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Abstract

We shall consider problems in two broad areas of mathematics, namely the area of the

degree diameter problem and the area of regular maps.

In the degree diameter problem we investigate finding graphs as large as possible with

a given degree and diameter. Further, we may consider additional properties of such

extremal graphs, for example restrictions on the kinds of symmetries that the graph

in question exhibits.

We provide two pieces of research relating to the degree diameter problem. First, we

provide a new derivation of the Hoffman-Singleton graph and show that this

derivation may be used with minor modification to derive the Bosák graph.

Ultimately we show that no further natural modification of the construction we use

can derive any other Moore or mixed-Moore graphs. Second, we answer the

previously open question of whether the Gómez graphs, which are known to be

vertex-transitive, are in addition also Cayley. In doing this, we also generalise the

construction of the Gómez graphs and show that the Gómez graphs are the largest

graphs for given degree and diameter following the generalised construction.

We also provide two pieces of research relating to regular maps. We aim to address

the related questions of for which triples of parameters k, l and m there exist finite

regular maps of face length k, vertex order l and Petrie walk length m. We then

address the related question of determining for which n there exist regular maps

which are self dual and self Petrie dual which have face length, vertex order and

Petrie dual walk length n. We address both questions by constructions of regular

maps in fractional linear groups, necessarily leading us to study some interesting

related number theoretic questions.
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Chapter 1

Introduction

1.1 Notation

Before we begin, we introduce the notation which we make use of throughout. We use

the symbols N, Z, Q, R and C to denote the natural numbers (taking

N = {0, 1, 2, . . . }), integers, rationals, reals and complex numbers respectively. We use

the notation Z /nZ to denote the integers modulo n. We use M(R)n to denote the

ring of n× n matrices over the ring R. We use GF(pk) to denote the finite field on pk

elements unique up to isomorphism.

We define a graph as a tuple G = 〈V,E〉, where V is the set of vertices and E is the

set of edges, we shall only consider finite graphs in which |V | and |E| are finite. When

we refer to a graph G we may also use V(G) to denote the vertex set of G and E(G)

to denote the edge set of G. We consider graphs which are undirected, directed or

mixed. We shall refer to each as graphs relying on context to make clear which type

we are talking about and explicitly clarifying when necessary. In particular, we will

also use the term digraph to refer to directed graphs when appropriate. In short we

refer to directed graphs as digraphs. For an undirected graph, members of the edge

set are sets of the form {u, v} where u, v ∈ V are vertices and u 6= v. If {u, v} ∈ E we

write u ∼ v and say that u and v are adjacent. For a directed graph, members of the

edge set are tuples of the form 〈u, v〉 for some u, v ∈ V . If 〈u, v〉 ∈ E we write u→ v

and say that u is adjacent to v. In a mixed graph we allow edges of both types. We

note that the graphs we consider are simple graphs, as between any pair of vertices we

allow at most one edge, and we also disallow loops (an edge from a vertex to itself).

Within a graph G = 〈V,E〉 we call a series of vertices v0, v1, . . . , vn a path if there

exist edges in E such that vi is adjacent to vi+1 for all 0 ≤ i < n. The length of a path

is the number of edges in the path, hence the length of the path on the vertices

v0, v1, . . . , vn is n. For two vertices u, v ∈ V we define the distance from u to v as

d(u, v) = 0 if u = v, d(u, v) =∞ if there does not exist a path from u to v, and

d(u, v) is the length of the shortest path from u to v otherwise. If between any pair of

vertices u, v ∈ V we always have d(u, v) <∞ then we say G is connected.

For an undirected graph G = 〈V,E〉 and a vertex v, we define the degree of v to be
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8 1 Introduction

the number of edges e ∈ E such that v ∈ e. For a directed graph G = 〈V,E〉 and a

vertex v, we define the out degree of v as the number of edges of the form v → u in E,

and the in degree of v as the number of edges of the form u→ v in E. We call an

undirected graph G = 〈V,E〉 regular if all vertices v ∈ V have the same degree. We

call a directed graph G = 〈V,E〉 out regular if all vertices v ∈ V have the same out

degree, in regular if all vertices v ∈ V have the same in degree, and totally regular if

G is both out regular and in regular. For a mixed graph G = 〈V,E〉 we define the

undirected degree, in degree and out degree in the obvious way, and call a mixed graph

G = 〈V,E〉 totally regular if each vertex v ∈ V has the same undirected degree, in

degree and out degree.

For a graph G = 〈V,E〉, and some subset V ′ ⊆ V of V , we define the subgraph of G

induced by V ′ as the graph G′ = 〈V ′, E′〉 where E′ ⊆ E is the set of edges in E which

only contain vertices in V ′.

For graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉 we call a function φ : V → V ′ a

homomorphism from G to G′ if for any u, v ∈ V such that u is adjacent to v in G, we

have that φ(u) is adjacent to φ(v) in G′. We call a function φ : V → V ′ an

isomorphism if φ is a bijection and for all u, v ∈ V we have u is adjacent to v in G if,

and only if, φ(u) is adjacent to φ(v) in G′. For a graph G = 〈V,E〉 we call an

isomorphism from G to itself an automorphism, and define the automorphism group

of G, denoted Aut(G), as the set of automorphisms of G. The fact that this set forms

a group is easily seen.

For a group Γ and some set S ⊆ Γ we define the Cayley digraph of Γ and S, denoted

Cay(Γ, S) as the digraph G = 〈Γ, E〉 with vertex set Γ, the members of the group Γ,

and edge set E such that g → h if, and only if, g−1h ∈ S. It can easily be seen that

for any g ∈ Γ, one may define a function φ : G→ G by φ(h) = gh which is an

automorphism of G. Hence, there exists some group H ≤ Aut(G) with H ∼= Γ. We

call G regular if we have Aut(G) ∼= Γ. A simple but important property of Cayley

digraphs is the following.

Proposition 1.1. A digraph G is Cayley if, and only if, there is a subgroup H of its

automorphism group Aut(G) acting regularly on the vertices of G.

Proof. The result is standard and we only provide a sketch. The fact a Cayley

digraph has such a subgroup of its automorphism group follows from what we have

already said. For the other implication, if G is a digraph and Γ ≤ Aut(G) is a

subgroup of the automorphism group of G acting regularly on V(G) then we may fix

an arbitrary vertex v ∈ V(G) and label each vertex u ∈ V(G) with the automorphism

James Fraser



1.1 Notation 9

g ∈ Γ which maps v to u. We then take the set S to be the set of members of Γ

associated with the neighbours of v. Then we have Cay(Γ, S) ∼= G.

We pay particular attention to the degree and diameter of graphs. We define the

diameter of a graph G = 〈V,E〉 as the maximum distance d(u, v) between any two

vertices u, v ∈ V . We denote the degree of G by Deg(G) and the diameter of G by

Diam(G). Throughout we typically use the letter k to denote the diameter of a graph

and the letter d to denote the degree.

We call a graph G = 〈V,E〉 k-geodetic if for all u, v ∈ V there is at most one path

connecting u and v of length less than or equal to k. We refer to this property as

k-geodesity.

Later we give complete definitions of Moore graphs and mixed Moore graphs. Here we

simply note that we use the notation (d, k)-Moore graph to denote a Moore graph of

degree d and diameter k, and (r, z, k)-mixed Moore graph to denote a mixed Moore

graph of undirected degree r, directed degree z and diameter k.

We now define the following special graphs and groups. For any n ∈ N, n ≥ 2 we

define the cycle graph Cn = 〈V,E〉 such that V = {v1, v2, . . . , vn}, vi is adjacent to

vi+1 and vn is adjacent to v1. For any n ∈ N, n ≥ 1, we define the complete graph

Kn = 〈V,E〉 such that V = {v1, v2, . . . , vn} and vi is adjacent to vj for all i, j. We

note that these definitions are equally applicable for directed and undirected graphs,

and we refer to a directed version of a graph Cn as a directed cycle. We use the

notation Sn, An, PSL(n, pk) and PGL(n, pk) to denote symmetric groups, alternating

groups, and projective linear groups in the usual way.

We use ϕ(n), d(n), µ(n) to denote Euler’s totient function, the divisors function and

the Möbius function respectively. We use rad(n) to denote the radical of n, i.e. the

product of the distinct prime factors of n. We use ord(g) to denote the order of an

element g of a group, ring, field etc. This will usually be the multiplicative order of

the element, though will be clarified in context if necessary.

We use the notation Φn(x) to denote the nth cyclotomic polynomial, whose roots are

the nth primitive roots of unity. We use ξn to denote an nth primitive root of unity,

and ξ to denote a primitive root of unity when the order is not important. We use

Ψn(x) to denote the polynomial satisfying the identity Φn(x) = xϕ(n)/2Ψn(x+ x−1).

This polynomial first appears in the literature in [37] of Lehmer. We denote roots of

Ψn(x) as ωn = ξn + ξ−1
n .

For natural numbers n and k and a prime p, we say pk exactly divides n, and write

James Fraser



10 1 Introduction

pk || n, if pk | n and pk+1 - n. For natural numbers n and m we use (n,m) to denote

the greatest common factor of n and m, and [n,m] to denote the least common

multiple of n and m.

For a matrix M ∈Mn we define tr(M), the trace of M , as the sum of the elements on

the diagonal of M . We use Det(M) to denote the determinant of M .

For rings R and S we use R⊕ S to denote the direct product of R and S.

For a polynomial f(x) = c0x
n + c1x

n−1 + · · ·+ cn we use deg(f(x)) = n to denote the

degree of f(x). We call f(x) monic if c0 = 1, and say f(x) is irreducible if there exist

no polynomials g(x) and h(x) such that f(x) = g(x)h(x) where both deg(g(x)) > 1

and deg(h(x)) > 1. We use ρ(f) to denote the multiset of roots of f(x) counted with

multiplicity. We also define M(f), the Mahler measure of f(x), as the product∏
α∈ρ(f) max(1, |α|), i.e. the product of the absolute value of all roots of f greater

than 1.

For two polynomials f(x) and g(x) we define the resultant of f(x) and g(x) as

∏
α∈ρ(f)
β∈ρ(g)

(α− β),

and denote it as Res(f, g). For a polynomial f(x), we define the discriminant of f(x)

as Res(f, f ′), and denote it ∆f .

For a field K and irreducible polynomial f(x) ∈ K[x] with deg(f(x)) > 1, we may call

α a root of f(x) and denote by K(α) the unique to isomorphism algebraic extension

of K by a root of f(x) isomorphic to K[x]/〈f(x)〉. We denote by [K(α) : K] the

degree of the field extension, given by [K(α) : K] = deg(f(x)). For fields K and L

such that K ≤ L, we denote by Γ(L/K) the Galois group of L over K, that is the

group of automorphisms of L which fix K.

1.2 Results

Before we begin, we first provide a summary of the original results of this thesis. This

section relies on some definitions which are made at the start of the corresponding

chapters. We present results relating to three distinct problem areas: the construction

of Moore graphs; the degree-diameter problem and Cayley graphs; and the existence

of regular maps with prescribed vertex, face and Petrie orders.

James Fraser



1.2 Results 11

1.2.1 The Construction of Moore Graphs

Relating to the construction of Moore graphs we provide an original construction of

the Hoffman-Singleton graph, from which we may easily determine properties such as

vertex transitivity of the Hoffman-Singleton graph and characterise its automorphism.

This result is given as Proposition 3.16 and covers all work within that section.

This method of construction is then applied to the case of the Bosák graph in which

case we derive analagous results. Our principle result regarding the Bosák graph is

given in Proposition 3.27, and covers the work from the same section.

We then determine the limits of our method of construction, which we use to derive

the Petersen, Hoffman-Singleton, Bosák and the unique (1, 1, 2)-mixed Moore graph,

and show that our method cannot be used to cover any other cases. We present this

result as Proposition 3.38.

We also note that throughout our exposition we show a fundamental similarity

between the open problems of whether there exists a (57, 2)-Moore graph and whether

there exists a (21, 1, 2)-mixed Moore graph.

The results concerning derivation of the Hoffman-Singleton and Bosák graphs and

their automorphism groups are known results.

1.2.2 The Degree-Diameter Problem and Cayley Graphs

In this section we study the Gómez graphs, and in particular we provide a solution to

the open problem of when the Gómez graphs are Cayley graphs. This problem is of

interest in the degree-diameter problem because if the Gómez graphs were Cayley they

would provide extremal examples of Cayley graphs for given degree and diameter.

Ultimately the question of determining when Gómez graphs are Cayley graphs

requires determining the automorphism groups of the Gómez graphs. We provide the

result in Proposition 4.63 and Proposition 4.77.

Further, the Gómez graphs have a naturally similar definition to the

Faber-Moore-Chen graphs, and the Faber-Moore-Chen graphs have been classified as

Cayley or not by determining their automorphism groups. Hence, we provide a

definition for a family of graphs called the word graphs, and derive our results by

providing generalised methods which may also be applied to the Faber-Moore-Chen

graphs. We show that Gómez graphs and Faber-Moore-Chen graphs are examples of

what we call shift restricted word graphs, and provide a further result to show that

the Gómez graphs are the largest possible graphs for given degree and diameter

James Fraser



12 1 Introduction

amongst the shift restricted word graphs. We provide this result in Proposition 4.15.

1.2.3 Existence of Regular Maps for Prescribed Vertex, Face and Petrie

Orders

Finally we investigate the open problem of determining for which triples (k, l,m) ∈ N3

there exist (k, l,m)-regular maps. We provide a partial resolution to the conjecture

that, for all but finitely many triples (k, l,m), there exists a (k, l,m)-regular map.

Further, after deriving this result we apply our methods to the question of

determining for which k there exist (k, k, k)-regular maps which are both self-dual

and self-Petrie-dual.

In our derivation of our partial solution, we in particular prove the following result

which has not been seen by the author in the literature (except on a web forum, cited

in the thesis).

Proposition. For any monic polynomial f(x) ∈ Z[x] such that x - f(x) and

Φn(x) - f(x) for all n there are only finitely many m ∈ N such that f(x) has no root

of order m in any finite field.

We also provide a constructive method of determining the set of all such m for which

there exists no root of f(x) of order m in any finite field. We present this result as

Proposition 6.57, and work in the subsequent section shows how we may construct the

set of values m. Also, in the opinion of the author, it is worth noting that the objects

referred to as Galois rings used for generalising some results to also cover cases

involving algebraic elements are an original invention of the author. These objects

share some similarities with the p-adic numbers.

In addition to this, our work is related to work on determining behaviour of Fibonacci

and Fibonacci-like sequences modulo a prime. In developing our tools, we also find we

may apply them to determine precisely for which m there exists a prime p such that a

k-Fibonacci sequence has period m modulo p. This is similar, but distinct to, the

known results concerning apparitions in the area. The author is not familiar with

equivalent results to the ones derived in this thesis within the literature. We provide

these results in Proposition 6.52 and Proposition 6.53.

We provide our partial solution, namely that for any given pair (k, l) there are only

finitely many m such that no (k, l,m)-regular map esists, in Proposition 6.77. Finally,

we apply our methods to the case of self-dual and self-Petrie-dual (k, k, k)-regular

maps in the final chapter, and derive our result in Proposition 7.10. This application

of our earlier results does not in itself provide a new result, but does provide another

James Fraser



1.2 Results 13

method of showing that, for all k except k = 3, there exists a self-dual and

self-Petrie-dual (k, k, k)-regular map.

1.2.4 Publication of Results

At the current time of writing, none of the results or work in this thesis is published.

The work from the chapter on word graphs is available in a very similar form on

arXiv.
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Chapter 2

Background to the Degree-Diameter

Problem

We shall begin our work by investigating the degree-diameter problem. The

degree-diameter problem forms a large area of research of which we shall only cover a

small fraction. For an introduction to the area as a whole the reader may refer to the

survey paper [43] of Miller and Širáň.

The degree-diameter problem originates from considering the question: for a given

maximum vertex degree d and diameter k how large can a graph be? The question

was originally posed by Moore based on the following observation.

Proposition 2.1. A graph G of maximum vertex degree d and diameter k has at

most M(d, k) vertices, where M(d, k) is given by

M(d, k) =

1 + d (d−1)k−1
d−2 if d > 2,

2k + 1 if d = 2.
(2.1)

Proof. This bound is trivially achieved by considering a breadth-first-search tree

starting from an arbitrary vertex of G. In the first layer there is 1 vertex, at the

second there are at most d vertices, in the third at most d(d− 1) vertices etc. At the

kth layer we must have found all of the vertices as the diameter of the graph is k.

This gives a bound of the form 1 + d+ d(d− 1) + · · ·+ d(d− 1)k−1 which simplifies to

our expression for M(d, k).

This bound is called the Moore bound, and a graph which achieves the Moore bound

is called a Moore graph. We see that in the case d = 2 the odd length cycle C2k+1

achieves the Moore bound, and in the case k = 1 the complete graph Kd+1 achieves

the Moore bound. We shall call the graphs C2k+1 and Kk trivial Moore graphs. In

the paper [31] of Hoffman and Singleton it was shown via algebraic methods that for

diameter k = 2 there are no non-trivial Moore graphs for any degree d 6= 3, 7, 57 and

that there are no non-trivial Moore graphs for diameter k = 3. For diameter k = 2

and degree d = 3 they showed there is a unique Moore graph, the Petersen graph, and

for diameter k = 2 and degree d = 7 there is a unique Moore graph, which is now
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16 2 Background to the Degree-Diameter Problem

known as the Hoffman-Singleton graph. Subsequently Bannai and Ito in [6], and

independently Damerell in [18], extended the argument of Hoffman and Singleton to

show that there are no non-trivial Moore graphs for any diameter k > 2. The

remaining open case of degree d = 57 and diameter k = 2 has become one of the most

famous open problems in algebraic graph theory.

Since these early results the study of the degree-diameter problem has been expanded

to consider cases of different classes of graphs (e.g. directed, vertex-transitive, Cayley

etc), and determining families of graphs as large as possible for given degree and

diameter.

In our work we consider the degree-diameter problem for digraphs. In the case of

digraphs we shall consider how large a graph can be with a maximum out degree d

and maximum diameter k. With this definition, we obtain the following directed

Moore bound.

Proposition 2.2. A digraph G of maximum vertex out degree d and diameter k has

at most DM(d, k) vertices where DM(d, k) is given by

DM(d, k) =


dk+1−1
d−1 , if d > 1,

k + 1, if d = 1.
(2.2)

Proof. As before we consider a breadth first search tree rooted at an arbitrary vertex

of G. In the first layer there is 1 vertex, in the second there are at most d, in the third

at most d2 etc. This gives a Moore bound of the form 1 + d+ d2 + · · ·+ dk, which

simplifies to our expression for DM(d, k).

It was first shown by Plesńık and Znám in [46] in 1974, and later independently by

Bridges and Toueg in [8] in 1980 that there are no non-trivial Moore digraphs.

Therefore, we aim to study the directed case of the degree-diameter problem by

finding digraphs which are asymptotically close to the directed Moore bound, i.e. a

family of graphs G(d, k) for arbitrary maximum out degree d and diameter k such

that |V(G(d, k))| ∼ dk when either d or k is fixed and the other tends to infinity.

As a result, finding digraphs of maximum out degree d and diameter k close to the

directed Moore bound DM(d, k) has formed a significant area of research, and the

best known results are maintained online [40]. The largest known digraphs

approaching the directed Moore bound are not vertex-transitive, so it is also

interesting to consider the further restriction of the degree-diameter problem to

vertex-transitive digraphs. With this further restriction, the digraphs described by

James Fraser



2 Background to the Degree-Diameter Problem 17

Gómez in [29] are the largest known vertex-transitive digraphs approaching the

directed Moore bound, and shall be a major topic for our research.

First, as the Gómez graphs are vertex-transitive, it is possible that they are also

Cayley graphs. If the Gómez graphs were Cayley then they would also be the best

known Cayley digraphs approaching the directed Moore bound. Hence, we shall

answer the question of whether the Gómez digraphs are Cayley digraphs.

Second, the definition of the Gómez digraphs comes from a refinement of the

definition of the Faber-Moore-Chen digraphs introduced in [24, 25]. Therefore,

another question we shall answer is whether further refinements are possible to this

definition to create digraphs with better asymptotic behaviour. We shall address this

question by generalising the definition of the Faber-Moore-Chen digraphs and the

Gómez digraphs and show that the Gómez digraphs achieve a natural definition of

optimality within this generalised context.
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Chapter 3

Moore Graphs

3.1 Introduction

In this chapter we shall examine in detail the derivation of some known results

concerning Moore graphs and mixed Moore graphs. In particular we shall aim to

show a fundamental similarity between the existence of Moore graphs and the

existence of mixed Moore graphs with directed out-degree 1. We note that mixed

Moore graphs of directed out-degree 1 have already received independent attention in

[39] of López and Pujolàs. First, we quote standard results of Moore and mixed

Moore graphs. We have that, for diameter k = 2, non-trivial (d, k)-Moore graphs may

only exist for degree d = 3, 7 or 57. In the cases of degree d = 3 and 7 it is known that

unique, highly symmetric Moore graphs exist with these parameters. In the case of

degree d = 57 it was shown that a (57, 2)-Moore graph cannot be vertex transitive by

Higman in an unpublished lecture, and it has been further shown that the

automorphism group of a (57, 2)-Moore graph can have at most 375 members by

Mačaj and Širáň in [41]. We will draw a similarity between what happens in this case

of Moore graphs and the case of (r, z, k)-mixed Moore graphs where we consider the

directed degree z = 1 and the diameter k = 2. In this case it is known that mixed

Moore graphs may only exist for undirected degree r = 1, 3 or 21 (this result may be

extracted from [7]. In the cases of undirected degree r = 1 and r = 3 it is known that

unique mixed Moore graphs exist with the given parameters and that they are vertex

transitive. In the case of undirected degree r = 21 it is not known whether a

(21, 1, 2)-mixed Moore graph exists, and equivalent results to those concerning the

automorphism group of a potential (57, 2)-Moore graph are also not known.

It is of particular interest that the argument from which we derive the possible

parameters for Moore graphs of diameter 2 used in [31] may be applied to the mixed

Moore case of diameter 2 with no significant adjustments. Further, a (21, 1, 2)-mixed

Moore graph would have only 486 vertices each with 22 neighbours, whereas a

potential (57, 2)-Moore graph would have 3,250 vertices each with 57 neighbours.

Hence, the problem of determining whether a (21, 1, 2)-mixed Moore graph exists

occurs in a much smaller search space. Methods of optimised computer search have

been used to show non-existence of some mixed Moore graphs in the paper [38] of

19 James Fraser



20 3 Moore Graphs

López, Miret and Fernández. Therefore, research into the case of a (21, 1, 2)-mixed

Moore graph may be more accessible than research into a (57, 2)-Moore graph and

help provide insight to the problem in general.

3.2 Existence Proofs for Small Parameters

We begin with proofs of uniqueness of the (3, 2)-Moore graph and the (1, 1, 2)-mixed

Moore graph to show the similarity in these cases. In these cases the Moore bounds

are 10 and 6 respectively. First we consider the (3, 2)-Moore graph.

Lemma 3.1. Any diameter 2 Moore graph contains a 5-cycle.

Proof. The definition we have taken for a (d, k)-Moore graph is that it is a graph of

degree d and diameter k containing the number of vertices given by the Moore bound.

From the derivation of the Moore bound, this means that a breadth first search tree

from any vertex in such a graph encounters all other vertices at depth two with no

repetition. Therefore such a graph is at least girth 5. Further, any edge not in the

breadth first search tree must create either a 3, 4 or 5-cycle, so from girth

considerations must create a 5-cycle, showing that a diameter 2 Moore graph contains

at least one 5-cycle.

Proposition 3.2. There is a (3, 2)-Moore graph which is unique up to isomorphism.

u1

v1

u3

v3

u5

v5

u2

v2

u4

v4

Proof. Suppose that G is a (3, 2)-Moore graph. Let U = {u1, u2, u3, u4, u5} be any

5-cycle in G such that ui ∼ ui+1 (and u5 ∼ u1 for the special case i = 5). As G is

degree 3, each ui must have another neighbour. As G is girth 5 this neighbour cannot

be in U , and also each ui must have a distinct neighbour. We shall label each

neighbour of ui as vi. Now, considering that G is diameter 2, there must be a path of

length at most 2 from u1 to v3. Due to the restriction on degree, we see that this is

only possible if v1 ∼ v3. By symmetry we deduce that vi ∼ vi+2 (with v4 ∼ v1 and

v5 ∼ v2 in the special cases). This uniquely determines the graph G.
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3.2 Existence Proofs for Small Parameters 21

We see there is a unique (3, 2)-Moore graph. This graph is the Petersen graph. With

a little extra effort we may show that this graph is vertex transitive, with

automorphisms characterised by mapping any 5-cycle to any other 5-cycle of the

graph in any rotation and orientation.

We now move onto the case of a (1, 1, 2)-mixed Moore graph.

Lemma 3.3. If G is a (r, 1, 2)-mixed Moore graph, then the graph of only the directed

edges of G is composed of disjoint 3-cycles.

Proof. To show this claim we show that an arbitrary directed edge of G is in such a

3-cycle. Let u→ v be a directed edge of G. As G is diameter 2 we must have

d(v, u) ≤ 2. If d(v, u) = 1 then there is a 2-cycle from u→ v and back to u,

contradicting that G is a mixed Moore graph. Therefore, we have d(v, u) = 2, so there

must be some vertex w, such that either v → w or v ∼ w and either w → u or w ∼ u.

This gives us four possibilities which we consider separately.

Case i) v ∼ w ∼ u. In this case we have w ∼ u→ v and w ∼ v, so there are two

paths of length at most 2 joining w and v, contradicting that G is a mixed

Moore graph.

Case ii) v ∼ w → u. In this case we have w → u→ v and w ∼ v, so there are two

paths of length at most 2 joining w and v, contradicting that G is a mixed

Moore graph.

Case iii) v → w ∼ u. In this case we have u→ v → w and u ∼ w, so there are two

paths of length at most 2 joining u and w, contradicting that G is a mixed

Moore graph.

Case iv) v → w → u. There is no contradiction in this case.

Hence, for each u→ v we deduce the existence of some other vertex w ∈ V(G) such

that u→ v → w → u, as required.

We now prove the proposition corresponding to Proposition 3.2 for mixed Moore

graphs.

Proposition 3.4. There is a (1, 1, 2)-mixed Moore graph which is unique up to

isomorphism.
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u1

u2u3

v1

v2v3

Proof. Assume that G is a (1, 1, 2)-mixed Moore graph. From Lemma 3.3 we may let

U = {u1, u2, u3} be a directed 3-cycle in G such that u1 → u2 → u3 → u1. As each

vertex in G has both a directed and an undirected neighbour we must have that each

ui has another undirected neighbour. Further, by considering the girth of G we see

that this neighbour cannot be in U , and that the undirected neighbours of each ui

must be distinct. Hence, let vi be the undirected neighbours of each ui. Now, as G is

diameter 2 we must have that d(u1, v3) ≤ 2. As we have already accounted for the

neighbours of u1 we have that d(u1, v3) = 2. Further, we see this is only possible if

v1 → v3. By symmetry we now deduce that v1 → v3 → v2 → v1. This determines the

graph G uniquely up to isomorphism.

Altogether we see that the proof of the uniqueness of the (3, 2)-Moore graph and that

of the (1, 1, 2)-mixed Moore graph follow very closely, showing a similar structure of

both graphs in which the 5 and 3-cycles labelled as U and V play corresponding roles.

Later we shall see that this similarity is not isolated to this case.

3.3 The Hoffman-Singleton Graph

In this section we shall present a proof of the uniqueness up to isomorphism of the

(7, 2)-Moore graph, commonly known as the Hoffman-Singleton graph. In this case

the Moore bound is 50. The proof we provide is an elementary combinatoric

derivation. Another such derivation distinct to the one we present may be found in

[32]. We shall also be able to count and characterise the automorphisms of the

Hoffman-Singleton graph in a natural way following on from our derivation. In this

section we assume that G is a (7, 2)-Moore graph. Noting the result of Azarija and

Klavžar that Moore graphs are extremal graphs containing a maximum number of

convex cycles [2], we consider the Hoffman-Singleton graph in terms of the number of

convex 5-cycles it contains.
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3.3 The Hoffman-Singleton Graph 23

Lemma 3.5. The graph G contains 1,260 5-cycles.

Proof. As G is 7 regular and the Moore bound tells us |V(G)| = 50 we know that

|E(G)| = 7× 50/2 = 175. Consider a breadth first search tree T rooted at an

arbitrary vertex v ∈ V(G). As there are 7 vertices in the 1st layer of T and 6× 7 = 42

vertices in the second layer of T there are 49 edges in T , so there are 175− 49 = 126

edges in E(G) \ E(T ). Now consider an edge u ∼ u′ in E(G) \ E(T ). We must have

d(v, u) = d(v, u′) = 2 otherwise there would be a 3 or 4-cycle in G. Therefore there is

a 5-cycle containing v and u ∼ u′. We also have that any 5-cycle through v must

contain an edge in E(G) \ E(T ). Hence there is a bijection between 5-cycles through v

and edges in E(G) \ E(T ), giving that there are 126 5-cycles through v. As v was an

arbitrary vertex, we may count all 5-cycles of G as 50× 126/5 = 1, 260.

Lemma 3.6. If A,B ⊆ V(G) with the following properties then the subgraphs of G

induced by the vertices of A and B are composed of 5 disjoint 5-cycles.

Property (i) |A| = |B| = 25;

Property (ii) A ∩B = ∅;

Property (iii) A and B are 2-regular.

1 edge in EA

2 edges in EA

3+ edges in EA

Proof. Let GA and GB be the subgraphs of G induced by the vertices of A and B

respectively. Let EA = E(GA), EB = E(GB) and EC = E(G) \ (EA ∪ EB). We now

count the 5-cycles in G depending on how their edges are distributed between EA, EB

and EC . First, there are no 5-cycles whose edges are entirely in EC , as any cycle of

edges from EC has its vertices alternating between A and B and therefore is even

length.
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24 3 Moore Graphs

Now we count 5-cycles with exactly one edge, say u ∼ v, in EA. Suppose that u′ ∼ u
and v′ ∼ v with u′ and v′ in B. As G is diameter 2, we must have d(u′, v′) ≤ 2, and so

d(u′, v′) = 2 as otherwise we would have a 4-cycle. Therefore, for any edge u ∼ v in

EA there are 5 choices of u′ and 5 choices of v′ hence 25 5-cycles containing u ∼ v. As

u ∼ v was an arbitrary edge of EA and there are 25 edges in EA there are

25× 25 = 625 5-cycles with exactly one edge in EA. By symmetry, there are 625

5-cycles with exactly one edge in EB.

Now we consider 5-cycles with exactly 2 edges in EA. First, by considering whether

vertices of the cycle are in A or B, we notice that these edges must be consecutive,

and that there must be 2 edges in EC and the last edge in EB. Therefore this 5-cycle

has exactly one edge in EB and we have already accounted for it in our counting.

Now we consider any 5-cycle with 3 or more edges in EA. First, we notice that as GA

is 2-regular it must be made up of disjoint cycles. Consider any n-cycle in GA. We

have two cases.

Case (i) For any 5-cycle in GA, there is 1 5-cycle with 3 or more edges in EA

namely this 5-cycle itself.

Case (ii) For any n-cycle in GA where n > 5, consider any 3 consecutive edges in

this n-cycle, say u0 ∼ u1 ∼ u2 ∼ u3. We must have that d(u0, u3) = 2, and

so there is some v ∈ V(G) such that u0 ∼ v ∼ u3. Therefore

u0 ∼ u1 ∼ u2 ∼ u3 is in a 5-cycle. Further, we must have that v ∈ B
otherwise u0 ∼ u1 ∼ u2 ∼ u3 would be in a 5-cycle in GA. Hence for each 3

consecutive edges in the n-cycle there is a 5-cycle in G, which shows an

n-cycle in GA implies n 5-cycles in G.

If GA is made of 5 disjoint 5-cycles then there are 5 5-cycles with 3 or more edges in

EA. Otherwise, there is at least one n-cycle in GA where n > 5, and there are more

than 5 5-cycles in G with 3 or more edges in EA.

Finally, we have accounted for 1,250 5-cycles in G with less than 3 edges in EA and

less than 3 edges in EB. From Lemma 3.5 there are 10 more 5-cycles with 3 or more

edges in EA or 3 or more edges in EB. If either GA or GB is not made of 5 disjoint

5-cycles then there must be more than 10 such 5-cycles. Hence, we must have that

GA and GB are both comprised of 5 disjoint 5-cycles.

Lemma 3.7. There exist sets of vertices A,B ⊆ V(G) such that |A| = |B| = 25,

A ∩B = ∅ and the subgraphs of G induced by the sets A and B are both comprised of
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3.3 The Hoffman-Singleton Graph 25

5 disjoint 5-cycles. Further, it is possible to choose an arbitrary 5-cycle U of G and

then choose sets A,B ⊆ V(G) with the previous properties such that U appears in A.

u0

V0

W

u2
V2

u4

V4

u1

V1

u3
V3

Proof. Let U = {u1, u2, u3, u4, u5} be an arbitrary 5-cycle of G such that ui ∼ ui+1

(with u5 ∼ u1). As each vertex of G is degree 7 there are 5 unaccounted for

neighbours of each ui, say Vi. By the restrictions on the girth of G we have that

Vi ∩ U = ∅. We also have that Vi ∩ Vj = ∅ for all i 6= j by restrictions on girth.

Therefore we have that |Vi| = 5. From the diameter of G, we know that d(u1, v) ≤ 2

for all v ∈ V3. As we have already accounted for all neighbours of u1, u2 and u5 we see

this can only be possible if there is some w ∈ V1 with w ∼ v. By making the same

consideration for each v ∈ V3, and noting that we cannot have some w ∈ V1 and

v, v′ ∈ V3 with w ∼ v, w ∼ v′ and v 6= v′ by girth, we see that for each v ∈ V3 there is a

unique w ∈ V1 such that v ∼ w. Letting V =
⋃
Vi we see that there can be no further

v, v′ ∈ V such that v ∼ v′ other than those we have already derived, so the subgraph

of G induced by vertices in V is regular of degree 2, and contains |V | =
∑
|Vi| = 25

vertices. Now let W = E(G) \ (U ∪ V ). For any w ∈W we know that d(w, ui) ≤ 2 by

diameter, and so there must be some v ∈ Vi such that w ∼ v. By girth we know that

there is at most one v ∈ Vi such that w ∼ v for each i. Therefore w has 5 neighbours

in V . As each vertex of G is degree 7, we know that each vertex w ∈W has two

further neighbours in W . Altogether we see the subgraph of G induced by the vertices

of W is regular of degree 2 and contains 20 vertices. Hence, letting A = U ∪W and

B = V we have found two sets such that the subgraphs of G induced by A and B are

regular of degree 2; A and B are disjoint; |A| = |B| = 25; and A contains an

arbitrarily chosen 5-cycle of G. We now apply Lemma 3.6 and we are done.

We have now derived the key fact that a (7, 2)-Moore graph must be divided into two

even partitions of disjoint 5-cycles. This structure is particularly familiar from the

simple pentagons and pentagrams construction of the Hoffman-Singleton graph due to

Robertson. In light of this lemma, we now adopt the following notation for vertices in
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26 3 Moore Graphs

our graph. We will let A and B be sets of 5 disjoint 5-cycles, with each 5-cycle being

labelled Ai and Bi, and each vertex shall be labelled either ai,j or bi,j such that

ai,j ∈ Ai, bi,j ∈ Bi, ai,j ∼ ai,j±1 and bi,j ∼ bi,j±2 as in the following diagram.

B1

1

4

25

3

A1

1

5

4 3

2

B2

1

4

25

3

A2

1

5

4 3

2

B3

1

4

25

3

A3

1

5

4 3

2

B4

1

4

25

3

A4

1

5

4 3

2

B5

1

4

25

3

A5

1

5

4 3

2

Lemma 3.8. For all 1 ≤ i, j ≤ 5, the subgraph of G induced by the vertices of Ai and

Bj is isomorphic to the Petersen graph.

Proof. Without loss of generality consider i = j = 1, and let A1 = {a1, a2, a3, a4, a5}
such that ai ∼ ai+1 and B1 = {b1, b2, b3, b4, b5} such that bi ∼ bi+2. We first show that

there must be some a ∈ A1 and b ∈ B1 such that a ∼ b. From the fact Diam(G) = 2,

for any a ∈ A1 and b ∈ B1 we must have d(a, b) ≤ 2. If d(a, b) = 1 then we are done,

hence assume that d(a, b) = 2. As d(a, b) = 2 there must be some v ∈ V(G) such that

a ∼ v ∼ b. First suppose that v ∈ A. If this is the case then from a ∼ v we have that

v ∈ A1 and v and b satisfy v ∈ A1, b ∈ B1 and v ∼ b. Otherwise, we must have v ∈ B.

In this case from the fact v ∼ b we have that v ∈ B1, and a and v satisfy a ∈ A1,

v ∈ B1 and a ∼ v.

Now, without loss of generality we may label the vertices of A1 and B1 such that

a1 ∼ b1. We now consider how a1 and b2 are connected. If a1 ∼ b2 then

a1 ∼ b1 ∼ b4 ∼ b2 ∼ a1 is a 4-cycle, contradicting the fact G is girth 5. Hence there is

some vertex v ∈ V(G) such that a1 ∼ v ∼ b2. If v ∈ B1, then we either have v = b4 or

v = b5. If v = b4 then a1 ∼ b4 ∼ b1 ∼ a1 is a 3-cycle, contradicting that the girth of G

is 5, and if v = b5 then a1 ∼ b5 ∼ b3 ∼ b1 ∼ a1 is a 4-cycle, contradicting that the girth

of G is 5. Therefore we must have that v ∈ A1. This gives the possibilities v = a2 or

v = a5. In the case v = a5 we apply the same argument to a1 and b5 and deduce that

a2 ∼ b5. In this case we may relabel B so that a2 ∼ b2 and a5 ∼ b5. Therefore, in all

cases we may choose a labelling of B such that a1 ∼ b1 and a2 ∼ b2. Finally, once this

is done we may deduce that ai ∼ bi for all 1 ≤ i ≤ 5 by following the same logic.

Corollary 3.9. The graph G may have its vertices labelled such that a1,j ∼ bi,j and

ai,j ∼ b1,j for all 1 ≤ i, j ≤ 5.
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3.3 The Hoffman-Singleton Graph 27

Proof. Immediate from the previous lemma.

From here onwards we shall adopt the labelling of Corollary 3.9 for the labelling of

the vertices of A and B.

Lemma 3.10. If ai,j ∼ bi′,j′ then ai,j+k ∼ bi′,j′+k for 1 ≤ k ≤ 4 (with indices

considered to wrap around).

Proof. We first note that for i = 1 or i′ = 1 we are done, so we assume that i, i′ 6= 1.

