise there would be an arc from v to v3, so that v3 can reach v by a mixed path

of length ≤ 3. As v1 is the only in-neighbour of v, it follows that there would be a

≤ 3-cycle through v1. Hence r ≥ 2.

There are exactly r vertices that v can reach by paths of length two consisting of an

edge followed by an arc, each of which must lie in S′, as none are outliers of v+.

Examine the r vertices that v+ can reach by paths of this form; any of these vertices

which do not lie in S′ must be an outlier of (v+)+, so at least r − 1 of them belong to

S′. Along with v+, we have thus identified at least 1 + r + (r − 1) = 2r elements of S′

in the tree. By Lemma 8.24, it follows that 2r ≤ r + 2.

Theorem 8.26. (r, 1, 3; +1)-graphs are totally regular.

Proof. By Lemma 8.25, r = 2. By the argument of the preceding theorem,

|S| = |S′| = 4 and each element v of S has four mixed paths of length ≤ 3 to S′,

namely an arc to v+, a path of length three via v+ and two paths of length two

through the undirected neighbours of v. As o(v+) = v for v ∈ S, distinct elements of

S have distinct directed out-neighbours in S′, so there must be v, w ∈ S and v′ ∈ S′

such that there are paths v ∼ x→ v′ and w ∼ y → v′ for some vertices x, y. It follows

from Lemma 8.19 that x 6= y. Every vertex of S′ has a directed in-neighbour in S and

d−(v′) = 2, which implies that there is an edge in S, contradicting Lemma 8.22.
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Chapter 9

Bounds on the order of mixed graphs

As discussed in Chapter 7, it was shown by Nguyen et al. in [121] that there are no

mixed Moore graphs with diameter k ≥ 3. In this chapter we will extend their

reasoning to give strong lower bounds on the excess of (r, z, k; +ε)-graphs with k ≥ 3

by a series of counting arguments using recurrence relations similar to those used to

derive the mixed Moore bound [37].

In Section 9.1 we apply this method to totally regular mixed graphs and show that

the outlier function of a mixed graph G with excess one is an automorphism if and

only if G is totally regular. Section 9.2 extends this method to graphs that are not

totally regular. In Section 9.3 we exploit these results to characterise

(2, 1, 2; +1)-graphs. We then shift our attention to the degree/diameter problem for

mixed graphs in Section 9.4, giving a lower bound on the excess of totally regular

mixed graphs with given diameter, undirected degree r = 1 and directed out-degree

z = 1. Finally in Section 9.5 we present the results of a computer search that

identifies new mixed geodetic cages and, in cases in which geodetic cages have not yet

been identified, establishes strong upper bounds on the excess of cages.

9.1 Bounds on totally regular mixed graphs with small excess

The proof of the non-existence of mixed Moore graphs [121] uses an argument that

admits of very useful generalisations. We begin by proving a lemma that gives a

counting principles that we will use throughout this chapter; we then immediately use

this lemma to give a new bound on the order of totally regular (r, z, k; ε)-graphs.

Definition 9.1. Let G be an out-regular mixed graph with undirected degree r and

directed out-degree z. Fix a vertex u ∈ V (G) and let U(u) = {u1, u2, . . . , ur}.
Consider the Moore tree of depth k rooted at u. We call a position x in the Moore tree

an arrow vertex (relative to the vertex u) if it satisfies the following three conditions:

� x lies in an undirected branch T (ui) of the Moore tree,

� x is at Level t of the Moore tree, where 2 ≤ t ≤ k − 1, and

� x appears as the end-point of an arc from Level t− 1.
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u0

u1 u2

u3 u4 u5

u6 u7 u8 u9 u10

u11 u12 u13 u14 u15 u16 u17 u18

u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 u31

Figure 9.1: Arrow vertices in the Moore tree for r = z = 1 and k = 5

Notice that in general a vertex of G can appear several times in a Moore tree as an

arrow vertex; however, if G is k-geodetic, then this issue does not arise.

For an illustration of Definition 9.1, see Figure 9.1; the vertices in red, namely u3, u7,

u11 and u13, are the arrow vertices of u0 in this tree. Now we show how we will use

the arrow vertices in our counting arguments.

Lemma 9.2. Let u be a vertex of an out-regular k-geodetic mixed graph G with

undirected degree r and directed out-degree z. Let x be an arrow vertex of u. Then

either x has directed in-degree d−(x) ≥ z + 1, or else it is an outlier of at least

z − d−(x) + 1 vertices in Z+(u).

Proof. Let x be an arrow vertex of u that lies at Level t of the Moore tree rooted at

u, where 2 ≤ t ≤ k − 1. As x is the end-point of an arc from Level t− 1 of the Moore

tree, x has a directed in-neighbour at Level t− 1 of the tree inside an undirected

branch. Furthermore, as x is at distance at most k − 1 from u, all vertices of U(x)

also appear at Level t+ 1 of the tree in an undirected branch. Thus in total x has at

least r + 1 members of N−(u) inside the undirected branches of the tree; hence there

are at most d−(x)− 1 vertices of N−(x) that can be contained in directed branches of

the tree.

As G is k-geodetic, any in-neighbour of x that lies in a directed branch of the tree

must lie at Level k; thus by k-geodecity each directed branch of the tree contains at
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most one in-neighbour of x. Suppose that x has directed in-degree d−(x) ≤ z. Since

at most d−(x)− 1 vertices of N−(x) are contained in these branches, it follows that at

least z − d−(x) + 1 directed branches of the tree contain no in-neighbour of x, so that

x is an outlier of at least z − d−(x) + 1 vertices of Z+(u).

Definition 9.3. The number of arrow vertices (counted by multiplicity) in the Moore

tree of depth k of an out-regular mixed graph with undirected degree r and directed

out-degree z will be denoted by A(r, z, k).

We now count the arrow vertices to determine the function A(r, z, k).

Lemma 9.4. The number of arrow vertices in a Moore tree of depth k of an

out-regular mixed graph with undirected degree r and directed out-degree z is given by

A(r, z, k) =
rz

φ

[λk−11 − 1

λ1 − 1
− λk−12 − 1

λ2 − 1

]
, (9.1)

where

φ =
√

(r + z − 1)2 + 4z,

λ1 =
1

2
(r + z − 1 + φ)

and

λ2 =
1

2
(r + z − 1− φ).

Proof. Fix a vertex u of an out-regular mixed graph G with undirected degree r and

directed out-degree z and consider the Moore tree of depth k rooted at u. For

1 ≤ t ≤ k − 1, let Zt be the number of vertices in the undirected branches at Level t

in the Moore tree based at u that are end-points of arcs emanating from Level t− 1

and let Ut be the number of vertices in the undirected branches at Level t that are

connected by an edge to Level t− 1. Obviously U1 = r, Z1 = 0 and Z1 = rz. These

numbers satisfy the recurrence relations

Ut+1 = (r − 1)Ut + rZt, Zt+1 = zUt + zZt

for t ≥ 1. It follows that

Zt+2 = zUt+1 + zZt+1 = z((r − 1)Ut + rZt) + zZt+1.
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Substituting using the second relation,

Zt+2 = zZt+1 + rzZt + z(r − 1)(1/z)(Zt+1 − zZt) = (r + z − 1)Zt+1 + zZt.

This second-order recurrence relation has characteristic equation

λ2 − (r + z − 1)λ− z = 0,

with solutions λ1, λ2 as given in the statement of the lemma. Observe that the

discriminant φ2 = (r + z − 1)2 + 4z is strictly positive, so that λ1, λ2 are real and

distinct. It follows that

Zt = Aλt1 +Bλt2

for t ≥ 1 and some constants A and B. Substituting Z1 = 0, Z2 = rz, we obtain

Zt =
rz

φ
(λt−11 − λt−12 )

for t ≥ 1. Summing, we find that there are

k−2∑
i=0

rz

φ
(λi1 − λi2) =

rz

φ

[λk−11 − 1

λ1 − 1
− λk−12 − 1

λ2 − 1

]
arrow vertices.

We now combine Lemmas 9.2 and 9.4 to give a strong bound on the excess of a

totally regular k-geodetic mixed graph.

Theorem 9.5. For k ≥ 3, the excess ε of a totally regular (r, z, k; +ε)-graph satisfies

ε ≥ r

φ

[λk−11 − 1

λ1 − 1
− λk−12 − 1

λ2 − 1

]
,

where φ, λ1 and λ2 are as defined in Lemma 9.4.

Proof. Let G be a totally regular (r, z, k; +ε)-graph. Fix a vertex u of G and consider

the multiset

O(Z+(u)) =
⋃

v∈Z+(u)

O(v),

where vertices are counted by multiplicity. As each outlier set contains ε vertices, this

multiset has size zε. By Lemma 9.2, each of the A(r, z, k) arrow vertices of u is an
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r/z 1 2 3 4 5 6

1 2 3 4 5 6 7
2 6 8 10 12 14 16
3 12 15 18 21 24 27
4 20 24 28 32 36 40
5 30 35 40 45 50 55
6 42 48 54 60 66 72
7 56 63 70 77 84 91
8 72 80 88 96 104 112
9 90 99 108 117 126 135
10 110 120 130 140 150 160
11 132 143 154 165 176 187
12 156 168 180 192 204 216
13 182 195 208 221 234 247
14 210 224 238 252 266 280
15 240 255 270 285 300 315

Table 9.1: Lower bound on the excess from Theorem 9.5 for k = 4

outlier of at least one vertex in Z+(u). It follows that

A(r, z, k) ≤ zε.

Substituting using Equation 9.1 and dividing both sides by z yields the result.

Some values of the lower bound in Theorem 9.5 for k = 4 are displayed in Table 9.1.

We are not aware of any instance in which the bound of Theorem 9.5 is tight.

However, as we shall now demonstrate, it does yield a powerful result on mixed

graphs with excess one.

Corollary 9.6. If G is a totally regular (r, z, k; +1)-graph with k ≥ 3, then r = 1 and

k = 3.

Proof. If k ≥ 4, then there are > rz arrow vertices in the Moore tree of G, so that the

bound of Theorem 9.5 shows that the excess of such a graph would be ε > rz
z = r. We

are assuming that G is mixed, so that r ≥ 1 and ε would be strictly greater than one.

Hence we can assume that k = 3, in which case Theorem 9.5 tells us that ε ≥ r,
implying that for a totally regular (r, z, 3; +1)-graph we must have r = 1.

Theorem 9.7. There are no totally regular (r, z, k; +1)-graphs for k ≥ 3.

Proof. Let G be a totally regular (1, z, 3; +1)-graph. For any vertex u ∈ V (G) write

u∗ for the undirected neighbour of u. Let the adjacency matrices of G,GU and GZ be

A,AU and AZ respectively. Fix a vertex u and draw the Moore tree rooted at u.
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Examination of the Moore tree shows that there are two walks of length ≤ 3 from u

to itself (the trivial walk u of length zero and the walk u ∼ u∗ ∼ u of length two), two

walks of length ≤ 3 from u to u∗ (u ∼ u∗ and u ∼ u∗ ∼ u ∼ u∗), three walks of length

≤ 3 from u to any directed out-neighbour v of u (u→ v, u ∼ u∗ ∼ u→ v and

u→ v ∼ v∗ ∼ v) and unique walks of length ≤ 3 from u to the vertices at distance

two and three from u. It follows that

I +A+A2 +A3 = I + J +A+AZ − P,

where I is the n× n identity matrix, J is the all-one matrix and Pvv′ = 1 if o(v) = v′

and 0 otherwise. As G is totally regular, J commutes with the left-hand side, I and

AZ ; therefore JP = PJ and o is a permutation.

Take an edge uu∗. Lemma 9.2 and the fact that o is a permutation show that

o(Z+(u)) = Z+(u∗) and o(Z+(u∗)) = Z+(u). Applying this result to an arbitrary

directed in-neighbour v of u, we see that there is a path v ∼ v∗ → o(u). Let

w ∈ Z+(o(u)). A diagram of this situation is shown in Figure 9.2. There is a path of

length three from v to w, so d(u,w) ≥ 3; in fact, since o is a permutation, we have

equality. Since only r + z − 1 in-neighbours of w lie in the Moore tree rooted at u, it

follows that w must be the outlier of an out-neighbour of u. Examining the Moore

tree of depth three based at v, we see that if w is an outlier of a vertex in Z+(u), then

it would appear twice in the Moore tree rooted at v, once in the undirected v∗-branch

and once in the u-branch in Z+(u∗), violating 3-geodecity. Therefore w is the outlier

of u∗; as the excess is one, u∗ has a unique outlier, so z = 1.

We can dispose of the case r = z = 1, k = 3 using Lemma 9.2. Let

u8 ∼ a, u8 → b, u9 → c, u10 ∼ d, u10 → e; see Figure 9.3. Our argument shows that

o(u2) = u3, so

{a, b, c, d, e} = {u, u1, u6, u7, u11},

where u11 = o(u). As the undirected neighbours of u, u1 and u6 are accounted for,

{b, c, e} = {u, u1, u6} and {a, d} = {u7, u11}. We have {c, e} 6= {u, u1} or there would

be a repeat in the Moore tree rooted at u5. u 6= b or else there would be paths

u4 ∼ u2 and u4 → u8 → u→ u2, so u ∈ {c, e}. Thus u1 6∈ {c, e}, so b = u1 and

{c, e} = {u, u6}. By 3-geodecity applied to u8, b = u1 implies that a 6= u7, so

a = u11 = o(u) and hence d = u7. e 6= u6, or u10 would have two paths of length ≤ 3

to u7. Therefore c = u6, e = u.

Taking into account all adjacencies, it follows that there are three arcs from
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w

o(u)

v∗

v

u

u∗

Figure 9.2: Configuration for Theorem 9.7 for z = 2
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u

u1 u2

u3 u4 u5

u6 u7 u8 u9 u10

Figure 9.3: Moore tree for a 3-geodetic mixed graph with r = z = 1

{u6, u7, u11} to {u4, u9, u11}. u11 6→ u11 and u11 6→ u4, or we would have

u4 → u8 ∼ u11 → u4. Hence u11 → u9. u6 6→ u11, or u9 → u6 → u11 → u9, so u6 → u4

and u7 → u11. But now there are paths u1 ∼ u→ u2 ∼ u4 and u1 → u3 ∼ u6 → u4,

contradicting 3-geodecity. As G has even order, G has excess ε ≥ 3.

It follows from Corollary 9.6, Theorem 9.7 and the results of Chapter 8 that any

(r, z, k; +1)-graph is either totally regular with k = 2, satisfying the conditions in

Theorem 7.18, or else k ≥ 3, z ≥ 2 and G is not totally regular.

We conclude this section with a result on the connection between outlier sets and

automorphisms of mixed graphs with excess one. It is known that the outlier function

of a (d, k; +1)-digraph G is an automorphism if and only if G is diregular [132]. The

above results now allow us to extend this result to the more general mixed setting.

Theorem 9.8. The outlier function of an (r, z, k; +1)-graph G is an automorphism if

and only if G is totally regular.

Proof. Suppose firstly that G is not totally regular; recall that G must be out-regular.

Let v′ ∈ S′. Suppose that o is an automorphism. It follows that o(v′) ∈ S′. However,

this implies that o(v′) has > r+ z in-neighbours distributed among the r+ z branches

of the Moore tree based at v′, so that some out-neighbour of v′ has ≥ 2 mixed paths

to o(v′) with length ≤ k. Thus if o is an automorphism, then G is totally regular.