From Lemma 3.8 we know that the subgraph of G induced by the vertices of Ai and

Bi′ is isomorphic to the Petersen graph. Hence, we must have that there is some j

and j′ such that ai,j ∼ bi′,j′ , and either we have ai,j+k ∼ bi′,j′+k or ai,j+k ∼ bi′,j′−k for

each 1 ≤ k ≤ 4. Clearly, in the first case we are done, so assume ai,j+k ∼ bi′,j′−k.
First, from our labelling we have that a1,m ∼ bi′,m and b1,m ∼ ai,m for each

1 ≤ m ≤ 5. Therefore if there is some n such that ai,n ∼ bi′,n then there is a 4-cycle

a1,n ∼ b1,n ∼ ai,n ∼ bi′,n ∼ a1,n, contradicting that G is girth 5. Now, as ai,j ∼ bi′,j′−k,
we take the solution to j + k ≡ j′ − k (mod 5) for 0 ≤ k ≤ 4, and take

n = j + k = j′ − k. Therefore, we cannot have ai,j+k ∼ bi′,j′−k for 1 ≤ k ≤ 4, from

which the result follows.

Corollary 3.11. For every 1 ≤ i, j ≤ 5 there exists some n such that ai,k ∼ bj,k+n for

each 1 ≤ k ≤ 5.

Proof. The cases i = 1 or j = 1 are immediate, for i, j 6= 1 the result follows from the

previous lemma.

For each 1 ≤ i, j ≤ 5 we shall refer to this n as the offset of Ai and Bj . We now define

the matrix M ∈M5(Z /5Z) such that mi,j is the offset of Ai and Bj . We shall call M

the offset matrix. We note that the matrix M uniquely determines all edges of the

graph G outside of GA and GB. Hence, for any M ∈M5(Z /5Z) we define the graph

GM to be the graph with subgraphs GA and GB as in G, and the edges between

vertices of A and B as implied by the matrix M .

We shall now define an equivalence relationship ≈ on matrices in M5(Z /5Z) which

has the property that if M ≈ N then GM ∼= GN . We define ≈ to be the transitive

closure of the following.

i) M ≈ N for all M,N ∈M5(Z /5Z) such that N can be formed by permuting the

columns of M ;
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ii) M ≈ N for all M,N ∈M5(Z /5Z) such that N can be formed by permuting the

rows of M ;

iii) M ≈ N for all M,N ∈M5(Z /5Z) such that N can be formed by adding some

k ∈ Z /5Z to each entry in the first column of M ;

iv) M ≈ N for all M,N ∈M5(Z /5Z) such that N can be formed by adding some

k ∈ Z /5Z to each entry in the first row of M .

We now show that in each case if two matrices M,N ∈M5(Z /5Z) are related by one

of the above rules then GM ∼= GN .

Lemma 3.12. If M ≈ N then GM ∼= GN .

Proof. Suppose that M and N are related by precisely one of the rules (i), (ii), (iii) or

(iv) defined above, we aim to show that GM ∼= GN .

If M ≈ N are related by rule (i), suppose that π ∈ S5 is the permutation such that

column i of M is equal to column π(i) of N . We now define the function

φ : GM → GN by φ(ai,j) = aπ(i),j and φ(bi,j) = bi,j (abusing our notation of the sets A

and B in graphs GM and GN ). It can be shown that this function is an isomorphism

from GM to GN and therefore GM ∼= GN .

The case where M ≈ N are related by the rule (ii) is symmetric to the case where

M ≈ N are related by rule (i).

If M ≈ N are related by rule (iii), suppose that k ∈ Z /5Z such that ni,0 = mi,0 + k

for each 1 ≤ i ≤ 5. In this case, let φ : GM → GN be defined by φ(ai,j) = ai,j for

2 ≤ i ≤ 5 and 1 ≤ j ≤ 5, φ(bi,j) = bi,j and φ(a1,j) = a1,j+k. It can be shown that this

function is an isomorphism from GM to GN .

The case where M ≈ N are related by rule (iv) is symmetric to the case where

M ≈ N are related by the rule (iii).

Finally, the result follows from the fact that the property of graph isomorphism is

transitive.

We now introduce a technical lemma to help us work with offset matrices and help us

determine the requirements of an offset matrix for a (7, 2)-Moore graph.

Lemma 3.13. If M is an offset matrix such that GM is a Moore graph, then for any

x, y, i, j ∈ Z /5Z such that x 6= y and i 6= j we have mx,i −my,i 6= mx,j −my,j.
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Proof. First we create a matrix N such that N ≈M by performing the following

transformations on M .

i) permute the columns by some permutation π ∈ S5 such that π(i) = 1 and

π(j) = 2;

ii) permute the rows by some π ∈ S5 such that π(x) = 1 and π(y) = 2;

iii) add −mx,i to column 1 and add −mx,j to column 2;

iv) add −(my,i −mx,i) to row 2.

We illustrate the transformation with the following example.

M =



− − − − −
− mx,i − mx,j −
− − − − −
− my,i − my,j −
− − − − −


i−→



− − − − −
mx,i mx,j − − −
− − − − −
my,i my,j − − −
− − − − −



ii−→



mx,i mx,j − − −
my,i my,j − − −
− − − − −
− − − − −
− − − − −


iii−→



0 0 − − −
my,i −mx,i my,j −mx,j − − −

− − − − −
− − − − −
− − − − −



iv−→



0 0 − − −
0 (mx,i −my,i)− (mx,j −my,j) − − −
− − − − −
− − − − −
− − − − −


= N.

Now, if mx,i −my,i = mx,j −my,j then we have

N =



0 0 − − −
0 0 − − −
− − − − −
− − − − −
− − − − −


.

Hence, in GN we have the 4-cycle a1,1 ∼ b2,1 ∼ a2,1 ∼ b1,1 ∼ a1,1. Therefore, if GN is a

Moore graph, we cannot have mx,i −my,i = mx,j −my,j , as that would contradict
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2-geodesity. Finally, as GM ∼= GN it follows that if GM is a Moore graph we do not

have mx,i −my,i = mx,j −my,j .

We will now use our observations to create a standard form for the offset matrix, and

prove that any (7, 2)-Moore graph with offset matrix is isomorphic to a (7, 2)-Moore

graph with an offset matrix in standard form. We define our a standard form as

follows. A matrix M ∈M5(Z /5Z) is said to be in standard form if

M =



0 0 0 0 0

0 1 2 3 4

0 2 − − −
0 3 − − −
0 4 − − −


.

Lemma 3.14. If GM is a (7, 2)-Moore graph with offset matrix M then there exists a

matrix N ∈M5(Z /5Z) such that GM ∼= GN and N is in standard form.

Proof. We apply the following transformations on M to obtain a matrix N such that

GM ∼= GN and N is in standard form. Between each step we rename the resulting

matrix to M .

i) to each column i add −m1,i for 1 ≤ i ≤ 5;

ii) to each row i add −mi,1 for 2 ≤ i ≤ 5;

iii) from Lemma 3.13 we have that each mi,2 is distinct for 1 ≤ i ≤ 5, so we may

rearrange the columns of M by some permutation so that mi,2 are in ascending

order;

iv) finally we apply Lemma 3.13 to the rows instead of the columns as in the

previous step.

The above steps transform M to standard form as illustrated as follows.

M =



a1 a2 a3 a4 a5

− − − − −
− − − − −
− − − − −
− − − − −


i−→



0 0 0 0 0

b1 − − − −
b2 − − − −
b3 − − − −
b4 − − − −


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ii−→



0 0 0 0 0

0 c1 c2 c3 c4

0 − − − −
0 − − − −
0 − − − −


iii−→



0 0 0 0 0

0 1 2 3 4

0 d1 − − −
0 d2 − − −
0 d3 − − −



iv−→



0 0 0 0 0

0 1 2 3 4

0 2 − − −
0 3 − − −
0 4 − − −


= N.

Lemma 3.15. There is only one matrix M ∈M5(Z /5Z) in standard form such that

GM is a (7, 2)-Moore graph.

Proof. Suppose that M ∈M5(Z /5Z) is in standard form and GM is a (7, 2)-Moore

graph. We label the unknown entries of M as follows.

M =



0 0 0 0 0

0 1 2 3 4

0 2 a b c

0 3 d e f

0 4 g h i


.

From Lemma 3.13 we can deduce that b cannot be any of 0, 2, 3 or 4, so we have

b = 1. By symmetry, we also have d = 1. Continuing in this fashion we deduce that

a = 4, c = g = 3, f = h = 2, e = 4 and i = 1. Altogether we have shown that M must

be given by

M =



0 0 0 0 0

0 1 2 3 4

0 2 4 1 3

0 3 1 4 2

0 4 3 2 1


.

We are now in a position to prove our first result concerning (7, 2)-Moore graphs. (We

note that we have not explicitly shown that the graph GN is indeed a (7, 2)-Moore

graph, but as this is a trivial matter of verification we omit these details here).

Proposition 3.16. There is a unique (7, 2)-Moore graph up to isomorphism.
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Proof. From our work we have seen that if G is a (7, 2)-Moore graph then there is an

offset matrix M such that G ∼= GM ; we have seen that if M is the offset matrix of a

(7, 2)-Moore graph then there is an offset matrix N of a (7, 2)-Moore graph such that

GM ∼= GN and N is in standard form; and finally we have seen that if N is the offset

matrix of a (7, 2)-Moore graph in standard form then N is uniquely defined.

From this point forward we shall call the (7, 2)-Moore graph the Hoffman-Singleton

graph, and denote it by G for the rest of this section. We may now further expand on

our work to characterise the automorphisms of G. We shall continue to use our

notation of sets A,B ⊆ V(G), and shall take the edges of G to be those given by the

unique offset matrix in standard form.

Lemma 3.17. For each 5-cycle U = {u1, u2, u3, u4, u5} ⊆ V(G) such that ui ∼ ui+1,

and each vertex v ∈ V(G) such that d(ui, v) = 2 for each ui there is at most one

automorphism φ ∈ Aut(G) such that φ(ui) = a1,i and φ(v) = a2,1.

Proof. Suppose that φ : G→ G is an automorphism such that φ(ui) = a1,i and

φ(v) = a2,1. Considering the paths from a2,1 to a1,i we have a2,1 ∼ bi,i ∼ a1,i, and

considering the paths from v to ui we have that there is a unique wi for each ui such

that v ∼ wi ∼ ui (both by 2-geodesity), so we must have φ(wi) = bi,i for each

1 ≤ i ≤ 5. Let W be the set of vertices in V(G) which are distance 1 from any vertex

in U (and not in U). By the reasoning of Lemma 3.7 we see that W is composed of 5

disjoint 5-cycles, each of which forms a Petersen graph with U . Call these 5-cycles

such that wi ∈Wi, and relabel their vertices as wi,j such that wi,i = wi and

wi,j ∼ wi,j±2. Now, we have that each U and Wi induces a Petersen graph, and we

know that ui ∼ wi,i, so we deduce that wi,j ∼ uj for each 1 ≤ i, j ≤ 5, and hence

φ(bi,j) = wi,j is uniquely defined for each bi,j .

From this we see that we may uniquely deduce the action of φ on all vertices in W

from its action on U and v. By symmetry, we may deduce the action of φ on all

members of V(G) \W from its action on W . Therefore, we deduce the action of φ on

all members of V(G). Hence, there is at most one automorphism φ ∈ Aut(G) such

that φ(ui) = a1,i and φ(v) = a2,1.

Lemma 3.18. For each 5-cycle U = {u1, u2, u3, u4, u5} ⊆ V(G) such that ui ∼ ui+1,

and each vertex v ∈ V(G) such that d(ui, v) = 2 for each ui there is at least one

automorphism φ ∈ Aut(G) such that φ(ui) = a1,i and φ(v) = a2,1.

Proof. In the proof of Lemma 3.7 we may derive sets A and B such that U ⊆ A.

Clearly, we may label the set A such that a1,i = ui. Now we can derive a labelling of
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G with some offset matrix N such that G ∼= GN with ui = a1,i in the new labelling.

We must have that v ∈ A \A1, so v = ax,y for some 2 ≤ x ≤ 5 and 1 ≤ y ≤ 5. Now we

can apply a sequence of transformations to N to obtain a matrix M such that

GN ∼= GM and the isomorphism from GN to GM fixes a1,i and maps ax,y to a2,1.

In our transformation, we note that permuting the rows of N corresponds to

permuting the 5-cycles Ai, so we may permute the rows of N to form N ′ move Ax to

A2 whilst fixing A1. As a result we have G ∼= GN ∼= G′N with an automorphism which

relabels v as a2,y. Now we note that adding k to row i of N ′ corresponds to mapping

ai,j to ai,j+k. Hence we transform N ′ to N ′′ by adding 1− y to the second row of N ′.

This gives an isomorphism from G to GN ′′ where φ(ui) = a1,i and φ(v) = a2,1.

Finally, the matrix N ′′ may be transformed to N ′′′ in standard form by permuting the

columns of N ′′ such that the first two rows of N ′′′ are given as follows

N ′′′ =



0 0 0 0 0

0 1 2 3 4

− − − − −
− − − − −
− − − − −


.

This can be followed by adding constants to and permuting the final three rows of

N ′′′ to get an offset matrix in standard form. Hence, we may deduce an isomorphism

φ from G to GM such that φ(ui) = a1,i and φ(v) = a2,1. As M is in standard form

Lemma 3.15 tells us that there is an automorphism from GN to G in our original

labelling, so there is a φ ∈ Aut(G) such that φ(ui) = a1,i and φ(v) = a2,1.

Altogether, we may now count and characterise the automorphisms of the

Hoffman-Singleton graph. The following results are known, we simply derive them as

natural corollaries of our method of proof.

Proposition 3.19. We have the following facts about the automorphisms of the

Hoffman-Singleton graph.

i) The automorphisms of the Hoffman-Singleton graph are uniquely characterised by

their action on a 5-cycle and a single vertex at distance 2 from all points in the

cycle.

ii) There are 252,000 automorphisms of the Hoffman-Singleton graph.

iii) The Hoffman-Singleton graph is vertex transitive.
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Proof. The characterisation of the automorphisms of the Hoffman-Singleton graph

follows immediately from the combination of Lemma 3.17 and Lemma 3.18. The

vertex transitivity of the Hoffman-Singleton graph follows directly from Lemma 3.18.

Finally, we may now count the automorphisms by counting 5-cycles, which we already

did in Lemma 3.5; noting that for each 5-cycle there are 20 vertices at distance 2 from

all vertices in the cycle; and noting that there are 10 possible labellings of any 5-cycle.

This gives 10× 20× 1, 260 = 252, 000 automorphisms of the Hoffman-Singleton

graph.

This concludes our characterisation of the automorphisms of the Hoffman-Singleton

graph. An alternate geometric characterisation of the automorphisms of the

Hoffman-Singleton graph can be found in the paper [30] of Hafner.

3.4 The Bosák Graph

In this section we aim to derive the uniqueness of the Bosák graph and the properties

of its automorphism group analogously to our derivation of the Hoffman-Singleton

graph and properties of its automorphism group. The Bosák graph is the unique

(3, 1, 2)-mixed Moore graph. In this case the Moore bound tells us the Bosák graph

has 18 vertices. It was shown to exist by Bosák in [7] and the uniqueness of the Bosák

graph was shown by Nguyen, Miller and Gambert in [44].

The first lemmas we have to establish the properties of the Hoffman-Singleton graph

are to show that the Hoffman-Singleton graph must be decomposable into two

partitions of 5 disjoint 5-cycles. In the Bosák graph, the directed 3-cycles of

Lemma 3.3 will play a role analogous to the pentagons and pentagrams of the

Hoffman-Singleton graph. Hence, we first aim to show that we may partition the

directed 3-cycles of the Bosák graph into two sets such that the directed 3-cycles in

each set are disjoint. We make this more formal as follows.

Lemma 3.20. If G is a (3, 1, 2)-mixed Moore graph, then there exist sets

A,B ⊆ V(G) such that the following properties hold.

Property (i) |A| = |B| = 9;

Property (ii) A ∩B = ∅;

Property (iii) the subgraphs of G induced by A and B are composed of 3 disjoint

directed 3-cycles.
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1

23
B1

1

23
A1

1

23
B2

1

23
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1

23
B3

1

23
A3

Proof. As G is a (3, 1, 2)-mixed Moore graph, Lemma 3.3 tells us that G contains 6

directed 3-cycles. Let U = {u1, u2, u3} be one of these 3-cycles such that

u1 → u2 → u3 → u1. As each ui has undirected degree 3, they have 3 more

neighbours each. Let Vi be the set of undirected neighbours of each ui. We must have

that Vi ∩ Vj = ∅ for all i 6= j, otherwise there would be a vertex v such that both

v ∼ ui+1 and v ∼ ui → ui+1 for some i, contradicting 2-geodesity of G. Now, we have

that u1 is distance at most 2 from each vertex in V3, which may only happen if there

is some v′ ∈ V1 such that v′ ∼ v or v′ → v. We cannot have v′ ∼ v as then we would

have v ∼ u3 → u1 and v ∼ v′ ∼ u1, contradicting 2-geodesity. By symmetry we now

have that for each v ∈ Vi+1 there is some v′ ∈ Vi such that v → v′.

Now let V =
⋃
Vi. Clearly the subgraph GV of G induced by the vertices of V

contains 3 directed 3-cycles. Further, if there were an undirected edge in V then we

would contradict 2-geodesity as already shown. Hence V is composed of 3 disjoint

directed 3-cycles.

Finally, let W = V(G) \ (U ∪ V ) be the set of the remaining vertices of G. As the

diameter of G is 2, for any w ∈W we must have that d(w, ui) = 2 for each ui.

Therefore w must have neighbours in each Vi. These must be via undirected edges, as

the directed in and out neighbours of each v ∈ V are accounted for. Hence, all 3 of

the undirected edges of w are adjacent to vertices in V . Letting A = U ∪W we now

see that the subgraph GA of G induced by vertices of A contains no undirected edges.

Further, it must contain 3 disjoint directed 3-cycles.

We finally prove the claim by taking A = U ∪W and B = V .

Now for an arbitrary (3, 1, 2)-mixed Moore graph G with some distinguished directed

3-cycle U = {u1, u2, u3} such that u1 → u2 → u3 → u1, we may find sets with the

properties of sets A and B of the previous lemma and label the vertices of G such

that A is composed of directed 3-cycles A1, A2 and A3, with A1 = U , and B is

composed of directed 3-cycles B1, B2 and B3. We now have the following lemma.
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Lemma 3.21. For all 1 ≤ i, j ≤ 3, the subgraph of G induced by the vertices of Ai

and Bj is isomorphic to the (1, 1, 2)-mixed Moore graph.

Proof. Without loss of generality we take i = j = 1, and let A1 = {a1, a2, a3} such

that a1 → a2 → a3 → a1 and let B1 = {b1, b2, b3} such that b1 ← b2 ← b3 ← b1. First

we aim to show that there is some ai and bj such that ai ∼ bj . As G is diameter 2, we

must have d(ai, bj) ≤ 2 for each ai and bj . If d(ai, bj) = 1 then we are done, hence

assume d(ai, bj) = 2. In this case there is some v ∈ V(G) such that ai, v, bj is a path

in G. If v is in A, then we must have that ai → v and v = ai+1, giving that ai+1 ∼ bj
and we are done. Otherwise v is in B, and we have v → bj and so v = bj−1 and

ai ∼ bj−1 and we are done. Now without loss of generality we may take i = j = 1 and

so in our labelling a1 ∼ b1. Finally, from the fact d(a1, b2) ≤ 2 we deduce that a2 ∼ b2
and from d(b1, a3) ≤ 2 we deduce a3 ∼ b3. Therefore the subgraph of G induced by

the vertices of Ai and Bj is isomorphic to the (1, 1, 2)-mixed Moore graph.

With the vertices of G split into sets A,B ⊆ V(G) with the above properties, we now

choose a labelling of the vertices of the graph G such that the following properties

hold.

i) we label each v ∈ A as ai,j for some 1 ≤ i, j ≤ 3 such that ai,j = ai′,j′ if, and only

if, i = i′ and j = j;

ii) we label each v ∈ B as bi,j for some 1 ≤ i, j ≤ 3 such that bi,j = bi′,j′ if, and only

if, i = i′ and j = j′;

iii) we have ai,1 → ai,2 → ai,3 → ai,1 for each 1 ≤ i ≤ 3;

iv) we have bi,1 ← bi,2 ← bi,3 ← bi,1 for each 1 ≤ i ≤ 3;

v) for each 1 ≤ i, j ≤ 3 we have a1,j ∼ bi,j ;

vi) for each 1 ≤ i, j ≤ 3 we have b1,j ∼ ai,j .

Lemma 3.22. A labelling of the vertices of G with the above properties exists.

Proof. We have already shown the existence of the sets A and B in Lemma 3.20, and

from the fact A and B are both composed of 3 disjoint directed 3-cycles it is trivial

that we can choose a labelling satisfying properties (i), (ii), (iii) and (iv). Now we

define the sets Ai and Bi such that Ai = {ai,1, ai,2, ai,3} and Bi = {bi,1, bi,2, bi,3}. Now

consider an arbitrary labelling of G satisfying properties (i), (ii), (iii) and (iv). From

Lemma 3.21 we see that the subgraph of G induced by A1 and Bi is the
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(1, 1, 2)-Moore graph, and so if we have a1,1 ∼ bi,1+k we have a1,j ∼ bi,j+k. We may

relabel bi,j+k to bi,j , which preserves properties (i), (ii), (iii) and (iv) and now satisfies

property (v). We finally repeat this step considering the subgraphs of G induced by

B1 and each Ai.

We shall now continue this section with G as an arbitrary (3, 1, 2)-mixed Moore graph

labelled as described above.

Lemma 3.23. If ai,j ∼ bi′,j+k for some i, i′, j, k then ai,j′ ∼ bi′,j′+k for all 1 ≤ j′ ≤ 3.

(Here we consider indices to wrap, e.g. 4 wraps to 1, 5 to 2 etc).

Proof. For i = 1 or i′ = 1 we have k = 0 and we are done. Otherwise, by assumption

we have that ai,j ∼ bi′,j+k, and we have that ai,1 → ai,2 → ai,3 → ai,1 and

bi′,1 ← bi′,2 ← bi′,3 ← bi′,1. Further, we have that the subgraph of G induced by the

vertices of Ai and Bi′ is the (1, 1, 2)-mixed Moore graph, from which the claim

immediately follows.

Corollary 3.24. For each 1 ≤ i, j ≤ 3 there exists some unique 0 ≤ n ≤ 2 such that

ai,k ∼ bj,k+n for 1 ≤ k ≤ 3.

As before, for a given pair i, j such that 1 ≤ i, j ≤ 3 we shall call the n of

Corollary 3.24 the offset of Ai and Bj . We shall again define the offset matrix of A

and B as the matrix M ∈M3(Z /3Z) such that mi,j is the offset of Ai and Bj .

Noting that M ∈M3(Z /3Z) uniquely determines all edges of G outside of A and B,

for an arbitrary M ∈M3(Z /3Z) we shall denote by GM the graph whose offset

matrix is M . Note that for arbitrary M it is not necessarily the case that GM is a

(3, 1, 2)-mixed Moore graph.

So far what we have shown is that an arbitrary (3, 1, 2)-mixed Moore graph can have

its vertices labelled such that its offset matrix M is of the form

M =


0 0 0

0 − −
0 − −

 .

As before, we introduce an equivalence relation ≈ on matrices M,N ∈M3(Z /3Z)

which has the property that if M ≈ N then GM ∼= GN . We define ≈ to be the

transitive closure of the following.
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i) M ≈ N for all M,N ∈M3(Z /3Z) such that N can be formed by permuting the

columns of M ;

ii) M ≈ N for all M,N ∈M3(Z /3Z) such that N can be formed by permuting the

rows of M ;

iii) M ≈ N for all M,N ∈M3(Z /3Z) such that N can be formed by adding some

k ∈ Z /3Z to each entry in the first column of M ;

iv) M ≈ N for all M,N ∈M3(Z /3Z) such that N can be formed by adding some

k ∈ Z /3Z to each entry in the first row of M .

Lemma 3.25. If M ≈ N then GM ∼= GN .

Proof. We first consider the case where M,N ∈M3(Z /3Z) are related by one of the

above rules.

If M ≈ N by rule (i), then letting π ∈ S3 be the permutation of columns relating M

to N we have that φ : GM → GN given by φ(ai,j) = aπ(i),j and φ(bi,j) = bi,j is an

isomorphism from GM to GN .

The case M ≈ N by rule (ii) is symmetric to the previous case.

If M ≈ N by rule (iii), then letting k ∈ Z /3Z be the number added to the first

column of M to form N we have that the function φ : GM → GN given by

φ(a1,i) = a1,i+k for 1 ≤ i ≤ 3 and φ(v) = v for all v ∈ V(G) \A1 is an isomorphism

from GM to GN .

The case where M ≈ N by rule (iv) is symmetric to the previous case.

Finally, for M ≈ N as a result of a combination of these rules the fact GM ∼= GN

follows from a trivial induction and the fact that the property of being isomorphic is

transitive.

We again require a technical lemma to help us reduce the search space for potential

offset matrices of (3, 1, 2)-mixed Moore graphs.

Lemma 3.26. If M is an offset matrix such that GM is a (3, 1, 2)-mixed Moore graph

then for any x, y, i, j ∈ Z /3Z such that x 6= y and i 6= j we have

mx,i −my,i 6= mx,j −my,j.

Proof. We first create a matrix N such that M ≈ N by performing the following

transformations on M .
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i permute the columns of M by some permutation π ∈ S3 such that π(x) = 1 and

π(y) = 2;

ii permute the rows of M by some permutation π ∈ S3 such that π(i) = 1 and

π(j) = 2;

iii add −mx,i to column 1 and −mx,j to column 2;

iv add −(my,i −mx,i) to row 2.

We illustrate the transformation with the following example.

M =


− − −
− mx,i mx,j

− my,i my,j

 i−→


− − −
mx,i mx,j −
my,i my,j −

 ii−→


mx,i mx,j −
my,i my,j −
− − −


iii−→


0 0 −

my,i −mx,i my,j −mx,j −
− − −

 iv−→


0 0 −
0 (mx,i −my,i)− (mx,j −my,j) −
− − −

 .

Now, if mx,i −my,i = mx,j −my,j then we have

N =


0 0 −
0 0 −
− − −

 .

Therefore in the graph GN there exists the 4-cycle a1,1 ∼ b2,1 ∼ a2,1 ∼ b1,1 ∼ a1,1,

contradicting 2-geodesity of GN , so we cannot have that mx,i−my,i = mx,j−my,j .

We are now in a position to prove our first important result about (3, 1, 2)-mixed

Moore graphs.

Proposition 3.27. There is a unique (3, 1, 2)-mixed Moore graph up to isomorphism.

Proof. Let G be a (3, 1, 2)-mixed Moore graph. From Lemma 3.22 we may label the

vertices of G such that G is described by an offset matrix M ∈M3(Z /3Z) of the form,

M =


0 0 0

0 a b

0 c d

 ,

for some a, b, c, d ∈ Z /3Z. Applying Lemma 3.26 we have that a, b 6= 0 and a 6= b. As

a, b ∈ Z /3Z this gives us the possibilities a = 1 and b = 2 or b = 1 and a = 2. If a = 1
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and b = 2 then by Lemma 3.26 we have that c = 2 and d = 1. Otherwise, if a = 2 and

b = 1 then by Lemma 3.26 we have that c = 1 and d = 2. Hence we have that G is

isomorphic to either GN or GN ′ where N and N ′ are given by

N =


0 0 0

0 1 2

0 2 1

 and N ′ =


0 0 0

0 2 1

0 1 2

 .

Finally, we note that N ≈ N ′ by permutation of columns, and so GN ∼= GN ′ by

Lemma 3.25. Hence we have G ∼= GN for any (3, 1, 2)-mixed Moore graph G.

We have now replicated the proof of Proposition 3.16 for the case of the Bosák graph.

Our proofs have closely matched one another, showing the fundamental similarities

between these two cases. Further, as before, we can now go on to derive properties of

the automorphism group of the Bosák graph in the same manner as for the

Hoffman-Singleton graph.

For the rest of this section we shall refer to the unique (3, 1, 2)-mixed Moore graph as

the Bosák graph and denote it by G.

Lemma 3.28. For each directed 3-cycle U = {u1, u2, u3} ⊆ V(G) such that

u1 → u2 → u3 → u1, and each vertex v ∈ V(G) such that d(v, ui) = 2 for each ui,

there is at most one automorphism φ ∈ Aut(G) such that φ(ui) = a1,i and φ(v) = a2,1.

Proof. Suppose that φ ∈ Aut(G) is an automorphism with these properties.

Considering the paths from v to each ui, as d(v, ui) = 2 there is a uniquely defined

wi ∈ V(G) such that v, wi, ui is a path. As φ(v) = a2,1 and φ(ui) = a1,i, we know that

the unique paths of length 2 from a2,1 to each a1,i go via bi,i. Hence, we must have

that φ(wi) = bi,i for each 1 ≤ i ≤ 3. Now, as each bi,i has unique directed in and out

neighbours, namely bi,i+1 and bi,i−1 respectively, we must have that the directed in

and out neighbours of each wi map to bi,i+1 and bi,i−1 respectively. Therefore, from

the information that φ(ui) = a1,i and φ(v) = a2,1 we have determined the pre-image

of φ of each vertex in B. By symmetry, we now may determine the pre-image of φ of

each vertex in A. Altogether we see that φ is uniquely determined.

Lemma 3.29. For each directed 3-cycle U = {u1, u2, u3} ⊆ V(G) such that

u1 → u2 → u3 → u1, and each vertex v ∈ V(G) such that d(v, ui) = 2 for each ui,

there is at least one automorphism φ ∈ Aut(G) such that φ(ui) = a1,i and φ(v) = a2,1.

Proof. We consider finding a relabelling of V(G) into sets A,B with the usual

properties such that ui = a1,i and v = a2,1. Clearly that is equivalent to finding the

James Fraser



3.4 The Bosák Graph 41

desired automorphism. First, from the derivation of Lemma 3.20 it is clear that for an

arbitrary directed 3-cycle U ⊆ V(G) we can find sets A,B ⊆ V(G) such that A and B

have the desired properties and U ⊆ A. Now, we may label the vertices in A as ai,j

and the vertices in B as bi,j such that we have properties (i), (ii, (iii) and (iv) in our

labelling. In addition, we may choose to do this in such a way that ui = a1,i and

v = a2,1. This now gives some labelling of G which implies some offset matrix

M ∈M3(Z /3Z) and an isomorphism φ : G→ GM such that φ(ui) = a1,i and

φ(v) = a2,1.

We now aim to find a matrix N such that M ≈ N so that we have an isomorphism

ψ : GM → GN in which ψ(a1,i) = a1,i and ψ(a2,1) = a2,1 and N is given by

N =


0 0 0

0 1 2

0 2 1

 .

Hence, we apply the following transformations to GM .

i) add constants to each row of M so that the first entry of each row is 0;

ii) permute the rows of M ′ such that the second entry of each row is in ascending

order;

iii) add a constant to the third column of M ′′ such that the first entry of the third

column is 0.

We illustrate these transformations as follows.

M =


c1 − −
c2 − −
c3 − −

 i−→


0 d1 −
0 d2 −
0 d3 −

 ii−→


0 0 e

0 1 −
0 2 −

 iii−→


0 0 0

0 1 f1

0 2 f2

 .

We note that d1, d2 and d3 are guaranteed to be distinct by Lemma 3.26. We also

note as we didn’t either permute the columns of M nor add any constants to the first

two columns the implied isomorphism ψ : GM → GN has the property ψ(a1,i) = a1,i

and ψ(a2,1) = a2,1. Finally, from Lemma 3.26 we see that f1 = 2 and f2 = 1, and that

GN is the standard labelling of the Bosák graph. Hence, we have found an

automorphism θ = φ ◦ ψ such that θ(ui) = a1,i and θ(v) = a2,1 for an arbitrary

directed 3-cycle U and vertex v at distance 2 from U in the Bosák graph.

We are now in a position to give our final result concerning the automorphisms of the

Bosák graph.
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Proposition 3.30. We have the following facts about the automorphisms of the

Bosák graph.

i) The automorphisms of the Bosák graph are uniquely characterised by their action

on a directed 3-cycle and a single vertex at distance 2 from all points in the cycle.

ii) There are 108 automorphisms of the Bosák graph.

iii) The Bosák graph is vertex transitive.

Proof. The characterisation of the automorphism group of the Bosák graph follows

immediately from Lemma 3.28 and Lemma 3.29. The fact that the Bosák graph is

vertex transitive follows from the fact every vertex is in a directed 3-cycle and

Lemma 3.29. Finally, we count the automorphism by noting there are 6 directed

3-cycles in the Bosák graph, each of which can be chosen in one of 3 orientations to

be our choice of directed 3-cycle U , and that there are then 6 possible choices of the

vertex v at distance 2 from all vertices in U . This gives 6× 3× 6 = 108

automorphisms of the Bosák graph.

3.5 Other Possible Cases

Following from what we have seen it is natural to ask if the construction we have used

for the Hoffman-Singleton graph and the Bosák graph can be generalised to other new

cases. In this section we generalise the structure from the previous sections and show

that the Petersen graph, Hoffman-Singleton graph, (1, 1, 2)-mixed Moore graph and

Bosák graph are the only graphs which have this particular structure.

First we note that in the case of the Hoffman-Singleton graph and the Bosák graph

we split the graphs into bipartitions of 5-cycles and directed 3-cycles respectively. In

particular, we have found some bipartition of the vertices into sets A and B such that

the subgraphs induced by the vertices of A and B are composed of multiple copies of

either the 5-cycle or the directed 3-cycle. Then, all subsequent edges of the graph are

undirected and connect vertices from A to vertices in B.

We shall generalise this idea in the following way. In both cases we notice that the

5-cycle and directed 3-cycle are mixed Moore graphs. Hence, we shall consider any

mixed Moore graph G and two sets of vertices A,B ⊆ V(G) such that the following

properties hold.

i) A ∩B = ∅;
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ii) A ∪B = V(G);

iii) there is some mixed Moore graph H and some number n such that the subgraphs

of G induced by A and B are isomorphic to n disjoint copies of H.

We note that we allow the special case n = 1, so that the Petersen graph and the

(1, 1, 2)-mixed Moore graph also fit this generalisation. We now aim to show that the

only mixed Moore graphs for which sets A and B exist with the above properties are

the Petersen graph, Hoffman-Singleton graph, (1, 1, 3)-mixed Moore graph and Bosák

graph.

For the rest of this section, let G and H be mixed Moore graphs and A,B ⊆ V(G)

with the above properties. Further, let A = A1 ∪A2 ∪ · · · ∪An and

B = B1 ∪B2 ∪ · · · ∪Bn where Ai ∩Aj = Bi ∩Bj = ∅ for all i 6= j and the subgraph of

G induced by each Ai or Bi is isomorphic to H.

Lemma 3.31. The subgraph Gi,j of G induced by the vertices Ai ∪Bj for any

1 ≤ i, j ≤ n is a mixed Moore graph.

Proof. By assumption we already have that the subgraphs of G induced by Ai and Bj

are mixed Moore graphs. Hence, in the subgraph of G induced by Ai ∪Bj we need

only consider how long paths are which connected vertices from Ai to Bj and vice

versa. Let u ∈ Ai and v ∈ Bj , as G is an (r, z, 2)-mixed Moore graph we have that

d(u, v) ≤ 2. We consider the following cases. First, if d(u, v) = 1 then we have that

u ∼ v and so d(u, v) = 1 in Gi,j . Otherwise, we have d(u, v) = 2, and there is some

vertex w ∈ V(G) such that u ∼ w ∼ v. If w ∈ A, then we must have w ∈ Ai as u ∼ w
and u ∈ Ai, so the path u ∼ w ∼ v is in Gi,j and we have d(u, v) = 2 in Gi,j .

Otherwise, we must have w ∈ B, and so w ∈ Bj as w ∼ v, again giving that the path

u ∼ w ∼ v is in Gi,j and that d(u, v) = 2 in Gi,j .

Hence we have shown that the graph Gi,j is diameter 2. Finally, it follows that Gi,j is

2-geodetic as Gi,j is the subgraph of an (r, z, 2)-mixed Moore graph. The combination

of being diameter 2 and 2-geodetic means that Gi,j is a mixed Moore graph.

We now let K be the subgraph of G induced by A1 and B1.

Lemma 3.32. If H is an (r, z, 2)-mixed Moore graph, then K is an (r+ 1, z, 2)-mixed

Moore graph.

Proof. As K is a mixed Moore graph we have that K is totally regular. Hence we may

define r′ and z′ such that K is an (r′, z′, 2)-mixed Moore graph. Further, we have that
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there are sets A,B ⊆ V(K) such that the subgraphs of K induced by A and B are

isomorphic to H and A and B are disjoint. For an arbitrary vertex u ∈ V(G) we have

that if u ∈ A then u has r undirected neighbours in A and z directed neighbours in A,

the case for B being symmetric. This shows that r′ ≥ r and z′ ≥ z. Further, we must

have that, for an arbitrary vertex u ∈ A, u has r′ − r undirected neighbours in B and

z′− z directed neighbours in B (with the case for A and B being reversed symmetric).

Now, assume that z′ > z. We pick an arbitrary vertex u ∈ A, as z′ > z we have that u

has at least one directed neighbour v in B, and again as z′ > z we have that v has at

least one directed neighbour w in A. Hence, as K restricted to A is a mixed Moore

graph there is a path of length at most 2 from u to w via vertices in A, but we also

have the path u→ v → w, so K cannot be 2-geodetic, contradicting that K is a

mixed Moore graph. Therefore we cannot have z′ > z and so z′ = z.

Given that z′ = z we clearly must have r′ > r otherwise K is not connected. Hence

assume that r′ ≥ r + 2. If this is the case, then again for some vertex u ∈ A we have

that u has some undirected neighbour v ∈ B, and that v has some directed neighbour

w ∈ A such that w 6= u. Now, we have that u and w are connected by a path of

length at most 2 via vertices only in A, as K restricted to A is a mixed Moore graph.

However, we also have that u ∼ v ∼ w is a different path of length at most 2 from u

to w in K, contradicting that K is 2-geodetic. Therefore, we cannot have r′ ≥ r + 2,

and as r′ > r we must therefore have r′ = r + 1.

We now find restrictions on the parameters r and z of the mixed Moore graph H.

Lemma 3.33. With the given above definitions, we must have r + z = (r + z)2 − r.

Proof. Let K,A,B be defined as above. We consider the paths from vertices in A to

vertices in B. We have that each u ∈ A has one neighbour v in B and (r + z)

neighbours vi in A; the vertex v has (r + z) neighbours wi in B; and the vertices vi

have one neighbour xi each in B. These are all the possible paths of length at most 2

to the vertices of B from the vertex u, and as K is an (r + 1, z, 2)-mixed Moore graph

these must be all of the vertices in B. Hence B = {v} ∪ {wi} ∪ {xi}, giving that

|B| = 1 + (r + z) + (r + z). Alternately, we may count the vertices of B from the fact

the subgraph of K induced by B is isomorphic to H, an (r, z, 2)-mixed Moore graph,

and so has 1 + (r + z) + r(r − 1 + z) + z(r + z) vertices. Therefore we have

1 + 2(r + z) = 1 + (r + z) + (r + z)2 − r, giving the claim.