Now let G be totally regular. Let k = 2 and write A for the adjacency matrix of G.

Then

I +A+A2 = J + rI − P,
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where I is the n× n identity matrix, J is the all-one matrix and Puv = 1 if o(u) = v

and 0 otherwise. As G is totally regular, both I and J commute with A. Therefore P

commutes with A, so that o is an automorphism. There are no totally regular mixed

graphs with excess one for k ≥ 3 by Theorem 9.7, so the proof is complete.

9.2 Excess of mixed graphs that are not totally regular

We will now revisit the counting arguments used in the previous section to derive a

bound in the more difficult context of mixed graphs that are not totally regular. We

will see that a bound for all mixed graphs, totally regular or not, can be achieved by

relaxing the bound in Theorem 9.5 by a factor of z
2r+3z . It was shown in Chapter 8

that any (r, z, k; +1)-graph must be totally regular if either k = 2 or z = 1. Using the

new bound presented in Theorem 9.9 we will improve on this result.

Theorem 9.9. The excess of any (r, z, k)-cage satisfies

ε ≥ rz

(2r + 3z)φ

[λk−11 − 1

λ1 − 1
− λk−12 − 1

λ2 − 1

]
,

where λ1, λ2 and φ are as defined in Lemma 9.4.

Proof. Let G be an (r, z, k)-cage. We can assume that the directed subgraph of G is

out-regular, by deleting some arcs if necessary. Recall that the number of arrow

vertices in the Moore tree of an out-regular (r, z, k; +ε)-graph is A(r, z, k). By

Lemma 9.4 we know that

A(r, z, k) =
rz

φ

[λk−11 − 1

λ1 − 1
− λk−12 − 1

λ2 − 1

]
.

We are therefore aiming to prove that

ε ≥ 1

2r + 3z
A(r, z, k).

We have A(k)
2r+3z <

A(k)
r . Now A(k)

r is the number of arrow vertices of G in an

undirected branch of the Moore tree, so the number of vertices in a branch is at least
A(k)
r ; in the notation of Lemma 8.2 this yields A(k)

r < µ(r, z, k − 1), so that

A(k)

2r + 3z
<
A(k)

r
< µ(r, z, k − 1).

Therefore if G contains a vertex u with undirected degree d(u) ≥ r + 1, then the

claimed bound holds. Thus we can assume that G is out-regular.
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Let the deficiency σ−(v) of a vertex v ∈ S be z − d−(v) and the surplus σ+(v′) of a

vertex v′ ∈ S′ be d−(v′)− z. As G is out-regular we have for the total deficiency σ

σ =
∑
v∈S

σ−(v) =
∑
v′∈S′

σ+(v′).

As each vertex in S′ contributes at least one to σ, we have σ ≥ |S′|. We will now find

an upper bound for σ in terms of r, z and ε.

Fix a vertex u of G and draw the Moore tree of depth k rooted at u. Write

U(u) = {u1, u2, . . . , ur}. Let v ∈ S have deficiency σ−(v) = s. Suppose firstly that

d(u, v) ≥ k (i.e. either v lies at the bottom of the tree or v ∈ O(u)). Then v can have

in-neighbours in at most r+ z − s branches of the Moore tree and so lies in the outlier

sets of at least s members of N+(u).

Now suppose that either u = v or d(u, v) ≤ k− 1 and v lies in an undirected branch of

the tree. At most z − s directed branches of the tree can contain in-neighbours of v

(in fact z − s− 1 branches if v is an arrow vertex), so again v occurs at least s times

in the multiset O(Z+(u)).

Lastly we must consider the case that v lies in a directed branch of the tree and

d(u, v) ≤ k − 1. Consider the Moore tree based at any ui ∈ U(u), say u1. v lies in an

undirected branch of this tree and so by our previous analysis v occurs at least s

times in O(N+(u1)).

We have now dealt with all members of S. Summing their deficiencies to find σ we

find that the elements of S appear at least σ times in the multiset

O(N+(u)) ∪O(N+(u1)). As this multiset contains (2r + 2z)ε elements, we conclude

that

σ ≤ (2r + 2z)ε.

We now estimate the size of the set S′. Again we consider the Moore tree rooted at u.

If an arrow vertex x relative to u lies in V (G)− S′, then x cannot have an

in-neighbour in every directed branch of the tree and so must be an outlier of at least

one directed out-neighbour of u. There are zε elements in O(Z+(u)), so it follows that

at least A(r, z, k)− zε of the arrow vertices must lie in S′. Therefore

(2r + 2z)ε ≥ σ ≥ |S′| ≥ A(r, z, k)− zε.
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Rearranging we derive the inequality

ε ≥ 1

2r + 3z
A(r, z, k).

This proves the theorem.

This result now enables us to rule out the existence of mixed graphs with excess one

for k ≥ 4 and ‘most’ values of r and z for k = 3.

Theorem 9.10. There are no (r, z, k; +1)-graphs for k ≥ 4 or for k = 3, r ≥ 4 and

z > 2r
r−3 .

Proof. Setting ε = 1 in Theorem 9.9 shows that if A(r, z, k) > 2r + 3z, then no

(r, z, k; +1)-graph can exist. If k ≥ 5, then

A(r, z, k) ≥ A(r, z, 5) = rz3 + 2r2z2 + r3z − r2z + rz.

If z ≥ 2, then this expression obviously exceeds 2r+ 3z, so let z = 1. By Theorem 8.23

G must be totally regular; however, no such graphs exist by Theorem 9.7.

Let k = 4. We have A(r, z, 4) = rz2 + zr2. If r ≥ 2 and z ≥ 2, then

rz2 + zr2 ≥ 4r + 4z > 2r + 3z. The result follows for z = 1 by Theorem 8.23 and

Theorem 9.7, so we can assume that r = 1. We want to show that z2 + z > 3z + 2, i.e.

z2 − 2z − 2 > 0. This inequality holds for z ≥ 3, so this leaves only the pair

(r, z) = (1, 2) to deal with. However in this case the Moore bound M(1, 2, 4) is even,

so that G must have odd order. However, r = 1 implies that G has a perfect

matching, so this is impossible.

Finally let k = 3. We have A(r, z, 3) = rz, so A(r, z, 3) > 2r + 3z if and only if r ≥ 4

and z > 2r
r−3 .

For k = 3 this leaves open the cases r = 1, 2, 3, r = 4 and 2 ≤ z ≤ 8, r = 5 and

2 ≤ z ≤ 5, r = 6 and 2 ≤ z ≤ 4, r = 7, 8 and 9 and 2 ≤ z ≤ 3 and r ≥ 10 and z = 2.

We can deal with the majority of these cases by a slightly more sophisticated method.

Lemma 9.11. If G is an (r, z, k; +1)-graph that is not totally regular, then every

vertex v′ ∈ S′ has directed in-degree z + 1. Therefore σ = |S′|.

Proof. Consider the Moore tree rooted at v′ ∈ S′. Each branch of the tree can contain

at most one in-neighbour of v′ by k-geodecity. Therefore, as v′ has at least r + z + 1
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in-neighbours we conclude that each branch contains exactly one in-neighbour of v′

and o(v′) ∈ Z−(v′). Hence v′ has exactly r + z + 1 in-neighbours.

Lemma 9.12. No v′ ∈ S′ is an outlier.

Proof. Assume for a contradiction that G is an (r, z, k; +1)-graph in which o(u) = v′

for some u ∈ V (G) and v′ ∈ S′. As v′ is the outlier of u, no in-neighbour of v′ can lie

at distance less than k from u. By k-geodecity, we conclude that every branch of the

Moore tree rooted at u contains a unique in-neighbour of v′ at distance k from u.

Therefore we must have o(u) ∈ N−(v′) to account for the final in-neighbour of v′. As

v′ = o(u), this contradicts k-geodecity.

Lemma 9.13. For k = 3, if an (r, z, 3; +1)-graph exists, then z2 + z + r ≥ σ ≥ z + r.

Proof. Let G be an (r, z, 3; +1)-graph. The Moore bound for k = 3 is

M(r, z, 3) = r3 + z3 + 3rz2 + 3r2z − r2 + z2 + r + z + 1.

The order of G is n = M(r, z, 3) + 1. The Moore bound for k = 2 is

M(r, z, 2) = r2 + z2 + 2rz + z + 1.

Fix some v′ ∈ S′. By Lemma 9.12, every vertex of G can reach v′ by a mixed path of

length ≤ 3. We achieve a lower bound for the number of these vertices by assuming

that S ⊆ N−(v′). Taking into account that v′ has exactly one extra directed

in-neighbour by Lemma 9.11 and since all vertices of T−3(v
′) are distinct by

3-geodecity we obtain the following inequality:

n = M(r, z, 3) + 1 ≥M(r, z, 3) +M(r, z, 2)− σ(1 + r + z).

Rearranging,

σ(1 + r + z) ≥M(r, z, 2)− 1 = r2 + z2 + 2rz + z.

Multiplying out, it is easily seen that σ ≥ r + z. Now we turn to the upper bound.

Fix a vertex u and draw the Moore tree based at u. By the argument of Theorem 9.9,

we see that any vertex v in S that lies in {u, o(u)} ∪Nk(u) or any of the undirected

branches of the tree must be an outlier of at least σ−(v) vertices in N+(u). Therefore

these vertices between them contribute at most r + z to the total σ.
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Fix a directed out-neighbour u+ of u and consider the vertices in the Moore tree

rooted at u+ at distance ≤ 1 from u+. Any vertex v ∈ S belonging to this set will be

an outlier of at least σ−(v) vertices in Z+(u+). Between them such vertices can

therefore contribute at most z2 to the total σ. Since we have now considered all

vertices in G, the conclusion follows.

Theorem 9.14. There are no (r, z, 3; +1)-graphs with r ≥ 2.

Proof. Suppose that G is an (r, z, 3; +1)-graph with r > 1. We know from Lemma 9.13

that z2 + r + z ≥ σ ≥ r + z, so we can write σ = z2 + r + z − α, where 0 ≤ α ≤ z2.
Fix an arbitrary vertex u of G and draw the Moore tree rooted at u. There are rz

arrow vertices in the tree relative to u, i.e. rz vertices in the set Z+(U(u)). If any of

the arrow vertices does not belong to S′, then it will be an outlier of a vertex in

Z+(u). It follows that at least (r − 1)z of the arrow vertices belong to S′. Repeating

this reasoning for each vertex in N+(u) and taking into account that the vertices of

Z+(u) are arrow vertices relative to any vertex in U(u), we see that there are at least

(r − 1)z + (r − 1)z + (r − 1)(r − 2)z + z2(r − 1) = (r − 1)(z2 + rz)

vertices of S′ in the tree. In fact, if we take u to be an element of S′, a valid

assumption by Theorem 9.7, then we can actually deduce that

σ = z2 + r + z − α = |S′| ≥ (r − 1)(z2 + rz) + 1.

Rearranging, we see that α must satisfy

α ≤ z2 + r + z − rz2 − r2z + z2 + rz − 1 = −zr2 − (z2 − z − 1)r + (2z2 + z − 1).

If r ≥ 2 and z ≥ 2, then

α ≤ −zr2−(z2−z−1)r+(2z2+z−1) ≤ −4z−2(z2−z−1)+(2z2+z−1) = −z+1 < 0,

so it follows that we must have r = 1 and, considering the parity of the Moore bound,

z must be odd.

By Theorems 9.10 and 9.14 the only remaining open case left for k ≥ 3 is the question

of the existence of a non-totally regular (1, z, 3; +1)-graph. We finally settle this

outstanding problem.

Theorem 9.15. If G is an (r, z, k; +1)-graph with r, z ≥ 1, then k = 2 and G is

totally regular.
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Proof. Suppose that G is an (r, z, k; +1)-graph with k ≥ 3. Then by Theorems 9.10

and 9.14 we have r = 1, k = 3 and z is odd. Also G is not totally regular by

Theorem 9.7, which rules out z = 1 by Theorem 8.26. Fix a vertex u of G. Let u∗ be

the undirected neighbour of u and {u1, u2, . . . , uz} be the set Z+(u) of directed

out-neighbours of u. Draw the Moore tree of depth 3 rooted at u.

By counting the in-neighbours of a vertex v ∈ S that are available to lie in the

directed branches of the tree, it can be seen that v will be the outlier of at least σ−(v)

vertices of N+(u) unless v lies in U(Z+(u)), i.e. unless v is the undirected neighbour

of a directed out-neighbour of u. For example, if v ∈ Z+(u), then the vertices u∗ and

v can reach v by mixed paths of length ≤ k and v has two in-neighbours already

appearing in the tree (one is u and the other is v∗ at Level 2), so that v has at most

z − σ−(v)− 1 further in-neighbours that can lie in the remaining z − 1 directed

branches, so that v is the outlier of at least σ−(v) vertices in N+(u). Repeating this

analysis for each position in the Moore tree implies the result.

However, if v lies in U(Z+(u)), then we can only say that it will be the outlier of at

least σ−(v)− 1 vertices of N+(u) (it can be reached by two vertices of N+(u) by

≤ k-paths and has a further z − σ−(v) in-neighbours available for the remaining z − 1

directed branches). Observe also that if an arrow vertex in the Moore tree lies in S,

then this vertex v will be an outlier of at least σ−(v) + 1 vertices of Z+(u).

Summing the deficiencies of all the vertices in S to get the total deficiency σ, we

conclude that there are at most 2z + 1 vertices of S, for at most z vertices of S can lie

in U(Z+(u)) and every other vertex v of S is an outlier of at least σ−(v) vertices in

N+(u) and hence appears at least σ−(v) times in o(N+(u)), which is a multiset with

size z + 1. We now make this estimate more precise. For any vertex u of G define

ρ(u) = |S ∩ U(Z+(u))|. Also let ρmin = min{ρ(u) : u ∈ V (G)}. If u is a vertex at

which this minimum value ρmin is achieved, then as there are exactly ρmin undirected

neighbours of Z+(u) that lie in S, the total deficiency satisfies σ ≤ z + ρmin + 1.

Suppose that ρmin ≥ 1. For any vertex u, the sets U(Z+(u)), U(Z+(u∗)) and

U(Z+(ui)) for 1 ≤ i ≤ z are mutually disjoint and each contain at least ρmin vertices

of S, which are distinct by 3-geodecity. Thus

(z + 2)ρmin ≤ |S| ≤ σ ≤ z + ρmin + 1. (9.2)

Rearranging, we see that either ρmin = 0 or ρmin = 1. Suppose that ρmin = 1; then we

have equality in Equation 9.2, which implies that |S| = z + 2 and ρ(u∗) = ρ(ui) = 1
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for 1 ≤ i ≤ z. Then as ρ(u) = 1, there is a directed out-neighbour of u (say u1) such

that u∗1 ∈ S. Applying the same reasoning to u1, we conclude that each of the z + 2

sets U(Z+(u1)), U(Z+(u∗1)) and U(Z+(u′)), where u′ is any directed out-neighbour of

u1, each contain one element of S; however, including u∗1, we see that there would be

at least z + 3 elements of S in the Moore tree of depth three rooted at u1, a

contradiction.