Corollary 3.34. Either r = 2 and z = 0 or r = 0 and z = 1.
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Proof. From the equation (r+ z) = (r+ z)2 − r we have that −r ≡ 0 (mod r+ z). As

r, z ≥ 0 we therefore either have r = 0 or z = 0. If r = 0 then the equation becomes

z = z2, i.e. z(z − 1) = 0 which has solutions z = 0 or z = 1, giving the solution r = 0

and z = 1. Otherwise, if z = 0 then the equation becomes r = r2 − r, i.e. r(r − 2) = 0

which has solutions r = 0 and r = 2, giving the solution r = 2 and z = 0.

We are now in a position to give our first important result.

Proposition 3.35. With the above definitions, we either have H is a 5-cycle or H is

a directed 3-cycle.

Proof. The graph H is an (r, z, 2)-mixed Moore graph. From the above work this

gives two possibilities. First, for r = 2 and z = 0 we have that H is a (2, 0, 2)-mixed

Moore graph, which is a 5-cycle. Second, for r = 0 and z = 1 we have that H is a

(0, 1, 2)-mixed Moore graph, which is a directed 3-cycle.

We have now put in the work to show that the only possibilities for the subgraph H

of G is the 5-cycle or the directed 3-cycle. Now we shall conclude by showing that the

only graphs built from bipartitions of said subgraphs are those listed above.

In the following, let G be an (r′, z, 2)-mixed Moore graph with bipartitions

A = A1 ∪A2 ∪ · · · ∪An and B = B1 ∪B2 ∪ · · · ∪Bn as before where each subgraph

induced by Ai or Bi is isomorphic to an (r, z, 2)-mixed Moore graph H.

Lemma 3.36. With the above definitions, r′ = r + n.

Proof. As we have shown, the subgraphs of G induced by any Ai and Bj are

(r + 1, z, 2)-mixed Moore graphs, hence for an arbitrary u ∈ A1 we see that u has

exactly one undirected neighbour in each Bi, and by assumption we know all of the

neighbours of u in A are in A1, so u has r + n undirected neighbours and z directed

neighbours. The result follows immediately as G is a mixed Moore graph and,

therefore, totally regular.

Lemma 3.37. Either n = 1 or n = |V(H)|.

Proof. We must have n ≥ 1. The cases of the Petersen graph and (1, 1, 2)-mixed

Moore graph show that we may have n = 1, so we now consider the case n > 1. In

this case, consider a vertex u ∈ A1. We must have that u is distance at most 2 from

all the vertices in A \A1, and we clearly have |A \A1| = (n− 1)|V(H)|. For any

v ∈ A \A1 we know that u and v are not adjacent by assumption, so we must have
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d(u, v) = 2 and there is some w ∈ B such that u ∼ w ∼ v. Conversely, we know that u

has n neighbours wi ∈ B, and each wi has 1 neighbour in A1, which is u, and n− 1

neighbours in A \A1, say vi,j . By 2-geodesity we must have

{vi,j |1 ≤ i ≤ n, 1 ≤ j < n} ⊆ A \A1, so we have |A \A1| ≥ n(n− 1). Further, these

are all possible paths from A1 to A \A1, so we must have |A \A1| = n(n− 1). Hence

we have n(n− 1) = (n− 1)|V(H)|, from which the result immediately follows.

Proposition 3.38. The only mixed Moore graphs of diameter 2 which can be split

into bipartitions of disjoint pairwise isomorphic mixed Moore graphs of diameter 2 are

i) the Petersen graph;

ii) the Hoffman-Singleton graph;

iii) the unique (1, 1, 2)-mixed Moore graph;

iv) the Bosák graph.

Proof. From Proposition 3.35 we need only consider the case of H as a 5-cycle or a

directed 3-cycle, and from Lemma 3.37 we need only consider the cases n = 1 or

n = |V(H)|. This gives us the following four cases.

i) For H is a 5-cycle and n = 1 we have that G is the Petersen graph.

ii) For H is a 5-cycle and n = |V(H)| = 5 we have that G is the Hoffman-Singleton

graph.

iii) For H is a directed 3-cycle and n = 1 we have that G is the unique (1, 1, 2)-mixed

Moore graph.

iv) For H is a directed 3-cycle and n = 3 we have that G is the Bosák graph.

3.6 Conclusion

Altogether in this section we have derived the Hoffman-Singleton and Bosák graphs

from first principles, showing their shared structure and deriving their shared

property of vertex-transitivity. We have also shown that these are the only two mixed

Moore graphs for any parameters that have this shared structure.

We now note that a standard algebraic argument shows that the only possible

parameters for which there can exist an (r, 0, 2)-mixed Moore graph are r = 2, 3, 7 or
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57, with r = 2 corresponding to the 5-cycle, r = 3 corresponding to the Petersen

graph, r = 7 corresponding to the Hoffman-Singleton graph and r = 57 corresponding

to the unknown case of a possible (57, 2)-Moore graph. Similarly, an analogous

algebraic argument shows that the only possible parameters for which there can exist

an (r, 1, 2)-mixed Moore graph are r = 0, 1, 3 or 21, with r = 0 corresponding to the

directed 3-cycle, r = 1 corresponding to the unique (1, 1, 2)-mixed Moore graph, r = 3

corresponding to the Bosák graph, and r = 21 corresponding to the unknown case of

a possible (21, 1, 2)-mixed Moore graph.

Hence, we may conclude a similarity between the famous unknown case of a possible

(57, 2)-Moore graph and that of a potential (21, 1, 2)-mixed Moore graph. In

particular, the case of a possible (21, 1, 2)-mixed Moore graph represents a smaller

graph, and so it is likely a more approachable problem, suggesting that progress

towards resolving the problem of whether a (21, 1, 2)-mixed Moore graph exists is

both more approachable than a (57, 2)-Moore graph and could provide insight into

how to approach the latter case.

In addition to this similarity, we may also consider the implications of our

observations to other mixed Moore graphs. The other known non-trivial mixed Moore

graphs are the Kautz digraphs Ka(n, 2) for n ≥ 2 and the mixed Moore graphs of

Jørgensen presented in [35]. From the work we have done in this section we see that

to understand their structure as being derived from smaller mixed Moore graphs ideas

of a different nature are required.
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Chapter 4

Word Graphs

4.1 Introduction

Before we begin our own work on word graphs, we begin by giving motivating

examples of word graphs. These examples are the Faber-Moore-Chen and Gómez

graphs. We will then provide a natural generalisation of these two families of graphs

which we call word graphs. We then derive results about word graphs and apply them

to the case of Gómez graphs. We first show that the Gómez graphs are the largest

graphs for given degree and diameter within our generalisation, and we subsequently

show that Gómez graphs are not Cayley graphs in general, a previously unknown

result about Gómez graphs.

4.2 Faber-Moore-Chen Digraphs

The Faber-Moore-Chen digraphs were introduced by Faber, Moore and Chen in

[24, 25] and further studied by Comellas and Fiol in [12]. We define them as follows.

Let X be a set of n = d− k distinct symbols. The Faber-Moore-Chen graph

FMC(d, k) has the vertex set

V(FMC(d, k)) = {x1x2 . . . xk|xi ∈ X,xi 6= xj}. (4.1)

i.e. the vertices of the Faber-Moore-Chen digraphs are tuples or words of length k

made up from distinct elements of the set X. An arbitrary vertex x1x2 . . . xk of a

Faber-Moore-Chen digraph has the following adjacencies:

i) x1x2 . . . xk → x2x3 . . . xky for each y ∈ X \ {x1, x2, . . . , xk}.

ii) x1x2 . . . xk → x2x3 . . . xix1xi+1 . . . xk for each 1 < i ≤ k.

i.e. either we can introduce a new letter not present in the word at the end, or we can

cycle a prefix of the word of any length (hence the Faber-Moore-Chen digraphs are

also known as cycle prefix digraphs).

The Faber-Moore-Chen digraphs are interesting because they are asymptotically close
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to the Moore bound. To show this, we must count the vertices of FMC(d, k) and show

that the diameter of FMC(d, k) is at most k.

Proposition 4.1. The graph FMC(d, k) has n!/(n− k)! ∼ dk vertices for fixed k and

d→∞.

Proof. Each vertex is an ordered set of k distinct symbols from a set of n possible

symbols. Therefore we have |V(FMC(d, k))| =
(
n
k

)
k! = n!/(n− k)!. As n = (d− k) we

have |V(FMC(d, k))| = (d− k)!/(d− 2k)! = (d− k)(d− k− 1) . . . (d− 2k+ 1) ∼ dk.

Proposition 4.2. The graph G = FMC(d, k) has diameter at most k.

Proof. We show this result by constructing a path of length k from an arbitrary start

vertex x = x1x2 . . . xk to an arbitrary destination vertex y = y1y2 . . . yk. We relabel

the elements of the alphabet X to be the set {1, 2, . . . , n} in any way such that

y = 1 2 . . . k. We now construct a path z0 = x→ z1 → · · · → zk = y from x to y as

follows. The path we construct shall have two properties maintained at each step:

Property i) the last i letters of each zi shall be from the set {1, 2, . . . , k} and sorted

in ascending order;

Property ii) at each step zi there is no α ∈ {1, 2, . . . , k} such that α 6∈ zi and

α < zik−j for any 0 ≤ j < i (i.e. there is no α smaller than any elements

in the sorted part of zi which is not in zi).

This is trivially guaranteed to be true at z0, and if it is true at zk then zk = y. In

order to move from zi to zi+1 we choose a rule as follows:

Rule i) if there is some α ∈ {1, 2, . . . , k} such that α 6∈ zi and α < zi0, then we move

from zi to zi+1 using the rule zi0z
i
1 . . . z

i
k → zi1z

i
2 . . . z

i
kα,

Rule ii) otherwise we choose the rule that moves zi0 into its correct sorted position

in the sorted part of zi+1.

It is trivial that rule (ii) maintains property (i), and from property (ii) we also clearly

see that rule (i) also maintains property (i). In the case of applying rule (ii) we see

that as zi0 < α for all α ∈ {1, 2, . . . , k} and α 6∈ zi we maintain property (ii). Finally,

in the case of applying rule (i) we see that property (ii) must be maintained as we

choose the smallest possible α. Therefore at each stage we maintain both properties

and from the definition of our rules we see we may always apply either rule (i) or

rule (ii), and so our path from x to y is a well defined path of length k.
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4.3 Gómez Digraphs

The Gómez digraphs were introduced by Gómez in [29]. Similarly to the

Faber-Moore-Chen digraphs we define them here as follows.

Let X be a set of n = d− bk/2c distinct symbols. The Gómez graph GG(d, k) has the

vertex set

V(GG(d, k)) = {x1x2 . . . xk|xi ∈ X,xi 6= xj}. (4.2)

The adjacencies of the Gómez graphs are given as follows:

i) x1x2 . . . xk → x2x3 . . . xky for each y ∈ X \ {x1, x2, . . . , xk}.

ii) x1x2 . . . xk → x2x3 . . . xix1xi+2xi+3 . . . xkxi+1 for each 1 ≤ i ≤ k/2.

That is, the adjacencies of a word either introduce a new symbol at the end of the

word or split the word into two sub words and cycle both subwords. For example, if

we take X = {x1, x2, x3, x4, x5, x6, x7} then the vertex x1x2x3x4x5 has the following

neighbours in GG(4, 5)

i) x1x2x3x4x5 → x2x3x4x5x6;

ii) x1x2x3x4x5 → x2x3x4x5x7;

iii) x1x2x3x4x5 → x1x3x4x5x2;

iv) x1x2x3x4x5 → x2x1x4x5x3.

Again, we show that the Gómez graphs are asymptotically close to the Moore bound

analogously to how we did for the Faber-Moore-Chen graphs.

Proposition 4.3. The graph GG(d, k) has n!/(n− k) ∼ dk vertices for fixed k and

d→∞.

Proof. We immediately have |V(GG(d, k))| =
(
n
k

)
k! = n!/(n− k)!. Letting m = bk/2c

we have n = d−m and hence

n!/(n−k)! = (d−m)!/(d−m−k)! = (d−m)(d−m−1) . . . (d−m− (k−1)) ∼ dk.

As with the Faber-Moore-Chen graphs, one may prove that the Gómez graphs are of

diameter at most k. However, the proof is much more involved for the Gómez graphs,

so we refer to [29] for the proof.
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4.4 Word Graphs Definition

We begin by providing a natural generalisation for studying graphs like the Gómez

graphs and the Faber-Moore-Chen graphs. The following definitions of word graphs

are work of the author.

We choose a number k which will be the word length; some set Πk ⊆ Sk, where Sk is

the symmetric group, which will be the rules; and a number n > k which shall be the

alphabet size. We define the word graph WG(Πk, n) as follows. Fix some arbitrary set

B such that |B| = n, B shall be called the alphabet of WG(Πk, n). The vertices of

WG(Πk, n) are given by V(WG(Πk, n)) = {x1x2 . . . xk|xi ∈ B, xi = xj ⇔ i = j}, that

is the vertices of WG(Πk, n) are all words of length k all of whose letters are distinct.

We form the directed adjacencies of an arbitrary word x1x2 . . . xk ∈ V(WG(Πk, n)) by

the following rules

x1x2 . . . xk →

x2x3 . . . xky, y ∈ B \ {x1, x2, . . . , xk}

xπ(1)xπ(2) . . . xπ(k), π ∈ Πk.

We shall refer to the rules of the form x1x2 . . . xk → x2x3 . . . xky as alphabet changing

rules and rules of the form x1x2 . . . xk → xπ(1)xπ(2) . . . xπ(k) as alphabet fixing rules.

For a vertex x = x1x2 . . . xk we define α : V(WG(Πk, n))→ B by

α(x) = {x1, x2, . . . , xk} and call α(x) the alphabet of x.

For a given Πk we shall also denote by WGF(Πk) the set of graphs

{WG(Πk, k + 1),WG(Πk, k + 2),WG(Πk, k + 2), . . . }. We shall call this the word

graph family of Πk.

We can express the Faber-Moore-Chen graphs and the Gómez graphs as word graphs

as follows.

i) The Faber-Moore-Chen graphs are word graphs where we take

Πk = {(1 2), (1 2 3), . . . , (1 2 . . . k)},
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ii) The Gómez graphs are word graphs where we take

Πk = {(1 2 . . . k),

(2 3 . . . k),

(1 2)(3 4 . . . k),

(1 2 3)(4 5 . . . k),

. . . ,

(1 2 . . . bk/2c)((bk/2c+ 1) (bk/2c+ 2) . . . k)},

4.5 Basic Properties

As we are interested in word graphs from the point of view of the degree-diameter

problem, we begin by studying the diameters of word graph families. We begin by

considering a fixed rule set Πk and the associated word graph family

WGF(Πk) = {WG(Πk, k + 1),WG(Πk, k + 2), . . . }. For brevity we shall use Gn to

denote WG(Πk, n).

We begin with some lemmas concerning the diameter of Gn as n is varied.

Lemma 4.4. The degree of WG(Πk, n) is n− k + |Πk|.

Proof. From an arbitrary vertex x = x1x2 . . . xk ∈WG(Πk, n) there are n− k
alphabet changing rules giving adjacencies of x and |Πk| alphabet fixing rules giving

adjacencies of x.

Lemma 4.5. For all n ≥ 2k we have Diam(Gn) ≥ k.

Proof. Letting {x1, x2, . . . xk, y1, y2, . . . yk} ⊆ B, such that all xi and yj are distinct,

we consider any path from the vertex x = x1x2 . . . xk to y = y1y2 . . . yk. Let

z0 = x→ z1 → · · · → zm = y be such a path. Trivially, we have |α(z0) ∩ α(zm)| = 0,

and |α(zi+1) ∩ α(zm)| ≤ |α(zi) ∩ α(zm)|+ 1. Hence, as |α(zm)| = k a trivial induction

shows there must be at least k steps in a path from x to y.

Lemma 4.6. For all n ≥ 3k we have Diam(Gn) ≤ 2k.

Proof. Consider arbitrary x = x1x2 . . . xk and y = y1y2 . . . yk in V(Gn). As n ≥ 3k, we

know that |B \ (α(x) ∪ α(y)| ≥ k, hence let {z1, z2, . . . , zk} ⊆ B \ (α(x) ∪ α(y)). Now

by using only alphabet changing rules we may form a path from x to y where in the

first k steps we append zi and in the second k steps we append yi. This gives a path

of length 2k connecting x and y.
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Lemma 4.7. For all n ≥ 4k we have Diam(Gn) = Diam(G4k).

Proof. Let x and y be arbitrary vertices of Gn. Let z0 = x→ z1 → · · · → zm = y be a

shortest path connecting x and y. From Lemma 4.6 we know that a shortest path

connecting x and y is at most length 2k, so m ≤ 2k. We now consider

B′ =
⋃2k
i=0 α(zi). As each zi+1 may introduce at most one letter not in zi, and there

are at most 2k such zi+1, we have that |B′| is trivially bounded above by 4k. Hence

the path z0 → · · · → zm is contained in a subgraph H of Gn in which we restrict

vertices to only have letters from B′. The result follows immediately as H ∼= G4k.

From Lemma 4.7 we may define, for a given rule set Πk, the eventual diameter of the

word graph family WGF(Πk) as Diam(WG(Πk, 4k), and note from Lemma 4.5 and

Lemma 4.6 that the eventual diameter of WGF(Πk) is between k and 2k. Further we

note that we may lower 4k to 3k in Lemma 4.7 but for the sake of simplicity we omit

doing so.

We now give a result which allows us to significantly restrict which potential rule sets

Πk we may consider of interest with regard to the degree-diameter problem.

Proposition 4.8. A word graph family WGF(Πk) is asymptotically close to the

Moore bound if, and only if, its eventual diameter is k.

Proof. Let WGF(Πk) = {WG(Πk, k + 1),WG(Πk, k + 2), . . . } and denote WG(Πk, n)

by Gn as previously. Let Gn ∈WGF(Πk) for some n ≥ 4k. Define ε such that the

eventual diameter of WGF(Πk) is k + ε. From Lemma 4.4 the degree of Gn is

n− k + |Πk|, hence taking α = |Πk| − k we have Deg(Gn) = α+ n. We count the size

of Gn as follows

|V(Gn)| = k!

(
n

k

)
= n(n− 1) . . . (n− (k − 1)) = nk +O(nk−1).

We recall that the Moore bound for a directed graph is given by

DM(d, k) = dk + dk−1 + · · ·+ 1 = dk +O(dk−1). Letting dn = Deg(Gn) and

kn = Diam(Gn), we have

lim
n→∞

{
|V(Gn)|

DM(dn, kn)

}
= lim

n→∞

{
nk +O(nk−1)

DM(n+ α, k + ε)

}
= lim

n→∞

{
nk +O(nk−1)

(n+ α)k+ε +O(nk+ε−1)

}
= lim

n→∞

{
nk +O(nk−1)

nk+ε +O(nk+ε−1)

}
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=

1, if ε = 0,

0, otherwise.

We see that any choice of Πk for which we get an eventual diameter other than k can

only be interesting in the degree-diameter problem for small graphs. As we are

concerned with finding families of graphs with best asymptotic behaviour, we

therefore ignore choices of Πk which result in an eventual diameter more than k.

Therefore we shall call a rule set Πk admissible if the eventual diameter of WGF(Πk)

is k, and from now on will only consider admissible choices of Πk.

4.6 Shift-Restricted Word Graphs

We now introduce a further restriction to the potential rule sets Πk that we shall

consider. Though the restriction is significant, it is both a natural restriction and is

met by both the Gómez graphs and the Faber-Moore-Chen graphs.

We shall call a rule set Πk shift restricted if for any π ∈ Πk we have π(i) ≤ i+ 1.

Recalling that the alphabet fixing adjacencies of a word graph are defined by

x1x2 . . . xk → xπ(1)xπ(2) . . . xπ(k), we may informally think of being shift restricted

meaning that no letter in the word x1x2 . . . xk may be moved more than one space to

the left by any alphabet fixing rule. We now derive further basic properties satisfied

by shift restricted word graphs.

Let Πk be an admissible and shift restricted rule set and let

Gn = WG(Πk, n) ∈WGF(Πk) defined over an alphabet B for some n > k. For all

v ∈ V(Gn) and x ∈ B we now define the function px(v) which is the position of the

letter x in the word v. We define px(v) by pxi(x1x2 . . . xk) = i and py(x1x2 . . . xk) = 0

if y 6∈ {x1, x2, . . . , xk}.

Lemma 4.9. For any u, v ∈ V(Gn) such that u→ v and any y ∈ B we have

py(v) ≥ py(u)− 1.

Proof. If py(u) = 0 then the result is immediate as py(v
′) ≥ 0 for all v′ ∈ V(Gn).

Hence, suppose that u = x1x2 . . . xk and y = xi for some 1 ≤ i ≤ k. If u→ v by an

alphabet changing rule then v = x2x3 . . . xkz for some z 6∈ {x1, x2, . . . , xk} and

py(v) = pxi(x2x3 . . . xkz) = i− 1 = py(u)− 1. Otherwise, we have u→ v by an

alphabet fixing rule, in which case v = xπ(1)xπ(2) . . . xπ(k) for some π ∈ Πk. Letting

π(j) = i we have pxi(v) = pxj (u) = j ≥ π(j)− 1 = i− 1 = pxi(u)− 1.
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This lemma formalises the implication of shift restriction on movement of letters

between rule applications, and has the following immediate and useful corollary.

Corollary 4.10. For any u, v ∈ V(Gn) and y ∈ B, all paths connecting u to v must

have length at least py(u)− py(v). (In the case that py(u) = 0 and py(v) > 0 we can

change this to a minimum length of k + 1− py(v)).

Proof. This follows from a trivial induction using Lemma 4.9.

Lemma 4.11. For Πk is shift restricted and Gn = WG(Πk, n), we have

Diam(Gn) ≥ k.

Proof. Taking u, v ∈ V(Gn) to be u = x1x2 . . . xk and v = x1x2 . . . xk−1y for some

y 6∈ {x1, x2, . . . , xk} we have pxk(u) = k and pxk(v) = 0, hence from Corollary 4.10 we

have that any path connecting u and v is at least length k.

Lemma 4.12. For Πk is shift restricted and Gn = WG(Πk, n), we have

Diam(Gn) ≤ k.

Proof. As Πk is admissible by assumption, we have that the eventual diameter of

WGF(Πk) is k, and so Diam(Gn) = k for all n ≥ 4k. Hence, consider some

u, v ∈ V(Gn) for some n < 4k. Let φ : Gn → G4k be the inclusion from Gn to G4k and

consider a shortest path from u′ = φ(u) to v′ = φ(v) in G4k. Letting B′ = α(u′)∪α(v′)

we can see that for any vertex w′ ∈ V(G4k) satisfying α(w′) ⊆ B′ there exists a vertex

w ∈ V(Gn) such that φ(w) = w′. Suppose that on a path from u′ to v′ we introduce a

letter y 6∈ B′ via an alphabet changing rule, call the vertex after this rule w′. We have

py(w
′) = k and py(v

′) = 0, so by Lemma 4.10 any path connecting w′ and v′ is at

least length k, and thus a path connecting u′ and v′ containing w′ is at least length

k + 1. However, we have Diam(G4k) = k so a shortest path from u′ to v′ is length at

most k, so no such vertex w′ exists. Therefore any vertex w′ on the shortest path

from u′ to v′ satisfies α(w′) ⊆ B′, and so there exists a vertex w ∈ V(Gn) such that

φ(w) = w′, and the shortest path from u′ to v′ in G4k corresponds to a shortest path

from u to v in Gn, which immediately gives Diam(Gn) ≤ k.

Combining our results we have shown that, for all n, Diam(Gn) = k. We can now

state the following important corollary of our work.

Corollary 4.13. If Πk and Tk are admissible shift restricted rule sets, and

|Πk| < |Tk |, then every Gn ∈WGF(Πk) and Hn ∈WGF(Tk) satisfy

Diam(Gn) = Diam(Hn) and |V(Gn)| = |V(Hn)| for all n, but we have

Deg(Gn) < Deg(Hn) for all n.
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We now make the definition that an admissible and shift restricted rule set Πk is

optimal if there does not exist another admissible and shift restricted rule set Tk such

that |Tk | < |Πk|.

With our now established definition of optimality, we now aim to show that the rule

sets of the Gómez graphs are optimal.

4.7 Optimality of Gómez Graphs

In this section, suppose that Πk is an admissible shift restricted rule set.

Lemma 4.14. For each 1 ≤ i ≤ n there exists some π ∈ Πn which contains an i-cycle.

Remark. The formal proof of this lemma obscures the fact this is essentially a simple

observation. We first illustrate the idea behind the proof. Consider for k = 9 a path

of length k from the vertex u = x1x2x3x4x5x6x7x8x9 to the vertex

v = y1y2y3y4x9x1x2x3x4 where y1, y2, y3, y4 6∈ {x1, x2, x3, x4, x5, x6, x7, x8, x9}. Let

z0 = u→ z1 → · · · → zk = v be a path from u to v. We illustrate an example path

from u to v, and note that the key idea is that at some point in that path xk has to

“jump” the block of y1y2y3y4 via an alphabet fixing rule, and that jump corresponds

to a 5-cycle in the alphabet fixing rule.

z0 x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 x2 x3 x4 x5 x6 x7 x8 x9 y1

z2 x3 x4 x5 x6 x7 x8 x9 y1 y2

z3 x4 x5 x6 x7 x8 x9 y1 y2 y3

z4 x5 x6 x7 x8 x9 y1 y2 y3 y4

z5 x6 x7 x8 x5 y1 y2 y3 y4 x9

z6 x7 x8 x5 y1 y2 y3 y4 x9 x1

z7 x8 x5 y1 y2 y3 y4 x9 x1 x2

z8 x5 y1 y2 y3 y4 x9 x1 x2 x3

z9 y1 y2 y3 y4 x9 x1 x2 x3 x4

The example path given is from the Gómez graph GG(9, 9), and the 5-cycle occurs in

the alphabet fixing rule between z4 and z5.

Proof. For each j ≥ 1 we shall show the existence of a (j + 1)-cycle, noting that when

j + 1 = k − 1 we will have shown the existence of a permutation made of a k − 1 cycle

and, therefore, also a 1-cycle. Let u = x1x2 . . . xk and v = y1y2 . . . yjxkx1x2 . . . xk−j .

As py1(u) = 0 and py1(v) = 1 we must have that a shortest path connecting u and v is

length k. Hence, let z0 = u→ z1 → · · · → zk = v be a shortest path connecting u and

James Fraser



58 4 Word Graphs

v. A trivial induction with Lemma 4.9 shows that py1(zi) = k − i+ 1 for i ≥ 1, and

similarly that pyj (zi) = k − i+ j for i ≥ i.

Now we consider the position of xk in each zi. First we start from zk and move

backwards in the path. At zk we have pxk(zk) = j + 1. At each zk−i we have

pxk(zk−i) ≤ j + 1 + i. Now we start from z0 and move forwards. We have pxk(z0) = k,

and at each i we have pxk(zi) ≥ k − i. Combining these we have

k − i ≤ pxk(zi) ≤ k − i+ j + 1. As pyj (zi) = k − i+ j we must have at each zi that

either pxk(zi) = k − i or pxk(zi) = k − i+ j + 1.

Finally, as pxk(z0) = k and pxk(zk) = j + 1 there must be some point in the path, say

α, such that pxk(zα) = k − α and pxk(zα+1) = k − α+ j. As this cannot happen in an

alphabet changing rule, the vertices zα and zα+1 must be connected by an alphabet

fixing rule π ∈ Πk. Finally, the rule π must contain the (j + 1)-cycle

((k − (α+ 1)) (k − (α+ 2)) . . . (k − (α+ j + 1))).

This now allows us to give our optimality result concerning the Gómez graphs.

Proposition 4.15. The rule sets Πk of the Gómez graphs are optimal.

Proof. We shall consider the cases of odd k and even k separately.

If k = 2n+ 1 is odd, then the rule sets Πk of the Gómez graphs are given as follows

Πk = {(1 2 . . . k),

(2 3 . . . k),

(1 2)(3 4 . . . k),

. . .

(1 2 . . . n)((n+ 1) (n+ 2) . . . k)}.

(4.3)

From this definition we immediately see that every cycle of length 1 to k occurs

exactly once in a permutation in Πk and as a result the set Πk is as small as possible

with the property of Lemma 4.14.

If k = 2n is even, then the rule sets Πk of the Gómez graphs are also given by

equation 4.3 with our new definition of n. In this case we see that each cycle of length

1 to k except n occurs exactly once in a permutation in Πk, and that there are two

cycles of length n in permutations in Πk. It is clear that there is no way to eliminate

a permutation from the set Πk by removing one cycle of length k, and so the set Πk is

also as small as possible with the property of Lemma 4.14.
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Altogether we have shown that the Gómez graphs are optimal, and thus provide the

largest possible graphs for given degree and diameter amongst word graphs formed

from admissible and shift restricted rule sets. If we wish to modify the definition of

the Gómez graphs or Faber-Moore-Chen graphs further to attempt to create better

graphs for given degree and diameter then we will need to either break the property of

admissibility and consider small graphs or break the property of shift restrictedness.

4.8 When Word Graphs are Cayley

From the definition of word graphs we have the following trivial observation.

Proposition 4.16. For any rule set Πk and n > k the word graph Gn = WG(Πk, n)

is vertex-transitive.

Proof. Let B be the alphabet Gn is defined over. Let x = x1x2 . . . xk and

y = y1y2 . . . yk be arbitrary vertices in V(Gn). Let π ∈ Sn be a permutation acting on

B such that π(xi) = yi for all 1 ≤ i ≤ k, and the action of π on other members of B is

arbitrary. The action of π on V(Gn) given by

π(u) = π(u1u2 . . . uk) = π(u1)π(u2) . . . π(uk) is an automorphism of Gn, and further

π(x) = y. This is clear as π is a relabelling of the letters of the vertices, and the

definition of the adjacencies of any vertex u ∈ V(Gn) is independent of the labelling of

its letters.

In fact, from this proof we have the following useful observation.

Proposition 4.17. For a word graph Gn = WG(Πk, n) there is a subgroup H of the

automorphism group Aut(Gn) of Gn which is isomorphic to Sn and acts regularly on

the vertices of Gn.

Proof. Simply take the extension of the natural action of Sn on the alphabet B of

V(Gn) as described in the previous proof as the group H.

This immediately shows us that word graphs give us examples of not just digraphs

but vertex-transitive digraphs. Given this fact, a more difficult question to then

answer is determining when word graphs are also Cayley. For the Faber-Moore-Chen

digraphs, this question was answered in [50]. The method used in this paper is to

determine the automorphism group of the Faber-Moore-Chen digraphs and then use a

classification of parameters (n, k) for which there is a subgroup of the symmetric

group Sn which acts regularly on k-tuples. This result can be found in [20, 10, 53].
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We summarise the result here in a table. In the following table the groups M11 and

M12 are the Mathieu groups.

k n Group

m m Sm
m m+ 1 Sm+1

m m+ 2 Am+2

2 q Affine transformations over finite near-fields
3 q + 1 PGL(2, q), G(2, q)
4 11 M11

5 12 M12

For the affine transformations over finite near-fields, letting F be a finite near field

(i.e. an algebraic structure satisfying the field axioms with the possible exceptions of

the multiplicative commutative law and the left distributive law), we have that

sharply 2-transitive groups are in one-to-one correspondence with groups of affine

transformations of the form x
∏
ax+ b for a, b ∈ F and a 6= 0.

The group which we denote by G(2, q) exists for each q which is an odd square. In

this case, the outer automorphism of PSL(2, q) is a Klein group {1, a, b, c} where

PSL(2, q){1, a} = PGL(2, q), and b is induced by the field automorphism of order 2.

In this case, we define G(2, q) = PSL(2, q){1, c}, which is also sharply 3-transitive.

This gives the following immediate corollary.

Corollary 4.18. For any k, n from the above table, the word graph WG(Πk, n) is

Cayley.

Proof. We use the characterisation of Cayley graphs from Proposition 1.1.

We also make the following trivial extension of this corollary, as we shall find for the

word graphs we consider that Aut(WG(Πk, n)) ∼= Sn.

Corollary 4.19. If Aut(WG(Πk, n)) ∼= Sn then the graph WG(Πk, n) is Cayley if,

and only if, k and n are in the above table.

Hence we now create a test to help determine if the automorphism group of a given

word graph is isomorphic to the symmetric group. Note that the test we develop will

only provide a sufficient condition, but not a necessary one.

4.8.1 Automorphism Group Test

To create our test, we first need some definitions. We begin by letting Γk denote the

Cayley graph Cay(Πk, Sk) and again use Gn to denote WG(Πk, n).
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Lemma 4.20. If H is a subgraph of Gn induced by vertices v ∈ V(Gn) with

α(v) = {x1, x2, . . . xk} ⊂ B then we have H ∼= Γk.

Proof. If we choose a vertex x1x2 . . . xk in H to identify with the vertex e in Γk, then

for each π ∈ Sk the identification of xπ(1)xπ(2) . . . xπ(k) in H with π in Γk is an

isomorphism.

We shall now refer to Γk as the alphabet fixing subgraph of Gn. We shall also refer to

any subgraph of Gn induced by all vertices sharing an alphabet as the alphabet fixing

subgraph, noting that they are isomorphic to Γk and thus unique to isomorphism.

We make two further definitions now. First, we shall call a word graph Gn alphabet

stable if there exists no automorphism φ ∈ Aut(Gn) such that there exist some

u, v ∈ V(Gn) with α(u) = α(v) but α(φ(u)) 6= α(φ(v)). In other words, a word graph

is alphabet stable if, and only if, it preserves whether arcs are alphabet fixing or

alphabet changing. Second, we shall call a family of word graphs WGF(Πk)

subregular if the alphabet fixing subgraph Γk of Gn is regular (i.e. Aut(Γn) ∼= Sn).

In the following let Gn be a word graph which is both alphabet stable and subregular.

We aim to show that Aut(Gn) ∼= Sn.

Lemma 4.21. If φ ∈ Aut(Gn) fixes a vertex u then φ fixes all v such that

α(u) = α(v).

Proof. Letting V = {v ∈ V(Gn)|α(v) = α(u)}, consider ψ = φ|V , the restriction of φ

to the alphabet fixing subgraph of Gn induced by V . For all v ∈ V we have

α(ψ(v)) = α(φ(v)) = α(φ(u)) = α(u) due to alphabet stability, which shows ψ(v) ∈ V .

Therefore, as φ is an automorphism, we have that ψ is injective from V to V and thus

bijective. Hence ψ is an automorphism of the vertices of Gn in V to themselves, i.e. ψ

is an automorphism of the alphabet fixing subgraph of Gn. As Gn is subregular, any

automorphism of Γk fixing a single vertex is the identity. Therefore, as ψ(u) = u we

must have that ψ is the identity on V .

Next we introduce a technical lemma which will be required in an induction.

Lemma 4.22. If φ ∈ Aut(Gn) and X,Y, Z ⊂ B with the following properties

i) X = {x1, x2, z1, z2, . . . , zk−2},

ii) Y = {y1, y2, z1, z2, . . . , zk−2},
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iii) Z = {x2, y2, z1, z2, . . . , zk−2},

iv) φ fixes all v ∈ V(Gn) such that α(v) = X or α(v) = Y ,

then φ fixes all v ∈ V(Gn) such that α(v) = Z.

Proof. Let u = x1z1z2 . . . zk−2x2 and v = y1z1z2 . . . zk−2y2 and let w,w′ ∈ V(Gn) such

that u→ w, v → w′ and α(w) = α(w′). As |X ∩ Y | = k − 2, we must have that both

u→ w and v → w′ are alphabet changing rules. Therefore, we must have

x1 6∈ α(w), x2 ∈ α(w), y1 6∈ α(w′) and y2 ∈ α(w′). Hence we have

α(w) ⊇ (X ∩ Y ) ∪ {x2, y2} = Z. We also have |α(w)| = k = |Z|, so α(w) = Z. We

now see that u→ w must be the alphabet changing rule which introduces y2, and so

w = x2z1z2 . . . zk−2y2 and similarly w′ = y2z1z2 . . . zk−2x2. From our assumptions we

have φ(u) = u, φ(v) = v and α(φ(w)) = α(φ(w′)) as α(w) = α(w′) and Gn is alphabet

stable. As a result we see u→ φ(w) and v → φ(w′) with α(φ(w)) = α(φ(w′)), so we

have φ(w) = w and φ(w′) = w′. Now applying Lemma 4.21 we have the desired

result.

Lemma 4.23. The only automorphism φ ∈ Aut(Gn) which fixes a vertex u ∈ V(Gn)

and all v ∈ V(Gn) such that u→ v is the identity.

Proof. Label u as x1x2 . . . xk and the alphabet B of Gn as

{x1, x2, . . . , xk, y1, y2, . . . , yn−k}. For a vertex v ∈ V(Gn) we define the function

f(v) = |{x1, x2, . . . xk} ∩ α(v)|. We shall show by induction for k ≥ i ≥ 0 that φ fixes

all v such that f(v) = i.

For i = k, for any v ∈ V(Gn) with f(v) = k we have α(v) = α(u) and u is fixed by φ.

Hence, by Lemma 4.21 we have that φ fixes v also.

For i = k − 1, let v ∈ V(Gn) be a vertex with f(v) = k − 1. We first consider

α(v) = {x2, x3, . . . , xk, y}. In this case, the vertex v′ = x2x3 . . . xky satisfies u→ v′

and so v′ is fixed by φ. Again, using Lemma 4.21 and α(v) = α(v′) we show that φ

fixes v. For other v with f(v) = k − 1, letting y ∈ α(v), we have

|α(v) ∩ {x1, x2, . . . , xk}| = k − 1 and |α(v) ∩ {x2, x3, . . . , xk, y}| = k − 1. Applying

Lemma 4.22 to the sets X = {x1, x2, . . . , xk}, Y = {x2, x3, . . . , xk, y} and Z = α(v) we

see that v is fixed.

For i = c, given the inductive hypothesis for i = c+ 1, without loss of generality let

v ∈ V(Gn) such that α(v) = {x1, x2, . . . , xc, y1, y2, . . . , yk−c}. We now apply

Lemma 4.22 to the sets X = {x1, x2, . . . , xc+1, y1, y2, . . . , yk−c−1},

James Fraser



4.8 When Word Graphs are Cayley 63

Y = {x1, x2, . . . , xc+1, y2, y3, . . . , yk−c} and Z = {x1, x2, . . . , xc, y1, y2, . . . , yk−c} to get

the desired result.