Thus ρmin = 0. Hence by Lemma 9.13 we have σ = z + 1. As no vertices of S lie in

U(Z+(u)), each of the elements v ∈ S is an outlier of at least σ−(v) vertices of

N+(u), so that we must have o(N+(u)) = S as multisets, where v ∈ S appears σ−(v)

times on the right-hand side. If any arrow vertex v in the Moore tree rooted at u (i.e.

any vertex of Z+(u∗)) belongs to S, then this vertex would contribute at least

σ−(v) + 1 times to the set o(Z+(u)), so that as σ ≥ z + 1, in total there would be

≥ z+ 2 vertices in o(N+(u)), which is impossible. Furthermore, if an arrow vertex lies

in V (G)− (S ∪ S′), then this vertex would be an outlier of a vertex in Z+(u),

contradicting o(N+(u)) = S. Thus all arrow vertices in the tree belong to S′.

Applying the same reasoning to the vertices in N+(u), we see that if some w ∈ N+(u)

has ρ(w) = 0, then all vertices of Z+(w∗) would lie in S′, so that the Moore tree of

depth three rooted at u would contain at least 2z vertices of S′, which is strictly

greater than σ for z ≥ 3. Thus U(Z+(w)) contains at least one vertex of S for each

w ∈ N+(u); it follows that each branch of the Moore tree rooted at u contains at least

one vertex of S at distance three from u. As |S| ≤ σ = z + 1, we must have

|S| = z + 1 and each vertex in S has directed in-degree z − 1.

There are only z + 1 vertices in S, so we conclude that ρ(w) = 1 for each w ∈ N+(u).

As there is only one vertex of S′ not contained in Z+(u∗), there must be a directed

out-neighbour of u, say u1, such that S′ ∩ Z+(u∗1) = ∅. Since the z + 1 vertices of S

are contained in U(Z+(N+(u))), we also have S ∩ Z+(u∗1) = ∅, so that

Z+(u∗1) ⊆ V (G)− (S ∪ S′). It follows that Z+(u∗1) = o(Z+(u1)). However, as just one

vertex of S is contained in U(Z+(u1)), at least z vertices in N+(u1) must have

outliers in S, implying that z = 1, a contradiction.

This completes our classification of k-geodetic mixed graphs with excess one for k ≥ 3.
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9.3 The unique (2, 1, 2;+1)-graph

In [38] it is proven that there is a unique almost mixed Moore graph with diameter

k = 2 and degree parameters r = 2, z = 1. At the time it was unknown whether such

a graph must be totally regular. Using our total regularity result in Theorem 8.18, we

will now prove that there is a unique 2-geodetic mixed graph with the same degree

parameters r = 2, z = 1 and excess ε = 1.

Let D12 = 〈x, y : x6 = y2 = e, yxy−1 = x−1〉 be the dihedral group with order 12. It is

easily verified that the Cayley graph on D12 with generating set {x2, y, xy}, where the

generator x2 is associated with arcs and the involutions y, xy with edges, is a

(2, 1, 2; +1)-graph. It is displayed in Figure 9.4. We proceed to show that up to

isomorphism this graph is the unique (2, 1, 2; +1)-graph. Hence let G stand for an

arbitrary graph with these parameters.

Figure 9.4: The unique 2-geodetic mixed graph with r = 2, z = 1 and excess
ε = 1

By Theorem 8.18, GU is 2-regular and GZ is diregular with degree z = 1. By

2-geodecity, GU cannot contain any cycle of length ≤ 4. Hence there are three
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possibilities: i) GU ∼= C5 ∪ C7, ii) GU ∼= 2C6 and iii) GU ∼= C12.

Lemma 9.16. If dU (u, v) ≤ 3, then u and v are independent in GZ .

Proof. The result is trivial if dU (u, v) = 1. If dU (u, v) = 2, then any arc between u

and v would violate 2-geodecity. Similarly, if dU (u, v) = 3 and u→ v, there is a path

u ∼ u1 ∼ u2 ∼ v, so that there are paths u1 ∼ u→ v and u1 ∼ u2 ∼ v, which again is

impossible.

Lemma 9.17. GU ∼= C12.

Proof. Suppose that GU ∼= C5 ∪ C7. By Theorem 8.18, there must be an arc with

both endpoints in C7. However, these endpoints are at distance at most three in GU ,

contradicting Lemma 9.16.

Now let GU ∼= 2C6. We shall label the vertices of G (i, r), where i ∈ Z6 and r = 0, 1,

so that (i, r) ∼ (i± 1, r), where addition is carried out modulo 6. By Lemma 9.16,

any arc must have its initial and terminal points in different cycles and by

Theorem 8.18 arcs that begin at distinct vertices of one cycle have distinct endpoints.

Without loss of generality, (0, 0)→ (3, 1). As (0, 0) can already reach the vertices

(1, 0), (2, 0), (5, 0) and (4, 0) by paths in GU of length ≤ 2, by 2-geodecity we must

have (3, 1)→ (3, 0). Continuing in this manner, we deduce the existence of the 4-cycle

(0, 0)→ (3, 1)→ (3, 0)→ (0, 1)→ (0, 0). Now (0, 0) can reach the vertices (3, 1), (2, 1)

and (4, 1) by paths of length ≤ 2, so either (1, 0)→ (1, 1) or (1, 0)→ (5, 1); by

symmetry, we can set (1, 0)→ (5, 1). We now deduce the existence of the cycle

(1, 0)→ (5, 1)→ (4, 0)→ (2, 1)→ (1, 0). But now (5, 0) 6→ (4, 1), or we would have

(0, 0)→ (3, 1) ∼ (4, 1) and (0, 0) ∼ (5, 0)→ (4, 1), and likewise (5, 0) 6→ (1, 1), or else

(4, 0)→ (2, 1) ∼ (1, 1) and (4, 0) ∼ (5, 0)→ (1, 1). It follows that GU is a

twelve-cycle.

Theorem 9.18. The graph in Figure 9.4 is the unique (2, 1, 2; +1)-graph up to

isomorphism.

Proof. By Lemma 9.17, GU is a 12-cycle. We will label its vertices by the elements of

Z12, so that i ∼ i± 1 for i ∈ Z12, where addition is modulo 12. By Lemma 9.16, for

each i ∈ Z12 we have i→ i+ r, where 4 ≤ r ≤ 8. Suppose that for some i we have

i→ i+ 6, say 0→ 6. Then 6 is not adjacent to any vertex in {3, 4, 5, 6, 7, 8, 9} by

Lemma 9.16. Also 0 can already reach every vertex in {10, 11, 0, 1, 2} by undirected

paths of length ≤ 2, so by 2-geodecity the arc from 6 also cannot terminate in this

set. Thus i 6→ i+ 6 for all i ∈ Z12.

James Tuite



172 9 Bounds on the order of mixed graphs

Suppose now that there are vertices u, v such that dU (u, v) = 5 and u→ v; without

loss of generality, let 0→ 5. By 2-geodecity, 5 6→ 10, 11, 0, 1 or 2 and by Lemma 9.16

5 6→ 3, 4, 5, 6, 7 or 8. Thus 5→ 9. Consider the vertices that could be the directed

in-neighbour of 0. By Lemma 9.16 none of the vertices 9, 10, 11, 1, 2 or 3 can have an

arc to 0. The vertices 4, 6 and 7 can already reach 5 by undirected paths of length

≤ 2, so, as 0→ 5, none of these vertices has an arc to 0. Therefore 8→ 0. Finally we

turn to the vertex 1. By Lemma 9.16 1 cannot have an arc to any of 10, 11, 2, 3 or 4.

If 1→ 8, then 1 would have two paths 1 ∼ 0 and 1→ 8→ 0 to 0. Similarly, if 1→ 6

then 1 would have two paths to 5. Thus 1→ 7. However, 7 = 1 + 6, contradicting our

previous result.

Therefore for each i ∈ Z12 we have i→ i± 4. By symmetry we can take 0→ 4, so

that we have the 3-cycle 0→ 4→ 8→ 0. We cannot have 1→ 5, or there would be

two paths from 0 to 5 of length two. Therefore 1→ 9→ 5→ 1. Applying the same

reasoning to the vertices 2 and 3, we deduce that GZ contains cycles 2→ 6→ 10→ 2

and 3→ 11→ 7→ 3. By Theorem 8.18 we have accounted for all edges and arcs, so

it follows that G is isomorphic to the graph in Figure 9.4.

This reasoning can be extended to the open case of (2, z, 2; +1)-graphs in

Theorem 7.18. Let G be any (2, z, 2; +1)-graph. We know by the results of Chapter 8

that G is totally regular and by Theorem 9.8 that the outlier function o is an

automorphism of G. Let GU and GZ be respectively the undirected and directed

subgraphs of G. GU is a disjoint union of cycles of length ≥ 5, so we can characterise

GU by giving the lengths of the cycles in GU . We will say that an s-cycle in GU is

unique if it is the only cycle of that length in GU . We will also say that a cycle of GU

is empty if it induces an independent set in GZ .

Lemma 9.19. If u lies in a cycle of length s in GU , then o(u) also belongs to a cycle

of length s. In particular, if C is a unique cycle, then o acts on C as a rotation.

Proof. The first part of the statement follows from the fact that o is an automorphism

of G and hence of GU . Thus if C is the only cycle of length s in GU , then o is a

symmetry of C, so that o acts on C either as a rotation or a reflection. However o can

have no fixed points and also contains no transpositions (u, v) where u ∼ v in G, so o

must act on C as a rotation.

Corollary 9.20. There are no unique 5-cycles in GU .
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Proof. By Lemma 9.3 if C is a unique 5-cycle an u ∈ V (C), then o(u) also lies in C;

however u can reach every vertex of C by paths of length ≤ 2 in GU .

Lemma 9.21. Any cycle in GU of length ≤ 7 is empty. Any unique cycle of length 8

is empty.

Proof. Let C be a cycle of length s. We will identify its vertex set with Zs. Suppose

that there is a directed chord in C; without loss of generality we can assume that this

arc is 0→ i. By 2-geodecity i 6∈ {−3,−2,−1, 0, 1, 2, 3}, so it follows instantly that

s ≥ 8. If s = 8 and C is unique, then we must have o(0) ∈ {3, 4, 5} and by the

previous reasoning we have i = 4; however, this means that 0 has a mixed path of

length ≤ 2 to each of 3, 4 and 5, a contradiction.

Lemma 9.22. Let C be a non-empty unique cycle of length s ≥ 8 and identify its

vertex set with Zs. Then o acts on V (C) as o(i) = i+ r, where r 6∈ {−2,−1, 0, 1, 2}
and the gcd of r and s satisfies (r, s) > 1.

Proof. The form of o follows immediately from Lemma 9.3. Suppose that (r, s) = 1

and that 0→ t. Applying the automorphism o repeatedly to this arc we deduce that

r → t+ r, 2r → t+ 2r and in general jr → t+ jr for 0 ≤ j ≤ s− 1. However, as

(r, s) = 1, we conclude that for every vertex i in C we have an arc i→ i+ t. It follows

that we would have mixed paths 0→ t ∼ t+ 1 and 0 ∼ 1→ t+ 1, violating

2-geodecity.

The condition (r, s) > 1 is clearly not satisfied if s is prime.

Corollary 9.23. Any unique cycle of prime length is empty.

Corollary 9.24. GU does not consist of two empty cycles of different lengths; in

particular, the cycle lengths cannot be (p, q), where p and q are prime.

Proof. Suppose that GU is the union of two empty cycles C and D with lengths s and

t respectively. Then by total regularity each vertex in C has two arcs to D and each

vertex of D has two arcs from D, so we must have 2s = 2t. The final statement

follows from Corollary 9.23.

It follows by Corollaries 9.20 and 9.24 that the possible cycle-lengths in the

undirected subgraph GU of a (2, 2, 2; +1)-graph are i) (5, 5, 5, 5), ii) (10, 5, 5), iii)

(8, 6, 6), iv) (7, 7, 6), v) (14, 6), vi) (12, 8), vii) (10, 10) and viii) (20). This fact can be
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used to show non-existence of (2, 2, 2; +1)-graphs by a case analysis; however, the

proof is long. The computer search presented in Section 9.5 shows that (2, 2, 2)-cages

have excess ε = 2 (see also [144]).

9.4 Bounds on totally regular mixed graphs with small defect

We now return to the degree/diameter problem for mixed graphs and extend the

counting arguments from the previous section to deal with totally regular mixed

graphs with small defect. The first non-trivial bound for such graphs was derived

in [51], where it is shown that for a totally regular (r, z, k;−δ)-graph with k ≥ 3 the

defect is bounded below by the undirected degree r. There is equality for k = 3 and

hence the bound is tight. We present a new upper bound on the order of totally

regular (1, 1, k;−δ)-graphs that improves on the result of [51] for k ≥ 4.

Let G be a totally regular mixed graph with undirected degree r = 1, directed degree

z = 1 and diameter k. We will denote the unique undirected neighbour of a vertex v

of G by v∗, the directed in-neighbour by v− and the directed out-neighbour by v+.

Since r = 1, G contains a perfect matching and must have even order.

For any vertex v of G we make the further definition that v1 = (v+)∗, that is v1 is the

undirected neighbour of the directed out-neighbour of v. We extend this definition as

follows. We set v0 = v and by iteration define vs = (vs−1)1 for s ≥ 2. By analogy we

specify that v−1 = (v∗)−, so that v− is the directed in-neighbour of the undirected

neighbour of v. Again we set iteratively v−s = (v−(s−1))−. Notice that

(v1)−1 = (v−1)1 = v for all v ∈ V (G).

We draw the Moore tree of G of depth k based at a vertex u as indicated in

Figure 9.5. In particular, if a vertex at Level t ≤ k − 1 of the tree has both an

undirected neighbour and a directed out-neighbour at below it at Level t+ 1 of the

tree, then we will place the undirected neighbour on the left and label the vertices

accordingly. If k ≥ 3, then there will be vertices repeated in the tree, so that a vertex

of G can receive distinct labels in the Moore tree; nevertheless, for counting purposes

we will still distinguish between the position labels in the tree. The left-hand side

branch beginning at u1 is the undirected branch and the right-hand side branch

beginning at u2 is the directed branch.

To reiterate, an arrow vertex in the Moore tree of G rooted at u is a vertex x at a

Level t, 2 ≤ t ≤ k − 1, of the tree in the undirected branch such that x appears as the

terminal vertex of an arc with its initial vertex at Level t− 1. Unlike the k-geodetic
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u0

u1 u2

u3 u4 u5

u6 u7 u8 u9 u10

u11 u12 u13 u14 u15 u16 u17 u18

u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 u31

Figure 9.5: The Moore tree for r = z = 1 and k = 5.

case, arrow vertices can be equal in G or be equal to a vertex in the directed branch;

therefore we will slightly abuse the term ‘arrow vertex’ by associating it, not with a

vertex of G, but with a position or label in the tree.

Consider an arrow vertex x at Level t of the Moore tree. Its directed in-neighbour x−

appears at Level t− 1 and its undirected neighbour x∗ at Level t+ 1, so that the

entire in-neighbourhood N−(x) = {x−, x∗} is also contained in the undirected branch

of the Moore tree. As G has diameter k, u2 must be able to reach x by a mixed path

of length ≤ k, so it follows that at least one of x−, x∗ also appears in the directed

branch of G. For every such occurrence there will be an additional repeat of u0, so

that we can bound the defect δ from below by counting the smallest possible number

of positions in the undirected branch such that for every arrow vertex x either x∗ or

x− lies in one of these positions. We will call such a set of positions a transversal of

the undirected branch.

We will now focus on the undirected branch of the Moore tree. The undirected

branch of a Moore tree of depth 8 is shown in Figure 9.6. For convenience we use a

different labelling of the undirected branch; for example, vertex 1 corresponds to u1 in

Figure 9.5, 2 to u3, 3 to u6, 5 to u11, etc. For the moment we ignore the complication

that a vertex of G could appear multiple times as an arrow vertex in this tree. Under

this assumption we will show that δ is bounded from below by the size of a minimum

transversal of the Moore tree.
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1

2

3 4

5 6 7

8 9 10 11 12

13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Figure 9.6: The undirected branch for k = 8
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Consider an arrow vertex x at Level t of the tree, where 2 ≤ t ≤ k − 1. In the

undirected branch shown in Figure 9.6 these are vertices 2, 4, 5, 7, 9, 10, 12, 13, 15,

17, 18, 20, 22, 23, 25, 26, 28, 30, 31 and 33. As already noted, either the undirected

neighbour x∗ or the directed in-neighbour x− of x must occur in the directed branch

of the Moore tree, and each such occurrence counts towards the number of repeats of

the root vertex u of the tree. However, the in-neighbourhoods of the arrow vertices

overlap; for example, the vertex 8 is an in-neighbour both of the vertex 5 and the

vertex 13. We will partition the positions in the undirected branch of the Moore tree

corresponding to vertices in the in-neighbourhoods of the arrow vertices into chains.

A chain is a maximal string of vertices in the undirected branch of the Moore tree of

the form v = v0, v1, v2, v3, . . ., where v is an in-neighbour of an arrow vertex. If v is at

Level t ≤ k − 2, then v2 is at Level t+ 2. For example 1, 3, 8, 21 is a chain in

Figure 9.6. Every in-neighbourhood of an arrow vertex is contained in a unique chain.

Every arrow vertex at Level t, where 2 ≤ t ≤ k − 2, is the beginning of a chain, as is

the vertex 1. Conversely, by iterating the − operation on an in-neighbour of an arrow

vertex, i.e. considering the sequence of vertices v, v−1, v−2, . . . , we see that every

chain begins either at 1 or an arrow vertex at Level t ≤ k − 2. This decomposition is

displayed for k = 8 in Figure 9.7.

We will call the number of vertices (i.e. positions in the Moore tree) in a chain

v, v1, v2, . . . the length of the chain. For example, for k = 8 the chain 1, 3, 8, 21 has

length 4. Let C be a chain of length `. Any pair of consecutive vertices in C is the

in-neighbourhood of an arrow vertex, so at least one of them must appear in the

directed branch of the Moore tree. As any vertex in C is contained in two pairs of

consecutive vertices of the chain, it follows that the smallest transversal of C, i.e. the

smallest number of vertices in the Moore tree that intersect every in-neighbourhood of

arrow vertices that is contained in the chain, is d `3e (this follows from the domination

number of the path [41]).

The number of chains beginning at Level t of the tree, where 2 ≤ t ≤ k− 2, is equal to

the number of arrow vertices at Level t. From the calculation of Lemma 9.4 we know

that this number is

Zt =
1

2t−1
√

5
((1 +

√
5)t−1 − (1−

√
5)t−1).

The first vertex 1 of the undirected branch is also the first vertex of a chain. We

therefore define Z ′t = 1 for t = 1 and Z ′t = Zt for 2 ≤ t ≤ k − 1. The length of a chain

beginning at Level t is `(t) = 1 +
⌊
k−t
2

⌋
. It follows from our argument that the
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1

2

3 4

5 6 7

8 9 10 11 12

13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Figure 9.7: The chain decomposition for k = 8
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smallest transversal of the undirected branch of the Moore tree has size

k−2∑
t=1

Z ′t

⌈
1

3
+

1

3

⌊
k − t

2

⌋⌉
.

This expression gives a lower bound for the number of positions in the undirected

branch of the Moore tree that are occupied by vertices that also appear in the

directed branch. It could happen that these positions in the undirected branch are

actually occupied by the same vertex, which would reduce the number of vertices that

would have to be repeated in the directed branch.

However, it is easily seen that this does not affect our lower bound for the defect. Let

T be the transversal of the undirected branch that is repeated in the directed branch

of a largest (r, z, k;−δ)-graph. If s positions of T are occupied by the same vertex v,

then v occurs at least once in the directed branch of the Moore tree, but is also

repeated at least s− 1 times in the undirected branch, so that this set of s positions

nevertheless contributes at least s to the total defect δ. We therefore have proved the

following theorem.

Theorem 9.25. Any totally regular (1, 1, k;−δ)-graph has defect

δ ≥
k−2∑
t=1

Z ′t

⌈
1

3
+

1

3

⌊
k − t

2

⌋⌉

for k ≥ 3.

9.5 Mixed geodetic cages and record graphs

In this section we present the results of a computer search due to Erskine that

identifies new mixed geodetic cages and record graphs. We describe the search

method only briefly and refer the reader to the paper [144] for more detail.

To identify geodetic cages, Erskine used a program in C to progressively add edges

and arcs to a mixed Moore tree of depth k plus ε additional vertices, checking the

geodetic girth at each step and backtracking whenever a violation was detected and

increasing ε by one if no (r, z, k; +ε)-graph exists. The results are summarised in

Table 9.2. Mixed geodetic cages were classified for (r, z, k) = (1, 1, 3) (shown in

Figure 9.8) and (r, z, k) = (1, 1, 4) (see Figure 9.9). The search also identified a

geodetic cage for (r, z, k) = (2, 2, 2) (see Figure 9.10), but has not yet completely

classified these graphs.
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r z k M n ε Comment

1 1 2 6 6 0 Kautz graph
1 1 3 11 16 5 Cages classified, Figure 9.8
1 1 4 19 30 11 Cages classified, Figure 9.9
1 1 5 32 54* 22* No graphs of order less than 50

2 1 2 11 12 1 Cayley graph of D12

2 1 3 28 48* 20* No graphs of order less than 32
1 2 2 12 12 0 Kautz graph

3 1 2 18 18 0 Bosák graph
2 2 2 19 21 2 Figure 9.10, cages not classified
1 3 2 20 20 0 Kautz graph

Table 9.2: Smallest (r, z, k; +ε)-graphs for given r, z and k (* = smallest known)

Figure 9.8: Two mixed graphs with r = 1, z = 1, k = 3, ε = 5

This search was also run for purely directed graphs. This confirmed the two geodetic

cages for (d, k) = (2, 2) found in Chapter 6; for completeness, these are displayed in

Figure 9.11. The search also classified (2, 3)-geodetic-cages (there are two cages up to

isomorphism, shown in Figures 9.12 and 9.13, the second of which is a Cayley

digraph) and (3, 2)-geodetic-cages (there is a unique (3, 2)-cage with excess ε = 3,

which is displayed in Figure 9.14). The results of the search for digraphs are

summarised in Table 9.3.

d k M n ε Comment

2 2 7 9 2 Figure 9.11
2 3 15 20 5 Figures 9.12 and 9.13
2 4 31 54* 23* No graphs of order less than 34

3 2 13 16 3 Figure 9.14

Table 9.3: Smallest digraphs of given degree d and geodecity k (* = smallest
known)

We saw in Section 7.1 that one useful technique for finding mixed graphs with order
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Figure 9.9: A mixed graph with r = 1, z = 1, k = 4, ε = 11

close to the Moore bound is to restrict oneself to a search in the class of Cayley mixed

graphs [66]. Erskine carried out a search for k-geodetic Cayley mixed graphs [144],

the results of which are shown in Table 9.4. The orders of these graphs give upper

bounds on the order of mixed cages.
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Figure 9.10: A mixed graph with r = 2, z = 2, k = 2, ε = 2

Figure 9.11: The two (2, 2)-geodetic-cages
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Figure 9.12: The first (2, 3; +5)-digraph

Figure 9.13: The second (2, 3; +5)-digraph

James Tuite



184 9 Bounds on the order of mixed graphs

Figure 9.14: The unique extremal digraph d = 3, k = 2, n = 16

r z k M n ε Group

1 1 2 6 6 0 S3
1 1 3 11 20 9 AGL(1, 5)
1 1 4 19 32 13 (Z8 o Z2) o Z2

1 1 5 32 54 22 (Z9 o Z3) o Z2

2 1 2 11 12 1 D12

2 1 3 28 48 20 Z2 × S4
1 2 2 12 12 0 A4

1 2 3 34 64 30 ((Z8 o Z2) o Z2) o Z2

3 1 2 18 18 0 Z3 × S3
2 2 2 19 24 5 SL(2, 3)
1 3 2 20 20 0 AGL(1, 5)

4 1 2 27 30 3 Z5 × S3
3 2 2 28 42 14 Z7 × S3
2 3 2 29 39 10 Z13 × Z3

1 4 2 30 42 12 AGL(1, 7)

5 1 2 38 48 10 D48

4 2 2 39 48 9 D8 × S3
3 3 2 40 52 12 Z13 o Z4

2 4 2 41 54 13 (Z3 × Z3) o Z6

1 5 2 42 42 0 AGL(1, 7)

Table 9.4: Smallest Cayley (r, z, k; +ε)-graphs for given r, z and k

James Tuite



Chapter 10

Turán problems for k-geodetic

directed graphs

10.1 Introduction

In this chapter we shall investigate an extension of the Turán problem of the largest

possible size of a graph with order n and girth ≥ g to the setting of directed graphs.

Recalling that the girth of a digraph G is the length of a shortest directed cycle in G,

a natural first question is: what is the largest possible size of a digraph with order n

and no directed cycles of length < g? In fact, as there exists an acyclic tournament

for any order n, this is a trivial question and it is more interesting to restrict our

attention to strongly connected digraphs. This problem was solved by Bermond et al.

in [21] and is discussed independently in [152].

Theorem 10.1 ([21]). Let D be a strong digraph of order n, size m and girth g. Let

k ≥ 2. Then if

m ≥ 1

2
(n2 + (3− 2k)n+ k2 − k),

we must have g ≤ k.

A construction is also given in [21] that shows that this bound is best possible. Hence,

in marked contrast to the undirected case, this result shows that, asymptotically

speaking, an oriented graph can have ‘almost all’ arcs present and still have

arbitrarily large girth, even if the digraph is strongly connected. This raises the

question of the asymptotic behaviour of the largest possible size of a digraph with

order n and geodetic girth k. This problem can be put into the form of a forbidden

subgraph problem, as every violation of k-geodecity in G can be identified with the

occurrence of a specific subdigraph of G; in [149] these subdigraphs are referred to as

‘hooves’ or ‘commutative diagrams’. It has recently come to the author’s attention

that some related Turán problems forbidding ‘hooves’ of particular lengths have been

investigated by Huang, Lyu, Qiao et al. [92, 93, 108].

Problem 10.2. What is the largest possible size of a k-geodetic digraph with order n?
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In the papers [128, 149] Ustimenko et al. prove that, if f(n, k) is the largest size of a

diregular k-geodetic digraph with order n, then for fixed k we have f(n, k) ∼ n
k+1
k .

The digraphs used in [128, 149] to show that this bound is tight are exactly the

permutation digraphs; recall that the permutation digraph P (d, k) has as vertex set

all permutations x0x1 . . . xk−1 of length k drawn from an alphabet of size d+ k, with

arcs of the form x0x1 . . . xk−1 → x1x2 . . . xk−1xk, where xk 6∈ {x0, x1, . . . , xk−1}. We

record this result as a separate theorem.

Theorem 10.3 ([128, 149]). For fixed k, the largest possible size of a diregular

k-geodetic digraph with order n is asymptotic to n
k+1
k as n→∞. This bound is met

asymptotically by the permutation digraphs P (d, k).

We will see in Section 10.5 that the permutation digraphs have other interesting

extremal properties in Turán problems.

We can easily generalise the result of Ustimenko et al. to out-regular digraphs by

appealing to the directed Moore bound. The following argument was suggested by

Erskine and simplified by the author [146].

Theorem 10.4. For k ≥ 2, the largest size exout(n; k) of an out-regular k-geodetic

digraph with order n satisfies exout(n; k) ∼ n
k+1
k as n→∞.

Proof. The order n of a k-geodetic digraph with minimum out-degree d is bounded

below by the directed Moore bound M(d, k) = 1 + d+ d2 + · · ·+ dk. Hence n ≥ dk

and, rearranging, d ≤ n1/k. The size m of an out-regular k-geodetic digraph G with

order n thus satisfies m = nd ≤ n
k+1
k .

What can we say about the maximum number of arcs in a k-geodetic digraph if we

make no assumption of out-regularity? We make the following definition.

Definition 10.5. For n, k ≥ 2, define ex(n; k) to be the largest possible size of a

k-geodetic digraph on n vertices.

In contrast to the out-regular case, it is easy to provide a quadratic lower bound for

the numbers ex(n; k). This observation is due to Erskine.

Observation 10.6. [Erskine] For n, k ≥ 2, we have ex(n; k) ≥ bn2/4c.

Proof. Orienting all edges of the complete bipartite graph Kdn/2e,bn/2c in the same

direction yields a k-geodetic digraph.
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We now show that this lower bound is optimal. We offer two distinct proofs, the first

being a simple inductive argument, whereas the second appeals to a standard result of

Turán theory and also gives a classification of the underlying graphs of the extremal

digraphs. For our inductive proof, observe that if a digraph G is k-geodetic, then

every subdigraph of G must also be k-geodetic. This approach yields a simple upper

bound for ex(n; k) in terms of ex(t; k) for t < n.

Lemma 10.7. For any 2 ≤ t ≤ n− 1, we have ex(n; k) ≤ n(n−1)
t(t−1) ex(t; k).

Proof. Let G be a k-geodetic digraph with order n and size ex(n; k). We count the

pairs (F, e), where F is a subset of t vertices of G and e is an arc with both

end-points in F . Let F be any subset of t vertices of G. In the corresponding induced

subdigraph there can be at most ex(t; k) arcs. Therefore there are at most
(
n
t

)
ex(t; k)

such pairs. For each arc e there are exactly
(
n−2
t−2
)

subsets of size t containing the

endpoints of e, so it follows that

ex(n; k)

(
n− 2

t− 2

)
≤
(
n

t

)
ex(t; k).

Rearranging yields the result.

Theorem 10.8. For n ≥ 4 and k ≥ 2, we have ex(n; k) =
⌊
n2

4

⌋
.

Proof. Let k = 2. The theorem is easily shown to be true for n = 4. Let n ≥ 5 and

assume that the theorem is true for n− 1. Suppose that n = 2r is even. Putting

t = n− 1 in Lemma 10.7 and using the induction hypothesis we have

ex(2r; 2) ≤ 2r(2r − 1)

(2r − 1)(2r − 2)
r(r − 1) = r2

as required. Now let n = 2r + 1. Lemma 10.7 with t = 2r gives

ex(2r + 1; 2) ≤ 2r(2r + 1)

2r(2r − 1)
r2 =

(2r + 1)r2

2r − 1
< r2 + r + 1.

As ex(2r + 1; 2) is an integer the necessary inequality

ex(2r + 1; 2) ≤ r2 + r =

⌊
(2r + 1)2

4

⌋
follows. As a k-geodetic digraph is also 2-geodetic for k ≥ 2, no k-geodetic digraph

can have more than ex(n; 2) arcs; at the same time, the digraph in Observation 10.6 is

trivially k-geodetic for any k ≥ 2.
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x

y

z z′

Figure 10.1: There is no 2-geodetic orientation of K−4

We now show how this result also follows from a forbidden-subgraph approach. The

complete graph K4 with one edge deleted is also known as the diamond graph and is

denoted by K−4 .