We are now in a position to prove our main result on the implication of alphabet

stability and subregularity of a word graph.

Proposition 4.24. If a word graph Gn = WG(Πk, n) is alphabet stable and

subregular then Aut(Gn) ∼= Sn.

Proof. Let H ⊆ Aut(Gn) as defined in Proposition 4.21. Suppose that φ ∈ Aut(Gn).

Consider u ∈ V(Gn) and define ψ ∈ H such that ψ(φ(u)) = u and for all v ∈ V(Gn)

such that u→ v via an alphabet changing rule we have ψ(φ(v)) = v. Note that ψ is

guaranteed to exist as, if we label u = x1x2 . . . xk then the requirement ψ(φ(u)) = u

corresponds to choosing an action of ψ on the set {x1, x2, . . . , xk}, and if we label

each v = x2x3 . . . xkyi where B = {x1, x2, . . . , xk, y1, y2, . . . , yn−k} then the

requirements ψ(φ(v)) = v determine the action of ψ on each of the remaining yi.

Finally, we have that φ ◦ ψ fixes u and all v such that u→ v, so by Lemma 4.23 we

must have φ ◦ ψ is the identity, and therefore ψ = φ−1 and φ ∈ H.

Altogether we have established that alphabet stability and subregularity are sufficient

conditions to show that Aut(Gn) ∼= Sn. We now devote the rest of this section to

creating tests to determine alphabet stability and subregularity. Our tests shall only

concern counting certain paths in the alphabet fixing subgraph of a word graph,

which will allows us to determine whether Aut(WG(Πk, n)) ∼= Sn for all word graphs

in a family WGF(Πk) by a finitely computable test on the graph Cay(Πk, Sk).

Lemma 4.25. If u, v ∈ V(Gn) such that u→ v by an alphabet changing rule, then

there is a unique shortest path of length k from v to u.

Proof. We label u = x1x2 . . . xk and v = x2x3 . . . xky. First, by considering px1(v) = 0

and px1(u) = 1 and using Lemma 4.9 we see that a path connecting v to u must be

length at least k, and as Diam(Gn) = k we therefore know a shortest path connecting

v to u is length k. Now consider a path z0 = v → z1 → · · · → zk = u, by considering

Corollary 4.10 and pxi(zi) we see that each zi−1 → zi must be connected by the

alphabet changing rule introducing xi. Hence the path z0 → z1 → · · · → zk is a

uniquely defined path of length k joining v to u.

Now suppose that for all u, v ∈ V(Γk) with u→ v there is either more than one path

of length k connecting v to u, or there is at least one path of length less than k

connecting v to u.
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Lemma 4.26. There is no φ ∈ Aut(Gn) such that α(φ(v)) 6= α(u).

Proof. Suppose that such a φ exists. As u→ v we have φ(u)→ φ(v), and as

α(φ(u)) 6= α(φ(v)) we have that φ(u)→ φ(v) by an alphabet changing rule. By

Lemma 4.25 there is a unique shortest path of length k connecting φ(v) to φ(u).

However, by assumption we have that there is either a path of length less than k

connecting v to u or multiple paths of length k connecting v to u. Therefore no such

φ can exist.

Lemma 4.27. Under the above assumptions, Gn is alphabet stable.

Proof. Suppose that Gn is not alphabet stable. Let φ ∈ Aut(Gn) and u, v ∈ V(Gn)

such that α(u) = α(v) and α(φ(u)) 6= α(φ(v)). Now let z0 = u→ z1 → · · · → zm = v,

m ≤ k be a shortest path connecting u and v. Suppose some zi has α(zi) 6= α(u). Let

i be as small as possible with this property, and let u = x1x2 . . . xk. We then have

zi = xπ(1)xπ(2) . . . xπ(k−1)y and zm = v = xτ(1)xτ(2) . . . xτ(k) for some permutations

π, τ ∈ Sk. As py(zi) = k and py(zm) = 0 we have from Corollary 4.10 that a path

connecting zi and zm is at least length k, but this implies that the path

z0 → z1 → · · · → zm is at least length k + i, contradicting that it is a shortest path.

As a result we see there is no such zi and we have α(zi) = α(u) for all 0 ≤ i ≤ m.

Now, as α(φ(z0)) 6= α(φ(zm)) there is a smallest i such that α(φ(zi)) 6= α(φ(zi+1)). So

zi and zi+1 satisfy α(zi) = α(zi+1) but α(φ(zi)) 6= α(φ(zi+1)), contradicting

Lemma 4.26. Hence, Gn must be alphabet stable.

Lemma 4.28. If Γk is not regular, then there exists an automorphism φ ∈ Aut(Γk)

such that for some u, v ∈ V(Γk) with u→ v we have φ(u) = u but φ(v) 6= v.

Proof. Let H < Aut(Γk) be regular and let φ ∈ Aut(Γk) \H. Consider u ∈ V(Γk) and

let ψ ∈ H be the automorphism such that ψ(φ(u)) = u. Let φ′ = ψ ◦ φ, so φ′ fixes u.

As φ′ 6∈ H we must have φ′ is not the identity. Threfore, there exists some v ∈ V(Γk)

such that φ′(v) 6= v. Consider a path z0 = u→ z1 → · · · → zm = v from u to v. On

this path there must exists some i such that zi = φ′(zi) but zi+1 6= φ′(zi+1).

Corollary 4.29. If for all u, v, w ∈ V(Γk) with u→ v and u→ w these exists some i

such that the number of paths of length i from v to u and the number of paths of

length i from w to u are different, then Γk is regular, and WGF(Πk) is subregular.

We now combine these results and state our test. Let Gn = WG(Πk, n) ∈WGF(Πk)

with alphabet fixing subgraph Γk = Cay(Πk, Sk). Let u ∈ V(Γk) and let {vi} be the

set of vertices such that u→ vi.
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Proposition 4.30. If the following conditions hold, then Aut(Gn) ∼= Sn.

i) for each vi, vj there exists some m such that the number of paths from vi to u of

length m is different to the number of paths from vj to u of length m;

ii) each vi has either a path of length less than k to u or has more than one path of

length k to u.

We now demonstrate the use of this proposition by applying it to small cases for the

Faber-Moore-Chen graphs and Gómez graphs via direct computation.

4.8.2 Computational Results

First we apply Proposition 4.30 to the Faber-Moore-Chen graphs.

Let πi = (1 2 . . . i) and let Πk = {π2, π3, . . . , πk}. The Faber-Moore-Chen graphs are

given by WG(Πk, n) for all k and all n > k. Considering the alphabet fixing subgraph

Γk of the Faber-Moore-Chen graphs, we now count paths of each length 1 ≤ i ≤ k − 1

from each πj to e in Γk. We summarise our results in tables.

For k = 3

π2 π3

1 1 0
2 - 1

For k = 4

π2 π3 π4

1 1 0 0
2 - 1 0
3 - - 1

For k = 5

π2 π3 π4 π5

1 1 0 0 0
2 - 1 0 0
3 - - 1 0
4 - - - 1

In these examples, we see that from each πi+1 there is exactly one shortest path of

length i to e. Hence for each of these examples we meet condition (ii) of

Proposition 4.30 as each πi+1 has a path of length less than k to e, and we meet
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condition (i) as, for i < j, there is a path of length i from πi+1 to e, but no path of

length i from πj+1 to e. Later we shall prove this property for all k to demonstrate

our method in the much simpler case of the Faber-Moore-Chen graphs.

For the Gómez graphs let

πi = (1 2 . . . (bk/2c − i))((bk/2c − i+ 1) (bk/2c − i+ 2) . . . k). So for k = 5 we have

π0 = (1 2)(3 4 5), π1 = (2 3 4 5) and π2 = (1 2 3 4 5). Let Πk = {π0, π1, . . . , πbk/2c}.
The Gómez graphs are given by WG(Πk, n) for all k and n > k. Considering the

alphabet fixing subgraph Γk of the Gómez graphs, we now count paths of length

i = k − 1, k from each πj to e in Γk.

For k = 5

π0 π1 π2

4 - - 1
5 4 2 1

For k = 7

π0 π1 π2 π3

6 - - - 1
7 7 4 2 1

For k = 9

π0 π1 π2 π3 π4

8 - - - - 1
9 11 7 4 2 1

For k = 4

π0 π1 π2

3 2 - 2
4 3 5 2

For k = 6

π0 π1 π2 π3

5 4 - - 4
6 8 13 5 2

For k = 8

π0 π1 π2 π3 π4

7 8 - - - 8
8 19 33 13 5 2
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4.8.3 Example: Faber-Moore-Chen

We now aim to apply the test of Proposition 4.30 to the Faber-Moore-Chen graphs to

re-derive the result of [50] and illustrate our method.

Let πi = (1 2 . . . i), Πk = {π2, π3, . . . , πk} and Γk = Cay(Πk, Sk) be the alphabet

fixing subgraph of the Faber-Moore-Chen graphs Gn = WG(Πk, n) as before.

Lemma 4.31. For 2 ≤ i ≤ k the shortest path from πi to e in Γk is length i− 1.

Proof. We use the notation of Γk as a subgraph of Gn. In this notation, the vertex πi

is equivalent to u = x2x3 . . . xix1xi+1xi+2 . . . xk, and the vertex e is equivalent to

v = x1x2 . . . xk. From Corollary 4.10 and the fact px1(u) = i and px1(v) = 1 we have

that a minimum path connecting u and v must be at least length i− 1. Further, as πi

is an i-cycle we have πi = e and hence the adjacencies corresponding to the rules πi

form a path of length i− 1 to e.

From this we have all that we need to apply the test of Proposition 4.30.

Proposition 4.32. The Faber-Moore-Chen graphs Gn = WG(Πk, n) have

Aut(Gn) ∼= Sn.

Proof. We apply Proposition 4.30. Letting Γk = Cay(Πk, Sk), for vertices

πi, πj ∈ V(Γk) with i < j we have that there is a shortest path from πi to e of length

i− 1 but that there is no path of length i− 1 from πj to e. Therefore condition (i) of

Proposition 4.30 is satisfied. Further, for any πi ∈ V(Γk) we have that there is a

shortest path of length i− 1 < k from πi to e, so condition (ii) of Proposition 4.30 is

also satisfied.

This is all that is required for the result for Faber-Moore-Chen graphs. The same

problem for the Gómez graphs was an open problem to which we now provide a

solution. However, the work required will require significantly more detail and care

over the next sections.

4.9 Paths in Gómez Graphs

In order to apply similar techniques to the case of Gómez graphs we must first begin

by establishing terminology for the discussion of Gómez graphs. For a Gómez graph

WG(Πk, n) we shall be counting paths of length k and k − 1 in the alphabet fixing

subgraph Γk = Cay(Πk, Sk) from each π ∈ V(Γk) with e→ π to e. It would prove
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cumbersome to use the notation of the alphabet fixing subgraphs as Cayley graphs, so

we will continue to think of them as subgraphs of word graphs and associate with

each of their vertices a word and each of the adjacencies a rule. Further, we shall

ultimately deal with the cases of Gómez graphs defined for odd diameter and even

diameter separately.

Throughout this section we shall consider the Gómez graph GG(d, k), which we shall

denote as the word graph Gd = WG(Πk, d). We shall denote the alphabet fixing

subgraph of Gd as Γk = Cay(Πk, Sk). We shall use our representation of Γk as a word

graph rather than as a Cayley graph in our discussion, and shall now introduce a

visual representation of the adjacencies and associated terminology. We illustrate

with the example of Γ8. We may define Γ8 over the alphabet B = {1, 2, 3, 4, 5, 6, 7, 8}.
The vertices of Γ8 are given by

V(Γ8) = {x1x2x3x4x5x6x7x8|xi ∈ B, xi = xj ⇔ i = j}.

That is, the vertices of Γ8 are all words of length 8 with letters in B and all letters

distinct. The adjacencies of a vertex x1x2x3x4x5x6x7x8 ∈ V(Γ8) are given as follows

x1x2x3x4x5x6x7x8 →



x2x3x4x5x6x7x8x1 by π4,

x1x3x4x5x6x7x8x2 by π3,

x2x1x4x5x6x7x8x3 by π2,

x2x3x1x5x6x7x8x4 by π1,

x2x3x4x1x6x7x8x5 by π0,

.

We shall visually represent these adjacencies with diagrams of the following form.

James Fraser



4.9 Paths in Gómez Graphs 69

x1 x2 x3 x4 x5 x6 x7 x8

x2 x3 x4 x1 x6 x7 x8 x5

π0

x1 x2 x3 x4 x5 x6 x7 x8

x2 x3 x1 x5 x6 x7 x8 x4

π1

x1 x2 x3 x4 x5 x6 x7 x8

x2 x1 x4 x5 x6 x7 x8 x3

π2

x1 x2 x3 x4 x5 x6 x7 x8

x1 x3 x4 x5 x6 x7 x8 x2

π3

x1 x2 x3 x4 x5 x6 x7 x8

x2 x3 x4 x5 x6 x7 x8 x1

π4

Within this visual representation, we label the following features.

Diagram Red Blue

forward arrows backward arrows

left arrow right arrow

We shall call the composition of adjacencies a path and represent it as in the following

diagram.
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x1 x2 x3 x4 x5 x6 x7 x8

x1 x3 x4 x5 x6 x7 x8 x2

x3 x4 x5 x1 x7 x8 x2 x6

x4 x3 x1 x7 x8 x2 x6 x5

π3

π0

π2

In subsequent diagrams we may drop the explicit labelling of letters to present the

same path in a more succinct manner, as in the example below.

π3

π0

π2

We now have enough definitions for our first lemma.

Lemma 4.33. The number of right arrows in a path of length m is m, and the

number of left arrows in a path of length m is less than or equal to m.

Proof. Each of the rules πi for 0 ≤ i ≤ k contains exactly one right arrow and either

one or zero left arrows.

In a path we shall use the trail from position i to mean the concatenation of

consecutive arrows in our diagram beginning from the arrow at position i. In the

following example we highlight the trail starting at position 2.

π3

π0

π2

We shall call a trail closed if it begins and ends at the same position. Here we

illustrate both a closed trail and a non-closed trail.
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π3

π4

π0

π2

For a path p = p1p2 . . . pn, pj ∈ Πk, we shall call pi = pipi+1 . . . pnp1p2 . . . pi−1 the ith

rotation of p.

Lemma 4.34. If the trail starting in position i in a path p is closed, then the trail

starting at position p1(i) in p2 is also closed.

Proof. We have

p(i) = i ⇔ (p1p2 . . . pn)(i) = i

⇔ (p2p3 . . . pn)(p1(i)) = i

⇔ p1((p2p3 . . . pn)(p1(i))) = p1(i)

⇔ (p2p3 . . . pnp1)(p1(i)) = p1(i)

⇔ p2(p1(i)) = p1(i).

Corollary 4.35. If the trail starting in position i in a path p is closed, then the trail

starting at position (p1p2 . . . pj−1)(i) in pj is closed.

Proof. This is a trivial induction.

In light of this corollary we will identify a closed trail with all of its images under

rotation, and simply consider them to be the same trail.

We shall call a path closed if the trails at each position in the path are closed.

Lemma 4.36. There is a bijection between the closed trails of a path p and the closed

trails of each of its rotations pi.

Proof. Consider a path p of length n and some 1 < i < n. From Corollary 4.35 we

have that a closed trail starting at any j in p corresponds to a closed trail starting at

(p1p2 . . . pi−1)(j) in pi. Hence there is a injective mapping from the closed trails of p

to the closed trails of pi. For the reverse, if we have a closed trail starting at j′ in pi

we may define j such that (p1p2 . . . pi−1)(j) = j′, and we may use Corollary 4.35 to
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see there is a close trail in (pi)(n− i) = p starting at

(pipi+1 . . . pn)((p1p2 . . . pi−1)(j)) = (p1p2 . . . pn)(j), hence there is an injective mapping

from the closed trails of pi to the closed trails of p. The result immediately

follows.

We illustrate closed trails in paths with the following example.

π3

π1

π0

π2

p = p1

π1

π0

π2

π3

p2

π0

π2

π3

π1

p3

π2

π3

π1

π0

p4

Corollary 4.37. A path is closed if, and only if, each of its rotations is closed.

Proof. This is an immediate consequence of Lemma 4.36.
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We have established basic notation and properties necessary for discussing paths of

interest in Gómez graphs, and now describe our ultimate motivation before

introducing further lemmas. In order to show that the Gómez graphs are subregular,

and that they are alphabet stable, in the Gómez graph GG(d, k) we shall count the

number of paths of length d from each πi to e in the alphabet fixing subgraph Γk.

These correspond to closed paths of length k + 1, and closed paths in our above

notation. We will use our above notation to count the number of closed paths of

length k + 1 from e to itself. We now introduce lemmas for this purpose.

Lemma 4.38. Any closed trail in a path of length k + 1 must contain at least two

forward arrows.

Proof. In a closed trail we have that the distance travelled forwards by forward

arrows must be equal to the distance travelled backwards by backwards arrows. As

the Gómez graphs are shift restricted, we have that each backwards arrow maps

backwards exactly one space. In a trail of length k + 1 with no forwards arrows there

would be k + 1 backwards arrows, and the trail would not be closed. In a trail of

length k + 1 with one forwards arrow there would be k backwards arrows, so if the

trail were closed the forwards arrow would map k spaces forwards. However, the most

any forward arrow maps forwards is in the rule πk which contains one forwards arrow

mapping k − 1 spaces forwards. Hence, there is no closed trail in a path of length

k + 1 with either zero or one forwards arrows, and so any closed trail in such a path

must have at least two forwards arrows.

Lemma 4.39. Any closed trail in a path of length k + 1 whose only forward arrows

are left arrows contains at least three left arrows.

Proof. The furthest that can be mapped forwards by any left arrow occurs in the rule

π0 which maps forward n− 1 spaces. If we have a trail of length k + 1 which contains

exactly two forward left arrows and no other forward arrows then there are k − 1

backwards arrows in the trail. So the forwards arrows map k − 1 spaces forwards.

However, we have that we map forwards at most 2(n− 1) < k − 1 spaces, and no such

path exists. Therefore, combining with Lemma 4.38, in a closed trail of length k + 1

where all forwards arrows are left arrows we see there must be at least three left

arrows.

Lemma 4.40. Any closed trail in a path of length k + 1 whose only forward arrows

are right arrows contains exactly two right arrows.

Proof. From Lemma 4.38 we know that any closed trail in a path of length k + 1

James Fraser



74 4 Word Graphs

which contains only right forwards arrows must contain at least two right forwards

arrows. Therefore we must show that a closed trail in a path of length k + 1 whose

only forwards arrows are right arrows cannot contain three or more right arrows.

Each right arrow maps forwards by at least n spaces, so in any closed trail containing

at least three right arrows the total amount mapped forwards is at least 3n. The total

amount mapped backwards by such a trail is at most k − 2. Hence, as amount

mapped backwards must equal the amount mapped forwards we must have

k − 2 ≥ 3n. However, we have k ≤ 2n+ 1 and so k − 2 ≤ 2n− 1 < 3n so no such trail

can exist.

Lemma 4.41. In a closed path of length k + 1 there are at most three trails

containing two right arrows.

Proof. Suppose we have a closed path of length k + 1 which has at least four closed

trails containing two right arrows. By Lemma 4.33 we have that the path contains

k + 1 right arrows and at most k + 1 left arrows, so there are at most

(k + 1)− 8 = k − 7 unaccounted for right arrows remaining in the path. Lemma 4.38

tells us that each trail in the path requires at least two forward arrows, and

Lemma 4.39 tells us that if all forward arrows in a trail are left arrows then we

require at least three left arrows. To minimise the number of forward arrows required

for the closed trails we may assume as many right arrows as possible are in trails with

left arrows. If all remaining right arrows occur in a trail with one left arrow, then

there are k − 7 trails containing a right and a left arrow, and at most

(k+ 1)− (k− 7) = 8 left arrows unaccounted for. We have now accounted for 4 closed

trails with only right arrows and k− 7 closed trails with a left and a right arrow. This

leaves k − (k − 7)− 4 = 3 closed trails unaccounted for in the path. As there are no

further right arrows unaccounted for, all of these trails contain only left forwards

arrows, and by Lemma 4.39 require at least 9 left arrows. However, we have seen

there are only 8 left arrows unaccounted for at most. Therefore no such closed path

can exist, and a closed path of length k+ 1 can contain at most three trails containing

two right arrows.

Lemma 4.42. In a path p = p1p2 . . . pk+1 of length k + 1, if the trail starting at the

right arrow of p1 contains no further right arrows then it contains the left arrow of

pk+1.

Proof. After p1 the trail starting at the right arrow of p1 is in position k. As the trail

contains no further right arrows, whenever the trail is in a position i > 1 the next rule

must give a backwards arrow in the trail, and hence the next position of the trail is
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i− 1. Therefore each p1+i maps the trail from k + 1− i to k − i for 1 ≤ i < k, leaving

the trail at position 1 after rule pk. Finally, this leaves the trail mapped forwards by

the left arrow of rule pk+1.

In light of Lemma 4.42 we shall make the definition that if a path p = p1p2 . . . pm of

length m contains two consecutive rules pi and pi+1 such that pi = πj and pi+1 = πj+1

we shall call the left and right arrows of pi and pi+1 paired and refer to them together

as a pair. We shall also allow the special case that for pi = pm we shall consider

pi+1 = p1. For clarity we give diagrams showing pairing in paths.

π0

π1

π2

Lemma 4.43. If a closed trail of length k + 1 contains both left and right arrows then

it contains a pair and no other forward arrows.

Proof. Suppose that p is a path containing a closed trail with both a left and a right

arrow. Let q be some rotation of p such that a right arrow of the closed trail is in rule

q1 and such that the next forwards arrow in the trail is a left arrow. As the next

arrow in the trail is a left arrow, we must have (q2q3 . . . qi)(k) = 1 for some i, with

each qj for 2 ≤ j ≤ i containing a backwards arrow in the trail and qi+1 containing a

left arrow in the trail. As each backwards arrow in the trail maps backwards by one

space, we have that (q2q3 . . . qj)(k) = k + 1− j for 1 ≤ j ≤ i, and so we must have

i = k. Therefore, the next left arrow in the trail is at position qk+1, and hence only q1

and qk+1 contain forward arrows of the trail and all other positions contain backward

arrows. Finally, as the trail is closed we deduce that the right arrow in q1 and the left

arrow in qk+1 are a pair.

Lemma 4.44. A closed trail in a path of length k + 1 which contains right arrows

either contains exactly two right arrows or contains a pair.

Proof. If a closed trail in a path of length k + 1 contains right arrows then either it

contains both left and right arrows and so is a pair by Lemma 4.43 or it contains only

right arrows and therefore exactly two right arrows by Lemma 4.40.

Lemma 4.45. If all right arrows in a path p of length k + 1 are either in closed trails

or are in pairs, then all pairs in p are in distinct closed trails.
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Proof. Consider an arbitrary right arrow in p and a rotation q of p which has that

right arrow in position q1. We aim to show that the trail starting with the right arrow

of q1 is a closed trail. We know that all right arrows in p are either in closed trails or

in pairs by assumption. If we are in the first case then we are done, hence we assume

that we are in the second case. After the rule q1 the trail we are considering is at

position k after each q1+i the trail is in position k − i until we encounter the next

forward arrow in the trail. If the next forward arrow in the trail is a right arrow then

either we are in a closed trail and are done or that right arrow is in a pair, however

the second case cannot occur as we would encounter the second right arrow in the

trail after a backwards arrow. Therefore, we can suppose that the next forward arrow

in the trail is a left arrow. If this is the case, we encounter the arrow in position 1,

which first occurs at rule qk+1. Hence, this left arrow is paired with the right arrow in

position q1 and therefore we are in a closed trail.

Altogether we are now in a position to easily deal with closed trails containing right

arrows. We now continue our discussion and investigate the case of closed trails

containing only left arrows. In order to characterise trails which only contain left

arrows we will require further terminology. Within a permutation in a path we shall

say that a trail is on the left side if it is contained in an arrow inside a cycle with

containing a left arrow, and we will say that it is on the right side otherwise. We shall

say that between two rules a trail changes sides to mean it goes from being contained

in the left side to the right side or from the right side to the left side. Below we give a

diagram to clarify the terminology.

π3

π1

π0

π2

p

Lemma 4.46. It is only possible for a trail to move from the left to right side between

two consecutive rules πa and πb in a path if b > a.

Proof. For any rules πa, πb ∈ Πk with b ≤ a we have that all left arrows in πa

terminate at heads of left arrows in πb.

For the remainder of this section we shall consider paths p = p1p2 . . . pm with the
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property that if pi = πa and pi+1 = πb then a ≥ b− 1 (note that for pi = pm we take

pi+1 = p1).

Lemma 4.47. If p is closed, any trail which changes side contains a pair.

Proof. For any closed trail, the number of times the trail changes from left to right

must equal the number of times the trail changes from right to left. If a trail changes

sides at some point we know that there is a point where the trail changes sides from

left to right. We consider a rotation q of p where the closed trail changes sides from

left to right between q1 and q2. From our assumption on p, we have that if q1 = πa

and q2 = πb then a ≥ b− 1. Applying Lemma 4.46 we have the further restriction that

b > a, so we must have b = a+ 1. This shows that q1 = πa and q2 = πa+1. Finally, the

only trail which changes side from left to right between q1 and q2 is the trail

containing the left arrow of q1 and the right arrow of q2 which are in a pair. Hence

the closed trail of p we are considering contains this pair.

Corollary 4.48. If p is closed, any trail which contains only left arrows is always on

the left side.

We now make a further definition. For a path p we shall define the closure of p to be

p concatenated with itself the smallest number of times necessary to form a closed

path. As any path p corresponds to a permutation, say π, we know that the

permutation has some order a such that πa = e. This order is the same as the number

of times we must concatenate p with itself to form a closed path.

Lemma 4.49. If p is a path in which all trails containing right arrows are closed,

then all trails containing only left arrows are always on the left side.

Proof. Let q be the closure of p. We can now apply Corollary 4.48 to q to deduce that

all trails containing only left arrows in q are always on the left side. We also have that

the trails containing only left arrows in q correspond to the trails containing only left

arrows in p as all trails containing right arrows in p are closed. Hence we can deduce

from the fact the trails containing only left arrows in q are always on the left side that

the trails containing only left arrows in p are always on the left side, as the property

of being on the left side only depends on the path at each ith position, which are the

same for p and q for all positions of p.

Lemma 4.50. If p is a path where all trails containing right arrows are closed, and

the trails starting at positions a1, a2, . . . am are all trails whose only forwards arrows

are left arrows, and there are c left arrows in total in these trails, then p maps ai to

ai−m where subscripts are considered modular.
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Proof. This is provable by a trivial induction. First, as all trails other than those

starting at each ai are closed, we see that p maps each ai to some aj . Now, as all the

trails are always on the left side, only two things may happen at each rule: either all

trails are mapped backwards one space by backward arrows, and thus their left to

right order is preserved; or the trail on the far left is mapped by a left arrow and

becomes the trail on the far right whilst all other trails are mapped backwards one

space by backward arrows. The latter case happens exactly m times. Hence the left

right ordering of the trails starting at a1, a2, . . . , am is cycled m times.

Corollary 4.51. If a path p has all trails with right arrows closed, and contains

exactly two trails whose only forward arrows are left arrows, and those trails contain

an even number of left arrows, then the path p is closed.

Proof. Letting 2m be the number of left arrows in trails containing only left arrows,

we may use the previous lemma to show that a1 gets mapped to a1−2m = a1 and a2

gets mapped to a2−2m = a2. Therefore the trails starting at a1 and a2 are closed.

We have now established sufficient lemmas and terminology to help us approach the

problem of counting paths of certain length in Gómez graphs. In order to precede, we

will now need to consider separately the case of Gómez graphs with odd diameter and

Gómez graphs with even diameter. We shall start with the former case as it is the

simpler case.

4.9.1 The Odd Case

We now consider the case of counting closed paths in Gómez graphs of odd diameter.

In this section we will consider the Gómez graph G = GG(d, k) where k = 2n+ 1. We

will take G = WG(Πk, d) where Πk = {π0, π1, . . . , πn} with alphabet fixing subgraph

Γk as previously. In this section we will count all paths of length k + 1 from e to e in

Γk, which correspond to closed paths of length k + 1 as described in the previous

section. Throughout we shall assume p = p1p2 . . . pk+1 is such a closed path.

Lemma 4.52. If p1 = π0, then pn+1 = π0, and the trail beginning at position n+ 1

contains two right arrows.

Proof. We consider the trail starting with the right arrow of p1. As this trail is closed,

from Lemma 4.44 we have that the trail either contains two right arrows or a pair.

Therefore we know that the trail maps backwards k − 1 spaces, and therefore, as the

right arrow in p1 maps forwards n spaces, the other forwards arrow maps forwards

(k − 1)− n = n spaces. The most any left arrow maps forward is n− 1 spaces, so the
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other arrow must be a right arrow occurring in rule π0. To see that this occurs in

pk+1 we simply observe that each rule pi for 1 < i < k + 1 maps the trail back one

space.

Corollary 4.53. There are at most 6 occurrences of rule π0 in the path p.

Proof. This is a combination of the previous lemma and Lemma 4.41.

Lemma 4.54. If p1 = πi for some i ≥ 1, then pk+1 = πi−1.

Proof. Consider the trail starting with the right arrow of p1. If this trail contains a

left arrow we may apply Lemma 4.42 and we are done. Otherwise, Lemma 4.40 shows

that there is exactly one other right arrow in the trail. Therefore we see that the

distance mapped backwards in the trail is k − 1, and the distance mapped forwards

by the right arrow of p1 is n+ i. Therefore, the other right arrow maps forwards

(k − 1)− (n+ i) = n− i spaces. However, all right arrows map forwards at least n

spaces, and the trail cannot contain two right arrows.

Corollary 4.55. If pi = πj for j 6= 0, then pi−1 = πj−1.

Proof. Let q be the rotation of p where pi is q1, then apply Lemma 4.54.

Lemma 4.56. In the path p we have pi = pi+(n+1).

Proof. First, if pi = π0 we choose the rotation q = p(k+1)−i of p such that q1 = pi,

then we apply Lemma 4.52 to deduce that pi+(n+1) = π0. For pi = πj we again

consider the rotation q(k+1)−1 of p, and repeatedly apply Corollary 4.55 to show that

q1+i = πj−i for 0 ≤ i ≤ j. We then deduce that q(n+1)+j = π0. Now, suppose that

qn+j = πc. If πc = π0 then q1+(j−1) = π0, contradicting the fact q1+(j−1) = π1, and if

c ≥ 1 then we may apply Corollary 4.55 and the fact q(n+1)+j = π0 to deduce that

c = 1. Repeatedly applying this observation gives us that q1+i = q(n+1)+i for all

0 ≤ i ≤ j. Altogether we have shown pi = pi+(n+1) in all cases.

Now suppose that p = πa1πa2 . . . πak+1
is a closed path of length k. We now

characterise the sequence a1, a2, . . . , ak+1 and use our characterisation to count all

such possible sequences for each different possible first member a1.

Proposition 4.57. A sequence a1, a2, . . . , ak+1 corresponds to a closed path if, and

only if, the following properties hold

i) ai = a(n+1)+i;
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ii) if ai = j for j > 0 then ai+1 = j − 1;

iii) there are at most 6 distinct i such that ai = 0.

Proof. We first show that these are necessary conditions for the path p to be closed.

We have that property (i) is a consequence of Lemma 4.56; property (ii) is a

consequence of Corollary 4.55; and that property (iii) is a consequence of Lemma 4.41

(that there are at most three trails containing two right arrows in a closed path) and

Lemma 4.52.

We now show that these conditions are sufficient. Suppose that 〈ai〉 is a sequence

with these properties, and p = p1p2 . . . pk+1 = πa1πa2 . . . πak+1
is the corresponding

path. As shown in the proof of Lemma 4.52, if pi = π0 and pi+(n+1) = π0 then the

right arrows of pi and pi+(n+1) are in the same closed trail. For all other rules, we

have some pi = πj for j > 0, and we must have pi+1 = πj−1. Hence, for all rules

pi = πj in p for j > 0 we have that the right arrow of pi is in a pair with the left

arrow of pi+1. We can apply Lemma 4.45 as we have shown that all right arrows are

either in closed trails or in pairs. Altogether, this shows that each pair of rules

pi = π0 and pi+(n+1) = π0 corresponds to a closed trail containing the right arrows of

both rules, and that for all other rules pi = πj , j > 0, the right arrow of pi

corresponds to another distinct closed trail. We now consider different cases based on

how many rules pi = π0 there are in our path. We note that there are an even number

of rules π0 in our path; that there aren’t more than 6 such rules by Lemma 4.41; and

from Corollary 4.55, the fact the paths we consider are length k + 1 and the rules πj

satisfy j ≤ n we have that there are at least 2 rules π0 in our path. Now we consider

the cases of 2, 4 or 6 rules π0 in our path.

i) Suppose there are two rules pi such that pi = π0. In this case we have accounted

for 1 closed trail in right arrows from rules of the form pi = 0, and

(k+ 1)− 2 = k− 1 further closed trails corresponding to the other right arrows in

the path. Altogether we have accounted for k closed trails, so as there are only k

trails in the path the path must be closed.

ii) Suppose there are four rules pi such that pi = π0. In this case we have accounted

for 2 closed trails corresponding to the right arrows in rules of the form pi = π0,

and (k + 1)− 4 = k − 3 further closed trails corresponding to the other right

arrows in the path. Altogether we have accounted for k − 1 closed trails, so as

there are only k trails in the path this means there is only 1 trail left to account

for. However, as there is only one trail left and all others are known to be closed

this final trail must start and end in the same place, and must also be closed.
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iii) Suppose there are six rules pi such that pi = π0. In this case we have accounted

for 3 closed trails with right arrows in rules of the form pi = π0. All other rules of

the form pi = πj correspond to a right arrow which is contained in a pair and

thus corresponds to a closed trail. Therefore, this gives (k + 1)− 6 = k − 5 closed

trails corresponding to right arrows in pairs, and 3 closed trails containing only

right arrows. Hence, we have accounted for all but k − (k − 5)− 3 = 2 of the

trails of p. We must have that the remaining trails in our path only use left

arrows. We cannot have a rule πk in p as there are 6 rules π0 in p, so all rules

have both a left and right arrow and there must be 6 left arrows unaccounted for

in p. Now applying Corollary 4.51 we get the result.

Altogether this gives us a characterisation for the closed paths of length k + 1 in

terms of sequences with particular properties. We shall now call a sequence

a1a2 . . . an+1 a τ -sequence if

i) all ai satisfy ai ≥ 0;

ii) if ai > 0 then ai−1 = ai − 1;

iii) there are at most three i such that ai = 0;

iv) if a1a2 . . . an+1 is a τ -sequence, then ana1a2 . . . an−1 must also be a τ -sequence.

We may now restate the previous proposition as follows.

Proposition 4.58. A path p = πa1πa2 . . . πak+1
is closed if, and only if,

ai = a(n+1)+i = bi for 1 ≤ i ≤ n+ 1 and bi is a τ -sequence.

We now aim to count the number of different τ -sequences 〈ai〉 for each possible value

of a1. We shall use the notation τ(n, α, β) to indicate the number of τ -sequences of

length n such that a1 = α and an = β, and the notation τ(n, α) to indicate the

number of τ -sequences of length n with a1 = α.

Lemma 4.59. For n > 1, τ(n, 0, 0) = n− 1.

Proof. We begin with the observation that, in any τ -sequence, if ak = 0 and ak+j 6= 0

for some range of j then we may repeatedly apply properties (i) and (ii) to deduce

that ak+j = j for all j in the range. In particular, all ak+j are uniquely defined.

Now suppose that a1a2 . . . an is a τ -sequence with a1 = an = 0. First, suppose that

there is no j such that aj = 0 and 1 < j < n. If this is the case then aj = j − 1 and

there is exactly one τ -sequence with this property.
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Now suppose that there is some k such that 1 < k < n and ak = 0. By property (iii)

there are no further values j 6∈ {1, k, n} such that aj = 0. As a result for 1 < j < k we

must have aj = j − 1 and for k < j < n we must have ak+j = j. Hence there is

exactly one τ -sequence with ak = 0 for each possible value of k. This gives n− 2

possible τ -sequences.

In total, this gives us n− 1 possible τ -sequences where a1 = an = 0, and so

τ(n, 0, 0) = n− 1.

Lemma 4.60. For 1 < i ≤ n, we have τ(n, 0, n− i) = i− 1.

Proof. Suppose that a1a2 . . . an is a τ -sequence with a1 = 0. If an = α > 0, then we

see that a1a2 . . . an is a τ -sequence of length n if, and only if, a1a2 . . . an−1 is a

τ -sequence of length n− 1. Therefore we have τ(n, 0, α) = τ(n− 1, 0, α− 1) for all

α > 0. We may repeatedly apply this observation to show that

τ(n, 0, α) = τ(n− α, 0, 0), which shows

τ(n, 0, n− i) = τ(n− (n− i), 0, 0) = τ(i, 0, 0) = i− 1.

Proposition 4.61. For 1 ≤ i ≤ n, τ(n, n− i) = (i2 − i+ 2)/2.

Proof. We proceed by induction on i. We start with the case i = 1. To calculate

τ(n, n− 1), let a1a2 . . . an be a τ -sequence with a1 = n− 1. By property (iv) we

equivalently have that a2a3 . . . ana1 is a τ -sequence. Now we may repeatedly apply

properties (i) and (ii) to show that ai = i− 1, and that there is a unique possible

τ -sequence. Hence τ(n, n− 1) = 1.

We suppose i = k and we have the hypothesis given for i = k − 1. Let a1a2 . . . an be a

τ -sequence with a1 = (n− k). By property (ii) we have that either a2 = 0 or

a2 = n− k + 1. In the first case we may rotate to get a τ -sequence beginning with 0

and ending with n− k. In the second case we may rotate to get a τ -sequence

beginning with n− (k − 1). This gives

τ(n, n− k) = τ(n, 0, n− k) + τ(n, n− (k − 1))

= k − 1 + ((k − 1)2 − (k − 1) + 2)/2

= (k2 − k + 2)/2.

Now combining Proposition 4.58 and Proposition 4.61 we get the following

proposition.

Proposition 4.62. Letting Γk be the alphabet fixing subgraph Cay(Πk, Sk) of the

Gómez graph WG(Πk, d), there are (i2 − i+ 2)/2 paths of length k from each πi to e.
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Proof. This is a combination of the fact the closed paths of length k+ 1 correspond to

paths of length k + 1 from e to e in Γk, and the use of Proposition 4.58 and

Proposition 4.61 to count each of these paths beginning with different symbols.

We are now able to prove our main proposition.

Proposition 4.63. For k = 2n+ 1 and all m ≥ k, the Gómez graphs

Gm = WG(Πk,m) satisfy Aut(Gm) ∼= Sm.