Lemma 10.9. Every graph with a 2-geodetic orientation is K−4 -free.

Proof. Suppose for a contradiction that a graph G contains two triangles x, y, z and

x, y, z′, where z 6= z′. The only 2-geodetic orientation of a triangle is a directed

3-cycle, so we can assume that x→ y → z → x and x→ y → z′ → x. This situation is

shown in Figure 10.1. However there are now two distinct directed paths from y to x

of length two, violating 2-geodecity.

Theorem 10.10. For n ≥ 4 and k ≥ 2 we have ex(n; k) =
⌊
n2

4

⌋
and for n ≥ 7 all

extremal 2-geodetic digraphs are orientations of complete balanced bipartite graphs

Kdn2 e,bn2 c.

Proof. As noted previously, it is sufficient to prove the upper bound for k = 2. A

simple inductive argument shows the well-known result [56, 57] that for n ≥ 7 any

graph with order n and size >
⌊
n2

4

⌋
contains a copy of K−4 and the unique K−4 -free

graph with size
⌊
n2

4

⌋
is Kdn2 e,bn2 c. The result therefore follows by Lemma 10.9. The

graph in Figure 10.2 shows that n ≥ 7 cannot be reduced.

We now know that for n ≥ 7 any 2-geodetic digraph with ex(n; 2) arcs is an

orientation of a complete bipartite graph Kdn2 e,bn2 c. However, there are a large

number of non-isomorphic orientations of Kdn2 e,bn2 c, not all of which are 2-geodetic.

We now completely classify all extremal 2-geodetic digraphs. We will label one partite

set of our bipartite graph X and the other Y . If X contains a source, then Y contains

no sources and vice versa, so we can assume that any source of G lies in X. If X

contains only sources, then Y consists only of sinks, in which case we recover the
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v0

v1

v2

u0

u1

u2

Figure 10.2: A 2-geodetic digraph with order 6 and size 9 containing a triangle

construction in Observation 10.6. We can therefore assume that X contains a vertex

that is neither a source nor a sink.

Lemma 10.11. Let K be a 2-geodetic orientation of a complete bipartite graph Ks,t

with partite sets X and Y , where s ≥ t ≥ 2. If x is any vertex of K that is neither a

source nor a sink, then either d+(x) = 1 or d−(x) = 1.

Proof. Let x ∈ X be a vertex of K that is neither a source nor a sink. Suppose that

d+(x) ≥ 2 and d−(x) ≥ 2. Let y ∈ Y be an out-neighbour of x such that y is not a

sink. Hence y → x′ for some x′ ∈ X − x. If any other out-neighbour y′ of x has an arc

to x′, then we would have two 2-paths x→ y → x′ and x→ y′ → x′, violating

2-geodecity, so it follows that x′ has arcs to every vertex of N+(x)− {y}. Any

in-neighbour y− of x can already reach every vertex of N+(x) by a 2-path via x. As

x′ has arcs to every vertex of N+(x)− {y}, it follows that x′ → y− for every

in-neighbour y− of x. However, there are at least two such in-neighbours y−1 and y−2

by assumption, so there exist paths x′ → y−1 → x and x′ → y−2 → x, a contradiction.

It follows that every out-neighbour of x in Y is a sink and similarly every

in-neighbour of x is a source. Let x∗ ∈ X − {x}. Then if y+ ∈ N+(x), y− ∈ N−(x) we

have two paths y− → x→ y+ and y− → x∗ → y+, which is impossible. Hence we

must have either d+(x) = 1 or d−(x) = 1.

Theorem 10.12. Let K be a 2-geodetic orientation of a complete bipartite graph

Ks,t, where s ≥ t ≥ 2. Then all of the arcs of K are oriented in the same direction,

except for a matching (possibly of size zero) in the opposite direction.

Proof. As K is 2-geodetic X cannot contain both sources and sinks; for example if

x1 ∈ X is a source and x2 ∈ X is a sink, then if y1, y2 ∈ Y we have paths
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x1 → y1 → x2 and x1 → y2 → x2, which is impossible.

Note that if all vertices are neither a source nor a sink, then both partitions contain a

vertex which is neither a source nor a sink. If s = t = 2, then by Lemma 10.11 we are

done, so we may assume that |Y | > 2 and X contains a vertex which is neither a

source nor a sink. By Lemma 10.11, any such vertex has either in-degree or out-degree

one; without loss of generality, we assume that N+(x1) = {y1}. Then X contains no

vertex x′ ∈ X, d+(x′) > 1, for otherwise there would be paths x′ → y2 → x1 and

x′ → y3 → x1 if y2, y3 6= y1, a contradiction, or there is a vertex y′ in Y such that we

have y′ → x and y′ → x′ which leads us also to a contradiction since there are two

paths from y′ to y1. Applying Lemma 10.11, we have the desired result.

Combining Theorems 10.10 and 10.12 immediately yields a classification of all

2-geodetic digraphs of order n and maximal size.

Theorem 10.13. Let G be a 2-geodetic digraph with order n and maximal size. For

n ≥ 7, G is isomorphic to an orientation of Kdn2 e,bn2 c with all arcs oriented in the

same direction, except for a matching that is oriented in the opposite direction. The

number of isomorphism classes of extremal digraphs is n+ 1 for odd n ≥ 7 and n
2 + 1

for even n ≥ 8.

10.2 The largest size of a strongly connected 2-geodetic digraph

For even n, if the matching mentioned in Theorem 10.13 is chosen to be a perfect

matching, then the resulting digraph is strongly connected. Therefore for even n there

is always a strongly connected 2-geodetic digraph with ex(n; 2) arcs. Such a digraph

is shown in Figure 10.3. However, it is easily seen that if n is odd, then all of the

2-geodetic digraphs given in Theorem 10.13 contain either a source or a sink and so

are not strongly connected. This leads us to make the following definition.

Definition 10.14. For n ≥ k + 1 and k ≥ 2, ex∗(n; k) is the largest possible size of a

strongly connected k-geodetic digraph with order n.

From the former observation we know that for r ≥ 4 we have ex∗(2r; 2) = r2. We turn

to the question of determining ex∗(2r + 1; 2). Taking a strongly connected 2-geodetic

digraph with order 2r and size r2 and expanding one arc into a directed triangle shows

that ex∗(2r + 1; 2) ≥ r2 + 2 (this construction is shown in Figure 10.4). We now show

that this lower bound is optimal. In fact we prove slightly more: that any 2-geodetic
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Figure 10.3: A strongly connected digraph with n = 2r and m = r2 (for r = 4)

digraph with larger size contains either a source or a sink. The approach of the proof

in [146] is due to Salia; here we give the original argument due to the author.

Therefore let G be a 2-geodetic digraph with order n = 2r + 1 and largest possible

size r2 + r − ε, where 1 ≤ ε ≤ r − 2, subject to G containing no sources or sinks. Let

H be the underlying undirected graph of G and let H have minimum (resp.

maximum) degree δ (∆).

Lemma 10.15. For 1 ≤ ε ≤ r − 2, either H is bipartite or else ε = r − 2 and H

contains a triangle.

Proof. The stability result of [35] shows that any triangle-free graph with order 2r+ 1

and size ≥ r2 + 2 is bipartite. Therefore we need only show that H must be

triangle-free for 1 ≤ ε ≤ r − 3.

Suppose that H has size ≥ r2 + 3 and contains a triangle T with vertices x, y, z. By

Lemma 10.9, H is diamond-free, so the neighbours of x, y and z outside of T are all

distinct. This implies that

d(x) + d(y) + d(z) ≤ n+ 3 = 2r + 4.

Consider the digraph G′ = G− {x, y, z} obtained by deleting T ; G′ has order 2(r − 1)

and size m′ = r2 + r − ε− d(x)− d(y)− d(z) + 3. Thus by Theorem 10.10

r2 + r − ε− d(x)− d(y)− d(z) + 3 ≤ (r − 1)2,
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Figure 10.4: A strongly connected digraph with n = 2r + 1 and m = r2 + 2 for
r = 4 with the triangle in bold

yielding d(x) + d(y) + d(z) ≥ 3r + 2− ε. These two inequalities together imply that

3r + 2− ε ≤ 2r + 4, so that ε ≥ r − 2, a contradiction.

If ε = r − 2, we have equality in the last part of the argument of Lemma 10.15, so if

ε = r− 2 and H contains a triangle T , then the subgraph of H obtained by deleting T

must be a complete bipartite graph Kr−1,r−1 by Theorem 10.10 and every vertex of H

is adjacent to a vertex of T . We will use this fact in Section 10.3 to classify the

extremal digraphs.

Corollary 10.16. If G is a strongly connected 2-geodetic digraph with order 2r + 1

and size r2 + 2 that contains a triangle T , then the underlying undirected graph H of

G can be formed from a triangle T and a complete bipartite graph Kr−1,r−1 by joining

each vertex of Kr−1,r−1 to a unique vertex of T .

By Lemma 10.15, to prove that ex∗(2r + 1; 2) = r2 + 2 it is sufficient to show that H

cannot be bipartite; this will also show that any strongly connected 2-geodetic

digraph with order n = 2r + 1 and size r2 + 2 contains a triangle, a case that we will

take up in the next section. Therefore for the remainder of this section we assume

that G is an orientation of a bipartite graph (i.e. that H is bipartite). Let the two

partite sets in the bipartition of H be X and Y (as yet we make no assumption

concerning their size). The maximum possible size of a bipartite graph with order
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2r + 1 is r2 + r; therefore to complete our proof it is sufficient to show that there are

at least r − 2 arcs missing in G between X and Y .

Lemma 10.17. If G is bipartite and has size r2 + r− ε, where 1 ≤ ε ≤ r− 2, then for

any vertex x of G we have the following bound for ε:

ε ≥ max{|N+2(x)|, |N−2(x)|}(min{d+(x), d−(x)} − 1).

Proof. Fix a vertex x of G; without loss of generality, let x ∈ X. Let

N+(x) = {y1, . . . , yz} and consider a vertex x′ ∈ N+2(x). We distinguish two

situations: i) there is an arc from x′ to N+(x) and ii) there is no arc from x′ to N+(x).

Suppose firstly that there is an arc x′ → yi from x′ to N+(x). Then by 2-geodecity

there can be no arc from N−(x) to x′, for if there is an arc y → x′ for some

in-neighbour y of x, then G would contain paths y → x′ → yi and y → x→ yi.

Furthermore x′ can have at most one arc to N−(x); otherwise x′ would have more

than one 2-path to x. Thus there are at least d−(x)−1 arcs missing between x′ and Y .

On the other hand, if there is no arc from x′ to N+(x), then, considering that there is

a unique arc from N+(x) to x′ by 2-geodecity, there are at least d+(x)− 1 arcs

missing between x′ and Y .

As there are |N+2(x)| vertices to which this argument can be applied, we conclude

that there are at least |N+2(x)|(min{d+(x), d−(x)} − 1) arcs missing between X and

Y , which by our previous observation gives a lower bound for ε. A dual argument

using vertices in N−2(x) completes the proof of the result.

Lemma 10.17 shows that if a vertex has large out-degree, then it must have small

in-degree, and vice versa.

Corollary 10.18. If a vertex u of G satisfies d+(u) ≥ max{d−(u), r − 1}, then

d−(u) = 1. If u has out-degree d+(u) ≥ max{d−(u), r−12 }, then d−(u) ≤ 2.

Proof. Suppose that u is a vertex of G with d+(u) ≥ max{d−(u), r − 1}. Then if

d−(u) ≥ 2, Lemma 10.17 shows that

r − 2 ≥ ε ≥ |N+2(u)| ≥ d+(u) ≥ r − 1,

which is a contradiction. As G has no sources or sinks, it follows that d−(u) = 1.
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Similarly, if d+(u) ≥ max{d−(u), r−12 }, but d−(u) ≥ 3, then Lemma 10.17 would again

yield ε ≥ r − 1.

Let us now suppose that X is the larger of the two partite sets, i.e. |X| > |Y |.

Lemma 10.19. The maximum degree of the underlying undirected graph H of G is

less than or equal to r.

Proof. Suppose that there exists a vertex u of G with degree ≥ r + 1; as |Y | ≤ r, the

vertex u must lie in Y . By taking the converse if necessary, we can assume that

d+(u) ≥ d−(u). Then d+(u) ≥ r+1
2 , so Corollary 10.18 tells us that d−(u) = 1 or 2. In

either case we must have d+(u) ≥ r − 1, so by Corollary 10.18 we must have

d−(u) = 1 and d+(u) ≥ r. Thus |N+2(u)| ≥ d+(u) ≥ r. However, each vertex of

N+2(u) must lie in Y , as H is bipartite. As u also lies in Y , this implies that

|Y | ≥ r + 1, contradicting our choice |X| > |Y |.

The bound in Lemma 10.17 is most helpful when applied to vertices with large

degree. In fact, we can guarantee the existence of many vertices with degree r in H.

Lemma 10.20. The underlying undirected graph H of G has maximum degree ∆ = r

and contains at least r + 5 vertices with this degree.

Proof. By Lemma 10.19, the maximum degree ∆ of H is ≤ r. Let H contain a

vertices with degree r and b vertices with degree ≤ r − 1. Then a+ b = 2r + 1 and by

the Handshaking Lemma the size m of H is bounded by

2(r2 + r − ε) = 2m ≤ ar + b(r − 1) = (a+ b)r − b = 2r2 + r − b.

Rearranging, we obtain b ≤ 2ε− r ≤ 2(r − 2)− r = r − 4. Therefore

a ≥ 2r + 1− (r − 4) = r + 5.

Corollary 10.21. The sizes of the partite sets X and Y are |X| = r + 1 and |Y | = r

respectively.

Proof. The size of Y is at most r, so by Lemma 10.20 there is a vertex in X with

degree r; therefore the size of Y is exactly r.

We can thus label the elements of X and Y as X = {x1, x2, . . . , xr+1} and

Y = {y1, y2, . . . , yr}.
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x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5

Figure 10.5: Illustration for Lemma 10.22

Lemma 10.22. If a vertex u of H has degree r, then in G either d+(u) = r − 1 and

d−(u) = 1 or d+(u) = 1 and d−(u) = r − 1.

Proof. Let u have degree r in H. Let d+(u) ≥ d−(u), taking the converse of G if

necessary. By Corollary 10.18, either d+(u) = r − 2 and d−(u) = 2, or else

d+(u) = r − 1 and d−(u) = 1. Suppose that the former holds. We can assume that

u = x1; the argument for u ∈ Y is the same.

Without loss of generality N−(x1) = {y1, y2} and N+(x1) = {y3, y4, . . . , yr}. Each of

y3, y4, . . . , yr has at least one out-neighbour in X; let us set yi → xi+1 for 3 ≤ i ≤ r.
Potentially there could also be arcs from N+(x1) to {x2, x3}; however the argument

of Lemma 10.17 shows that each member of N+2(x1) has at least one arc missing to

Y , so as ε ≤ r − 2 there can be no more than r − 2 vertices in N+2(x1) and hence

each vertex of N+(x1) has out-degree exactly one.