Proof. We apply the test of Proposition 4.30. We consider the alphabet fixing

subgraph Γk of Gm. For each πi, πj such that e→ πi and e→ πj we have from

Proposition 4.62 that there are (i2 − i+ 2)/2 paths of length k from πi to e and there

are (j2 − j + 2)/2 paths of length k from πj to e. Therefore, there are the same

number of paths from πi to e and πj to e of length k if, and only if, i = j (given that

0 ≤ i, j ≤ k). Each pair πi and πj satisfy property (i) of Proposition 4.30. For all i

except i = 0 we have (i2 − i+ 2)/2 > 1, hence all πi except π0 satisfy property ii of

Proposition 4.30. For the remaining vertex π0 we have that π0 is a k-cycle and so

πk0 = e, so there is a path of length k − 1 from π0 to e and π0 also satisfies property ii.

Therefore Γk satisfies the conditions of Proposition 4.30 and we have

Aut(Gm) ∼= Sm.

4.9.2 The Even Case

In this section we shall deal with the extremal Gómez graphs of even diameter.

Throughout this section we let k = 2n for k > 1. We shall consider an arbitrary

closed path p = p1p2 . . . pk+1.

Lemma 4.64. If p1 = π0, then pn+2 = π1, and the closed trail starting at n+ 1

contains two right arrows.

Proof. The closed trail starting at n+ 1 is the trail containing the right arrow of p1,

therefore at rule p2 the trail is in position k. If we assume that there are no further

right arrows in this trail, then Lemma 4.42 tells us that this trail contains the left

arrow of pk+1, and as the trail is closed we know that this left arrow maps from

position 1 to position n+ 1. However, the furthest any left arrow maps is from

position 1 to position n in rule π0, and so no such left arrow exists. Therefore, the

trail containing the right arrow of p1 must contain another right arrow, and by

Lemma 4.40 it must contain exactly two right arrows. The second right arrow must

map (k − 1)− (n+ 1) = n spaces forwards, and must therefore be the right arrow
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from rule π1. This rule must occur in the trail after being mapped n spaces

backwards after p1, and hence must occur in rule pn+2.

Corollary 4.65. The rule π0 occurs at most three times in p.

Proof. This is a result of the combination of Lemma 4.41 which states that a closed

path of length k + 1 contains at most three trails containing two right arrows and

Lemma 4.64.

Lemma 4.66. If p1 = π1, then either pn+1π0 or pk+1 = π0.

Proof. We consider the trail starting with the right arrow of p1. If the trail contains a

further right arrow, then again Lemma 4.40 tells us there is exactly one further right

arrow and we may again apply the previous logic to deduce that the other right arrow

is in the rule π0 in rule pn+1. Otherwise, we may apply Lemma 4.42 to deduce that

the other left arrow in the trail is in a pair with the right arrow of p1 and thus

pk+1 = π0.

Lemma 4.67. If p1 = πi for some i ≥ 2 then pk+1 = πi−1.

Proof. Consider the closed trail starting with the right arrow of p1. If the trail

contains two right arrows, then by Lemma 4.40 there are exactly two right arrows,

and therefore the second right arrow maps forward (k − 1)− (n− i) = n+ i spaces.

However, the most any right arrow maps forward is n spaces in the rule π0. Hence no

such right arrow exists and the closed trail starting with the right arrow of p1 must

contain only one right arrow. Therefore, we may apply Lemma 4.42 to deduce that

there is one other forwards arrow in the trail which is a left arrow paired with the

right arrow of p1, and we see pk+1 = πi−1.

Proposition 4.68. The path p = pa1pa2 . . . pak+1
is closed if, and only if,

a1, a2, . . . ak+1 is a sequence with the following properties.

i) 0 ≤ ai ≤ k for all i;

ii) there are at most three i such that ai = 0;

iii) if ai = 0 then ai+(n+1) = 1;

iv) if ai = j for j > 0 then ai+1 = j − 1 (in the special case that i = k + 1 we take a1

for ai+1);
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Proof. First, suppose that p = pa1pa2 . . . pak+1
is a closed path. We trivially have

property (i). Property (ii) follows from Lemma 4.65. Property (iii) follows from

Lemma 4.64. Property (iv) follows from Lemma 4.67.

Now suppose a1a2 . . . ak+1 is a sequence with these properties. For each ai = 0 in the

sequence we have ai+(n+1) = 1, so if we consider the rotation q = p(k+1)−(i+1) of p

which puts rule pi = πai at the beginning of the path we have that q1 = π0 and

qn+2 = π1. We cannot have that qn+1 = π0 as that would imply q1 = π1. Therefore

the trail starting from the right arrow of q1 is mapped backwards by each of the rules

qj for 1 < j < n+ 2, and then is mapped forwards by the right arrow of rule qn+2.

After being mapped forwards by qn+2, the trail is mapped backwards by all rules up

to qk+1, and we see it ends in position n+ 1 and we see that the trail is closed. For all

other right arrows in p occurring in some rule say pi = πai we have pi+1 = πai+1 , and

hence the right arrow of pi is in a pair with the left arrow of pi+1. Therefore all right

arrows are either in closed trails or are in pairs, and we may apply Lemma 4.45.

Finally we follow the same logic as Proposition 4.57 and we are done.

In light of this lemma, for k = 2n, we now call a sequence a1a2 . . . ak+1 a σ-sequence if

it has the following properties.

i) ai ≥ 0;

ii) if ai = 0 then ai+(n+1) = 1;

iii) if ai = 1 then either ai−1 = 0 or ai+k = 0;

iv) if ai > 0 then ai−1 = ai − 1;

v) there are at most three i such that ai = 0;

vi) if a1a2 . . . ak+1 is a σ-sequence then ak+1a1a2 . . . ak is also a σ-sequence.

We may now rephrase Proposition 4.68 as follows.

Proposition 4.69. A path p = pa1pa2 . . . pak+1
is closed if, and only if,

a1, a2, . . . , ak+1 is a σ-sequence.

As these sequences aren’t as readily visualisable from their description as τ -sequences

we give some examples for n ∈ {9, 11}.
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n = 9 n = 11

012341234 01234512345
010121212 01012312123
012011231 01201212312
001231123 01230112341
001011121 00123411234
001121101 00101211212
011011011 00120111231
000121112 00112311012

00121211201
01010112121
01001210112
00012311123

We immediately notice from our table that the 0s and 1s always appear in groups of

the following forms

01 . . .︸︷︷︸
n−1

1 . . .︸︷︷︸
n−1

, 001 . . .︸︷︷︸
n−2

11 . . .︸︷︷︸
n−2

, or 0001 . . .︸︷︷︸
n−3

111 . . .︸︷︷︸
n−3

,

We shall call these patterns 01-groups. We aim to show that each 0 or 1 in a σ

sequence occurs in a unique 01-group (i.e. that 01-groups do not overlap). In the

following, suppose that a1a2 . . . ak+1 is a σ-sequence with a1 = 0 and ak+1 6= 0.

Lemma 4.70. There is some 1 ≤ α ≤ 3 such that for 1 ≤ i ≤ α we have ai = 0,

ai+(n+1) = 1 and aα+1 = 1.

Proof. Let α be the largest number such that ai = 0 for all 1 ≤ i ≤ α. From

property (v) we have that α ≤ 3. From property (i) we have that aα+1 ≥ 0, and by

definition of α we have aα+1 6= 0 hence we have aα+1 > 0. From property (iv) we

have, as aα = 0 and aα+1 > 0 that we must have aα+1 = 1. Finally, from the fact

ai = 0 for 1 ≤ i ≤ α and property ii we have that ai+(n+1) = 1 for 1 ≤ i ≤ α.

Corollary 4.71. Every 0 in a σ-sequence is in a unique 01-group.

Proof. Consider a σ-sequence with ai = 0 for some i. From property (vi) we may

consider a rotation of 〈aj〉 which moves this 0 from position i to position 1, and then

possibly further to position 2 or 3 until ak+1 6= 0. Then we may apply the previous

lemma.

Lemma 4.72. Every 1 in a σ-sequence is in a unique 01-group.
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Proof. From property (iii) we have two possibilities if ai = 1. In the first possibility

we have that ai−1 = 0, and thus ai+n = 1, so the two possibilities of property (iii) are

mutually exclusive. In this possibility we may use Lemma 4.70 with ai−1 = 0 to find

the 01-group of ai. In the second possibility, we may use Lemma 4.70 with ai+n = 0

to find the 01-group of ai.

Now we let σ(i, k + 1) where k = 2n be the number of σ-sequences of length k + 1

with a1 = i.

Lemma 4.73. σ(n, k + 1) = 2.

Proof. If a1 = n in a sequence, then by property (vi) we may consider a rotation of

〈aj〉 such that an = n. Repeatedly applying property (iv) we may show that 1 ≤ i ≤ n
that ai = i. For 2 ≤ i ≤ n we have that ai > 1 and hence we have a block of n− 1

consecutive numbers not in a 01-group. Therefore, the only 01-group that can be in

the sequence is 01 . . .︸︷︷︸
n−1

1 . . .︸︷︷︸
n−1

. As a1 = 1, and each occurrence of a 1 is in a 01-group,

we must have that this 01-group is in our sequence and no other 01-group is in our

sequence. We may now rotate our sequence again so that a1 = 0. Now repeatedly

applying property (iv) noting that all unknown ai satisfy ai > 1 we may deduce that

ai+1 = i and an+1+i = i for all 2 ≤ i ≤ n, and this is the only σ-sequence containing n

up to rotation. Finally, we note that there are two distinct rotations of this sequence

such that a1 = n, giving us that σ(n, k + 1) = 2.

Lemma 4.74. σ(0, k + 1) ≥ 3.

Proof. For n ≥ 3, we consider the σ-sequence with a1 = a2 = a3 = 0,

a4 = an+2 = an+3 = an+4 = 1 and a3+i = an+3+i = i for 2 ≤ i ≤ n− 2. This sequence

may be rotated in to give a1 = 0 in three different ways. Hence, in this case we have

σ(0, k + 1) ≥ 3.

For n = 2 we consider the σ-sequences 00111, 01110 and 01212 to see that

σ(0, k + 1) ≥ 3.

Lemma 4.75. σ(i, k + 1) < σ(i− 1, k + 1) for 1 < i ≤ k.

Proof. Consider the map φ which takes a σ-sequence a1a2 . . . ak+1 to ak+1a1a2 . . . ak.

If a1 = i then ak+1 = i− 1 by property (iv), so we see φ is an injective map from

σ-sequences starting with i to those starting with i− 1. Hence, to show that

σ(i, k+ 1) < σ(i− 1, k+ 1) we need only find a σ-sequence with a1 = i− 1 and a2 6= i.
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For i ≤ n− 1, the sequence a1 = 0, a2 = an+2 = 1, ai+1 = 0, ai+2 = ai+k+2 = 1 and all

other aj satisfying aj = aj−1 + 1 is a σ-sequence with ai = i− 1 and ai+1 = 0 6= i.

Therefore, by property (vi), we can take a rotation of a1a2 . . . ak+1 such that

a1 = i− 1 and a2 6= i.

For i = n we consider the sequence a1 = 0, a2 = an+2 = 1, an−1 = 0, an = 1 and

ak+1 = 1, and all other aj satisfying aj = aj−1 + 1. We see this is a σ-sequence in

which ak = i− 1, and ak+1 = 1 6= i. Hence again by property (vi) we take a rotation

of this σ-sequence with a1 = i− 1 and a2 = 0 6= i.

We now introduce a lemma concerning paths of length k rather than k + 1, this will

become useful to show that an automorphism of Γk fixing e cannot interchange π0 or

πn with any other πi.

Lemma 4.76. If p is a closed path of length k, no rule πi where 0 < i < n may occur

in p.

Proof. Suppose that p is a path of length k containing some rule πi with 0 < i < k.

We may rotate p as necessary to consider such a path in which p1 = πi. Now consider

the trail starting with the right arrow of p1 = πi. This arrow maps forward (n− 1) + i

spaces. If this trail contains another right arrow, then the total distance mapped

forward is at least 2(n− 1) + 1 > k − 2, but the total distance mapped backwards by

the trail is at most k − 2. Therefore this trail cannot contain another right arrow.

Therefore, this trail must contain a left arrow. This can only happen after the first j

such that (p2p3 . . . pj)(k) = 1, but we know that each pi maps the trail backwards one

space, and hence this first happens for j = k, leaving no space for a left arrow in the

trail.

Finally, we combine these lemmas to prove the following theorem.

Proposition 4.77. The Gómez graph Gd = GG(d, k) = WG(Πk, d) satisfies

Aut(Gd) = Sd.

Proof. Again we apply Proposition 4.30. We have shown that in the alphabet fixing

subgraph Γk of WG(Πk, d) that the paths of length k + 1 from e to e correspond to

σ-sequences. From Lemma 4.75 we see that for 1 ≤ i < j < n there are more paths of

length k from πi to e than there are from πj to e, so πi and pij satisfy condition (i) of

Proposition 4.30. For π0 and πn we have that π0 is a k-cycle and πn is two n-cycles,

so we must have πk0 = πkn = e. From Lemma 4.76 we know that there is no path of

length k − 1 from πi to e for 0 < i < n. Therefore, for 0 < i < n and j ∈ {0, n} we
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have that πi and πj satisfy condition (i) of Proposition 4.30. For πn from Lemma 4.73

we have that there are two paths of length k from πn to e, and for π0 from

Lemma 4.74 we have that there are at least three paths of length k from π0 to e, so π0

and πn satisfy condition (i) of Proposition 4.30. Therefore, for any 0 ≤ i, j ≤ n where

i 6= j we have that πi and πj satisfy condition (i) of Proposition 4.30.

Finally, from Lemma 4.73, Lemma 4.74 and Lemma 4.75 we have that there are

always at least two paths of length k from any πi to e. As a result we see each πi

satisfies condition (ii) of Proposition 4.30.

4.10 Problems In Other Cases

In our treatment of the Gómez graphs we have been careful to provide a definition of

the Gómez graphs which only covers the extremal Gómez graphs for given degree and

diameter. However, in the work in which the Gómez graphs originally appeared

additional graphs were also allowed in the definition. These additional graphs

corresponding to the following word graphs in our notation

GGE(d, k, c) = WG(Πk,c, d− bk/2c − c) where Πk,c = {π0, π1, π2, . . . , πbk/2c+c}, and

πi = (1 2 . . . (bk/2c − i+ c+ 1))((bk/2c − i+ c+ 2) . . . k). Informally we may think

of GGE(d, k, c) as being the Gómez graph GG(d, k) of degree d and diameter k with c

additional alphabet fixing rules added to the set Πk corresponding to the next c rules

as the divison between the left cycle and right cycle of each rule moves to the right.

When considering these additional graphs, the argument we have given seems

unsatisfying as it is not immediately obvious that it can’t be expanded to cover all of

these graphs. However, we shall now give some computed examples to show that any

attempt to count the same paths in these addtional cases of graphs GGE(d, k, c) for

parameters c > 0 will not serve our purposes. In the following table we give sample

values for numbers of paths of length k from πi to e in the alphabet fixing subgraphs

of GGE(d, k, c). We give the number of paths in the order π0, π1, . . . .

k
2 3 4 5 6

0 2,2 1,2 2,5,3 1,2,4 2,5,13,8
c 1 - 4,5,5 8,11,15,11 4,12,12,12 8,27,35,44,33

2 - - - 16,23,37,37,23 32,47,83,100,83,47

From this table we see that in all cases where we have carried out direct computation

where c > 0 we have can find some πi and πj such that πi 6= πj but the number of

paths from πi to e is equal to the number of paths from πj to e. This problem cannot
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be resolved to allow us to apply the same methods we used to address the case where

c = 0.

In addition, this table highlights the interesting case of c = d 1e+ 1. In this case, we

see that the number of closed paths of length k + 1 starting with each πi is equal to

the number of closed paths of length k + 1 starting with each πn−i. We shall provide

an informal proof to show that this difficulty cannot be overcome to make any path

counting argument work in this case.

Consider the special case of k = 8 and c = 3. In this case, we have the rules

π0, π1, π2, π3, π4, π5, π6 and π7 as follows.

π0

π1

π2

π3

π4

π7

π6

π5

Now consider the closed path π2π3π7π7π0π1π2π3π2 and note that if we rotate this

path by 180 degrees and reverse the arrows we get another closed path.

π2

π3

π7

π7

π0

π1

π2

π3

π2

π6

π5

π6

π7

π0

π1

π1

π5

π6

Like this from the closed path π2π3π7π7π0π1π2π3π2 we can derive the closed path

π6π5π6π7π0π1π1π5π6.

As indicated by this example, we have that closed paths of a given length beginning

with π2 are in bijective correspondence with closed paths of the same length

beginning with π6, so we cannot consider paths of any length to rule out

automorphisms mapping π2 to π6 or more generally mapping πi to πk−1.
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Chapter 5

Background to Regular Maps

5.1 Definition

In the second half of our work we shall consider problems in the study of regular maps.

The study of regular maps was first formalised by Jones and Singerman in [33] and

later by Bryant and Singerman in [9]. We shall begin here by defining regular maps.

First we need to define a surface. In our context, a surface will be a connected

Hausdorff topological space in which every point has an open neighbourhood

homeomorphic to the unit open disc.

We now define an embedding of a graph into a surface. The graphs we consider will be

restricted to connected undirected graphs containing no semi-edges but possibly

containing loops and multi-edges. An embedding of a graph G on a surface S shall

mean a function ϑ with the following properties. The domain of ϑ shall be contained

in V(G)×V(G)× E(G)× [0, 1] and the image of ϑ shall be contained in S. We

require the following properties.

i) For u, v ∈ V(G) and any u′ ∼ v′ ∈ E(G) such that {u, v} 6= {u′, v′} we have that

ϑ(u, v, u′ ∼ v′, r) is not defined for any r ∈ [0, 1].

ii) For u, v ∈ V(G) and u ∼ v ∈ E(G) we have ϑ(u, v, u ∼ v, r) = ϑ(v, u, u ∼ v, 1− r)
for all r ∈ [0, 1].

iii) For all u ∈ V(G) there is some su ∈ S such that for any v ∈ V(G) such that

u ∼ v we have ϑ(u, v, u ∼ v, 0) = ϑ(v, u, u ∼ v, 1) = su. We shall call su the

embedding of the vertex u in S.

iv) For u, v ∈ V(G) the map ϑ(u, v, u ∼ v, r) is continuous for r ∈ [0, 1].

v) For u, v, u′, v′ ∈ V(G), u ∼ v, u′ ∼ v′ ∈ E(G) and r, r′ ∈ (0, 1) we have

ϑ(u, v, u ∼ v, r) = ϑ(u′, v′, u′ ∼ v′, r′) if, and only if, u ∼ v = u′ ∼ v′ and either

u = u′, v = v′ and r = r′ or u = v′, v = u′ and r = 1− r′. Informally this means

that the images of edges of G do not cross over.

vi) Each connected component of S \ Im(ϑ) is homeomorphic to the unit open disc.
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We may now define a map M as a surface S, which we call the supporting surface of

M ; a graph G, which we call the underlying graph of M ; and an embedding ϑ which

satisfies the above rules, which we shall call the embedding of G in S. We shall call

each of the connected components of S \ Im(ϑ) the faces of the map.

Now that we have defined the notion of a map we shall define symmetries of maps in

order to allow us to define regular maps. Informally, we think of a symmetry of a map

as being some form of automorphism from the map to itself which preserves the key

structure of the map. Hence, in order to define regular maps we now define the

barycentric subdivision of a map.

For a given map M with supporting surface S, graph G and embedding ϑ, we define a

new map M b as follows. The map M b shall be defined on the same supporting surface

S, but for a different graph Gb and embedding function ϑb. First, for each edge

u ∼ v = e ∈ E(G) we introduce a new vertex we and replace the edge e in G with the

two edges u ∼ we and we ∼ v in Gb. We also alter ϑb so that

ϑb(we, u, we ∼ u, 0) = ϑ(u, v, u ∼ v, 1/2), i.e. we embed we half way along the previous

edge u ∼ v, and we define ϑb(u,we, u ∼ we, r) = ϑ(u, v, u ∼ v, r/2) and

ϑb(we, v, we ∼ v, r) = ϑ(u, v, u ∼ v, r/2 + 1/2) for r ∈ [0, 1]. Next, for every face of M

we introduce a vertex wf which we embed at an arbitrary point in the face. For every

vertex u and edge e of G incident to the face we connect the vertex u and vertex we to

wf via an arbitrary line satisfying the above properties. This defines the map M b. We

shall refer to each of the faces of the map M b, which is made from a mutually incident

vertex, edge, face triple of M , as a flag of M . Further, we choose to not consider the

case of regular maps for which there may be two flags corresponding to the same face,

edge, vertex triple (which occurs when the same face is incident to both sides of the

same edge). For simplicity we consider these cases degenerate. We shall denote the

set of all flags of M as F(M) and simply refer to it as the flag set of M .

We now define the notions of adjacencies of flags. As mentioned previously, flags of M

are in bijective correspondence with mutually incident vertex, edge, face triples of M .

Hence, we may denote a flag as 〈v, e, f〉 where v, e and f are a vertex, edge and face

respectively which are mutually incident. For two flags a = 〈va, ea, fa〉 and

b = 〈vb, eb, fb〉 we shall say the following.

i) a and b are adjacent along an edge if ea = eb and fa = fb but va 6= vb;

ii) a and b are adjacent through a corner if va = vb and fa = fb but ea 6= eb;

iii) a and b are adjacent across an edge if va = vb and ea = eb but fa 6= fb.
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We notice that an arbitrary flag f of M is adjacent to exactly one other flag for each

of the possible adjacencies. We are now in a position to define automorphisms of a

map M . An automorphism of a map M is any function φ : F(M)→ F(M) such that

for all f, f ′ ∈ F(M) any adjacencies of f and f ′ in M are the same as those of φ(f)

and φ(f ′) in M . Further, we require that φ is a bijection.

We now make the observation that any automorphism φ of a map M on a connected

surface S with a finite flag set F(M) is uniquely defined by its action on a single flag

of f ∈ F(M). This follows from the fact that for a flag f , there are unique flags f0, f1

and f2 adjacent to f along an edge, through a corner and across an edge, and hence if

φ(f) = f ′ the fact φ preserves these adjacencies respectively uniquely determines

φ(f0), φ(f1) and φ(f2). Now applying this same argument with f0, f1 and f2 in place

of f and noting that M is connected and has only finitely many flags we get the result.

Hence we may now define a regular map. Informally, we want a regular map to be a

map with the highest degree of symmetry possible. In order to avoid trivial

symmetries, we shall require that a regular map is supported on a connected surface.

With this restriction, and the previous observation, we see that the highest degree of

symmetry possible is that the automorphism group of a regular map acts transitively

on its flag set. Hence we define a regular map as a map whose group of

automorphisms acts transitively on its flag set. We note that as the automorphisms of

a map are uniquely determined by their action on a single flag in its flag set, we have

that the automorphisms of a regular map are in bijective correspondence with its flags.

Now let M be a regular map with flag set F(M). Let f ∈ F(M) and let

x, y, z ∈ Aut(M) be the automorphisms of M which map f to its neighbours adjacent

along an edge, through a corner and across an edge respectively. We note that this

means that x, y and z are involutions. We now argue that we must have

〈x, y, z〉 = Aut(M). To show this, we must show for any flag f ′ ∈ F(M) the

automorphism of M which maps f ′ to f is in 〈x, y, z〉. Letting f ′ ∈ F(M) be an

arbitrary flag of M , let k be the smallest number such that there is a sequence of flags

f = f0, f1, f2, . . . , fk = f ′ such that each fi and fi+1 are adjacent. The existence of

said k is clear from connectivity of the supporting surface and finiteness of the flag

set. We now prove that the automorphism mapping f ′ to f is in 〈x, y, z〉 for each k by

induction. For k ≤ 1 the result is immediate. Now, for k = c+ 1 with the result for

k = c, let h ∈ Aut(M) be the automorphism of M mapping f ′ to f , and let

g ∈ Aut(M) be the automorphism of M mapping fc to f . By the inductive

hypothesis we have g ∈ 〈x, y, z〉. As f ′ is adjacent to fc we must have that g−1(f ′) is

adjacent to g−1(fc) = f , hence for some r ∈ {x, y, z} we have r(g−1(f ′)) = f and so

h−1 = g−1 ◦ r ∈ 〈x, y, z〉.
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Hence we have now shown the first important fact about regular maps. Letting M be

a regular map, we have that there are x, y, z ∈ Aut(M) such that

Aut(M) = 〈x, y, z|x2 = y2 = z2 = (xy)2 = (yz)k = (zx)l = · · · = e〉.

We shall refer to the integer k as the face length or face order and the integer l as the

vertex degree or vertex order.

Conversely, for a given group G with group presentation of the form

G = 〈x, y, z|x2 = y2 = z2 = (xy)2 = (yz)k = (zx)l = · · · = e〉,

we can also construct a regular map M with flags corresponding to each of the group

members of G. The adjacencies of the flags of M may be inferred as follows: the flag

corresponding to x is adjacent to e across an edge; the flag corresponding to y is

adjacent to e through a corner and the flag corresponding to z is adjacent to e through

an edge. Then, in general, the flag corresponding to group member g is adjacent to h

across an edge if h = g−1xg. Corresponding rules exist for the remaining two types of

adjacency. It can be shown that this definition allows a regular map to be uniquely

defined corresponding to a group G with identified members x, y and z, and that

further the corresponding map M satisfies Aut(M) ∼= G. Hence, the study of regular

maps can be pursued by studying groups with presentation of the above form.

5.2 Regular Maps by Type

In this section we shall provide a simple, but key result about regular maps. We shall

also provide a simple partition of regular maps into three types, in which we may

classify all regular maps of the first two types and hence we shall concern ourselves

with the study of regular maps of only the third.

Letting M be a regular map on a supporting surface S, the Euler characteristic

formula tells us that if S is divided into faces by any graph G as we have described

(regular or not), then there is some number χS such that f − e+ v = χS , where f is

the number of faces M is divided into by G, e is the number of edges of G and v is

the number of vertices of G. This number χS is invariant for S and independent of

the choice of graph G, and is called the Euler characteristic of S.

Now, for a given regular map M with automorphism group Aut(M) = 〈x, y, z〉 where

x is an involution along an edge, y is an involution across an edge and z is an

involution through a corner, we can calculate the numbers f , e and v as follows. Each
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face in a regular map contains the same number of flags from the flag set, and if k is

the face length of M then the number of flags per face is 2k. The total number of

flags in the regular map is equal to the size of the automorphism group of M , so the

number of faces in the regular map is given by |G|/2k. Further, we can find k as the

order of the element yz in Aut(M), hence f = |G|/2k = |G|/2|〈yz〉|. By similar

reasoning we find that the number of edges in M is e = |G|/4 = |G|/2|〈xy〉| and the

number of vertices in M is v = |G|/2l = |G|/2|〈zx〉|. Hence, for a given surface S we

have the following formula

|G|/2k − |G|/4 + |G|/2l = χS .

Rearranging, we get

|G|(1/k − 1/2 + 1/l)/2 = χS ⇔ |G| = 2χS/(1/k − 1/2 + 1/l).

We shall consider the following three cases.

i) 1/k + 1/l > 1/2,

ii) 1/k + 1/l = 1/2,

iii) 1/k + 1/l < 1/2.

Regular maps in case (i) are called spherical. For k, l ≥ 3 the only solutions for

1/k + 1/l > 1/2 are (k, l) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}. In this case from

|G| = 2χS/(1/k − 1/2 + 1/l) we must have that χS > 0, and as χS ≤ 2 is an integer

this gives us χS = 2 or χS = 1. The only surfaces with χS = 2 or χS = 1 are the

sphere and the projective plane respectively. In each of these cases we may find the

size of the group G and classify all possible regular maps with these parameters. For

the remaining cases where at least one of k or l is 2 there are four readily classifiable

infinite classes of regular map on the sphere and on the projective plane.

Regular maps in case (ii) are called Euclidean. These maps satisfy 1/k− 1/2 + 1/l = 0

and hence are supported on surfaces S for which χS = 0. The surfaces S where

χS = 0 are the Euclidean plane, the torus and the Klein bottle. The parameters k

and l for which 1/k + 1/l = 2 are (k, l) ∈ {(3, 6), (4, 4), (6, 3)}. The regular maps in

this category on the Euclidean plane are regular tilings by hexagons, squares and

triangles, and the regular maps in this category on the torus are quotients of the

regular maps on the whole plane, and are readily classifiable. Further, there are no

regular maps on the Klein bottle, we refer to [17] and [49] for proofs of this fact.
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Finally, the regular maps in case (iii) are called hyperbolic. This forms the most

interesting case of regular maps and shall be the primary focus of our attention. In

this case we have 1/k − 1/2 + 1/l = −α for some rational α > 0. We have

χS = −α|G|/2 < 0, hence all hyperbolic regular maps are supported on surfaces with

negative Euler characteristic. Further, for a given surface S of negative Euler

characteristic we also see any regular map supported on S must be hyperbolic. From

the expression |G| = −2χS/(1/2− 1/k − 1/l) we see that |G| is at a maximum when

1/2− 1/k − 1/l is at a minimum. Trivial analysis will show that 1/2− 1/k − 1/l is at

a minimum for (k, l) = (3, 7) or (7, 3), giving 1/2− 1/k − 1/l = 1/42, and so

|G| = −84χS . Altogether this shows that for a given surface S of negative Euler

characteristic χS there are at most finitely many regular maps supported on S

corresponding to groups of size no greater than −84χS .

From this initial argument we find a potential classification strategy for regular maps

in which regular maps are classified by the Euler characteristic of their supporting

surfaces. Indeed, this has been done in the spherical and Euclidean cases and in the

hyperbolic case for each Euler characteristic there are only finitely many regular

maps. To this end, all regular maps for given small negative Euler characteristic have

been classified by Conder in the online lists [14] and [13]. Further, other efforts have

been made to understand, characterise and classify regular maps for certain special

negative Euler characteristic, such as the classification of regular maps on negative

prime Euler characteristic by D’Azevedo, Nedela and Širáň in [19].

5.3 External Symmetries

We have seen that a regular map is a map possessing as large a possible

automorphism group for a given size of flag set. However, it is also possible for a

regular map to possess further external symmetries, which are automorphisms of the

automorphism group itself. We shall now define two dual operators on regular maps

from which we may define two external symmetries of regular maps which we will be

particularly interested in.

First, we define the dual of a regular map. Informally, the dual of a regular map is

formed by interchanging the role of the vertices and faces of a regular map. Formally,

in our definition of a regular map M with barycentric subdivision M b, this

interchange of roles is equivalent to exchanging the roles of the vertices wv and wf , we

may then obtain a new regular map N , the dual of M , denoted D(M), by taking each

wf to be the vertices of N , and the paths wf ∼ we ∼ wf ′ to be the edges in N . We

note from this method of construction it is trivial that M and its dual share the same
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flag set, and thus the same automorphism group.

Now suppose that M and N are a regular map and its dual both on the same flag set

F(M). For each of M and N fix some flag f ∈ F(M) and denote by xM , yM and zM

the automorphisms of M gained by mapping f to a flag adjacent along an edge,

through a corner and across an edge of M respectively; and xN , yN and zN to be

automorphsims of N mapping f to a flag adjacent along an edge, through a corner

and across an edge of N respectively. As we have shown before, this gives us

Aut(M) = 〈xM , yM , zM 〉 and Aut(N) = 〈xN , yN , zN 〉.

From the construction of the dual of a regular map we have the further property that

there is a unique isomorphism φ : Aut(M)→ Aut(N) satisfying φ(xM ) = yN ,

φ(yM ) = xN , φ(zM ) = zN and φ(gh) = φ(g)φ(h) for all g, h ∈M . Hence we may

think of the dual of a regular map M in terms of interchanging the roles of x and y in

its automorphism group.

We will now further call a map self dual if it is isomorphic to its dual. We note that

this isomorphism implies that the function φ described above satisfies that

φ : Aut(M)→ Aut(M) and φ is non-trivial. We shall call any ψ ∈ Aut(Aut(M)) an

external automorphism of M , and hence the property of being self dual can be seen as

having a particular non-trivial external symmetry of the automorphism group.

The second operator we will be interested in will be the Petrie dual of a regular map.

The definition of the Petrie dual is more involved than what we have encountered

thus far, and so we shall satisfy ourselves with an informal description of the Petrie

dual and an equivalent formal description of the automorphism of the group of the

regular map.

For a regular map M on supporting surface S we can create the Petrie dual of M as

follows. Consider an arbitrary vertex v and edge e of M such that v is incident to v,

and pick a face f such that f is incident to e. We describe a path along the surface S

of M . We start this path from a point on f close to v and move in the direction of e

close to e. When we approach the midpoint of e, we turn and cross over the edge e

onto the face f ′ of M adjacent to f through e. We then continue the path in the same

direction along e approaching the vertex v′ of M which is connected to v by the edge

e. The path is continued along e until we get close to v′. We now continue creating

the path in the same way, but this time with respect to the vertex v′, face f ′ and the

edge e′ which is the only edge of M adjacent to f ′ and v′ other than e. Eventually,

this path will arrive back at v, where we connect to the start to form a loop. This
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path is called the Petrie dual walk or Petrie walk of M , which is unique to

isomorphism due to the regularity of M . We shall call the number of edges crossed in

the path the Petrie dual walk length of M , or the Petrie dual order.

We continue creating the Petrie dual of M by considering the all Petrie walks of M

starting from each mutually incident face, vertex, edge triple. For each Petrie walk we

consider “cutting” along the walk and creating a new face along the walk. Further, at

each crossing point in the centre of an edge rather than have the two Petrie walks

along either side of the edge meet we instead add a twist so that the two paths form a

half helix with one another. The new shape that we create is then itself a regular

map. We shall call this regular map the Petrie dual of M , denoted P(M).

Equivalent to our given definition of the Petrie dual is the characterisation of the

Petrie dual as an external symmetry of a map M . Let M be an arbitrary regular

map, and let N = P(M) be its Petrie dual. Let x, y and z be the involutions gained

by mapping some arbitrary fixed flag f to a flag adjacent along an edge, through a

corner and across an edge respectively, as before, such that Aut(M) = 〈xM , yM , zM 〉
and Aut(N) = 〈xN , yN , zN 〉. We now have that the function φ : Aut(M)→ Aut(N)

given by φ(xM ) = xNyN , φ(yM ) = yN , φ(zM ) = zN and φ(gh) = φ(g)φ(h) is an

isomorphism from Aut(M) to Aut(N). In the case that N is isomorphic to M we call

M self Petrie dual, and in this case we see that φ is an automorphism of the

automorphism group of the regular map M , i.e. an external symmetry.

In light of this view of automorphism group in terms of the Petrie dual we shall

expand our notation of a (k, l)-regular map where k is the face length and l the vertex

degree to (k, l,m)-regular maps where k and l are as before and m is the Petrie dual

walk length. In this case, we will call k, l and m the face, vertex and Petrie orders to

be concise. Now, recall that a (k, l)-regular map M has a group presentation of the

form

〈x, y, z|x2 = y2 = z2 = (xy)2 = (yz)k = (zx)l = · · · = e〉.

Now we note from the previous that the face length of the Petrie dual P(M) of M is

the order of the element zxy. Further, the face order of P(M) is the Petrie order of

M . Hence, a (k, l,m)-regular map has a group presentation of the form

〈x, y, z|x2 = y2 = z2 = (xy)2 = (yz)k = (zx)l = (zxy)m = · · · = e〉.
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5.4 Problems

The research into regular maps covers many different sub areas focusing on particular

problems of interest. Most notably for our purposes are the existence problems and

the classification problems. We have already seen that classification of regular maps

on given supporting surfaces is one approach to classification of regular maps.

In our work we shall consider two problems in regular maps as follows.

i) For every triple k, l,m ∈ N such that each pair is hyperbolic does there exist a

finite (k, l,m)-regular map?

ii) For which k ∈ N do there exist finite regular maps of degree k which are both self

dual and self Petrie dual?

Problem (i) represents a new direction of research in considering regular maps. The

problem was originally proposed by Širáň at the Symmetries of Surfaces, Maps and

Dessins workshop in Banff, September 2017 (for which no written record exists). We

shall provide some initial results towards answering this question. The method by

which we shall address this question will be to construct regular maps for given

(k, l,m) triples. The question of when there exist (k, l,m)-regular maps is related to

the study of groups of a particular form first studied by Coxeter. The (k, l,m)-regular

maps are exactly the smooth quotients of these groups. Further to this question one

may consider the possible classification of all (k, l,m)-regular maps for a given triple

(k, l,m). We shall comment on the connection between our work and this question,

and the relationship to the groups of Coxeter.

Problem (ii) is already solved in the case that k is even by an explicit construction of

a self dual and self Petrie dual regular map. The proof is available in the Final

Report of the Symmetries of Surfaces, Maps and Dessins workshop in Banff [15]. We

shall approach the case that k is odd with an unrelated construction of self dual and

self Petrie dual regular maps for all k except for a finitely computable set of

exceptional cases.
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Chapter 6

Regular Maps of Given Face, Vertex

and Petrie Orders

6.1 Introduction

In this chapter we shall study the question of for which triples k, l,m ∈ N there exist

(k, l,m)-regular maps. We shall focus on the case of each pair of k, l,m being

hyperbolic. We shall attempt a direct construction of a (k, l,m)-regular map for a

given triple, following the construction of Wilson in [51], and the approach of Jones,

Mačaj and Širáň in [34]. The approach we take is as follows.

i) From the classification of regular maps in fractional linear groups which may be

taken from [16] we extract generator matrices for regular maps with given face

and vertex orders;

ii) The Petrie dual order of the above maps may then be derived. Specifying the

Petrie dual order of these maps can then be expressed as a further condition;

iii) We then express the simultaneous conditions of finding a regular map with a

given face, vertex and Petrie order as being equivalent to finding a root to a

polynomial in an arbitrary finite field of a given order;

iv) Analysis of the final condition will allow us to say exactly when roots of

particular orders exist.

The work necessary to derive these conditions and analyse the related problem in

finite fields is lengthy and abstract. Further, it is the result of generalising more

intuitive arguments which solve sub problems of the original problem. Hence, we shall

present the approach in a chronological order including results and methods later

superseded. We choose this approach for a more clear and transparently motivated

exposition.
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6.2 Regular Maps in Fractional Linear Groups

We begin our construction of hyperbolic (k, l,m)-regular maps for given triples

k, l,m ∈ N by deriving conditions on when such maps exist in fractional linear groups.

6.2.1 Summary of Regular Maps in Fractional Linear Groups

First, we summarise the classification of regular maps over fractional linear groups

which can be extracted from the paper [16] of Conder, Potočnik and Širáň classifying

regular hypermaps over the same groups. In the classification we shall also get

explicit forms for generator matrices for these groups which will be especially useful in

our work.

In the first half of this section, we assume that p is an odd prime and let K be an

algebraically closed field of characteristic p. We first define the following matrices in

SL(2,K) which we shall use throughout. In the following we use ξn to denote an nth

root of unity, and ωn to denote an element of the form ξn + ξ−1
n .