Moreover, as each vertex in N+2(x1) has at least one arc missing to Y , it follows that

the vertices x2 and x3 are adjacent in H with every vertex of Y . As

N+2(x1) = {x4, x5, . . . , xr+1}, there must be arcs from x2 to every vertex in N+(x1).

Also x2 cannot have arcs to both y1 and y2, or it would have distinct 2-paths to x1, so

we can assume that y1 → x2. However, this implies the existence of paths

y1 → x2 → y3 and y1 → x1 → y3, violating 2-geodecity. The resulting configuration is

shown in Figure 10.5 with the arcs associated with x2 in red.

Theorem 10.23. No strongly connected 2-geodetic digraph with order n = 2r + 1 and

size > r2 + 2 exists and any such digraph with size r2 + 2 contains a triangle.

Proof. By Lemma 10.20 there is a vertex with degree r in X; say that x1 has degree r

in H. Taking the converse of G if necessary, we can assume by Lemma 10.22 that

d−(x1) = 1 and d+(x1) = r − 1. We can set N−(x1) = {y1} and

N+(x1) = {y2, y3, . . . , yr}. Furthermore each yi has an out-neighbour in X, so we can
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x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5

Figure 10.6: Illustration for Theorem 10.23: if an out-neighbour of x1 has
out-degree two

assume that yi → xi for 2 ≤ i ≤ r. This accounts for r − 1 vertices of N+2(x1), so

there can be at most one further element of N+2(x1).

Suppose that an out-neighbour of x1 has out-degree two in G, say

N+(yr) = {xr, xr+1}. By 2-geodecity for 2 ≤ i ≤ r − 1 there are no arcs from yi to xr

or xr+1 and there can be at most one arc from {xr, xr+1} to yi. This already accounts

for r − 2 missing arcs between X and Y ; hence we have ε = r − 2 and all other

possible edges between X and Y are present in H. Thus in H y1 is adjacent to both

xr and xr+1; we cannot have both of these arcs oriented toward y1 in G, or else yr

would have distinct 2-paths to y1, so we can assume that y1 → xr. As y1 can already

reach every other vertex of Y by 2-paths via x1, this implies that there are no arcs

from xr to {y2, y3, . . . , yr−1}; however, xr is not a sink and so at least one of these

arcs must exist, a contradiction. This situation is shown in Figure 10.6 for r = 5, with

an impossible arc shown in red.

Thus we can take N+(yi) = {xi} for 2 ≤ i ≤ r, as shown in Figure 10.7 for r = 5.

Now the remaining vertex xr+1 has no arcs from {y2, . . . , yr}, but as xr+1 is not a

source we must have y1 → xr+1. However xr+1 must also have an out-neighbour in Y ,

say yr (this arc is shown in red in Figure 10.7), which means that there are paths

y1 → x1 → yr and y1 → xr+1 → yr, violating 2-geodecity. This completes our proof

that H cannot be bipartite; hence by Lemma 10.15 it follows that ε = r − 2 and H

contains a triangle.
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x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5

Figure 10.7: Illustration for Theorem 10.23: if all out-neighbours of x1 have
out-degree one

10.3 Classification of extremal 2-geodetic digraphs without sources

and sinks

In the previous section it was shown that for r ≥ 1 any strongly connected 2-geodetic

digraph with order n = 2r + 1 has at most ex∗(2r + 1; 2) = r2 + 2 arcs. In this section

we will classify the strongly connected 2-geodetic digraphs that achieve this bound.

Our analysis will focus on the case r ≥ 5, i.e. odd n ≥ 11. Computer search shows

that there is a unique extremal strongly connected 2-geodetic digraph with size r2 + 2

for r = 1, 3 extremal digraphs for r = 2, 29 solutions for r = 3 and 19 solutions for

r = 4; and any 2-geodetic digraphs with larger size contain either a source or a sink.

Let G be a 2-geodetic digraph with order n = 2r + 1 ≥ 11, size r2 + 2 and no sources

or sinks and let H be the underlying undirected graph of G. By Theorem 10.23 H

contains a triangle T with vertices x, y, z, which is oriented in G as x→ y → z → x

and each vertex in H − T is adjacent to exactly one of x, y or z. Furthermore, G− T
must be one of the r orientations of Kr−1,r−1 given in Theorem 10.13. Let the

bipartition of Kr−1,r−1 be X,Y , where X = {x1, . . . , xr−1}, Y = {y1, . . . , yr−1}. By

Theorem 10.13 we can assume that xi → yi for 1 ≤ i ≤ r − 1− s for some

0 ≤ s ≤ r− 1, with all other edges oriented in the other direction. Obviously there are

s sources and s sinks in G− T .

We will say that a partite set is covered by a subset T ′ of T if all of its neighbours in

T belong to T ′; in particular, if all of the neighbours of a partite set, say X, are the

same vertex of T , say x, then X is covered by x. We call a vertex in T bad if it has

neighbours in both partite sets of H − T .

Lemma 10.24. Any bad vertex of T has degree four in H. If n ≥ 11 then there is at

most one bad vertex.

Proof. It is easily seen that if a bad vertex has degree ≥ 5 in H, and hence ≥ 3
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neighbours in Kr−1,r−1, then H contains a copy of K−4 , which is impossible by

Lemma 10.9. As any bad vertex of T is adjacent to one vertex of X and one vertex of

Y for r ≥ 5 not all three vertices of T can be bad. Furthermore if two vertices of T

are bad then the third vertex of T would have also have to be bad.

Lemma 10.25. If there is no bad vertex in T , then either X or Y is covered by a

single vertex of T and s ≤ 1.

Proof. If there is no bad vertex, then the neighbours of any vertex of T in Kr−1,r−1

must be entirely contained in one partite set, so one partite set is covered by one

vertex of T and the other partite set is covered by the other two vertices of T .

Concerning the value of s, suppose that s ≥ 2 and that X is covered by x (the

argument for Y is similar). There must be an arc from every sink in X to x. But any

source in Y has arcs to all the sinks in X and hence will have multiple 2-paths to x,

contradicting 2-geodecity.

Lemma 10.26. Any vertex of T with neighbours in X has at most one in-neighbour

in X. Any vertex of T that is joined to ≥ 2 non-sink vertices of X has no

in-neighbour among the non-sink vertices of X. Substituting ‘source’ for ‘sink’ and

‘out-neighbour’ for ‘in-neighbour’, the analogous results hold for Y .

Proof. Suppose that a vertex of T , say x, has ≥ 2 in-neighbours xi and xj in X. For

any l ∈ {1, 2, . . . , r − 1} − {i, j} we have yl → xi → x and yl → xj → x, a

contradiction.

Now let x be adjacent to vertices xi and xj in X, where we now assume that xi and

xj are not sinks in G− T . If xi → x, then as x has at most one in-neighbour in X we

must have x→ xj . Hence there are paths xi → x→ xj and xi → yi → xj , a

contradiction. The results for Y follow in a similar manner.

First we shall deal with the case that T has no bad vertices. Assume firstly that X is

covered by x. Suppose that s = 1 (Figure 10.8). Then xr−1 and yr−1 are the sink and

the source of G− T respectively. Now x must have an arc from the sink so that it

does not remain a sink in G; hence by Lemma 10.26 we have x→ xi for 1 ≤ i ≤ r− 2.

Y is covered by y and z and either y or z has an arc to the source yr−1.

If z has an arc to Y then there would be multiple 2-paths from z to a non-sink vertex

in X and similarly if z has an in-neighbour yi in Y , then there would be 2-paths
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x

z

y

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 10.8: A6

yi → z → x and yi → xr−1 → x. Therefore z has no neighbours in Y , so y must have

an arc to yr−1 and by Lemma 10.26 yi → y for 1 ≤ i ≤ r − 2. This yields the

2-geodetic digraph Ar, an example of which is shown in Figure 10.8. This digraph is

isomorphic to its converse.

Now let X be covered by x and s = 0. By Lemma 10.26 x→ xi for 1 ≤ i ≤ r − 1. By

reasoning similar to the previous case, y and z can have no out-neighbours in Y . Let

the resulting digraph in which y has t in-neighbours in Y be denoted by Br,t for

0 ≤ t ≤ r − 1 (see Figure 10.9). Each Br,t is a 2-geodetic extremal digraph.

The case of Y being covered by one vertex of T is symmetric. In particular we shall

denote the converse of Br,t by B′r,t. We have B′r,0
∼= Br,0 and B′r,r−1

∼= Br,r−1, but

otherwise these digraphs are pairwise non-isomorphic.

We now turn to the case that there is a bad vertex; say z is bad. Hence d(z) = 4 in

H. It follows by Lemma 10.24 that x and y each have r − 2 neighbours in Kr−1,r−1

and each is connected to just one partite set.

Lemma 10.27. If z is bad, then s ≤ 2. If z is joined to a source in Y , then X is

covered by {y, z} and Y is covered by {x, z}. Likewise, if z is joined to a sink in X,

then X is covered by {x, z} and Y is covered by {y, z}. If s = 2, then z is connected

to a source in Y and a sink in X.
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x

y z

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 10.9: B6,2

Proof. Suppose that s ≥ 3. The bad vertex z is adjacent to one vertex of Y in H − T ,

so the vertex of T that also has edges to Y must have arcs to two or more sources in

Y , violating Lemma 10.26. This reasoning also demonstrates that if s = 2, then z is

connected to a source in Y and a sink in X.

For any s ≤ 2, suppose that z is joined to a source in Y . Suppose that X is covered

by {x, z}. Then z has a 2-path to every vertex of X via the source, but by

Lemma 10.26 x has an out-neighbour xi ∈ X, so there will also be a 2-path from z to

xi via x, violating 2-geodecity. Hence X must be covered by {y, z} and hence Y is

covered by {x, z}. The other statement is symmetric to this one.

Let s = 2. The sources in G− T are yr−2 and yr−1 and the sinks are xr−2 and xr−1.

By Lemma 10.27 we can assume that z → yr−2 and xr−2 → z. Also by Lemma 10.27

X is covered by {y, z}. There must be an arc from xr−1 to y so that xr−1 is not a

sink in G and y → xi for 1 ≤ i ≤ r − 3 by Lemma 10.26. Likewise there is an arc from

x to yr−1. However, we now have two 2-paths from x to the vertices in {x1, . . . , xr−3},
one via y and the other via yr−1, a contradiction. It follows that s ≤ 1.

Let s = 1. The sink and source of G−T are xr−1 and yr−1 respectively (Figure 10.10).

Suppose that z is joined to xr−1 and yr−1. By Lemma 10.27 X is covered by {y, z}
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x
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x5 x1 x2 x3 x4

y5 y1 y2 y3 y4

Figure 10.10: C6

and Y is covered by {x, z}. By Lemma 10.26 y → xi for 1 ≤ i ≤ r − 2 and yi → x for

1 ≤ i ≤ r − 2. This gives the single solution Cr, an example of which is shown in

Figure 10.10. Note that the digraph Cr is isomorphic to its converse.

Suppose that z is joined to the source yr−1 but is not joined to the sink xr−1 of

G− T ; say z has an edge to xr−2 in H − T . By Lemma 10.27 X is covered by {y, z}
and Y is covered by {x, z}. Hence there is an arc xr−1 → y and by Lemma 10.26 x

has at most one out-neighbour in Y − yr−1, so that there is a vertex yi with yi → x.

Hence there would be paths yi → x→ y and yi → xr−1 → y in G, a contradiction. We

will get a similar contradiction if z is joined to the sink xr−1 in X, but not to the

source yr−1 in Y .

Finally, let z be joined to xi and yj where 1 ≤ i, j ≤ r − 2. Suppose that X is covered

by {x, z} and Y by {y, z}. If i = j, then the triangle is oriented as xi → yi → z → xi;

however this yields paths yi → z → x and yi → xr−1x, so we must have i 6= j.

Without loss of generality we can set i = r − 2 and j = r − 3. The triangle is now

oriented as yr−3 → xr−2 → z → yr−3. There is an arc xr−1 → x, so by Lemma 10.26

there are arcs x→ xl for 1 ≤ l ≤ r − 3. In this case we would have paths

z → yr−3 → x1 and z → x→ x1.

Hence we can assume that X is covered by {y, z} and Y by {x, z}. By Lemma 10.26 y

has at least two out-neighbours in X, so if x has any out-neighbour in Y then there

would be more than one 2-path from x to an out-neighbour of y in Y . In particular

we must have z → yr−1, a case that we have already considered.
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y
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x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 10.11: D6

Now we can set s = 0. Suppose that z is joined to x1 and y2. As y2 → x1, we must

orient the triangle z, x1, y2 as z → y2 → x1 → z. If X is covered by {x, z} and Y is

covered by {y, z}, then by Lemma 10.26 x→ xi for 2 ≤ i ≤ r − 1 and so there would

be paths z → y2 → x3 and z → x→ x3. Hence X must be covered by {y, z} and Y

must be covered by {x, z}. By Lemma 10.26 we have y1 → x. Hence there are paths

x1 → y1 → x and x1 → z → x.

Therefore we can assume that z is joined to x1 and y1. We must have z → x1 and

y1 → z. If X is covered by {y, z} and Y by {x, z} then by Lemma 10.26 y → xi and

yi → x for 2 ≤ i ≤ r − 1. This yields the solution Dr shown in Figure 10.11. Dr is

isomorphic to its converse. If X is covered by {x, z} and Y by {y, z} then by a

suitable redrawing of the digraph it can be seen that we obtain a solution isomorphic

to Cr in Figure 10.10.

This completes our classification of the strongly connected 2-geodetic digraphs with

order n = 2r + 1 and size r2 + 2. We therefore have the following theorem.

Theorem 10.28. Let K(r) be the bipartite digraph with partite sets

X = {x1, x2, . . . , xr−1} and Y = {y1, y2, . . . , yr−1} with xi → yi for 1 ≤ i ≤ r − 1 and

yi → xj for 1 ≤ i, j ≤ r− 1 and i 6= j. Let K ′(r) be the digraph obtained from K(r) by

reversing the direction of the arc xr−1 → yr−1, i.e. in K ′(r) we have yi → xj for

1 ≤ i, j ≤ r − 1 unless i = j and 1 ≤ i ≤ r − 2, in which case xi → yi. Furthermore let

T be a directed triangle with vertex set {x, y, z} disjoint from K(r) and K ′(r) such

that x→ y → z.
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We define the following families of digraphs formed from either the disjoint union

K(r) ∪ T or K ′(r) ∪ T :

� Ar: K
′(r) ∪ T with added arcs xr−1 → x, x→ xi for 1 ≤ i ≤ r − 2, y → yr−1

and yi → y for 1 ≤ i ≤ r − 2,

� Br,t: K(r) ∪ T with added arcs x→ xi for 1 ≤ i ≤ r − 1, yi → y for 1 ≤ i ≤ t
and yi → z for t+ 1 ≤ i ≤ r − 1,

� Cr: K
′(r) ∪ T with added arcs xr−1 → z, z → yr−1, y → xi for 1 ≤ i ≤ r − 2

and yi → x for 1 ≤ i ≤ r − 2,

� Dr: K(r) ∪ T with added arcs z → x1, y1 → z, y → xi for 2 ≤ i ≤ r − 1 and

yi → x for 2 ≤ i ≤ r − 1, and

� B′r,t is the converse of Br,t for 0 ≤ t ≤ r − 1.