X1 = η1β1

 D1 ω2lξ2kD1

−ω2lξ
−1
2k −D1

 , Y1 = β1

 0 ξ2kD1

ξ−1
2k 0

 , Z1 = β1

0 D1

1 0

 ,

where η1 = (ξ2k − ξ2k)
−1, β1 = −1/

√
−D1, D1 = ω2

2k + ω2
2l − 4.

X2 = β2

0 ω2
2l

1 0

 , Y2 = η2β2

ω2
2l 2ω2

2l

−2 −ω2
2l

 , Z2 = β2

 0 ξ2lω
2
2l

ξ−1
2l 0

 ,

where η2 = (ξ2l − ξ−1
2l )−1, β2 = −1/

√
−D2 D2 = ω2

2l.

X3 = α

1 0

2 −1

 Y3 = α

1 −1

0 −1

 Z3 = α

1 0

0 −1

 .

where α2 = −1.

Further, we define the groups Gn ≤ SL(2,K) and their projections Gn ≤ PSL(2,K)

as follows.

G1(ξ2k, ξ2l) = 〈X1, Y1, Z1〉, G1(ξ2k, ξ2l) = 〈X1, Y 1, Z1〉,

G2(ξ2l) = 〈X2, Y2, Z2〉, G2(ξ2l) = 〈X2, Y 2, Z2〉,

G3 = 〈X3, Y3, Z3〉, G3 = 〈X3, Y 3, Z3〉.
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Likewise, the regular map generated by X1, Y 1, Z1 ∈ G1(ξ2k, ξ2l) shall be called

M1(ξ2k, ξ2l) etc. We note that in each case we have M = 〈X,Y , Z〉 where

ord(X) = ord(Y ) = ord(Z) = 2, ord(XY ) ∈ {k, p} and ord(Y Z) ∈ {l, p}. We now

state the key results we shall use.

Theorem 6.1 (Conder, Potočnik, Širáň). A hyperbolic (k, l)-regular map M has

automorphism group a fractional linear group over a field of characteristic p if, and

only if, one of the following cases occurs

Case (i) p - k, l and there are some ξ2k, ξ2l such that D1 6= 0 and M ∼= M1(ξ2k, ξ2l);

Case (ii) k = p - l and there is some ξ2l such that D2 6= 0 and M ∼= M2(ξ2l);

Case (iii) k = l = p and M ∼= M3.

We now give the corresponding theorem for the case of p = 2. As no hyperbolic pairs

k, l have k = 2 or l = 2, we only have to consider one case when p = 2. We define the

following matrices.

X4 = η4β4

 D4 ωlξkD4

ωlξ
−1
k D4

 , Y4 = β4

 0 ξkD4

ξ−1
k 0

 , Z4 = β4

0 D4

1 0

 ,

where η4 = (ξk + ξ−1
k )−1, β4 = 1/

√
D4, D4 = ω2

k + ω2
l .

Further we define the corresponding G4(ξk, ξl) and M4(ξk, ξl). In this case we have

PSL(2,K) ∼= SL(2,K), hence do not define G4. We now have the corresponding

theorem.

Theorem 6.2 (Conder, Potočnik, Širáň). A hyperbolic (k, l)-regular map M has

automorphism group a fractional linear group of character 2 if, and only if, 2 - k, l

and there exist some ξk, ξl such that D4(ξk, ξl) 6= 0 and M ∼= M4(ξk, ξl).

6.2.2 Equivalent Conditions

In this section we shall derive equivalent conditions for the existence of

(k, l,m)-regular maps in fractional linear groups. We shall first begin with some

lemmas.

In the following, for any n we shall write ξn and ξ2n to denote primitive roots of order

n and 2n respectively which satisfy the relationship ξn = ξ2
2n. If we fix ξ2n then we
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may simply take ξn = ξ2
2n and we are done. However, if instead we fix some ξn we

must show that an appropriate choice of ξ2n exists satisfying the relationship.

Lemma 6.3. For any n, if ξn is a primitive root of order n there exists a ξ2n such

that ξ2
2n = ξn.

Proof. Let α,−α be the solutions of x2 = ξn in K. From α2n = ξnn = 1 we have

ord(α) | 2n. If ord(α) = m then we have 1 = α2m = ξmn , so we have n | ord(α) | 2n,

and ord(α) is either n or 2n. We now consider the two cases of whether ord(α) is even

or odd. If ord(α) = 2m for some m is even, then 1 = α2m = ξmn and so m = n and we

may take ξ2n = α. If ord(α) = m is odd then ord(−α) = 2m is even and we may take

ξ2n = −α.

We note that in our notation we shall require for given n that ξn and ξ2n satisfy the

relationship ξn = ξ2
2n. In particular, this relationship is only required when the

subscripts are both expressed in terms of n. If there is some other subscript k not

expressed in terms of n such that we happen to have k = 2n we do not require ξn = ξ2
k.

In the following we let Φn(x) ∈ Z[x] denote the nth cyclotomic polynomial, and

Ψn(x) ∈ Z[x] denote the unique polynomial satisfying xϕ(n)/2Ψn(x+ x−1) = Φn(x).

Lemma 6.4. In K we have ωp = 2 and ω2p = −2.

Proof. In our notation ωn is defined to be a root of Ψn(x). Hence we shall show that

Ψp(x) = (x− 2)(p−1)/2 and Ψ2p(x) = (x+ 2)(p−1)/2 in K. This is a consequence of the

fact that Φp(x) = (x− 1)p−1 and Φ2p(x) = (x+ 1)p−1 in K, and the identity

xϕ(n)/2Ψn(x+ x−1) = Φn(x). Letting f(x) = (x− 2)(p−1)/2 and g(x) = (x+ 2)(p−1)/2

we have

xϕ(p)/2f(x+ x−1) = x(p−1)/2(x+ x−1 − 2)(p−1)/2

= (x2 − 2x+ 1)(p−1)/2 = (x− 1)p−1 = Φp(x),

and

xϕ(2p)/2g(x+ x−1) = x(p−1)/2(x+ x−1 + 2)(p−1)/2

= (x2 + 2x+ 1)(p−1)/2 = (x+ 1)p−1 = Φ2p(x).

Therefore Ψp(x) = f(x) and Ψ2p(x) = g(x).

In the following we make use of the facts that if X ∈ SL(2,K) then ord(X) = n if, and

only if, tr(X) = ω2n for some ω2n ∈ K; and if ord(X) = 2n is even then ord(X) = n.
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Lemma 6.5. For any X ∈ PSL(2,K) with pre-image X ∈ SL(2,K), we have

ord(X) = n if, and only if, tr(X)2 = ω2
2n for some element ω2n ∈ K.

Proof. We shall consider the cases p | n and p - n separately. For p - n, first suppose

that ord(X) = n and X is a pre-image of X. As X is a pre-image of X we have either

ord(X) = n and n is odd or ord(X) = 2n. If ord(X) = 2n then tr(X) = ω2n and we

are done. If ord(X) = n then tr(X)2 = tr(−X)2 = ω2
2n and we are done. Conversely,

if tr(X)2 = ω2
2n then, without loss of generality, we may take tr(X) = ω2n and

tr(−X) = −ω2n, giving ord(X) = 2n and so ord(X) = n.

For p | n suppose that X is a pre-image of X. As X is a pre-image of X we have

either ord(X) = p or ord(X) = 2p. In the first case we have tr(X) = 2 and in the

second case we have tr(X) = −2. Hence, in either case we have tr(X)2 = 4 = ω2
2p.

Conversely, if tr(X)2 = ω2
2p = 4 when tr(X) = 2 or tr(X) = −2, giving ord(X) = p or

ord(X) = 2p respectively. In either case, ord(X) = p.

Lemma 6.6. For any finite field K of characteristic p and fixed ωk, ωl ∈ K there is a

uniquely determined element ω = ξ + ξ−1 such that ωk + ωl + ω + 2 = 0. Further, we

can uniquely define a number m either by m = ord(ξ) = ord(ξ−1) or, if ξ = ξ−1 = 1,

by m = p. In either case, we have that ω is a root of Ψm(x).

Proof. Clearly ω is uniquely defined from ω = −(ωk + ωl + 2). Defining ξ and ξ−1 by

ξ + ξ−1 = ω we see we may rearrange to get ξ2 − ωξ + 1 = 0. Hence, considering the

polynomial f(x) = x2 − ωx+ 1 we see that ξ and ξ−1 are the uniquely determined

roots of f(x) in K.

If ord(ξ) 6= 1 we have that p - ord(ξ) and, letting m = ord(ξ) = ord(ξ−1), we have

Φm(ξ) = 0 and so Ψm(ω) = Ψm(ξ + ξ−1) = ξ−ϕ(m)/2Φm(ξ) = 0. Therefore in this case

we may define m = ord(ξ) = ord(ξ−1) and we have that ω is a root of Ψm.

If ord(ξ) = 1 then we have ξ = ξ−1 = 1. Hence we have ω = 2 and by Lemma 6.4 we

have that Ψp(ω) = 0.

From here onward we will allow ourselves to define ωm to be the unique solution to

the equation ωk + ωl + ωm + 2 = 0 for given ωk and ωl, noting that this also uniquely

defines m, which we take to be p in the special case just outlined.

We now introduce a series of propositions showing the relationship between the maps

M1(ξ2k, ξ2l), M2(ξ2l), M3 and M4(ξk, ξl) as defined above and the length of their

Petrie dual walks.
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Proposition 6.7. For ξ2k, ξ2l ∈ K such that D1(ξ2k, ξ2l) 6= 0 the map M1(ξ2k, ξ2l) is a

(k, l,m)-regular map where m is given by the unique solution to ωk + ωl + ωm + 2 = 0.

Proof. From Theorem 6.1 we know that M1(ξ2k, ξ2l) is a (k, l)-regular map.

Therefore, we simply calculate the Petrie order of M1(ξ2k, ξ2l). The Petrie order of

M1(ξ2k, ξ2l) is given by the order of the element Z1X1Y 1 in G1. Using Lemma 6.5 we

may calculate m = ord(Z1X1Y 1) by calculating tr(Z1X1Y1)2 = ω2m. We calculate

Z1X1Y1 as follows.

Z1X1Y1 = η1β
3
1

0 D1

1 0

 D1 ω2lξ2lD1

ω2lξ
−1
2l −D1

 0 ξ2kD1

ξ−1
2k 0


= −η1β1

ω2lξ
−1
2l −D1

1 ω2lξ2l

 0 ξ2kD1

ξ−1
2k 0

 = −η1β1

−ξ−1
2k D1 ω2lD1

ω2l ξ2kD1

 .

Hence we have tr(Z1X1Y1) = −η1β1(ξ2k − ξ−1
2k )D1 = −D1/

√
−D1. Therefore we have

ω2
2m = −D1 = 4− ω2

2k − ω2
2l, and so ω2

2k + ω2
2l + ω2

2m = 4. Noting that

ω2
2n = (ξ2n + ξ−1

2n )2 = ξn + ξ−1
n + 2 = ωn + 2 we may rearrange this equation to show

ωk + ωl + ωm + 2 = 0. By Lemma 6.6, m is defined by the unique solution to

ωk + ωl + ωm + 2 = 0.

Proposition 6.8. For ξ2l ∈ K such that D2(ξ2l) 6= 0 the map M2(ξ2l) is a

(k, l,m)-regular map where k = p, ωk = ωp and m is given by the unique solution to

ωk + ωl + ωm + 2 = 0.

Proof. We proceed as in the previous proposition. We calculate ω2
2m = tr(Z2X2Y2)2

as follows.

Z2X2Y2 = η2β
3
2

 0 ξ2lω
2
2l

ξ−1
2l 0

0 ω2
2l

1 0

ω2
2l 2ω2

2l

−2 −ω2
2l


= −η2β2

ξ2l 0

0 ξ−1
2l

ω2
2l 2ω2

2l

−2 −ω2
2l

 = −η2β2

 ξ2lω
2
2l 2ξ2lω

2
2l

−2ξ−1
2l −ξ−1

2l ω
2
2l

 .

This gives tr(Z2X2Y2) = −η2β2(ξ2l − ξ−1
2l )ω2

2l = ω2
2l/
√
−ω2

2l. Hence

ω2
2m = tr(Z2X2Y2)2 = −ω2

2l. This gives ω2
2l + ω2

2m = 0. As k = p we have ω2
2k = 4,

giving ω2
2k + ω2

2l + ω2
2m = 4, and so as before ωm is given by the unique solution to

ωk + ωl + ωm + 2 = 0.

Proposition 6.9. The map M3 is a (k, l,m)-regular map where k = l = p,

ωk = ωl = ωp and m is defined by the unique solution to ωk + ωl + ωm + 2 = 0.
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Proof. We calculate ω2
2m = tr(Z3X3Y3)2 as follows.

Z3X3Y3 = α3

1 0

0 −1

1 0

2 −1

1 −1

0 −1


= −α

 1 0

−2 1

1 −1

0 −1

 = −α

 1 −1

−2 1

 .

This gives tr(Z3X3Y3) = −2α and hence tr(Z3X3Y3)2 = −4. Therefore, as

ω2
2k = ω2

2l = 4 we have ω2
2k + ω2

2l + ω2
2m = 4, and so ωm is given by the unique solution

to ωk + ωl + ωm = 2 as previously.

We now deal with the case p = 2.

Proposition 6.10. For ξk, ξl ∈ K such that D4(ξk, ξl) 6= 0 the map M4(ξk, ξl) is a

(k, l,m)-regular map where m is defined by the unique solution to

ωk + ωl + ωm + 2 = 0.

Proof. Lemma 6.5 does not apply in this case. However, for any 2 - n we have

ord(M) = n if, and only if, tr(M) = ωn for M ∈ SL(2,K). Hence, we take

ωm = tr(Z4X4Y4) where m is the Petrie order of M4(ξk, ξl). We calculate Z4X4Y4 as

follows.

Z4X4Y4 = η4β
3
4

0 D4

1 0

 D4 ωlξkD4

ωlξ
−1
k D4

 0 ξkD4

ξ−1
k 0


= η4β4

ωlξ−1
k D4

1 ωlξk

 0 ξkD4

ξ−1
k 0

 = η4β4

ξ−1
k D4 ωlD4

ωl ξkD4

 .

Hence tr(Z4X4Y4) = η4β4(ξk + ξ−1
k )D4 = D4/

√
D4. This gives ω2

m = D4 = ω2
k + ω2

l ,

which is equivalent to ω2
k +ω2

l +ω2
m = 0 so, as squaring is the Frobenius automorphism

in finite fields of characteristic 2, we have ωk + ωl + ωm + 2 = 0 as required.

We now have the groundwork necessary to prove our first important proposition

regarding regular maps in fractional linear groups. The following result is original

work of the author.

Proposition 6.11. There exists a hyperbolic (k, l,m)-regular map in a fractional

linear group of characteristic p if, and only if, there is a solution to the equation

ωk + ωl + ωm + 2 = 0
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in a finite field of characteristic p where, for each n ∈ {k, l,m}, either n = p or p - n,

and we do not have (k, l,m) = (p, p, p).

Proof. The Theorems 6.1 and 6.2 of Conder, Potočnik and Širáň combined with

Propositions 6.7, 6.8, 6.9 and 6.10 shows that if M is a hyperbolic (k, l,m)-regular

map with automorphism group a fractional linear group over a field of characteristic p

then there is a solution to ωk + ωl + ωm + 2 = 0 in a suitable extension of GF(p).

Now, conversely, suppose that we have a solution to ωk + ωl + ωm + 2 = 0 for some

hyperbolic triple k, l,m in a finite field of characteristic p. If p 6= 2, we first define

ξ2k, ξ2l and ξ2m using Lemma 6.3. As k, l,m is a hyperbolic triple we have

ω2
2m 6= ω2

4 = 0. Hence we have ω2
2k + ω2

2l + ω2
2m = 4 and so ω2

2k + ω2
2l − 4 = −ω2

2m 6= 0.

We now consider three cases depending on how many of k and l are divisible by p.

Cise (i) p - k. In this case we have D1(ξ2k, ξ2l) = ω2
2k + ω2

2l − 4 6= 0, so we may use

Theorem 6.1 and Proposition 6.7 to show that M1(ξ2k, ξ2l) is a

(k, l,m)-regular map with automorphism group a fractional linear group.

Ciise (ii) p = k - l. In this case we have D2(ξ2l) = ω2
2l = ω2

2k + ω2
2l − 4 6= 0, so we

may use Theorem 6.1 and Proposition 6.8 to show that M2(ξ2l) is a

(k, l,m)-regular map with automorphism group a fractional linear group.

Ciiise (iii) p = k = l. In this case we may use Theorem 6.1 and Proposition 6.9 to

show that M3 is a (k, l,m)-regular map with automorphism group a

fractional linear group.

Finally, we consider the case where p = 2. In this case, the fact k, l,m is hyperbolic

tells us that p - k, l,m. As 2 - k, l,m we must have ωk, ωl, ωm 6= 0. Hence applying the

Frobenius automorphism to ωk + ωl + ωm + 2 = 0 we have ω2
k + ω2

l = ω2
m 6= 0.

Therefore we have D4(ξk, ξl) = ω2
k + ω2

l 6= 0 and we may apply Theorem 6.2 and

Proposition 6.10 to show that M4(ξk, ξl) is a (k, l,m)-regular map with automorphism

group a fractional linear group.

6.3 Special Cases

We have now established that the existence of (k, l,m)-regular maps in fractional

linear groups is, to the extent of Proposition 6.11, equivalent to the existence of

solutions to the equation

ωk + ωl + ωm + 2 = 0
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in finite fields. Whilst we shall aim for a more general approach later, we shall begin

with some special cases. We start by noting that the numbers ωn have special values

for certain fixed n as listed in the following table.

n 1 2 3 4 6

ωn 2 -2 -1 0 1

One can show that when considered over the complex numbers −2 ≤ ωn ≤ 2 and that

there are no distinct n and n′ such that ωn = ωn′ , so this table is an exhaustive list of

the values of n giving integral values of ωn.

Hence, as we are trying to find hyperbolic (k, l,m)-regular maps, we may consider

fixing k and l as a hyperbolic pair such that ωk and ωl are amongst the special integral

values of ωn. From the above table, we trivially see the only hyperbolic pairs we have

are (k, l) ∈ {(4, 6), (6, 4), (6, 6)}. This gives us the following two distinct equations,

ωm + 3 = 0 and ωm + 4 = 0.

Recalling that ωn = ξn + ξ−1
n we may rearrange these equations as follows,

ξ2
m + 3ξm + 1 = 0 and ξ2

m + 4ξm + 1 = 0.

Hence we see that a solution to ωk + ωl + ωm + 2 = 0 in a field of characteristic p for

k = 4 and l = 6 is equivalent to a root of the polynomial f(x) = x2 + 3x+ 1 of order

m in the same field; and a solution to ωk + ωl + ωm + 2 = 0 for k = 6 and l = 6 is

equivalent to a root of the polynomial g(x) = x2 + 4x+ 1 of order m in the same field.

Hence, we now consider the question of finding roots of f(x) and g(x) of particular

orders in finite fields.

6.3.1 First Case

First we consider the problem of finding roots of f(x) = x2 + 3x+ 1 in arbitrary finite

fields.

Lemma 6.12. If α is a root of f(x) in a finite field K of characteristic p, and f(x)

has distinct roots in K, then ord(α) = ord(x) where x is in the ring (Z /pZ)[x]/〈f(x)〉.

Proof. We consider separately the cases of f(x) being reducible and irreducible in the

field GF(p). First, if f(x) is irreducible in the field GF(p) then the splitting field F of

f(x) over GF(p) satisfies F ∼= (Z /pZ)[x]/〈f(x)〉. Further, if α ∈ F is a root of f(x)

there is an isomorphism φ : F → (Z /pZ)[x]/〈f(x)〉 such that φ(α) = x. Hence, we
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immediately have ord(α) = ord(x).

Now suppose that f(x) is reducible in GF(p), and has distinct roots α and β. First,

we have that (Z /pZ)[x]/〈f(x)〉 = (Z /pZ)[x]/〈(x− α)(x− β)〉, and therefore by the

Chinese Remainder Theorem we have

(Z /pZ)[x]/〈f(x)〉 ∼= (Z /pZ)[x]/〈x− α〉 ⊕ (Z /pZ)[x]/〈x− β〉

as 〈x− α〉 and 〈x− β〉 are distinct ideals of (Z /pZ)[x]. Further, there is an

isomorphism

φ : (Z /pZ)[x]/〈f(x)〉 → (Z /pZ)[x]/〈x− α〉 ⊕ (Z /pZ)[x]/〈x− β〉

such that φ(x) = (x, x). Now, we have an isomorphism ψ : (Z /pZ)/〈x− α〉 → GF(p)

with ψ(x) = α and an isomorphism ψ′ : (Z /pZ)/〈x− β〉 → GF(p) with ψ′(x) = β.

Hence, we see that x ∈ (Z /pZ)[x]/〈f(x)〉 satisfies ord(x) = [ord(α), ord(β)]. Finally,

from the equation f(x) = x2 + 3x+ 1 = (x− α)(x− β) we have that αβ = 1 and

ord(α) = ord(β). This gives ord(x) = [ord(α), ord(β)] = ord(α) as required.

This will allow us to determine the orders of x in (Z /pZ)[x]/〈f(x)〉 for given p to

determine which values of m are possible in our solutions to ωk +ωl +ωm + 2 = 0. We

note that we have ignored the special case that f(x) has a repeated root in GF(p). In

this case, the discriminant ∆f of f(x) must satisfy ∆f = 0 in GF(p). Hence, as when

we consider f(x) over the complex numbers we have ∆f ∈ Z, we must have p | ∆f .

The discriminant of f(x) is given by 32 − 4× 1× 1 = 5, so the only finite field for

which f(x) has a repeated root is GF(5), and we may deal with this case explicitly

and separately from the other cases.

We now define the sequence 〈an〉 by a0 = 0, a1 = 1 and an+1 = −3an − an−1. We

introduce a series of lemmas relating the sequence 〈ai〉 to the value m in

ωk + ωl + ωm + 2 = 0.

Lemma 6.13. For each m > 1 there exists some k > 0 such that an ≡ an+k (mod m)

for all n ∈ Z.

Proof. We have that each an+2 is uniquely defined by an+1 and an, and also that each

an−2 is uniquely defined by an−1 and an. For any choice of modulus m there are only

m2 possible values for adjacent numbers an and an+1 in the sequence, so there must

be some 1 ≤ b, c ≤ m2 + 1 such that ab = ac, ab+1 = ac+1 and b 6= c by the pigeon hole

principle. Now we may prove by induction that ab+i = ac+i for all i ∈ Z, from which

the claim immediately follows.
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For each m we shall call the smallest k with the above property the period of 〈ai〉
mod m.

Lemma 6.14. In (Z /pZ)[x]/〈f(x)〉 we have xn = anx− an−1.

Proof. Letting ax+ b ∈ (Z /pZ)[x]/〈f(x)〉, we have

x(ax+ b) = ax2 + bx = a(−3x− 1) + bx = (−3a+ b)x− a.

We now show by induction that xn = anx− an−1. For n = 1 we have xn = x and

anx− an−1 = a1x− a0 = x, for n = 2 we have xn = x2 = −3x− 1 and

anx− an−1 = a2x− a1 = −3x− 1. Hence, we show xk+1 = ak+1x− ak given the result

for n = k. We have

xk+1 = x(xk) = x(akx− ak−1) = (−3ak − ak−1)x− ak = ak+1x− ak.

The result immediately follows.

We now relate the series 〈ai〉 to the Fibonacci numbers 〈fi〉 given by f0 = 0, f1 = 1

and fn+1 = fn + fn−1.

Lemma 6.15. For all n ≥ 0 we have an = (−1)n+1f2n.

Proof. We proceed by induction. For n = 0 we have a0 = 0 and f0 = 0, and for n = 1

we have a1 = 1 and f2 = 1. Now, for ak+1 given the hypothesis for all n ≤ k, we have

ak+1 = −3ak − ak−1 = −(−1)k+13f2k − (−1)kf2k−2 = (−1)k(3f2k − f2k−2)

= (−1)k(2f2k + f2k−1) = (−1)k(f2k+1 + f2k) = (−1)k+2f2k+2.

The result follows immediately.

Now we see from Lemma 6.14 that the order of x in (Z /pZ)[x]/〈f(x)〉 is the period of

the sequence 〈ai〉 and from Lemma 6.15 we have derived a relationship between the

sequence 〈ai〉 and the Fibonacci numbers 〈fi〉. For the following, let 〈bi〉 be a

sequence defined by b0 = 0, b1 = 1 and bn+2 = αbn+1 + βbn. We define the apparition

modulo m of 〈bi〉 as the smallest k > 0 such that bk ≡ 0 (mod m). For any sequence

〈bi〉 we have the following properties.

Lemma 6.16. If the apparition of 〈bi〉 is k modulo m, then for all n > 0 we have

bn ≡ bbn/kck+1 bn′ (mod m) where 0 ≤ n′ < n and n′ ≡ n (mod k).
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Proof. For n < k we have bn/kc = 0 and n′ = n, and the result is trivial. For

n = k + j for some 0 ≤ j < k we have bn/kc = 1 and n′ = j. In this case our claim is

bn = bk+1bj . As the apparition of bi modulo m is k, we have bk = 0, so we have

bk+2 = αbk+1 + βbk = bk+1(αb1 + βb0). By induction we may show that

bk+i = bk+1(αbi−1 + βbi−2). Finally we may proceed by induction on bn/kc to show

the result.

Corollary 6.17. In the sequence 〈bi〉 we have bi ≡ 0 (mod m) if, and only if, i = αk

where k is the apparition of 〈bi〉 modulo m and α ∈ Z.

Lemma 6.18. If the apparition of bi modulo a prime p is k, then the period of bi

modulo p is k ord(bk+1) where ord(bk+1) is the multiplicative order in GF(p).

Proof. This follows directly from the previous lemma and its corollary.

Lemma 6.19. The Fibonacci numbers satisfy fn+1fn−1 − f2
n = (−1)n.

Proof. One may show by induction that the matrix M given by

M =

1 1

1 0


satisfies

Mn =

fn+1 fn

fn fn−1

 .

We have Det(M) = −1, so Det(M)n = (−1)n. We also have

Det(Mn) = fn+1fn−1 − f2
n. The result immediately follows as

Det(M)n = Det(Mn).

We shall now consider the apparition and period of the Fibonacci sequence modulo

primes. We denote by α(p) the apparition of the Fibonacci sequence modulo p, and

by π(p) the period of the Fibonacci sequence modulo p.

Lemma 6.20. The apparition and period of the Fibonacci sequence modulo p are

related as follows.

i) π(p) ∈ {α(p), 2α(p), 4α(p)}.

ii) if α(p) = π(p) then π(p) ≡ 0 (mod 2), if 2α(p) = π(p) then π(p) ≡ 0 (mod 4), if

4α(p) = π(p) then π(p) ≡ 4 (mod 8).
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Proof. We proceed by showing the following properties. In the following, fix some

prime p and let k be the apparition of the Fibonacci numbers.

i) ord(fk+1) ∈ {1, 2, 4};

ii) π(p) = α(p), π(p) = 2α(p) or π(p) = 4α(p);

iii) if α(p) = π(p) then π(p) ≡ 0 (mod 2), if 2α(p) = π(p) then π(p) ≡ 0 (mod 4), if

4α(p) = π(p) then π(p) ≡ 4 (mod 8).

To show (i) we note that fk+1 = fk + fk−1, and so fk+1 ≡ fk−1 (mod p) as fk ≡ 0

(mod p). From Lemma 6.19 we have fk+2fk − f2
k+1 = (−1)k+1, so f2

k+1 ≡ (−1)k

(mod p). Now if k ≡ 0 (mod 2) we have f2
k+1 ≡ 1 (mod p), and fk+1 ∈ {1,−1}.

Otherwise, we have k ≡ 1 (mod 2) and f2
k+1 ≡ −1 (mod p), and ord(fk+1) = 4.

We have that (ii) is a direct corollary of (i).

To show (iii) we note that if α(p) = π(p) then we must have fk+1 ≡ 1 (mod p) and so

1 ≡ f2
k+1 ≡ (−1)k (mod p), so k ≡ 0 (mod 2). If 2α(p) = π(p) then we must have

fk+1 ≡ −1 (mod p), and so 1 ≡ f2
k+1 ≡ (−1)k (mod p), giving k ≡ 0 (mod 2) and

thus π(p) ≡ 0 (mod 4). Finally, if 4α(p) = π(p) we must have fk+1 is a square root of

−1 in GF(p), and so −1 ≡ f2
k+1 ≡ (−1)k (mod p), which gives us k ≡ 1 (mod 2) so

π(p) ≡ 4 (mod 8).

Lemma 6.21. The period of the sequence 〈ai = (−1)i+1f2i〉 modulo p is equal to the

apparition of the Fibonacci numbers 〈fi〉 modulo p.

Proof. Letting π(p) denote the period of the Fibonacci numbers and α(p) denote the

apparition of the Fibonacci numbers, we consider three different cases of primes p.

Case (i) π(p) = α(p) and π(p) ≡ 0 (mod 2).

Case (ii) π(p) = 2α(p) and π(p) ≡ 0 (mod 4).

Case (iii) π(p) = 4α(p) and π(p) ≡ 4 (mod 8).

In case (i) we have that α(p) = π(p). Hence, letting 2k = α(p) we have that k is the

apparition of the sequence 〈ai〉. We have ak+1 ≡ (−1)k+2f2k+2 ≡ −1 (mod p) as k is

odd and f2k+2 ≡ 1 (mod p), so k is not the period of 〈ai〉. Further we have

a2k+1 ≡ (−1)2k+2f4k+2 ≡ 1 (mod p), so the period of 〈ai〉 modulo p is 2k, i.e. the

apparition of the Fibonacci numbers modulo p.
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In case (ii) we have that π(p) = 2α(p). Hence, letting 2k = α(p), we have that k is the

apparition of the sequence 〈ai〉. We have ak+1 ≡ (−1)k+2f2k+2 ≡ −1 (mod p), as k is

even and f2k+2 ≡ −1 (mod p), and so k is not the period of 〈ai〉 modulo p. The next

possible period of 〈ai〉 modulo p is 2k, where we have a2k+1 ≡ (−1)2k+2f4k+2 ≡ 1

(mod p), so the period of 〈ai〉 modulo p is 2k, the apparition of the Fibonacci

numbers modulo p.

In case (iii) we have that π(p) = 4α(p) so α(p) is odd and π(p) ≡ 4 (mod 8). Letting

k = α(p) we have that k is the apparition of the sequence 〈ai〉. We have

ak+1 ≡ (−1)k+2f2k+2 ≡ 1 (mod p) as k is odd and f2k+2 ≡ −1 (mod p). Hence we

have that the period of 〈ai〉 modulo p is k, the apparition of the Fibonacci sequence

modulo p.

Altogether we have shown the following proposition.

Proposition 6.22. There is a solution to the equation ωm + 3 = 0 in a finite field of

characteristic p if, and only if, m is the apparition of the prime p in the Fibonacci

sequence.

Hence, we now aim to determine for which values m there exists a prime p such that

the apparition of p is m in the Fibonacci sequence. For a fixed number m this is

equivalent to finding a prime p which divides fm but no fi for 1 ≤ i < m. Such a

prime divisor is called a primitive prime divisor of fm. The Fibonacci numbers

modulo some number m is a well studied phenomenon, documented by Wall in [26].

To resolve our problem, we may rely on the classical result of Carmichael in [11].

Theorem 6.23. Every Fibonacci number except f1, f2, f6 and f12 has at least one

primitive prime divisor.

The argument given by Carmichael is analogous to the argument we will ultimately

use in our most generalised case, hence we reproduce it here. We also make use of the

simplification provided by Yabuta in [52].

In order to prove this result, we first need to introduce the series 〈qi〉 uniquely defined

by the equality fn =
∏
d|n qd. We first show the series 〈qi〉 has the following properties.

Lemma 6.24. The sequence 〈qi〉 satisfies

(i) q1 = 1 and qi = αϕ(i)Φi(β/α) = βϕ(i)Φi(α/β) for all i > 1 where α and β are the

roots of x2 − x− 1 and ϕ is Euler’s totient function;

(ii) qi ∈ Z.
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Proof. To show (i) we first note the well known fact fi = (αi − βi)/(α− β). Now, as

the equation fn =
∏
d|n qd uniquely defines each qi, we define the sequence q′i by

q′1 = 1 and q′i = αϕ(i)Φi(β/α). We now consider the expression
∏
d|n q

′
d. We have

∏
d|n

q′d =
1

αΦ1(β/α)

∏
d|n

αϕ(d)Φd(β/α) =
αn(1− (β/α)n)

α− β
=
αn − βn

α− β
.

Hence we have
∏
d|n q

′
d = fn, so qi = q′i for all i.

To show (ii) we consider the expression qi = αϕ(i)Φi(β/α). The polynomial Φi(x) is a

symmetric polynomial of degree ϕ(i), so if ck is the coefficient of xk in Φi(x) then,

letting n = ϕ(i), we have

αnΦi(β/α) =


∑bn/2c

k=0 ck(α
kβn−k + αn−kβk) if n is odd,∑n/2−1

k=0 ck(α
kβn−k + αn−kβk) + cn/2α

n/2βn/2 if n is even.

Hence we see that αϕ(i)Φi(β/α) is a symmetric polynomial in α and β with

coefficients in Z, so is an integer.

From the fact qi ∈ Z we now have the following corollary.

Corollary 6.25. The Fibonacci number fi has a primitive prime divisor if, and only

if, the number qi has a primitive prime divisor.

Proof. First suppose that p | fn and p - fi for all 1 ≤ i < n. We must have p - qi for all

1 ≤ i < n otherwise p |
∏
d|i qd = fi. Further, we must have p | qn, as we have

fn =
∏
d|n qd and we have p - qi for i < n. Hence if p is a primitive prime divisor of fn

then p is a primitive prime divisor of qn also.

Conversely, suppose that p is a primitive prime divisor of qn. For all 1 ≤ i < n we

have fi =
∏
d|i qd so all prime factors of fi are prime factors for some qj with

1 ≤ j ≤ i. Hence there cannot be some fi such that p | fi. Finally, from fn =
∏
d|n qd

we have that p | qn | fn, and so p is a primitive prime divisor of fn.

We now establish the following important lemma of Carmichael which will allow us to

determine necessary conditions for some qi having no primitive prime factors.

Lemma 6.26 (Carmichael [11]). Let p be a prime and k = α(p) be the apparition of

the Fibonacci sequence modulo p. For n 6= 1, 2, 6 and m such that 0 < m < n we have

that if p | qm and p | qn then p2 - qn and n = prk for some r ≥ 1.

We prove this lemma in multiple stages.
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Lemma 6.27. If m is an integer and q is an odd prime, then there exist integers

a1, a2, . . . , as where s = (q − 1)/2 depending only on q such that

αqm − βqm = (αm − βm)q + a1α
mβm(αm − βm)q−2 + a2α

2mβ2m(αm − βm)q−4

+ · · ·+ asα
smβsm(αm − βm).

Further we have that as = q.

Proof. The fact such an expansion depending only on q exists can be proved by a

trivial induction on q. To show that as = q, we use the fact that the expansion is

independent of α, β and m and consider the expansion with special values chosen for

α, β and m. Hence, take α = r + 1, β = 1 and m = 1, for some arbitrary value r.

Dividing our equation by α− β we have

αqm − βqm

α− β
=(α− β)q−1

(
αm − βm

α− β

)q
+ a1α

mβm(α− β)q−3

(
αm − βm

α− β

)q−2

+ a2α
2mβ2m(α− β)q−5

(
αm − βm

α− β

)q−4

+ · · ·+ asα
smβsm

αm − βm

α− β
,

so as m = 1 we have

αq − βq

α− β
= (α− β)q−1 + a1αβ(α− β)q−3 + a2α

2β2(α− β)q−5 + · · ·+ asα
sβs.

Hence considering this equation modulo r and noting that α− β = r we get

(r + 1)q − 1

r
≡ as(r + 1)s (mod r) ⇔ r(. . . ) + q ≡ as (mod r).

Now choosing r to be a prime p other than q we see that p - as. Finally letting r = q2

we see that q | as but q2 - as. Therefore we must have as = q.

Corollary 6.28. If pλ || fn for some λ ≥ 1, then pλ+1 || fpn.

Proof. We first consider the case where p is an odd prime. From the previous lemma

we have,

αpn − βpn

α− β
=(α− β)p−1

(
αn − βn

α− β

)p
+ a1α

nβn(α− β)p−3

(
αn − βn

α− β

)p−2

+ a2α
2nβ2n(α− β)p−5

(
αn − βn

α− β

)p−4

+ · · ·+ asα
snβsn

αn − βn

α− β
,

so as (αn − βn)/(α− β) = fn we have

fpn = (α−β)p−1fpn+a1α
nβn(α−β)p−3fp−2

n +a2α
2nβ2n(α−β)p−5fp−4

n +· · ·+pαsnβsnfn.
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Considering this equation modulo p3λ we have

fpn ≡ pαsnβsnfn (mod p3λ),

from which we may immediately deduce that pλ+1 || fpn.

Lemma 6.29. For each p there exists some k such that p | qn if, and only if, n = kpr

for some r.

Proof. We consider the expression qn = αϕ(n)Φn(α/β). As qn ∈ Z, we clearly have

p | qn if, and only if, αϕ(n)Φn(α/β) = 0 in GF(p2) where α and β are the roots of

f(x) = x2 − x− 1 in GF(p2). We have that α, β 6= 0, so αϕ(n) 6= 0. Hence, we must

have p | qn if, and only if, Φn(α/β) = 0 in GF(p2). If k is the multiplicative order of

α/β in GF(p2), then for p - n we have Φn(α/β) = 0 if, and only if, n = k. For p | n,

letting n = prm we have Φn(α/β) = Φm(α/β)r in GF(p2), so Φn(α/β) = 0 if, and

only if, n = prk. Hence, we have p | qn if, and only if, n = prk for some k (note that

in the special case that α/β = 1 so Φ1(α/β) = 0 we simply choose k = p rather than

k = 1 as we have chosen q1 = 1).

We can now give one of our two main lemmas. In the following we use the radical

function defined by

rad(pk11 p
k2
2 . . . pknn ) = p1p2 . . . pn,

where pi 6= pj for i 6= j, i.e. the radical of any number n is the product of the distinct

prime factors of n.

Lemma 6.30. If fn has no primitive prime divisor then qn ≤ rad(n).

Proof. Let p be a prime factor of qn. As p | fn and fn has no primitive prime divisors,

there must be some fb with 0 < b < n such that p | fb, and therefore there is also

some c with 0 < c < n such that p | qc. From Lemma 6.29 we have that all qi with

p | qi must be of the form qkpr for some fixed k, hence we must have c = kpr and

n = kps for some s > r. In particular, we must have s > 1 so p | n. Now define m so

that n = pm, and define λ so that pλ || fm. From Lemma 6.28 we have that pλ || fm
implies pλ+1 || fpm = fn. Therefore, from the formula fn =

∏
d|n qd we see that we

must have p || qn. Hence we see that any prime factor of qn which is not primitive

must also be a factor of n and we cannot have p2 | qn. Therefore, if fn has no

primitive prime divisor then qn ≤ rad(n).
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We now provide a series of lemmas which establish lower bounds on the growth of the

sequence 〈qn〉 which can be found in [52].

Lemma 6.31. If n > 2 and if a is a real number such that |a| < 1/2, then

Φn(a) ≥ 1− |a| − |a|2.

Proof. We use the facts

i) Φn(x) =
∏
d|n(1− xn/d)µ(d);

ii) (1− an/d)µ(d) ≥ 1− |a|n/d;

iii) (1− x)(1− y) ≥ 1− x− y for 0 ≤ x, y ≤ 1;

iv) (1− |a|2)(1− |a|3) · · · ≥ 1− |a|2 − |a|3 − . . . as |a| < 1/2;

v) 1− x− x2 − x3 − · · · = 1/(1− x) for 0 < x < 1.

Combining these facts we rearrange (i) as follows

Φn(a) =
∏
d|n

(1− an/d)µ(d) ≥
∏
d|n

(1− |a|d) ≥
∞∏
i=1

(1− |a|i)

≥ (1− |a|)(1− |a|2 − |a|3 − . . . ) = (1− |a|)
(

1− |a|2

1− |a|

)
= 1− |a| − |a|2.

This completes the proof of the lemma.

Lemma 6.32. qn ≥ (2/5)(3/2)ϕ(n).

Proof. The numbers α and β are the roots of f(x) = x2 − x− 1, so we take

α = (1 +
√

5)/2 and β = (1−
√

5)/2. We now consider the expression

qn = αϕ(n)Φn(β/α). We have β/α = (3−
√

5)/2 < 1/2, hence from Lemma 6.31 we

have Φn(β/α) ≥ 1− (β/α)− (β/α)2 > 2/5. Therefore, as α > 3/2 we have

qn = αϕ(n)Φn(β/α) ≥ (2/5)(3/2)ϕ(n).

We are now in a position to prove our main result concerning the Fibonacci numbers.

Proposition 6.33. For n 6∈ {1, 2, 6, 12} the Fibonacci number fn has at least one

primitive prime divisor.

Proof. First we have from combining Lemma 6.30 and Lemma 6.32 that if

(2/5)(3/2)ϕ(n) > rad(n) then fn has at least one primitive prime divisor.
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We use the inequality xk−1 > ky for x > y > 3 and k ≥ 3 to show that if

(3/2)ϕ(a) > 5 rad(a) then (3/2)ϕ(ape) > 5 rad(ape) for any prime power pe where p 6= 2.

If p | a then we have

(3/2)ϕ(ape) > (3/2)ϕ(a) > 5 rad(a) = 5 rad(ape).

We assume p - a. In this case we have

(3/2)ϕ(ape) = (3/2)ϕ(a)ϕ(pe) > (5 rad(a))ϕ(pe) > (5 rad(a))p−1

> 5p rad(a) = 5 rad(ape).

One may show by induction that if n = pe11 p
e2
2 . . . pekk where (3/2)ϕ(p

e1
1 ) > 5p1 and each

pi > 2 for i > 1 we have (3/2)ϕ(n) > 5 rad(n).

We now show that if there is some pe such that pe | n and (3/2)ϕ(pe) > 5p then

(2/5)(3/2)ϕ(n) > rad(n). Suppose pe | n and (3/2)ϕ(pe) > 5p, and n can be factorised

as n = pepe11 p
e2
2 . . . pekk q where pi 6∈ {2, p}, pi 6= pj and q is a power of 2. First, as

(3/2)ϕ(pe) > 5p we have (3/2)ϕ(pep
e1
1 p

e2
2 ...p

ek
k ) > 5pp1p2 . . . pk. Hence we have

(2/5)(3/2)ϕ(n) = (2/5)((3/2)ϕ(pep
e1
1 p

e2
2 ...p

ek
k ))ϕ(q) > (2/5)(5pp1p2 . . . pk)

ϕ(q)

≥ (2/5)(5pp1p2 . . . pk) = 2pp1p2 . . . pk ≥ rad(n).

Now, for any prime p > 7 we have (3/2)ϕ(p) > 5p, so if n has a prime factor p > 7 we

have that (2/5)(3/2)ϕ(n) > rad(n) so fn has at least one primitive prime divisor.

Further, for pe = 24, 33, 52 and 72 we have (3/2)ϕ(pe) > 5p. Hence, if fn does not have

a primitive prime divisor we must have that n = 2a3b5c7d for 0 ≤ a ≤ 3, 0 ≤ b ≤ 2,

0 ≤ c ≤ 1 and 0 ≤ d ≤ 1. By direct computation we now find the inequality

(2/5)(3/2)ϕ(n) ≥ rad(n) is true for all values of n except n = 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 12, 14, 15, 18 and 30. By direct computation we have

q1 = 1, q2 = 1, q3 = 2, q4 = 3, q5 = 5,

q6 = 4, q7 = 13, q8 = 7, q9 = 17, q10 = 11,

q12 = 6, q14 = 29, q15 = 61, q18 = 19, q30 = 31.

Therefore we have |qn| > rad(n) for all n except n = 1, 2, 3, 5, 6, and 12. Hence for

all n 6∈ {1, 2, 3, 5, 6, 12} we have that fn must have at least one primitive prime

divisor. Finally, by explicit computation we find that f3 and f5 have primitive prime

divisors, and f1, f2, f6 and f12 do not.
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Finally, we may use this result to settle the first special case.

Proposition 6.34. There is a solution to ωm + 3 = 0 in some finite field for each

m 6∈ {1, 2, 6, 12}, so there is a (4, 6,m)-regular map whose automorphism group is a

fractional linear group for each m ≥ 5, m 6= 6, 12.

Proof. We may combine Proposition 6.22 and Proposition 6.33 to show that there is a

solution to ωm + 3 = 0 in some finite field for each m 6∈ {1, 2, 6, 12}. The fact that this

is equivalent to the existence of a (4, 6,m)-regular map in fractional linear groups is a

result of Proposition 6.11 and our earlier working.

6.3.2 Second Case

We now consider the second special case which occurs for k = l = 6. In this case, we

shall find for which values of m the equation ωm + 4 = 0 has a solution in some finite

field. As we have shown before, this is equivalent to finding when the polynomial

f(x) = x2 + 4x+ 1 has a root of order m in some finite field.

The method we use to determine when f(x) = x2 + 4x+ 1 has a root of order m in a

finite field is based on the method used to determine which Fibonacci numbers have a

primitive prime divisor. Further, we are able to generalise our method to determine

when any polynomial of the form f(x) = x2 + kx± 1 which is not divisible by any

cyclotomic polynomial has a root of order m in a finite field. Hence, in this section we

shall consider the polynomial f(x) = x2 + kx± 1 which we assume to have no

cyclotomic factors. We also define α and β by f(x) = x2 + kx± 1 = (x− α)(x− β) to

be the roots of f(x) as before.

We now introduce the sequences An and an defined by

An = (αn − 1)(βn − 1) and an = Φn(α)Φn(β).

These sequence An is a special type of Pierce sequence, first introduced by Pierce in

[45] and subsequently by Lehmer in [36].

Lemma 6.35. The sequences An and an have the following properties.

i) An, an ∈ Z;

ii) An =
∏
d|n ad;

iii) there is a root of f(x) of order n in a finite field of characteristic p if, and only

if, p - n and p | an;
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iv) if p | apn then p | an;

v) for each p there exists either one or two numbers k such that p | akpr for all r and

p - an for all other n;

vi) there are integers c0, c1, c2, c3 ∈ Z such that

An+4 = c3An+3 + c2An+2 + c1An+1 + c0An.

Proof. To show (i) we have that An and an are defined by symmetric polynomials in

α and β, which are roots of a polynomial with integer coefficients, hence we must

have An, an ∈ Z.

To show (ii) we simply note the polynomial identity xn − 1 =
∏
d|n Φn(x).

To show (iii) we consider the expression an = Φn(α)Φn(β). First we have that an

element ξ in a finite field GF(pe) has multiplicative order n if, and only if, p - n and

Φn(ξ) = 0 in GF(pe). Further, as an ∈ Z, then if φ is the natural homomorphism from

Z to GF(pe) we have Φn(α)Φn(β) = φ(an) in GF(pe). Hence, we see that p - n and

p | an if, and only if, α or β has multiplicative order n.

To show (iv) we consider two cases. In the case p - n and p | apn we have the identity

of cyclotomic polynomials Φpn(x)Φn(x) = Φn(xp). Therefore, in GF(p) we have

apnan = Φpn(α)Φpn(β)Φn(α)Φn(β) = Φn(αp)Φn(βp) = Φn(α)Φn(β) = an.

Therefore, if apn = 0 in GF(p) we have an = apnan = 0 in GF(p) also. In the case that

p | n and p | apn we consider the identity of cyclotomic polynomials Φpn(x) = Φn(xp).

In this case we have

apn = Φpn(α)Φpn(β) = Φn(αp)Φn(βp) = Φn(α)Φn(β) = an.

Hence if apn = 0 in GF(p) we have an = apn = 0 in GF(p).

To show (v) we first note from (iii) that there are at most two numbers k such that

p - k and p | ak corresponding to the multiplicative orders of α and β in GF(p2). Now,

consider an arbitrary an such that p | an. If p - n then we have n is one of these two k,

otherwise we consider n′ defined by n = prn′ and p - n′. By (iv) we have that p | apin′
for each 0 ≤ i ≤ r, so n′ must be one of the two possible values of k.

To show (vi) we consider the expression

An = (αn − 1)(βn − 1) = (αβ)n − αn − βn + 1. We now define the polynomial

g(x) = (x− αβ)(x− α)(x− β)(x− 1) = x4 − c3x
3 − c2x

2 − c2x− c0. Therefore, for
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x ∈ {αβ, α, β, 1} we have x4 = c3x
3 + c2x

2 + c1x+ c0, and so

xn+4 = c3x
n+3 + c2x

n+2 + c1x
n+1 + c0x

n. We have

3∑
i=0

ciAn+i =
∑

ci((αβ)n+i − αn+i − βn+i + 1n+i)

= (αβ)n+4 − αn+4 − βn+4 + 1n+4 = An+4.

So c0, c1, c2, c3 satisfy An+4 = c3An+3 + c2An+2 + c1An+1 + c0An as required.

From these observations we now make the definition that a prime divisor p of an is a

primitive prime divisor of an if p | an and p - n. We then have the following useful

corollary.

Corollary 6.36. The equation f(x) = x2 + kx± 1 has a root of order n if, and only

if, an has at least one primitive prime divisor.

Proof. This is point (iii) of Lemma 6.35.

We also now determine the coefficients c0, c1, c2 and c3 from point (vi).

Lemma 6.37. If αβ = 1 then the sequence 〈Ai〉 is given by

A0 = 0, A1 = 2 + k, A2 = 4− k2,

and An+3 = (1− k)An+2 + (k − 1)An+1 +An.

If αβ = −1 then the sequence 〈Ai〉 is given by

A0 = 0, A1 = k, A2 = −k2, A3 = k3 + 3k,

and An+4 = −kAn+3 + 2An+2 + kAn+1 −An.

Proof. Evaluating A0, A1, A2 and A3 we have

A0 = (α0 − 1)(β0 − 1) = 0,

A1 = (α− 1)(β − 1) = 1 + αβ − α− β = 1 + αβ + k,

A2 = (α2 − 1)(β2 − 1) = 1 + (αβ)2 − α2 − β2

= 2− (α+ β)2 − 2αβ = 2− 2αβ − k2,

A3 = (α3 − 1)(β3 − 1) = 1 + (αβ)3 − α3 − β3

= 1 + αβ − (α+ β)3 + 3αβ(α+ β) = 1 + αβ + k3 − 3αβk.

Substituting in αβ = 1 or αβ = −1 as appropriate gives the stated values.
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We now consider the case αβ = 1. In this case we have

An = (αn − 1)(βn − 1) = (αβ)n − αn − βn + 1 = 2× 1n − αn − βn. Therefore, as in

the proof of point (vi) of Lemma 6.35 we take

g(x) = (x− α)(x− β)(x− 1) = (x2 + kx+ 1)(x− 1) = x3 + (k − 1)x2 + (1− k)x− 1.

This gives An+3 = (1− k)An+2 + (k − 1)An+1 +An.

In the case αβ = −1 we have

An = (αn− 1)(βn− 1) = (αβ)n−αn− βn + 1 = (−1)n−αn− βn + 1n. Hence, we take

g(x) = (x−α)(x− β)(x− 1)(x+ 1) = (x2 + kx− 1)(x2− 1) = x4 + kx3− 2x2− kx+ 1.

This gives An+4 = −kAn+3 + 2An+2 + kAn+1 −An.

We now aim to determine conditions for an having primitive prime divisors. As

before, we aim to create an upper bound on an an with no primitive prime divisors in

terms of the radical of n, and a lower bound of an which increases exponentially. To

achieve this, we begin by imitating the method of Lemma 6.28.

First we introduce a lemma to allow us to deal with the case that αβ = −1.

Lemma 6.38. If αβ = −1 and m is odd, then A2m = −A2
m and |a2m| = |am|.

Proof. We have

Am = (αm − 1)(βm − 1) = 1 + (αβ)m − αm − βm = −αm − βm.

A2m = (α2m − 1)(β2m − 1) = (αm − 1)(βm − 1)(αm + 1)(βm + 1)

= Am(1 + (αβ)m + αm + βm) = Am(αm + βm) = −A2
m.

To show that |a2m| = |am| we use the relation

A2m =
∏
d|2m

ad =
∏
d|m

ada2d

and use induction on the number of prime factors of m.

In light of this lemma we shall make use of the condition that (αβ)m = 1 in

subsequent lemmas. This is equivalent to requiring that m is even if αβ = −1 and

having no additional condition if αβ = 1.

Lemma 6.39. If (αβ)m = 1, and k ≥ 3 is the largest power of 2 dividing Am, then

k + 2 is the largest power of 2 dividing A2m.
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Proof. We have

Am = (αm − 1)(βm − 1) = (αβ)m − αm − βm + 1 = 2− αm − βm,

and so we have

A2m = (α2m − 1)(β2m − 1) = (αm − 1)(βm − 1)(αm + 1)(βm + 1)

= Am(1 + αm + βm + (αβ)m) = Am(2 + αm + βm) = Am(4−Am).

The result immediately follows.

Lemma 6.40. If (αβ)m = 1, and k ≥ 2 is the largest power of 3 dividing Am, then

k + 2 is the largest power of 3 dividing A3m.

Proof. We use the identity x3 − y3 = 3xy(x− y) + (x− y)3 in the following. We have

A3m = (α3m − 1)(β3m − 1)

= (3αm(αm − 1) + (αm − 1)3)(3βm(βm − 1) + (βm − 1)3)

= (αm − 1)(3αm + (αm − 1)2)(βm − 1)(3βm + (βm − 1)2)

= Am(9(αβ)m + 3αm(βm − 1)2 + 3βm(αm − 1)2 + (αm − 1)2(βm − 1)2)

= Am(9 + 3(1− αm)(βm − 1) + 3(1− βm)(αm − 1) +A2
m)

= Am(9− 6Am +A2
m) = Am(9 +Am(Am − 6)).

The result immediately follows.

Lemma 6.41. If p is an odd prime then there exist a1, a2, . . . , as such that

xp − yp = (x− y)p + a1xy(x− y)p−2 + a2x
2y2(x− y)p−4 + · · ·+ asx

sys(x− y),

and such that s = (p− 1)/2; p | ai for each 1 ≤ i ≤ s, and as = p.

Proof. It is clear that such an expansion exists. To show that p | ai, consider the

expansion in GF(p). As xp − yp = (x− y)p in GF(p) we have

a1xy(x− y)p−2 + a2x
2y2(x− y)p−4 + · · ·+ asx

sys(x− y) = 0.

Hence choosing y = 1, we see that for all x ∈ GF(p) the numbers a1, a2, . . . , as satisfy

a1x(x− 1)p−2 + a2x
2(x− 1)p−4 + · · ·+ asx

s(x− 1) = 0.
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Now let f(x) = a1x(x− 1)p−2 + a2x
2(x− 1)p−4 + · · ·+ asx

s(x− 1). If the coefficients

in f(x) are non-zero then f(x) is a degree p− 1 polynomial in x with p distinct roots.

This is a contradiction, so we must have f(x) = 0. Inspecting f(x), we see that the

coefficient of xp−1 is a1, so we must have a1 = 0. Given a1 = 0, we see the coefficient

of xp−2 is a2, so we deduce a2 = 0. Continuing in the same way we deduce that each

ai = 0 in GF(p), and hence p | ai for each 1 ≤ i ≤ s.

To show that as = p, we first divide both sides of our equation to get

xp − yp

x− y
= (x− y)p−1 + a1xy(x− y)p−3 + a2x

2y2(x− y)p−5 + · · ·+ asx
sys.

We now consider the expansion for x = r + 1 and y = 1. This gives

xp − yp

x− y
=

(r + 1)p − 1

r
=
rp + prp−1 + · · ·+ pr

r
= rp−1 + prp−2 + · · ·+ p.

Therefore, considering the equation modulo r we have as ≡ p (mod r) for all r.

Therefore as = p.

Lemma 6.42. If (αβ)m = 1, p ≥ 5 is a prime dividing Am, and k is the largest power

of p dividing Am, then k + 2 is the largest power of p dividing Apm.

Proof. In the following let A = (αm − 1) and B = (βm − 1). This gives us AB = Am,

αmB = αm(βm − 1)2 = (1− αm)(βm − 1) = −Am

and similarly βmA2 = −Am. We have Apm = (αpm − 1)(βpm − 1), hence using

Lemma 6.41 with x = αm and y = 1 we have

αpm − 1

= (αm − 1)p + a1α
m(αm − 1)p−2 + a2α

2m(αm − 1)p−4 + · · ·+ asα
sm(αm − 1)

= Ap + a1α
mAp−2 + a2α

2mAp−4 + · · ·+ asα
smA

= pαsmA+ as−1α
(s−1)mA3 + · · ·+ a1α

mAp−2 +Ap,

with p | ai for each ai. We expand Apm as follows

Apm = (αpm − 1)(βpm − 1)

= (pαsmA+ as−1α
(s−1)mA3 + · · ·+Ap)(pβsmB + as−1β

(s−1)mB3 + · · ·+Bp)

= AB(pαsm +A2(as−1α
(s−1)m + · · ·+Ap−3))

(pβsm +B2(as−1β
(s−1)m + · · ·+Bp−3))

= Am(p2(αβ)sm + pβsmA2(as−1α
(s−1)m + · · ·+Ap−3)
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+ pαsmB2(as−1β
(s−1)m + · · ·+Bp−3)

+A2B2(as−1α
(s−1)m + · · ·+Ap−3)(as−1β

(s−1)m + · · ·+Bp−3))

= Am(p2 − pβ(s−1)mAm(as−1α
(s−1)m + · · ·+Ap−3)

− pα(s−1)mAm(as−1β
(s−1)m + · · ·+Bp−3)

+A2
m(as−1α

(s−1)m + · · ·+Ap−3)(as−1β
(s−1)m + · · ·+Bp−3))

= Am(p2 − pAm(β(s−1)m(as−1α
(s−1)m + · · ·+Ap−3)

α(s−1)m(as−1β
(s−1)m + · · ·+Bp−3))

+A2
m(as−1α

(s−1)m + · · ·+Ap−3)(as−1β
(s−1)m + · · ·+Bp−3)).

We now define K and L by

K = β(s−1)m(as−1α
(s−1)m + · · ·+Ap−3) + α(s−1)m(as−1β

(s−1)m + · · ·+Bp−3),

L = (as−1α
(s−1)m + · · ·+Ap−3)(as−1β

(s−1)m + · · ·+Bp−3).

Hence we have Apm = Am(p2 − pAmK +A2
mL). We note that K and L are symmetric

polynomials in α and β and so are integers. Therefore, we aim to show that p | K and

p | L to give the result. We have

β(s−1)m(as−1α
(s−1)m + · · ·+Ap−3)

=(as−1(αβ)(s−1)m + as−2β
m(αβ)(s−2)mA2 + · · ·+ β(s−1)mAp−3)

=(as−1 + βmA2(as−2 + as−3β
mA2 + · · ·+ β(s−2)mAp−5))

=(as−1 −Am(as−2 + as−3β
mA2 + · · ·+ β(s−2)mAp−5)).

Hence K = 2as−1 −Amg(α, β) where g(α, β) is a symmetric function of α and β and

so an integer. This shows that p | K.

Finally, we have

L = (as−1α
(s−1)m + as−2α

(s−2)mA2 + · · ·+Ap−3)

(as−1β
(s−1)m + as−2β

(s−2)mB2 + · · ·+Bp−3)

= (as−1α
(s−1)m +A2(as−2α

(s−2)m + · · ·+Ap−5))

(as−1β
(s−1)m +B2(as−2β

(s−2)m + · · ·+Bp−5))

= (as−1α
(s−1)m +A2h(α, β))(as−1β

(s−1)m +B2h(β, α))

= (a2
s−1(αβ)(s−1)m + as−1(α(s−1)mB2h(β, α) + β(s−1)mA2h(α, β))

+A2B2h(α, β)h(β, α))

= (a2
s−1 + as−1C +A2

mD).

James Fraser



6.3 Special Cases 127

The expressions for C and D are symmetric polynomials in α and β, and so are

integers. We have that p | as−1 and p | Am, hence p | L.

We are now in a position to give a bound on an with no primitive prime divisor.

Lemma 6.43. If an has no primitive prime divisor, and n 6∈ {2, 3, 4, 6}, then

an ≤ rad(n)2.

Proof. Suppose that an has no primitive prime divisors and p | an. As p | an and p is

not a primitive prime divisor we must have that p | n. We consider separately the

cases p = 2, p = 3 and p 6∈ {2, 3}.

If p 6∈ {2, 3} we can use Lemma 6.42. Letting n = pm we have from p | apm that

p | am and hence p | Am. If m is odd and αβ = −1 then from Lemma 6.38 we may

consider a2m instead of am so that (αβ)2m = 1, and use the fact |a2m| = |am| to

deduce the factors of am, so we now suppose (αβ)m = 1. Letting λ be defined such

that pλ || Am, from Lemma 6.42 we have that pλ+2 || Apm. Therefore, from

Apm =
∏
d|pm ad = Am

∏
d|m apd we see that no power of p higher than p2 can divide

apm.

To deal with the case p = 2 we first consider point (v) of Lemma 6.35. This tells us

that if 2 | an then n = k2r where k is the multiplicative order of a root of f(x) in

GF(2). There are two possibilities for the value of f(x) in GF(2) which we consider

separately. First, suppose that f(x) = x2 + 1 in GF(2). In this case f(x) = (x+ 1)2

and has two roots of multiplicative order 1. Hence, 2 | an implies n = 2r for some

r ≥ 1. From Lemma 6.39 we know that if 23 | A2c then 22 is the highest possible

power of 2 which can divide any a2r for r > c. We consider the sequence 〈Ai〉 modulo

23. We may do this using Lemma 6.37, noting that as the sequence is a linear

recurrence it is periodic modulo any modulus; and that the sequence is determined by

the value of k modulo 23 and the value of αβ. We now calculate the smallest n such

that 23 | An and n = 2r for each possible value of f(x) (mod 23).

f(x) Period n

x2 + 1 0, 2, 4, 2 4
x2 + 2x+ 1 0, 4 2
x2 + 4x+ 1 0, 6, 4, 6 4
x2 + 6x+ 1 0 1
x2 − 1 0 1

x2 + 2x− 1 0, 2, 4, 6 4
x2 + 4x− 1 0, 4 2
x2 + 6x− 1 0, 6, 4, 2 4
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Hence for n 6∈ {1, 2, 4} we find that 22 is the highest power of 2 which can divide an in

these cases.

Now we consider the case f(x) = x2 + x+ 1 in GF(2). The roots of this polynomial

have multiplicative order 3, so 2 | an implies n = 3× 2r for some r ≥ 0. Again, we

calculate the sequence 〈Ai〉 modulo 23 in order to find the smallest An such that

23 | An and n = 3× 2r so that we may apply Lemma 6.39. We calculate the smallest

An with 23 | An and n = 3× 2r for each possible f(x) (mod 23) as follows.

f(x) Period n

x2 + x+ 1 0, 3, 3 3
x2 + 3x+ 1 0, 5, 3, 4, 3, 5 6
x2 + 5x+ 1 0, 7, 3, 0, 3, 7 3
x2 + 7x+ 1 0, 1, 3, 4, 3, 1 6
x2 + x− 1 0, 1, 7, 4, 3, 3, 0, 5, 3, 4, 7, 7 6
x2 + 3x− 1 0, 3, 7, 4, 3, 1, 0, 7, 3, 4, 7, 5 6
x2 + 5x− 1 0, 5, 7, 4, 3, 7, 0, 1, 3, 4, 7, 3 6
x2 + 7x− 1 0, 7, 7, 4, 3, 5, 0, 3, 3, 4, 7, 1 6

Hence for n 6∈ {3, 6} we find that 22 is the highest power of 2 which can divide an in

these cases.

We now treat the remaining cases for the prime p = 3 in the same way as for p = 2.

We first consider the case where f(x) = x2 + 1 in GF(3). In this case f(x) has two

roots of order 4, and so 3 | an implies n = 4× 3r for some r ≥ 0. We now calculate

〈Ai〉 for each possible f(x) (mod 32) to find the first n such that 32 | An and

n = 4× 3r as follows.

f(x) Period n

x2 + 1 0, 2, 4, 2 4
x2 + 3x+ 1 0, 5, 4, 2, 0, 8, 4, 8, 0, 2, 4, 5 4
x2 + 6x+ 1 0, 8, 4, 2, 0, 5, 4, 5, 0, 2, 4, 8 4

Hence for n 6= 4 we find that 32 is the highest power of 3 which can divide an in these

cases.

For the case f(x) = x2 − 1 in GF(3) we have that f(x) has roots of order 1 and 2.

Therefore 3 | an implies n = 3r or n = 2× 3r. We calculate the smallest n such that

32 | An for n = 3r and n = 2× 3r as follows.

f(x) Period n

x2 − 1 0 1, 2
x2 + 3x− 1 0, 3, 0, 0, 0, 6 2
x2 + 6x− 1 0, 6, 0, 0, 0, 3 2
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Hence for n 6= 2 we find that 32 is the highest power of 3 which can divide an in these

cases.

For the case f(x) = x2 + x+ 1 in GF(3) we have that f(x) = (x− 1)2, so has two

roots of order 1. Therefore if 3 | an we have that n = 3r. For each f(x) mod 32 we

calculate the smallest n such that 32 | An and n = 3r as follows.

f(x) Period n

x2 + x+ 1 0, 3, 3 3
x2 + 4x+ 1 0, 6, 6 3
x2 + 7x+ 1 0 1

Hence for n 6∈ {1, 3} we find that 32 is the highest power of 3 which can divide an in

these cases.

For the cases f(x) = x2 + x− 1 and f(x) = x2 + 2x− 1 we have that f(x) has two

roots of order 8. Hence if 3 | an we have that n = 8× 3r. For each f(x) (mod 32) we

calculate the smallest n such that 32 | An and n = 8× 3r as follows.

f(x) Period n

x2 + x− 1 0, 1, 8, 4, 4, 2, 2, 2, 0, 4, 5, 1, 4, 8, 5, 5, 0, 7, 2, 7, 4, 5, 8, 8 8
x2 + 4x− 1 0, 4, 2, 4, 4, 5, 2, 5 8
x2 + 7x− 1 0, 7, 5, 4, 4, 8, 2, 8, 0, 4, 8, 7, 4, 2, 8, 5, 0, 1, 2, 1, 4, 5, 5, 2 8
x2 + 2x− 1 0, 2, 5, 5, 4, 1, 2, 1, 0, 5, 8, 2, 4, 7, 8, 4, 0, 8, 2, 8, 4, 4, 5, 7 8
x2 + 5x− 1 0, 5, 2, 5, 4, 4, 2, 4 8
x2 + 8x− 1 0, 8, 8, 5, 4, 7, 2, 7, 0, 5, 5, 8, 4, 1, 5, 4, 0, 2, 2, 2, 4, 4, 8, 1 8

Hence for n 6= 8 we find that 32 is the highest power of 3 which can divide an in these

cases.

Finally, in the case f(x) = x2 + 2x+ 1 in GF(3) we have that f(x) = (x− 1)2 so has

two roots of order 2. Hence if 3 | an we have that n = 2× 3r. For each f(x) (mod 32)

we calculate the smallest n such that 32 | An and n = 2× 3r as follows.

f(x) Period n

x2 + 2x+ 1 0, 4 2
x2 + 5x+ 1 0, 7, 6, 4, 6, 7 6
x2 + 8x+ 1 0, 1, 3, 4, 3, 1 6

Hence for n 6∈ {2, 6} we find that 32 is the highest power of 3 which can divide an in

these cases.

Finally, combining all of these special cases, we see that for n 6∈ {2, 3, 4, 6} we have

that if p | an and p | n then p2 is the highest power of p which can divide an.
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We now aim to find a lower bound on an. We aim to create a bound independent of

k, so we begin with lemmas relating the sequences 〈an〉 for different values of k. We

begin by considering the case αβ = −1.

Lemma 6.44. Letting an = Φn(α)Φn(β) and bn = Φn(γ)Φn(δ) where α and β are the

roots of x2 + kx− 1 and γ and δ are the roots of x2 − kx− 1 we have an = bn for

n > 2.

Proof. Without loss of generality we have γ = −α and δ = −β. Hence, we have

β = −α−1 and δ = −γ−1 = α−1. For n > 1, the polynomial Φn(x) is symmetric, so

Φn(x) = xϕ(n)Φn(x−1). Altogether this gives

bn = Φn(γ)Φn(δ) = Φn(−α)Φn(α−1) = (−α)ϕ(n)Φn(−α−1)(α−1)ϕ(n)Φn(α)

= (−αα−1)ϕ(n)Φn(α)Φn(−α−1) = (−1)ϕ(n)Φn(α)Φn(β) = an.

We have (−1)ϕ(n) = 1 as ϕ(n) is even for n > 2.

In light of this lemma, when αβ = −1 we shall only consider k > 0 when establishing

a lower bound on an.

Lemma 6.45. For n > 2, an is at a minimum when k = 1.

Proof. Rearranging our expression for an we have

an = Φn(α)Φn(β)

=
∏

ξ∈ρ(Φn)

(α− ξ)(β = ξ)

=
∏

ξ,ξ−1∈ρ(Φn)

(α− ξ)(β − ξ−1)(β − ξ)(α− ξ−1)

=
∏

ξ,ξ−1∈ρ(Φn)

(αβ − αξ−1 − βξ + 1)(αβ − αξ − βξ−1 + 1)

=
∏

ξ,ξ−1∈ρ(Φn)

(αξ−1 + βξ)(αξ + βξ−1)

=
∏

ξ,ξ−1∈ρ(Φn)

(α2 + β2 + αβξ2 + αβξ−2)

=
∏

ξ,ξ−1∈ρ(Φn)

((α+ β)2 − 2αβ + αβ(ξ2 + ξ−2))

=
∏

ξ,ξ−1∈ρ(Φn)

(k2 + 2− (ξ2 + ξ−2)).

We have that −2 ≤ ξ2 + ξ−2 ≤ 2 as ξ is a root of unity. Hence 2− (ξ2 + ξ−2) ≥ 0 and
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each term in our equation for an is positive and strictly increasing with k. Hence an is

at a minimum when k = 1.

We now consider the sequence 〈an〉 for αβ = 1. In this case, as we consider

f(x) = x2 + kx+ 1 only when it has no cyclotomic divisors, we have that |k| ≥ 3. The

following table shows the cyclotomic factors of f(x) for −2 ≤ k ≤ 2.

k f(x) Factorised

-2 x2 − 2x+ 1 Φ1(x)2

-1 x2 − x+ 1 Φ6(x)
0 x2 + 1 Φ4(x)
1 x2 + x+ 1 Φ3(x)
2 x2 + 2x+ 1 Φ2(x)2

Lemma 6.46. If k > 0, then an is at a minimum for k = 3. If k < 0, then an is at a

minimum for k = −3.

Proof. We rearrange our expression for an as follows

an = Φn(α)Φn(β)

=
∏

ξ∈ρ(Φn)

(α− ξ)(β − ξ)

=
∏

ξ,ξ−1∈ρ(Φn)

(α− ξ)(β − ξ−1)(β − ξ)(α− ξ−1)

=
∏

ξ,ξ−1∈ρ(Φn)

(αβ − αξ−1 − βξ + 1)(αβ − βξ−1 − αξ + 1)

=
∏

ξ,ξ−1∈ρ(Φn)

(2− (αξ−1 + βξ))(2− (βξ−1 + αξ))

=
∏

ξ,ξ−1∈ρ(Φn)

(4− 2(αξ + βξ + αξ−1 + βξ−1) + (αξ−1 + βξ)(αξ + βξ−1))

=
∏

ξ,ξ−1∈ρ(Φn)

(4− 2(α+ β)(ξ + ξ−1) + (α2 + β2 + αβξ2 + αβξ−2))

=
∏

ξ,ξ−1∈ρ(Φn)

(4− 2(α+ β)(ξ + ξ−1) + (α+ β)2 − 2αβ + αβ(ξ2 + ξ−2))

=
∏

ξ,ξ−1∈ρ(Φn)

(k2 + 2(ξ + ξ−1)k + 2 + (ξ2 + ξ−2))

=
∏

ξ,ξ−1∈ρ(Φn)

(k + (ξ + ξ−1))2.

As ξ is a root of unity, we have −2 ≤ ξ + ξ−1 ≤ 2, hence for k ≥ 3 each term in the

product is positive and strictly increasing in k, so for k > 0 we have that an takes a

minimum when k = 3. For k ≤ 3 each term in the product is negative and strictly
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decreasing with k, so for k < 0 we have that |an| takes a minimum for k = −3.

Finally, from our formula for an we have that an is the product of squares of real

numbers, and hence an > 0, which completes the proof of the result.

Hence we aim to find lower bounds for the sequences 〈an〉 corresponding to

f(x) = x2 + x− 1, f(x) = x2 + 3x+ 1 and f(x) = x2 − 3x+ 1. The polynomials

f(x) = x2 + 3x+ 1 and f(x) = x2 − 3x+ 1 both have roots α and β satisfying |α| > 1

and |β| < 1/2, so we may apply Lemma 6.31 in these cases. However, the polynomial

f(x) = x2 + x− 1 has roots α and β satisfying |α| > 1 and 1/2 < |β| < 1, so we need

to modify Lemma 6.31 for this case.

Lemma 6.47. If α is the root of f(x) = x2 + x− 1 satisfying 1/2 < |α| < 1, then we

have Φn(α) ≥ 1/12 and Φn(−α) ≥ 1/12.

Proof. In this case, we note that we have

|α|2 + |α|3 + |α|3 + · · · = |α|2

1− |α|
= 1,

so we may use the inequality (1− x)(1− y) ≥ 1− x− y for 0 ≤ x, y ≤ 1 to show that

(1−|α|3)(1−|α|4)(1−|α|5) · · · ≥ (1−|α|3−|α|4)(1−|α|5) · · · ≥ 1−|α|3−|α|4−|α|5−. . . .

Hence, as before we have

Φn(α) =
∏
d|n

(1− αn/d)µ(d)

≥
∞∏
i=1

(1− |α|i)

= (1− |α|)(1− |α|2)
∞∏
i=3

(1− |α|i)

= (1− |α| − |α|2 + |α|3)(1− |α|3 − |α|4 − . . . )

= |α|3
(

1− |α|3

1− |α|

)
>

1

12
.

The same immediately follows for Φn(−α) from the same argument.

We may now give inequalities for the sequence 〈an〉 in each of our cases of interest.

Lemma 6.48. With the given choices of the polynomial f(x), the sequence an

satisfies the following lower bounds for n > 2.
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f(x) Lower Bound

x2 + x− 1 (1/144)(3/2)ϕ(n)

x2 + 3x+ 1 (4/25)(5/2)ϕ(n)

x2 − 3x+ 1 (4/25)(5/2)ϕ(n)

Proof. For the polynomial f(x) = x2 + x− 1, let α and β be the roots of f(x) such

that |α| > 1 and 1/2 < |β| < 1. From Lemma 6.47 we have Φn(β),Φn(−β) ≥ 1/12.

We rearrange as follows

an = Φn(α)Φn(β) = αϕ(n)Φn(α−1)Φn(β) = αϕ(n)Φn(−β)Φn(β) ≥ (1/144)(3/2)ϕ(n).

For the polynomial f(x) = x2 + 3x+ 1 let α and β be the roots of f(x) such that

|α| > 1 and 0 < |β| < 1/2. From Lemma 6.31 we have Φn(β) ≥ 1− |β| − |β|2 ≥ 2/5.

We arrange as follows

an = Φn(α)Φn(β) = αϕ(n)Φn(α−1)Φn(β) = αϕ(n)Φn(β)2 ≥ (4/25)(5/2)ϕ(n).

Finally, it can be seen that the same bound that applies to f(x) = x2 + 3x+ 1 also

applies to f(x) = x2 − 3x+ 1.

We now use these bounds to calculate which an have primitive prime divisors for each

f(x). We begin with the case f(x) = x2 + kx− 1.

Proposition 6.49. For f(x) = x2 + kx− 1 and n 6∈ {1, 2, 3, 4, 6} the number an has

at least one primitive prime divisor unless |k| = 1 and n ∈ {12, 20, 24}.

Proof. We begin by considering f(x) = x2 + x− 1, noting Lemma 6.45. By combining

Lemma 6.43 and Lemma 6.48 we have that if (1/144)(3/2)ϕ(n) > rad(n)2 then an has

a primitive prime divisor. As in Lemma 6.33 we may use the inequality xk−1 ≥ k2y

for x ≥ y ≥ 9 and k ≥ 3 to show that if (3/2)ϕ(a) ≥ 576 rad(a)2 then

(3/2)ϕ(ape) ≥ 576 rad(ape) for any prime power pe where p 6= 2.

Now suppose that there is some pe such that pe | n and (3/2)ϕ(pe) > 576p2. Let

n = pepe11 p
e2
2 . . . pekk q be a factorisation of n such that pi 6∈ {2, p}, pi 6= pj and q is a

power of 2. As (3/2)ϕ(pe) > 576p2 we have (3/2)ϕ(pep
e1
1 p

e2
2 ...p

ek
k ) > 576p2p2

1p
2
2 . . . p

2
k.