If G is a 2-geodetic digraph with order n = 2r + 1 ≥ 11, size m = r2 + 2 and no

sources or sinks, then G is either isomorphic to one of Ar, Br,0, Br,r−1, Cr or Dr or is

isomorphic to a member of the family Br,t, B
′
r,t for some 1 ≤ t ≤ r − 2. The digraphs

in this list are pairwise non-isomorphic and so there are 2r + 1 extremal digraphs up

to isomorphism.

10.4 Extremal strongly connected k-geodetic digraphs for k ≥ 3

The analysis of Section 10.2 naturally raises the question: what is the largest possible

size of a strongly connected k-geodetic digraph with order n for k ≥ 3? In this section

we provide upper and lower bounds for ex∗(n; k) for k ≥ 3 and constructions that we

conjecture to be extremal for sufficiently large n.

As any k-geodetic digraph with k ≥ 3 will also be 2-geodetic, it is trivial that for

k ≥ 3 we have ex∗(n; k) < ex∗(n; 2), where strict inequality follows from the fact that

the extremal digraphs for k = 2 are not 3-geodetic. However, it is easy to provide a

better upper bound for k ≥ 5.

Lemma 10.29. For k ≥ 2 any k-geodetic digraph without sources or sinks has strictly

fewer than n2

k arcs.

Proof. Let G be a k-geodetic digraph without sinks. Suppose that G contains a vertex

u with out-degree d+(u) ≥ n
k . As every vertex has out-degree at least one, it follows

that |N+t(u)| ≥ d+(u) = n
k for 1 ≤ t ≤ k, where N+t(u) denotes the set of vertices at

distance t from u. As G is k-geodetic, all of the vertices in these sets are distinct, so it

follows that n ≥ 1 + knk , a contradiction. Hence the maximum out-degree of G is
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∆+ < n
k and, summing over all vertices of G, the size of G is m < nnk = n2

k .

It follows that lim supn→∞
ex∗(n;k)
n2 ≤ 1

k . We now provide constructions that show that

1
k2
≤ lim infn→∞

ex∗(n;k)
n2 .

Let the quotient and remainder when n is divided by k be r and s respectively, i.e.

n = kr + s. We assume that s ≤ r. Form the digraph G(n, k) as follows (see

Figure 10.12). The vertex set of G(n, k) consists of vertices ui,j for 1 ≤ i ≤ r and

1 ≤ j ≤ k, as well as s further vertices v1, v2, . . . , vs.

We define the adjacencies of G(n, k) as follows:

� i) ui,j → ui,j+1 for 1 ≤ i ≤ r and 1 ≤ j ≤ k − 1,

� ii) ui,k → vi for 1 ≤ i ≤ s,
� iii) ui,k → uj,2 for s+ 1 ≤ i ≤ r and 1 ≤ j ≤ s,
� iv) ui,k → ui′,1 for s+ 1 ≤ i, i′ ≤ r and i 6= i′,

� v) vt → ui,1 for 1 ≤ t ≤ s and all i in the range 1 ≤ i ≤ r.

This digraph is k-geodetic and has size

m = rs+ (k − 1)r + s+ (r − s)(r − 1) = r2 + (k − 2)r + 2s.

If r + 1 ≤ s ≤ k − 1, then we have bnk c ≤ k − 2, which is equivalent to n ≤ k2 − k − 1.

Therefore these digraphs will certainly exist for n ≥ k2 − k. The arcs in part iii) can

also be directed to uj,1; combined with taking the converse of the resulting digraphs,

this generates several different isomorphism classes.

These digraphs admit a particularly simple description when k|n. Let n = kr for

some r ≥ 2. Then G(kr, k) is k-geodetic and has order kr and size

r(r − 1) + r(k − 1) = r2 + (k − 2)r = n2

k2
+ (k−2)n

k . It has vertices ui,j , where 1 ≤ i ≤ r
and 1 ≤ j ≤ k. We define the adjacencies as follows:

� i) ui,j → ui,j+1 for 1 ≤ i ≤ r and 2 ≤ j ≤ k − 1,

� ii) ui,1 → ui′,2 for 1 ≤ i, i′ ≤ r and i 6= i′,

� iii) ui,k → ui,1 for 1 ≤ i ≤ r.

It can also be observed that G(kr, k) can be derived from the extremal strongly

connected 2-geodetic digraphs of order 2r (i.e. the orientation of Kr,r with a perfect

matching pointing in one direction and all other arcs directed in the opposite
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u56 u55 u54 u53 u52 u51

u46 u45 u44 u43 u42 u41

u36 u35 u34 u33 u32 u31

u26 u25 u24 u23 u22 u21

u16 u15 u14 u13 u12 u11 v1

v2

v3

Figure 10.12: G(33, 6)

direction) by extending the perfect matching into paths of length k − 1. The digraph

G(24; 6) is shown in Figure 10.13.

Table 10.1 displays the results of computational work by Erskine on the values of

ex∗(n; k) for some small values of n and k ≥ 3. It can be seen that the digraph

G(n, k) has largest possible size whenever n = kr+ s, where s ≤ min{r, k− 1}. In fact

for n and k in the above range such that k|n we can say further that the underlying

undirected graph of G(n, k) is the unique graph with size n2

k2
+ (k−2)n

k that has a

strongly connected k-geodetic orientation. This leads us to make the following

conjecture.

Conjecture 10.30. If n ≥ k + 1 and n ≤ (k + 1)bnk c (in particular for n ≥ k2 − k),

ex∗(n; k) =
⌊n
k

⌋2
− (k + 2)

⌊n
k

⌋
+ 2n.

Also if k|n, then G(n, k) is the unique extremal strongly-connected k-geodetic digraph

with that order.

Theorems 10.23 and 10.13 prove this conjecture for the case k = 2.
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Figure 10.13: G(24, 6)

n/k 3 4 5 6

7 8
8 10
9 12 10
10 14 12
11 16 14 12
12 20 15 14
13 22 17 15 14
14 24 19 17 16
15 21 18 17
16 20 19
17 22 20
18 21
19 23

Table 10.1: ex∗(n; k) for some small values of n and k
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10.5 Generalised Turán problems for k-geodetic digraphs

Recently the following extension of Turán’s problem has received a great deal of

attention: given graphs T and H, what is the largest possible number of copies of T

in an H-free graph with order n? Erdős considered this problem in 1962 [58] when T

and H are complete graphs. The largest number of 5-cycles in a triangle-free graph

was treated in [82, 87] and the converse problem of the largest number of triangles in

a graph without a given odd cycle C2k+1 is discussed in [27, 83]. The problem was

considered in greater generality in [3]. To investigate this problem in digraphs we

define the following notation.

Definition 10.31. For any digraph Z and k ≥ 2 we denote the largest number of

copies of Z in a k-geodetic digraph by ex(n;Z; k).

Observe that if Z is a directed arc then ex(n;Z; k) = ex(n; k). We will study the

asymptotics of the function ex(n;Z; k) in the cases that Z is a directed (k + 1)-cycle

or a directed path. We begin with the function ex(n;Ck+1; k), where k ≥ 2 and Ck+1

is a directed (k+ 1)-cycle. Earlier we made use of the fact that any arc in a 2-geodetic

digraph is contained in at most one triangle; a similar principle applies for larger k.

Lemma 10.32. Every arc in a k-geodetic digraph is contained in at most one

directed (k + 1)-cycle.

Proof. Suppose that an arc xy is contained in two distinct (k + 1)-cycles. Then y has

distinct paths of length k to x, violating k-geodecity.

Using this lemma, Salia proved by induction that the largest number ex(n;Ck+1; k) of

directed (k + 1)-cycles in a k-geodetic digraph with given order n satisfies

ex(n;Ck+1; k) ≤ Σn
i=1i

1/k =
k

k + 1
n

k+1
k +O(n

1
k ).

For the full proof we refer to [146]. In fact, this upper bound is tight up to a

multiplicative constant. We can show this using the permutation digraphs P (d, k).

The permutation digraph P (d, k) has order n = (d+ k)(d+ k − 1) . . . (d+ 1) and size

dn. It is easily seen that each arc of P (d, k) is contained in a unique (k + 1)-cycle; for

example 0123 . . . (k − 1)→ 123 . . . (k − 1)k is contained in the unique (k + 1)-cycle

0123 . . . (k−1)→ 123 . . . (k−1)k → 23 . . . (k−1)k0→ · · · → k0123 . . . (k−2)→ 0123 . . . (k−1).
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Hence P (d, k) contains nd
k+1 copies of Ck+1. Therefore asymptotically ex(n;Ck+1; k) is

at least 1
k+1n

k+1
k . In particular, ex(n;C3; 2) must lie somewhere between 1

3n
3/2 and

2
3n

3/2. It turns out that the lower bound is correct; this was proven by Salia using an

application of Hölder’s inequality.

Theorem 10.33.

ex(n;C3; 2) =
1

3
n3/2 +O(n

1
2 ).

Based on this example, we make the following conjecture.

Conjecture 10.34. For all k ≥ 2 we have

ex(n;Ck+1; k) =
1

k + 1
n

k+1
k +O(n

1
k ).

We turn now to the problem of the largest number of directed paths of given length in

a 2-geodetic digraph. Let P` be the path of length ` (i.e. order `+ 1). Surprisingly

there are some differences between odd and even length paths; in the following

theorem we show different lower bounds. The construction for even ` is due to the

author and for odd ` to Erskine.

Theorem 10.35. If k ≥ 2 and k divides `, then we have

ex(n;P`; k) ≥ n(`/k)+1 +O(n1+
`−1
k ).

In particular, if ` is even then

ex(n;P`; 2) ≥ n(`/2)+1 +O(n(`+1)/2).

If ` is odd, we have

ex(n;P`; 2) ≥ (n/2)(`+3)/2.

Proof. Let P (d, k) be a permutation digraph with degree d. P (d, k) has order

(d+ k)(d+ k − 1) . . . (d+ 1). From each vertex x there are at least

dk(d− 1)(d− 2) . . . (d− `+ k) = d` +O(d`−1) distinct `-paths with initial vertex x, so

there are d`+k +O(d`+k−1) distinct `-paths in P (d, k). Thus there are

n(`/k)+1 +O(n1+
`−1
k ) distinct `-paths in P (d, k).

Now let ` be odd and consider an orientation of the complete bipartite graph Kr,r

where n = 2r, in which a perfect matching is oriented in one direction and all other
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arcs are oriented in the opposite direction. We have already seen that this digraph is

2-geodetic. n
2 of the vertices are the initial vertices of (n2 )(`+1)/2 +O(n(l−1)/2) distinct

`-paths, whereas the vertices in the other partite set are the initial vertices of only

O(n(`−1)/2) `-paths each. Multiplying by n
2 yields the result.

Theorem 10.36. If k ≥ 2 and k divides `, then

ex(n;P`; k) ≤ n(`/k)+1 +O(n1+
`−1
k ).

In particular, for every even `

ex(n;P`; 2) = n(`/2)+1 +O(n`/2).

Proof. Let k ≥ 2 divide `. We have a lower bound from Theorem 10.35. For an upper

bound, consider a path of length ` with vertices 0, 1, . . . , `. By k-geodecity, given the

two endpoints of a path of length k all of the intermediate vertices are determined.

Hence we can only choose vertices 0, k, 2k, . . . , ` independently. Hence ex(n;P`; k) is

at most n(`/k)+1.

For paths of odd length we have an asymptotically sharp result only for P3. The

approach of the proof is due to Salia and can be found in [146].

Theorem 10.37. The largest number of 3-paths in a 2-geodetic digraph with order n

satisfies

ex(n;P3; 2) = (n/2)3 +O(n2).
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Chapter 11

Conclusion

In this thesis we have discussed several extremal problems for directed and mixed

graphs, principally concerning networks with order close to the Moore bound. We will

now summarise the main contributions of this thesis, dividing our discussion into two

broad sections, i) directed graphs and ii) mixed graphs. We also indicate important

problems for future research.

11.1 Bounds for directed graphs

The degree/geodecity problem was first discussed in [132]. We formally defined the

problem in Chapter 3 and proved the existence of extremal digraphs (which we named

geodetic cages) in Corollary 3.20 using the properties of permutation digraphs.

11.1.1 Properties of geodetic cages

In Chapter 3 we discussed some simple properties of geodetic cages. In Theorems 3.26

and 3.27 we proved that the order N(d, k) of a (d, k)-geodetic cage is strictly

monotonic in both the degree d and the geodetic girth k. In Theorems 3.31 and 3.33

we proved that directed geodetic cages are strongly connected and

2-weakly-connected; by analogy with Corollary 2.10 for undirected cages, we

conjectured that geodetic cages have the following much stronger property.

Conjecture 3.29. All geodetic cages are maximally connected and

super-arc-connected.

In Chapter 5 we made a further conjecture on the structure of geodetic cages.

Conjecture 5.1. All (d, k)-geodetic cages are diregular.

In Section 6.3 we showed that N(2, 2) = 9 and classified the (2, 2)-geodetic cages,

thereby giving the first known non-trivial examples of geodetic cages. We determined

further cages in Section 9.5 for the pairs (d, k) = (2, 3) and (3, 2); these cages satisfy

both Conjecture 3.29 and Conjecture 5.1. As evidence towards Conjecture 3.29 we
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noted in Theorem 3.34 that the corresponding result is true for balanced cages with

sufficiently large d by the result of [9]; thus if Conjecture 5.1 is true, then

Conjecture 3.29 is true for sufficiently large d. However, Conjecture 5.1 appears to be

a deep problem.

11.1.2 Digraphs with excess one

As there are no non-trivial Moore digraphs [33], the natural next step is to look for

digraphs with excess one. There are no known (d, k; +1)-digraphs for d, k ≥ 2. This

motivated us to make the following conjecture.

Conjecture 4.2. There are no (d, k; +1)-digraphs with d, k ≥ 2.

The best known results prior to the research contained in this thesis are summarised

in Lemma 4.1.

Lemma 4.1. [116, 132] If G is a (d, k; +1)-digraph, then

� G is diregular.

� Either G is a (d, 2; +1)-digraph, where d lies in the range 3 ≤ d ≤ 7, or a

(d, k; +1)-digraph with d ≥ 3 and k ≥ 5, or a directed (k + 2)-cycle.

� The outlier function o of G is an automorphism.

In Chapter 4 we made a significant step towards proving Conjecture 4.2. Firstly, in

Section 4.1, we used counting arguments to deduce strong divisibility conditions on

the pairs (d, k) for which there can exist a vertex-transitive (d, k; +1)-digraph; this

case is of particular interest, as all known undirected Moore graphs are

vertex-transitive. In particular, the divisibility conditions demonstrated that any

vertex-transitive (d, k; +1)-digraph must either have d > 12 or k > 10000. It appears

that the pairs (d, k) that satisfy the conditions in Corollary 4.12 and Theorem 4.14

are very sparse.

Conjecture 11.1. The set of pairs (d, k) that satisfy Corollary 4.12 and

Theorem 4.14 has asymptotic density zero.

In Section 4.2 we derived the following strong restriction on the structure of any

(3, k; +1)-digraph and used this to show that there is no (3, 2; +1)-digraph.

Theorem 4.21. Any two distinct vertices of a (3, k; +1)-digraph have at most one

common out-neighbour and at most one common in-neighbour.
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We then approached the problem of the existence of digraphs with excess one by

using results on the fixed point sets of automorphisms of a (d, k; +1)-digraph, showing

that the digraph induced by a fixed point set must itself have excess one if it contains

more than two vertices. Applying this result to the outlier automorphism severely

restricts the possible permutation structure of the outlier function of a minimal

counterexample to Conjecture 4.2. By combining this analysis with spectral results

from [116], we proved that any (d, k; +1)-digraph with d, k ≥ 2 must contain a vertex

with order at least three, i.e. there exists a vertex u such that o(u) 6= o−(u).

Theorem 4.45. There are no 2-outlier-regular (d, k; +1)-digraphs.

We then employed the same method to deal with the unresolved cases 3 ≤ d ≤ 7 for

k = 2 in Lemma 4.1 using an iterative approach; this completely classifies the

(d, k; +1)-digraphs with k ≤ 4.

Theorem 4.56. If d, k ≥ 2 and ε(d, k) = 1, then d ≥ 3 and k ≥ 5.

11.1.3 Digraphs with excess at least two

For larger values of the excess ε our main tool in the diregular case was the

Neighbourhood Lemma, which extends the result of [116] that the outlier function of

a digraph with excess one is a digraph automorphism.

Lemma 6.1. For any d, k ≥ 2 and excess ε ≥ 1, let G be a diregular (d, k; +ε)-digraph.

Then for any vertex u of G we have O(N+(u)) = N+(O(u)) as multisets.

The following two lemmas gave the analogous relations for a non-diregular

(d, k; +ε)-digraph, where S = {u ∈ V (G) : d−(u) < d} and

S′ = {v ∈ V (G) : d+(v) > d}.

Lemma 5.5. For every vertex u of an out-regular, but non-diregular

(d, k; +ε)-digraph G we have

S ⊆
⋂

u∈V (G)

O(N+(u)).

Lemma 5.6. For every vertex u of an out-regular, but non-diregular

(d, k; +ε)-digraph G the set S′ satisfies

S′ ⊆
⋂

u∈V (G)

N+(O(u)).
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Using the latter two lemmas and a structural result called the Amalgamation Lemma

(Lemma 5.12), we showed in Chapter 5 that any (2, k; +2)-digraph must be diregular.

In Chapter 6 we dealt with the diregular case using the Neighbourhood Lemma,

proving that there are no diregular (2, k; +2)-digraphs for k ≥ 3 and classifying the

(2, 2; +2)-digraphs. In fact, we were able to push this analysis further to show the

non-existence of diregular (2, k; +3)-digraphs for k ≥ 3; this represents the first

classification of a family of directed graphs with order three away from the Moore

bound. As a result, we obtained the following classification of (2, k; +2)-digraphs and

diregular (2, k; +3)-digraphs.

Theorem 11.2. There are two (2, 2; +2)-digraphs (see Figure 9.11) and no

(2, k; +2)-digraphs for k ≥ 3. There are also no diregular (2, k; +3)-digraphs for k ≥ 3.

The obvious question raised by Theorem 11.2 is whether there exists a non-diregular

(2, k; +3)-digraph. We presented results on the structure of any such digraph in

Section 5.4, but the number of in-degree sequences to analyse is prohibitive.

Conjecture 11.3. There are no non-diregular (2, k; +3)-digraphs or

(3, k; +2)-digraphs.

Combined with a computer search, the lower bounds derived in Chapters 4, 5 and 6

allowed us to determine geodetic cages for some small values of d and k; the results

are contained in Table 9.3.

d k M n ε Comment

2 2 7 9 2 Figure 9.11
2 3 15 20 5 Figures 9.12 and 9.13
2 4 31 54* 23* No graphs of order less than 34

3 2 13 16 3 Figure 9.14

Table 9.3: Smallest digraphs of given degree d and geodecity k (* = smallest
known)

In Section 3.2 we also touched on the problem of finding a smallest arc-transitive

k-geodetic digraph with degree d for d, k ≥ 2. We showed that the permutation

digraphs are arc-transitive and, for fixed k and increasing d, have order

asymptotically approaching the Moore bound. In general the permutation digraphs

are not smallest possible arc-transitive digraphs for given d and k, but we made the

following conjecture for large values of the degree.

Conjecture 3.24. For fixed k and sufficiently large d, the permutation digraph

P (d, k) is the smallest arc-transitive k-geodetic digraph with degree d.
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Given these nice properties of permutation digraphs, it would be interesting to

investigate other properties of these digraphs, in particular their diameter behaviour

in the cases not covered by Theorems 3.22 and 3.23.

Question 11.4. What is the diameter of P (d, k) for 3 ≤ d ≤ k − 1?

11.1.4 Turán problems

In Chapter 10 we looked at the subject of geodetic girth from a different perspective

by asking for the largest possible size of a k-geodetic digraph with given order n. In

fact, this problem turned out to be quite simple; we obtain a much more difficult

problem if we add the requirement of strong connectivity. We solved this problem for

k = 2 and classified all of the extremal digraphs.

Theorem 11.5. The largest size of a strongly connected 2-geodetic digraph with order

n is given by ex∗(2r; 2) = r2 for r ≥ 2 and ex∗(2r + 1; 2) = r2 + 2 for r ≥ 1.

For larger k ≥ 3, our best upper bound is of asymptotic order only n2

k , whereas we

conjecture the true value of ex∗(n; k) to be of order n2

k2
. It would be extremely

desirable to close this large gap. In addition to a conjectured asymptotic bound, we

presented constructions in Chapter 10 that we believe to be extremal; this leads to

the following very precise conjecture.

Conjecture 10.30. If n ≥ k + 1 and n ≤ (k + 1)
⌊
n
k

⌋
(in particular for n ≥ k2 − k),

ex∗(n; k) =
⌊n
k

⌋2
− (k + 2)

⌊n
k

⌋
+ 2n.

Also if k|n, then G(n, k) is the unique extremal strongly-connected k-geodetic digraph

with that order.

We closed by considering some generalised Turán problems for k-geodetic digraphs,

especially for the largest number of directed (k+ 1)-cycles and paths. We solved these

problems for the number of directed triangles and directed paths of even length in

2-geodetic digraphs of given order. These bounds are met asymptotically by the

permutation digraphs.

Theorem 10.33.

ex(n;C3; 2) =
1

3
n3/2 +O(n

1
2 ).
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Theorem 10.36. If k ≥ 2 and k divides `, then

ex(n;P`; k) = n(`/k)+1 +O(n1+
`−1
k ).

In particular, for every even ` we have

ex(n;P`; 2) = n(`/2)+1 +O(n`/2).

We conjecture that the permutation digraphs P (d, k) are extremal for the number of

(k + 1)-cycles for larger k as well.

Conjecture 10.34. For all k ≥ 2 we have

ex(n;Ck+1; k) =
1

k + 1
n

k+1
k +O(n

1
k ).

For k = 2 and paths with odd length we were able to decide the asymptotic order

only for paths of length three, which shows that orientations of complete bipartite

graphs Kdn
2
e,bn

2
c are extremal for 3-paths.

Theorem 10.37.

ex(n;P3; 2) = (n/2)3 +O(n2).

The discrepancy between odd and even path lengths is extremely interesting. We

have not yet been able to show that this behaviour continues for k = 2 and larger odd

`; more generally, for larger k, we presume that the asymptotic order of the largest

number of paths of length ` in a k-geodetic digraph depends upon the conjugacy class

of ` modulo k.

Conjecture 11.6. For odd `, we have ex(n;P`; 2) ∼ (n/2)(`+3)/2.

Directed (k + 1)-cycles in a k-geodetic digraph represent a ‘near-violation’ of

k-geodecity. Another significant ‘near-violation’ is a pair of distinct u, v-paths P,Q of

length k and k + 1 or both of length k + 1; following Ustimenko [149], we could call

the corresponding subdigraphs small hooves.

Question 11.7. What is the largest possible number of small hooves in a k-geodetic

digraph with order n?
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11.2 Bounds for mixed graphs

In Chapter 7 we shifted our focus to mixed graphs, networks containing both

undirected edges and directed arcs. This thesis has made contributions to the

degree/diameter problem for mixed graphs and also generalised the degree/geodecity

problem to the mixed setting.

11.2.1 Degree/diameter problem for mixed graphs

As discussed in Chapter 7, the degree/diameter problem for mixed graphs has

received a great deal of attention. López and Miret presented very strong conditions

on the possible values of the undirected degree r and directed out-degree z of an

(r, z, 2;−1)-graph in [104]; however, this result applies only to totally regular graphs,

prompting the authors to ask whether all almost mixed Moore graphs with diameter

two are totally regular. Using a combination of counting arguments and spectral

methods, we answered this question in the affirmative in Chapter 8.

Theorem 8.10. Almost mixed Moore graphs with diameter two are totally regular.

We also extended this result to almost mixed Moore graphs with k ≥ 3 for r = z = 1.

Theorem 8.15. For k ≥ 3, (1, 1, k;−1)-graphs are totally regular.

For the degree parameters r = z = 1 we also succeeded in improving on a lower bound

for the defect of a totally regular mixed graph with diameter k ≥ 3 due to Dalfó et

al. [51].

Theorem 9.25. Any totally regular (1, 1, k;−δ)-graph has defect

δ ≥
k−2∑
t=1

Z ′t

⌈
1

3
+

1

3

⌊
k − t

2

⌋⌉

for k ≥ 3, where Z ′1 = 1 and Z ′t = 1
2t−1

√
5
((1 +

√
5)t−1− (1−

√
5)t−1) for 2 ≤ t ≤ k− 2.

The noteworthy feature of Theorem 9.25 is that, unlike the bound in [51], it grows

with increasing values of the diameter k. It would be of great interest to derive such a

bound for other values of r and z.

Question 11.8. Can the bound in Theorem 9.25 be extended to other values of the

degree parameters r and z?
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11.2.2 Degree/geodecity problem for mixed graphs

In Chapter 7 we generalised the degree/geodecity problem to the setting of mixed

graphs. We defined a mixed graph G to be k-geodetic if for any pair of (not

necessarily distinct) vertices u, v there is at most one non-backtracking mixed walk

from u to v with length ≤ k. The order of a k-geodetic mixed graph with minimum

undirected degree r and minimum directed out-degree z is bounded below by the

mixed Moore bound M(r, z, k); if such a graph has order M(r, z, k) + ε, then we called

it an (r, z, k; +ε)-graph.

In Chapter 7 we proved the existence of mixed geodetic cages using a truncation

argument and proved monotonicity of the order of (r, z, k)-cages in the directed

out-degree z and geodetic girth k. We also made the following conjecture on the

structure of mixed geodetic cages, which includes Conjecture 5.1 as a special case.

Conjecture 7.19. All mixed geodetic cages are totally regular.

In Chapter 8 we proved the analogue of Theorem 8.10 for 2-geodetic mixed graphs

with excess one.

Theorem 8.18. All (r, z, 2; +1)-graphs are totally regular.

A counting argument in Chapter 9 allowed us to derive a strong lower bound on the

excess of a totally regular k-geodetic mixed graph.

Theorem 9.5. For k ≥ 3, the excess ε of a totally regular (r, z, k; +ε)-graph satisfies

ε ≥ r

φ

[λk−11 − 1

λ1 − 1
− λk−12 − 1

λ2 − 1

]
,

where

φ =
√

(r + z − 1)2 + 4z,

λ1 =
1

2
(r + z − 1 + φ)

and

λ2 =
1

2
(r + z − 1− φ).

However, the author is not aware of any non-trivial case in which this bound is met.

Question 11.9. Can the bound in Theorem 9.5 be improved or is it tight?
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Using a more involved argument we generalised Theorem 9.5 to mixed graphs that are

not totally regular at the expense of weakening the bound by a factor of z
2r+3z .

Theorem 9.9. The excess of any (r, z, k)-cage satisfies

ε ≥ rz

(2r + 3z)φ

[λk−11 − 1

λ1 − 1
− λk−12 − 1

λ2 − 1

]
,

where λ1, λ2 and φ are as defined in Theorem 9.5.

We applied Theorems 9.5 and 9.9 to the special case of mixed graphs with excess one

to show that any such graph must have k = 2. This extends the result of [12] for

undirected graphs with excess one to the case of mixed graphs.

Theorem 9.15. If G is an (r, z, k; +1)-graph with r, z ≥ 1, then k = 2 and G is

totally regular.

Combined with the spectral analysis from [104], which gives strong conditions on the

degree parameters in a totally regular (r, z, k; +1)-graph, this means that mixed

graphs with excess one are very rare.

Theorem 7.18. Let G be a totally regular (r, z, 2; +1)-graph. Then either

� r = 2,

� 4r + 1 = c2 for some c ∈ N and c|(16z2 − 24z + 25), or

� 4r − 7 = c2 for some c ∈ N and c|(16z2 + 40z + 9).

However, we did identify a (2, 1, 2; +1)-graph (see Figure 9.4) and proved that this is

the unique 2-geodetic mixed graph with excess one and r = z = 1.

Chapter 9 also presented the results of a computer search that found new mixed cages

for some small r, z and k and established upper bounds for other combinations of r, z

and k by finding smallest Cayley (r, z, k; +ε)-graphs. Some results are shown in

Table 9.2. In some cases the lower bounds from Theorem 9.5 combined with computer

search are close to the upper bound provided by our new record graphs. This suggests

that further geodetic cages will be identified by extending the search and improving

the lower bounds for particular combinations of r, z and k.

Problem 11.10. Identify further mixed and directed geodetic cages.
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[9] Balbuena, M. C., Carmona, A., Fábrega, J. and Fiol, M.A., On the order and size of
s-geodetic digraphs with given connectivity. Discrete Math. 174 (1-3) (1997), 19-27.

[10] Balbuena, C. and Salas, J., A new bound for the connectivity of cages. Appl. Math. Lett.
25 (11) (2012), 1676-1680.

[11] Bannai, E. and Ito, T., On finite Moore graphs. J. Fac. Sci. Univ. Tokyo 20 (1973),
191-208.

[12] Bannai, E. and Ito, T., Regular graphs with excess one. Discrete Math. 37 (2-3) (1981),
147-158.

[13] Baskoro, E.T., Cholily, Y.M. and Miller, M., Enumerations of vertex orders of almost
Moore digraphs with selfrepeats. Discrete Math. 308 (1) (2008), 123-128.
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[38] Buset, D., López, N. and Miret, J., The unique mixed almost Moore graphs with
parameters k = 2, r = 2 and z = 1. J. Interconnect. Netw. 17 (03n04) (2017), 1741005.
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[47] Conde, J., Gimbert, J., Gonzàlez, J., Miret, J.M. and Moreno, R., Nonexistence of almost
Moore digraphs of diameter three. Electron. J. Comb. 15 (2008), R87.

[48] Conde, J., Miller, M., Miret, J.M. and Saurav, K., On the nonexistence of almost Moore
digraphs of degree four and five. Math. Comput. Sci. 9 (2) (2015), 145-149.

[49] Cowell, R.G., Dawid, P., Lauritzen, S.L. and Spiegelhalter, D.J., Probabilistic networks
and expert systems: Exact computational methods for Bayesian networks. Springer
Science and Business Media (2006).

[50] Dafik, Miller, M., Iliopoulos, C. and Ryjacek, Z., On diregularity of digraphs of defect
two. Proceedings of 18th International Workshop on Combinatorial Algorithms (2007).

James Tuite



BIBLIOGRAPHY 223
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[123] Plesńık, J. and Znám, Š., Strongly geodetic directed graphs. Acta Fac. Rerum Natur.
Univ. Comenian. Math. 29 (1974), 29-34.
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