Hence we have

(1/144)(3/2)ϕ(n) = (1/144)((3/2)ϕ(pep
e1
1 p

e2
2 ...p

ek
k ))ϕ(q)

> (1/144)(576p2p2
1p

2
2 . . . p

2
k)
ϕ(q)
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≥ (1/144)(576p2p2
1p

2
2 . . . p

2
k)

= 22p2p2
1p

2
2 . . . p

2
k ≥ rad(n)2.

For any prime p ≥ 37 we have (3/2)ϕ(p) ≥ 576p2, so if n has a prime factor p ≥ 37 we

have that an has a primitive prime divisor. For any prime p ≥ 7 we have

(3/2)ϕ(p2) ≥ 576p2, so if n has a prime factor p ≥ 7 such that p2 | n we have that an

has a primitive prime divisor. For any prime p ≥ 5 we have that (3/2)ϕ(p3) ≥ 576p2,

hence if n has a prime factor p ≥ 5 such that p3 | n we have that an has a primitive

prime divisor. For any prime p ≥ 3 we have that (3/2)ϕ(p4) ≥ 576p2, so if n has a

prime factor p ≥ 3 such that p4 | n we have that an has a primitive prime divisor.

Finally, we have (1/144)(3/2)ϕ(25) ≥ 22, hence if n is a power of 2 such that n ≥ 25

then an has a primitive prime divisor.

Altogether, we have shown that if n 6∈ {1, 2, 3, 4, 6} is not of the form

n = 2a3b5c7d11e13f17g19h23i29j31k

where 0 ≤ a ≤ 4, 0 ≤ b ≤ 3, 0 ≤ c ≤ 2 and 0 ≤ d, e, f, g, h, i, j, k ≤ 1 then an has a

primitive prime divisor. By computer search, we find that this inequality holds for

n 6∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58,

60, 66, 70, 72, 78, 84, 90}.

We may further reduce the size of this set by calculating an explicitly for each n in

the set. This shows that for

n 6∈ {1, 2, 3, 5, 6, 7, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 42}

we have an > rad(n)2. Further, for f(x) = x2 + 2x− 1 we reduce this set to

{2, 3, 6, 10, 12} and for f(x) = x2 + 3x− 1 to {2, 6}. For f(x) = x2 + 2x− 1 we have

a10 = 41 and a12 = 52, so we have the result for f(x) = x2 + kx− 1 where |k| 6= 1.

Finally, we manually calculate an for the special cases of n identified in the case

|k| = 1 and determine when they have primitive prime factors. We have

a1 = 1 a2 = −1 a3 = 4 a5 = 11 a6 = 4

a7 = 29 a10 = 11 a12 = 4 a14 = 29 a15 = 31

a18 = 19 a20 = 25 a21 = 211 a22 = 199 a24 = 36

a26 = 521 a28 = 169 a30 = 31 a42 = 211
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and hence an has primitive prime divisors except for the cases

n ∈ {1, 2, 6, 12, 20, 24}.

Proposition 6.50. For f(x) = x2 + kx+ 1 where |k| ≥ 3 we have that an has at least

one primitive prime divisor for all n 6∈ {1, 2, 3, 4, 6} unless k = 3 and n ∈ {5, 12} or

k = −3 and n = 12.

Proof. We begin by considering f(x) = x2 ± 3x+ 1 noting Lemma 6.46 and the fact

the inequalities for f(x) = x2 + 3x+ 1 and f(x) = x2 − 3x+ 1 are the same in

Lemma 6.48. By combining Lemma 6.43 and Lemma 6.48 we have that if

(4/25)(5/2)ϕ(n) > rad(n)2 and n 6∈ {1, 2, 3, 4, 6} then an has a primitive prime divisor.

As in Lemma 6.33, from the inequality xk−1 ≥ k2y for x ≥ y ≥ 9 and k ≥ 3 we may

show that if (5/2)ϕ(a) ≥ 25 rad(a)2 then (5/2)ϕ(ape) ≥ 25 rad(ape)2 for any prime

power pe where p 6= 2.

Now suppose that there exists some prime power pe such that pe | n and

(5/2)ϕ(pe) > 25p2. Let n = pepe11 p
e2
2 . . . pekk q be a prime factorisation of n where

pi 6∈ {p, 2}, pi 6= pj and q is a power of 2. As (5/2)ϕ(pe) > 25p2 we have

(5/2)ϕ(pep
e1
1 p

e2
2 ...p

ek
k ) > 25p2p2

1p
2
2 . . . p

2
k. Hence we have

(4/25)(5/2)ϕ(n) = (4/25)((5/2)ϕ(pep
e1
1 p

e2
2 ...p

ek
k ))ϕ(q)

> (4/25)(25p2p2
1p

2
2 . . . p

2
k)
ϕ(q)

≥ (4/25)(25p2p2
1p

2
2 . . . p

2
k)

= 22p2p2
1p

2
2 . . . p

2
k ≥ rad(n)2.

For all p ≥ 11 we have (5/2)ϕ(p) ≥ 25p2, hence if p ≥ 11 and p | n we have that an has

at least one primitive prime divisor. For p ≥ 3 we have that (5/2)ϕ(p2) ≥ 25p2, hence

if p ≥ 3 and p2 | n we have that an has at least one primitive prime divisor. Finally,

for p ≥ 2 we have that (5/2)ϕ(p4) ≥ 25p2, hence if p ≥ 2 and p4 | n we have that an

has at least one primitive prime divisor. If an does not have a primitive prime divisor

we must have

n = 2a3b5c7d

for some 0 ≤ a ≤ 3 and 0 ≤ b, c, d ≤ 1. Further, by manually checking the inequality

we find that (4/25)(5/2)ϕ(n) > rad(n)2 holds for all cases except

n ∈ {1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 30}. Calculating an explicitly in these cases shows that
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we have an ≤ rad(n)2 only in the cases n ∈ {2, 3, 5, 6, 12}. Further, for |k| = 4 this set

becomes {2, 3, 6}, so the result follows for |k| ≥ 4. Finally, calculating an for n = 5

and n = 12 in the case k = 3 we have a5 = 25 and a12 = 36, and neither has a

primitive prime divisor. In the case k = −3 we have a5 = 121 and a12 = 36, and hence

a5 has a primitive prime divisor and a12 does not.

Hence we have the result for f(x) = x2 + 4x+ 1 there is at least one primitive prime

divisor of an for all n except n ∈ {1, 2, 3, 4, 6}. Further, by explicit calculation we have

a1 = 6, a2 = −2, a3 = 9, a4 = 16 and a6 = 25.

Hence, for f(x) = x2 + 4x+ 1, an has at least one primitive prime divisor if, and only

if, n 6∈ {1, 2, 3, 4}. Therefore we have the following proposition.

Proposition 6.51. There is a hyperbolic (6, 6,m)-regular map whose automorphism

group is a fractional linear group for all m ≥ 5.

Proof. At the beginning of this section we showed that there exists a (6, 6,m)-regular

map with automorphism group a fractional linear group over a finite field of

characteristic p if, and only if, there exists a root of x2 + 4x+ 1 = 0 in some extension

of GF(p) of order m. From Proposition 6.50 we have that there exist primes for all

m 6∈ {1, 2, 3, 4, 6} such that x2 + 4x+ 1 = 0 has a root of order m in some finite

field.

We have also been careful to state our work as generally as we can throughout this

section as we are in a position to prove properties of Fibonacci like sequences. The

sequences corresponding to f(x) = x2 − kx− 1 are called k-Fibonacci sequences and

some existing results concerning their periods may be found in [27]. For

f(x) = x2 + kx± 1 with roots α and β, define the sequence 〈un〉 by

un = (αn − βn)/(α− β), or equivalently by u0 = 0, u1 = 1 and un+2 = −kun+1 ∓ un.

We define the period of 〈un〉 modulo a prime p to be the smallest m > 0 such that

ui ≡ ui+m (mod p) for all i. We denote by π(p) the period of 〈un〉 modulo p. We now

give our result concerning periods of these sequences.

Proposition 6.52. For f(x) = x2 + kx+ 1, there exists some prime p for any

m 6∈ {1, 2, 3, 4, 5, 6, 12} such that π(p) = m.

Proof. The sequence associated with the polynomial f(x) = x2 + kx+ 1 is 〈un〉 where

u0 = 0, u1 = 1 and un+2 = −kun+1 − un. We have that the sequence 〈xn〉 in

(Z /pZ)[x]/〈f(x)〉 is given by xn = unx+ un−1. Hence the order of x in
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(Z /pZ)[x]/〈f(x)〉 is equal to the period of 〈un〉 modulo p, i.e. ord(x) = π(p). We now

consider three cases of reducibility of f(x) in (Z /pZ)[x].

If f(x) is irreducible in (Z /pZ)[x], then (Z /pZ)[x]/〈f(x)〉 ∼= GF(p2) by an

isomorphism φ where φ(x) is a root α of f(x) in GF(p2). Hence the order of x in

(Z /pZ)[x]/〈f(x)〉 is equal to the multiplicative order of α. Further, if the roots of

f(x) are α and β we have ord(α) = ord(β) from the fact αβ = 1.

If f(x) is reducible in (Z /pZ)[x] and has two roots α and β such that α 6= β, then by

the Chinese remainder theorem we have

(Z /pZ)[x]/〈f(x)〉 ∼= (Z /pZ)[x]/〈x− α〉 ⊕ (Z /pZ)[x]/〈x− β〉.

Hence the order of x in (Z /pZ)[x]/〈f(x)〉 is the same as the least common multiples

of the orders of x in (Z /pZ)[x]/〈x− α〉 and x in (Z /pZ)[x]/〈x− β〉, i.e. α and β in

GF(p). Again, we have ord(α) = ord(β) as αβ = 1, and so π(p) = ord(α).

If f(x) is reducible in (Z /pZ)[x] then f(x) has a repeated root α in GF(p). In this

case, if p | an then n is of the form n = mpr where m is the multiplicative order of α

in GF(p). As f(x) has a repeated root in GF(p), we must have that the discriminant

of f(x), ∆f , is zero in GF(p). We have ∆f = k2 − 4, therefore we must have

p | k2 − 4 = (k − 2)(k + 2). If α and β are the roots of f(x) in C, we have α+ β = −k
and αβ = 1, and so

a1 = Φ1(α)Φ2(β) = (α− 1)(β − 1) = αβ − α− β + 1 = 2 + k,

a2 = Φ2(α)Φ2(β) = (α+ 1)(β + 1) = αβ + α+ β + 1 = 2− k.

Hence, in GF(p) where f(x) = (x− α)2 we have ord(α) ∈ {1, 2}.

Finally, we may apply Proposition 6.50 and note that for all n 6∈ {1, 2, 3, 4, 5, 6, 12}
there exists some prime p such that p | an is a primitive prime divisor of an, and so

there exists some α ∈ GF(p) such that α is a root of f(x), ord(α) = n and so

π(p) = n.

Proposition 6.53. For f(x) = x2 + kx− 1, there exists some prime p for any

m 6∈ {1, 2, 3, 4, 6} such that π(p) = 2m.

Proof. For an arbitrary prime p we consider f(x) in an extension of GF(p) where f(x)

splits. Let α and −α−1 be the roots of f(x) chosen so that ord(α) ≤ ord(−α−1). We

have (−α−1)n = (−1)nα−n. Hence, if n = ord(α) and ord(α) is even we have

(−α−1)n = 1, and so ord(−α−1) = n as ord(−α−1) ≥ n. Otherwise, if n = ord(α) and
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ord(α) is odd we have (−α−1)n = −1 so ord(−α−1) = 2n. Therefore f(x) either has

all roots with the same even order, or one root with an odd order n and the other

root with order 2n.

The sequence 〈un〉 we consider is defined by u0 = 0, u1 = 1 and un+2 = −kun+1 + un.

Again, we have that the period of this sequence modulo p is equal to the order of x in

the ring (Z /pZ)[x]/〈f(x)〉. We now consider three cases depending on whether f(x)

is irreducible in GF(p), has distinct roots in GF(p) or has a repeated root in GF(p).

If f(x) is irreducible in GF(p) then f(x) has two roots α and β in GF(p2) and there

exists an automorphism φ : GF(p2)→ GF(p2) such that φ(α) = β. Hence we have

ord(α) = ord(β), and so the order of α is some even number n, and p is a primitive

prime divisor of an. Further, we have that GF(p2) ∼= (Z /pZ)[x]/〈f(x)〉, so

ord(x) = ord(α) where ord(x) is the multiplicative order of x in (Z /pZ)[x]/〈f(x)〉.
This gives π(p) = ord(x) = ord(α).

If f(x) is reducible in GF(p) and has distinct roots α and β then either we have

ord(α) = ord(β) and ord(α) and ord(β) are even or we have, without loss of

generality, ord(α) = 2 ord(β). In either case, there exists one n such that n is even

and p is a primitive prime divisor of an. Further, from the Chinese remainder theorem

we have that

(Z /pZ)[x]/〈f(x)〉 ∼= (Z /pZ)[x]/〈x− α〉 ⊕ (Z /pZ)[x]/〈x− β〉 ∼= Z /pZ ◦Z /pZ,

by an isomorphism φ satisfying φ(x) = (α, β), so ord(x) = (ord(α), ord(β)). In either

case we have (ord(α), ord(β)) = ord(α), hence we have ord(x) = ord(α), so

π(p) = ord(α). Therefore we have π(p) = n where n is even and p is a primitive prime

divisor of n.

If f(x) is reducible in GF(p) and f(x) has a repeated root α, then we have that the

discriminant ∆f of f(x) is 0 in GF(p). We have ∆f = k2 + 4, hence we must have

p | k2 + 4. We also have

a4 = Φ4(α)Φ4(β) = (α2+1)(β2+1) = (αβ)2+α2+β2+1 = 2+(α+β)2−2αβ = k2+4.

As α is a repeated root of f(x) in GF(p) there is only one n such that p is a primitive

prime divisor of an, and hence for odd p this is a4. Otherwise, if p = 2 we have that p

is a primitive prime divisor of a1 due to the fact 2 | a4 = a1×22 implies 2 | a1.

Hence, we see that for all primes p, letting n = π(p) we either have p is a primitive

prime divisor of a1 or a4 and no other ak, or we have p is a primitive prime divisor of
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an and possibly an/2 and no other ak. Hence, if n is even and p is a primitive prime

divisor of an where n ≥ 4 we have π(p) = n.

6.4 General Case

We now move onto consideration of the general case. We now wish to determine for

which k, l,m ∈ N there exist solutions to the equation

ωk + ωl + ωm + 2 = 0

in some finite field. We begin by defining N(k, l,m) as follows

N(k, l,m) =
∏

(ωk + ωl + ωm + 2)

where the product is taken over as ωk, ωl and ωm range over the roots of Ψk, Ψl and

Ψm respectively.

Lemma 6.54. N(k, l,m) ∈ Z.

Proof. We have that N(k, l,m) is a symmetric function in the roots of polynomials

whose coefficients lie in Z, therefore N(k, l,m) ∈ Z.

Lemma 6.55. There is a solution to ωk + ωl + ωm + 2 = 0 in a finite field of

characteristic p if, and only if, p | N(k, l,m).

Proof. Considering the expression of N(k, l,m) in an algebraically closed field of

characteristic p, say K, we see that N(k, l,m) = 0 if, and only if, there is a solution to

ωk + ωl + ωm + 2 = 0 in K for ωk, ωl and ωm roots of Ψk, Ψl and Ψm respectively.

Further, as N(k, l,m) ∈ Z we have that N(k, l,m) = 0 in K if, and only if,

p | N(k, l,m).

We now define the polynomials fk,l(x) ∈ Z[x] and show that the condition

p | N(k, l,m) is equivalent to fk,l(x) having a root of multiplicative order m in a finite

field of characteristic p. We define fk,l(x) as follows

fk,l(x) =
∏(

x2 + (ωk + ωl + 2)x+ 1
)

where the product is taken as ωk and ωl range over the roots of Ψk and Ψl

respectively.
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Lemma 6.56. A prime p - k, l,m is a divisor of N(k, l,m) if, and only if, fk,l(x) has

a root of order m in an extension of GF(p).

Proof. Suppose that N(k, l,m) = 0 in GF(p), then in a suitable extension of GF(p)

we have

N(k, l,m) =
∏

(ωk + ωl + ωm + 2)

=
∏

ξ−1
m (ξ2

m + (ωk + ωl + 2)ξm + 1) = α
∏

fk,l(ξm),

where α is the product of mth roots of unity and thus non-zero. Hence the product∏
fk,l(ξm) taken over the mth roots of unity must have at least one term equal to

zero, which is equivalent to fk,l(x) having a root of order m in an extension of GF(p).

For the converse, suppose that ξm is a root of fk,l(x) in an extension of GF(p). We

have

0 = fk,l(ξm) =
∏

(ξ2
m + (ωk + ωl + 2)ξm + 1),

so there is some ωk and ωl from the product where we have

ξ2
m + (ωk + ωl + 2)ξm + 1 = 0. This gives

0 = ξ2
m + (ωk + ωl + 2)ξm + 1 = ξm(ωk + ωl + ωm + 2).

Hence, as ξm 6= 0, we must have ωk + ωl + ωm + 2 = 0.

In light of this lemma we shall now aim to prove the following result. The author is

unfamiliar with this result in the literature. However, there is a version (albeit with

minor errors) available in a forum post here [48]. We use the method suggested from

this post, correct the errors and develop the result further to give a constructive

method.

Proposition 6.57. For any monic polynomial f(x) ∈ Z[x] such that x - f(x) and

Φn(x) - f(x) for all n there are only finitely many m ∈ N such that f(x) has no root

of order m in any finite field.

Applying this to each polynomial fk,l(x) will allow us to determine that there are only

finitely many m such that fk,l(x) has no root of order m in any finite field; there are

only finitely many m for which

ωk + ωl + ωm + 2 = 0
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has no solution in any finite field; and therefore that there are only finitely many m

such that there is no (k, l,m)-regular map with automorphism group some fractional

linear group. First, however, we must show that each fk,l(x) has at least one factor

satisfying the conditions of Proposition 6.57.

Lemma 6.58. If k, l ∈ Z is a hyperbolic pair then the polynomial fk,l(x) has at least

one factor g(x) ∈ Z[x] such that x - g(x) and Φn - g(x) for any n.

Proof. From our definition of fk,l(x) we have

fk,l(x) =
∏

(x2 + (ωk + ωl + 2)x+ 1)

where the product is taken as ωk and ωl range over the roots of Ψk and Ψl

respectively. Clearly we see that x - fk,l(x) and thus x - g(x) for any factor g(x) of

fk,l(x). An expression of the form x2 + Cx+ 1 has two real roots, neither of which

have absolute value 1, provided that C2 − 4 > 0. Therefore, if there is some ωk and ωl

such that (ωk + ωl + 2)2 > 4 then fk,l(x) has real roots of absolute value not equal to

1, and therefore has at least one irreducible factor g(x) such that Φn(x) - g(x) for any

n. We now consider different values of k and l.

For n ≥ 5, taking ξ = ei2π/n we have that ξ is an nth root of unity and that

ω = ξ + ξ−1 = 2 cos(2π/n) > 0. Hence if k, l ≥ 5 we may find some ωk, ωl > 0 giving

(ωk + ωl + 2)2 > 4 as required.

For k = 4 we have ωk = 0, so for l ≥ 5 we may find some ωl > 0 so a pair such that

(ωk + ωl + 2)2 > 4.

For k = 3 we have ωk = −1, so for l ≥ 7 taking ξl = ei2π/l we have

ωl = ξl + ξ−1
l = 2 cos(2π/l) > 1. Thus we have (ωk + ωl + 2)2 > 4.

Clearly the cases in which l = 3 or l = 4 are symmetric to those in which k = 3 or

k = 4.

Hence for all parameters k, l ∈ N such that 1/k + 1/l > 1/2 (i.e. k and l is a

hyperbolic pair) we have that fk,l(x) has at least one root of absolute value not equal

to 1, and thus there is a factor g(x) of fk,l(x) satisfying the desired properties.

We now prove Proposition 6.57. For the remainder of this section, let f(x) ∈ Z be a

monic irreducible polynomial such that f(x) 6= x and f(x) 6= Φn(x) for any n.

Similarly to the previous section, we consider the sequences 〈An〉 and 〈an〉 defined as
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follows

An =
∏

α∈ρ(f)

(αn − 1) and an =
∏

α∈ρ(f)

Φn(α).

We first show the following properties of the sequences 〈An〉 and 〈an〉. Note in the

following we denote the resultant of the polynomials f, g ∈ Z[x] as Res(f, g).

Lemma 6.59. The sequences 〈An〉 and 〈an〉 satisfy the following properties.

i) An, an ∈ Z for all n ≥ 0;

ii) An =
∏
d|n ad;

iii) there is a root of f(x) of order n in a finite field of characteristic p if, and only

if, p - n and p | an;

iv) if p | apn then p | an;

v) for each p there exists between one and deg(f) numbers k such that p | akpr for

all r ≥ 0 and p - an for all other n;

vi) there exist numbers c0, c1, . . . , ck−1 where k = 2deg(f) such that

An+k =
∑k−1

i=0 ciAn+i;

vii) an = Res(f,Φn).

Proof. Properties (i), (ii), (iii), (iv), (v) and (vi) are analogous to the same properties

in Lemma 6.35. Property (vii) follows from the rearrangement

Res(f, g) =
∏

α∈ρ(f)
β∈ρ(g)

(α− β) =
∏

α∈ρ(f)

g(α).

Based on these properties, as before we make the definition that p is a primitive

prime divisor of an if p | an and p - n. Again, we have that p is a primitive prime

divisor of an if, and only if, f(x) has a root of order n in a finite field of character p.

We shall begin by determining a lower bound on the terms in the sequence 〈an〉 which

do not have primitive prime divisors. First we shall require the following lemma,

recalling the definition of the Mahler measure from the introduction.

Lemma 6.60. The Mahler measure M(f) of f satisfies M(f) > 1.
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Proof. From our assumptions we have f(x) 6= x and f(x) 6= Φn(x) for any n. The

definition of the Mahler measure of f(x) is

M(f) =
∏

α∈ρ(f)
|α|≥1

|α|.

Hence we have M(f) ≥ 1 by definition. As f(x) is monic we have

f(x) =
∏
α∈ρ(f)(x− α), so c =

∏
α∈ρ(f) α ∈ Z. As f(x) 6= x we must have c 6= 0.

Suppose there is no α ∈ ρ(f) such that |α| > 1. If there is some α ∈ ρ(f) such that

|α| < 1 then
∏
α∈ρ(f) |α| < 1, contradicting

∏
α∈ρ(f) α ∈ Z. Hence, we must have

|α| = 1 for all α ∈ ρ(f). From this we can deduce that the rth coefficient of f(x) is no

greater than
(
n
r

)
where n = deg(f), so is one of only finitely many polynomials of

degree n whose roots all have absolute value 1. Now let α ∈ ρ(f) be an arbitrary root

of f(x). Consider the powers αk of α. If all of these powers are distinct, then there

are infinitely many algebraic numbers of degree n and absolute value 1, contradicting

that there are only finitely many polynomials of degree n whose roots are all absolute

value 1. Therefore, the powers αk of α are not all distinct, so α is a root of unity, but

this contradicts that f(x) 6= Φn(x) for any n. Therefore, f(x) must have at least one

root α satisfying |α| > 1, so M(f) > 1.

In the next lemma we shall require the use of Baker’s theorem shown and developed

by Baker in the classic papers [3, 4] and [5]. We shall use the following direct

corollary of Baker’s theorem.

Theorem 6.61. If α is an algebraic number other than a root of unity, then there

exists constants k and N depending only on α such that |αn − 1| > n−k for all n > N .

We now give a lower bound on the terms an. We note that although the constants

involved are effectively computable, the proof is for all practical intents and purposes

non-constructive.

Lemma 6.62. There are constants C and N such that |an| > eC
√
n for all n > N .

Proof. We first find upper and lower bounds on the terms log(|An|). For each root α

of f(x) we give upper and lower bounds of |αn − 1| for each of the cases |α| < 1,

|α| = 1 and |α| > 1.

|α| < 1 |α| = 1 |α| > 1

Upper bound 2 2 2|α|n
Lower bound 1− |α| n−kα |α|n − 1
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For an upper bound we have

log(|An|) =
∑

α∈ρ(f)

log(|αn − 1|) ≤
∑

α∈ρ(f)
|α|≤1

log(2) +
∑

α∈ρ(f)
|α|>1

log(2|α|n)

=
∑

α∈ρ(f)

log(2) +
∑

α∈ρ(f)
|α|>1

log(|α|n) = n log(M(f)) +A.

and for a lower bound we have

log(|An|) =
∑

α∈ρ(f)

log(|αn − 1|)

≥
∑

α∈ρ(f)
|α|<1

log(1− |α|) +
∑

α∈ρ(f)
|α|=1

log(n−kα) +
∑

α∈ρ(f)
|α|>1

log(|α|n − 1)

≥ n log(M(f))−A−B log(n),

for appropriately chosen constants A and B. Using these bounds we now find a lower

bound for log(|an|). First we have

∑
d|n

log(|ad|) = log(|An|) and therefore log(|an|) =
∑
d|n

log(|Ad|)µ(n/d).

This gives

log(|an|) =
∑
d|n

log(|Ad|)µ(n/d) =
∑
d|n

µ(n/d)=1

log(|Ad|)−
∑
d|n

µ(n/d)=−1

log(|Ad|)

≥
∑
d|n

µ(n/d)=1

(d log(M(f))−A−B log(d))−
∑
d|n

µ(n/d)=−1

(d log(M(f)) +A)

= log(M(f))
∑
d|n

dµ(n/d)−
∑
d|n

A−
∑
d|n

µ(n/d)=1

B log(d)

≥ ϕ(n) log(M(f))− d(n)(A+B log(n)).

Finally, as ϕ(n) grows faster than n1−ε for all ε > 0, and d(n) grows slower than nε

for all ε > 0, the result follows.

We now have a lower bound showing that |an| grows exponentially. We now aim to

find an upper bound on |an| when an has no primitive prime divisors. We shall

proceed by considering the entry of prime divisors p such that f(x) has distinct roots

in GF(p), i.e. primes p such that p - ∆f where ∆f is the discriminant of f(x).
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In the following, we let δ = deg(f) be the degree of f(x) and ∆f be the discriminant

of f(x). We aim to prove the following lemma.

Lemma 6.63. If p - ∆f , p | an and p | n then pδ+1 - an.

In other words, if p - ∆f is a non-primitive prime divisor of an then pδ is the largest

power of p that can divide an, so if an contains no primitive prime divisors, and

(an,∆f ) = 1, then |an| ≤ rad(n)δ. In order to prove this lemma, we shall begin by

considering the case that f(x) splits in GF(p). We will subsequently show that our

method may be generalised to address the other cases in which p - ∆f . First we quote

Hensel’s Lemma, which we shall use and subsequently generalise.

Lemma 6.64 (Hensel’s Lemma). If α is a root of f(x) in Z /pk Z then there is a

unique root α̂ ∈ Z /pk+1 Z of f(x) such that α̂ ≡ α (mod pk).

Proof. From the Taylor expansion of f(x) in Z we have the equality

f(x+ nh) = f(x) + nhf ′(x) + (nh)2f ′′(x) + . . . .

If n = pk and we consider this expression modulo pk+1 we have the equality

f(x+ pkh) ≡ f(x) + pkhf ′(x) (mod pk+1).

Now suppose that α is a root of f(x) modulo pk. We therefore have f(α) = apk

(mod pk+1) for some a. As p - ∆f , f(x) does not have repeated roots modulo p, and

so f ′(α) 6= 0 (mod p). Hence, f(α+ pkh) ≡ 0 (mod pk+1) if, and only if, h is the

solution of a = f ′(α)h (mod p). This shows that there is a unique root α̂ of f(x)

modulo p such that α̂ ≡ α (mod pk).

If α ∈ Z /pk Z is a root of f(x) then we will call the root α̂ ∈ Z /pk+1 Z of f(x) such

that α̂ ≡ α (mod pk) the lift of α. Due to Hensel’s Lemma we may identify a root α

of f(x) modulo p with all of its lifts. We now consider the sequence of lifts α1, α2, . . .

such that each αi is a root of f(x) in Z /pi Z. Trivially, as α1 ∈ Z /pZ we have that

ord(α1) | p− 1. Letting b = ord(α1) we now give the following lemma.

Lemma 6.65. There exists some number k such that

ord(α1) = ord(α2) = · · · = ord(αk) = b and ord(αk+i) = pib.

Proof. In the following we denote by δ, δ′, . . . arbitrary constants, and by ε, ε′, . . .

arbitrary constants satisfying ε 6= 0 (mod p). First, we show that if ord(αi) = b in
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Z /pi Z then ord(αi+1) is either b or pb in Z /pi+1 Z. We have

αpbi+1 ≡ ((αi + piδ)b)p ≡ (αbi + piδ′)p ≡ (1 + piδ′′)p ≡ 1 (mod pi+1).

Hence we see that ord(αi+1) | pb, and as αi+1 ≡ αi (mod pi) we know that

b | ord(αi+1), so ord(αi+1) is either b or pb.

Now suppose that there is no k such that ord(αk+1) = pb. If this is true, then for all i

we have

Ab ≡
∏

α∈ρ(f)

(αb − 1) ≡ (αbi − 1)
∏

β∈ρ(f)\{αi}

(βb − 1) ≡ 0 (mod pi).

As Ab ∈ Z we can only have Ab ≡ 0 (mod pi) for all i if Ab = 0. However, by

assumption we know that no Φn(x) | f(x), so f(x) has no root α satisfying αn = 1,

hence we cannot have An = 0 for any n. Therefore, there exists some minimal k such

that ord(α1) = ord(α2) = · · · = ord(αk) = b and ord(αk+1) = pb.

Now we show by induction that ord(αk+i) = pib, with the base case of i = 1 as above.

Given the hypothesis for ord(αk+i) we have

αp
ib
k+i+1 ≡ ((αk+1 + pk+1δ)b)p

i ≡ (αbk+1 + pk+1δ′)p
i ≡ ((1 + pkε) + pk+1δ′)p

i

≡ (1 + pkε′)p
i ≡ 1 + pk+iε′ 6= 1 (mod pk+i+1).

Hence ord(αk+i+1) 6= pib, but as αk+i+1 ≡ αk+i (mod pi) we have pib | ord(αk+i+1).

Now, considering αp
i+1b
k+i+1 we have

αp
i+1b
k+i+1 ≡ ((αk + pkδ)b)p

i+1 ≡ (αbk + pkδ′)p
i+1 ≡ ((1 + pkδ′′) + pkδ′)p

i+1

≡ (1 + pkδ′′′)p
i+1 ≡ 1 (mod pk+i+1).

Hence ord(αk+i+1) | pi+1b. Finally, as pib | ord(αk+i+1) | pi+1b and ord(αk+i+1) 6= pib

we must have ord(αk+i+1) = pi+1b.

For a given sequence of roots we shall refer to the number b as the base order and the

number k as the base order multiplicity. For each root α of f(x) we now introduce a

pair of sequences related to An and an. For a root α of f(x) with base order b and

base order multiplicity k we define the sequences Λ(α)n and λ(α)n as follows

Λ(α)n =

0, if αn 6≡ 1 (mod p),

i, where i is the as large as possible such that αn ≡ 1 (mod i),
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and

λ(α)n =


k, if n = b,

1, if n = pib for some i ≥ 1,

0, otherwise.

We now related the sequences Λ(α)n and λ(α)n by the following lemma.

Lemma 6.66. Λ(α)n =
∑

d|n λ(α)d.

Proof. We consider two cases. For b - n we have that Λ(α)n = 0, and for each d | n we

have λ(α)d = 0. Hence, in this case we have Λ(α)n =
∑

d|n λ(α)d.

For b | n, we have that n is of the form pibm for some m with p - m. In this case,

ord(αk+i) = pib | n, but ord(αk+i+1) = pi+1b - n. Hence pi is the highest power of p

such that αn ≡ 1 (mod pk+i), and so Λ(α)n = k + i. Evaluating
∑

d|n λ(α)d we have

∑
d|n

λ(α)d =
∑
d|pib

λ(α)d = λ(α)b +
i∑

j=1

λ(α)pjb = k + i.

Therefore, in all cases we have Λ(α)n =
∑

d|n λ(α)d.

We now define sequences Λn and λn as follows.

Λn =
∑

α∈ρ(f)

Λ(α)n and λn =
∑

α∈ρ(f)

λ(α)n.

These sequences will be important to us due to the following relationships.

Lemma 6.67. The highest power of p dividing An is Λn.

Proof. For each root α of f(x) we have that αn − 1 ≡ piε (mod pj) where i = Λ(α)n,

ε 6≡ 0 (mod p) and j is taken to be arbitrarily large. Letting α, β, . . . , ω be the roots

of f(x) we have

An ≡ (αn−1)(βn−1) . . . (ωn−1) ≡ pΛ(α)nεαp
Λ(β)nεβ . . . p

Λ(ω)nεω ≡ pΛnε (mod pj),

where each ει 6≡ 0 (mod p) and ε 6≡ 0 (mod p), and j is arbitrarily large.

Lemma 6.68. The highest power of p dividing an is λn.

Proof. The relations An =
∏
d|n ad and Λn =

∑
d|n λd uniquely define the sequences
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an and λn. The sequence µn of highest powers of p dividing an is uniquely defined

and satisfies
∑

d|n µd = Λn due to the previous lemma, and hence λn = µn.

We are now in a position to give our first result regarding non-primitive prime

divisors of an.

Lemma 6.69. If p is not a primitive prime divisor of an, then the highest power of p

that can divide an is pdeg(f).

Proof. As p is a not a primitive prime divisor of an we have that p | n. The power of

p dividing an is given by λn. We have

λn =
∑

α∈ρ(f)

λ(α)n ≤ deg(f).

This is due to the fact λ(α)n ≤ 1 when p | n.

This demonstrates our argument providing a bound on the powers of non-primitive

prime divisors p of an. However, in order to prove our current version of this bound

we have had to assume that f(x) splits in Z /pZ. We will now show that this

assumption can be reduced to the assumption p - ∆f , the discriminant of f(x). In

order to do this, we will need to consider the roots of f(x) in rings other than Z /pi Z.

We shall call the rings we introduce Galois rings as they are constructed in a manner

analogous to the Galois fields and share similar properties.

Let f(x), g(x) ∈ Z[x] such that f(x) and g(x) are irreducible in Z /pZ, deg(g) = e and

deg(f) | e. We define the ring Rk by Rk = (Z /pk Z)[x]/〈g(x)〉. We note that

R1
∼= GF(pe), and so f(x) splits in R1. For elements α = a1 + a2x+ · · ·+ aex

e−1 ∈ Rk
and β = b1 + b2x+ · · ·+ bex

e−1 ∈ Rk+j we will use the notation β ≡ α (mod pk) to

mean ai ≡ bi (mod pk) for all 1 ≤ i ≤ e. We first must generalise Hensel’s Lemma to

these rings. Let α be an arbitrary root of f(x) in R1.

Lemma 6.70. There is a unique sequence of roots α1 = α, α2, . . . in R1, R2, . . . such

that each αi is a root of f(x) and αi+1 ≡ αi (mod pi).

Proof. Suppose that α1, . . . , αk are the first elements of such a sequence. Again, from

the Taylor expansion of f(x) we have

f(x+ pkh) = f(x) + pkhf ′(x) in Rk+1.
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As αk is a root of f in Rk we have

f(αk + pkh) = f(αk) + pkhf ′(αk) = pk(δ + hf ′(αk)) in Rk+1.

Considering the expression δ + hf ′(αk) modulo p, i.e. in R1
∼= GF(pe), we have that

f ′(αk) 6≡ 0 (mod p), as f(x) is irreducible in Z /pZ, so there is a unique solution to

the equation δ + hf ′(αk) ≡ 0 (mod p). Hence there is a unique root of f(x) in Rk+1,

αk+1, such that αk+1 ≡ αk (mod pk).

We now give a technical result allowing us to define Galois rings. Let h(x) ∈ Z[x] be

an irreducible polynomial in Z /pZ such that deg(h) = deg(f). Define Sk by

Sk = (Z /pk Z)[x]/〈h(x)〉.

Lemma 6.71. For all k ≥ 1, Rk ∼= Sk.

Proof. First, fix an arbitrary root α of g(x) in R1 and let α1, α2, . . . be its sequence of

lifts. We may think of Rk as an algebraic extension of Z /pk Z by adjoining the

element αk, a root of g(x). Basic Galois theory tells us that such an algebraic

extension is unique up to isomorphism. Trivially, we have R1
∼= GF(pe) ∼= S1. Hence,

let β be the image of α in an isomorphism from R1 to S1. We have that β is a root of

g(x) in S1, so from the previous lemma we may let β1, β2, . . . be the sequence of lifts

of β in S1, S2, . . . . Finally, as Sk contains a root βk of g(x) we may consider Sk as an

algebraic extension of Z /pk Z by adjoining a root of g(x), and therefore isomorphic to

Rk.

We are now able to define Galois rings. For k, e ≥ 1 and a prime p let g(x) ∈ Z[x] be

a polynomial such that g(x) is irreducible in Z /pZ and deg(g) = e. The Galois ring

GR(p, k, e) is the quotient ring (Z /pk Z)[x]/〈g(x)〉. We note from the previous lemma

that this defines the Galois ring GR(p, k, e) uniquely to isomorphism, and is thus well

defined. We shall call e the extension degree and k the characteristic power of

GR(p, k, e). We note the special cases GR(p, 1, e) ∼= GF(pe) and GR(p, k, 1) ∼= Z /pk Z.

Our previous argument concerning the powers of non-primitive prime divisors

dividing an relied upon roots of f(x); their lifts from the ring Z /pk Z to Z /pk+1 Z

and relationships modulo powers of p. With our new notation, these lifts become lifts

from GR(p, k, 1) to GR(p, k + 1, 1). We can now recreate the previous argument but

considering roots in the more general setting of GR(p, k, e) and their lifts to

GR(p, k + 1, e). This allows us to apply the same argument to any case in which f(x)

splits in some extension field GF(pe) of Z /pZ, and where f(x) has no repeated roots.

As the argument is entirely argument, we omit repeating it in full here. We now
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summarise our main result concerning which powers of non-primitive prime divisors

may divide an.

Proposition 6.72. If p - ∆f and p | n, then pdeg(f) is the largest power of p that can

divide an.

Proof. All that we need to show now is that the condition p - ∆f is sufficient for us to

apply our argument. If this is the case, then ∆f 6= 0 in Z /pZ and so f(x) has no

repeated roots in Z /pZ. Then we may consider an extension GF(pe) of Z /pZ where

f(x) splits. Now we may apply the previous argument in the rings GR(p, k, e).

We now give an example to show that this proposition does not always hold when

p | ∆f .

Lemma 6.73. There exist polynomials f(x) ∈ Z[x] and n ∈ N such that an has a

non-primitive prime divisor p satisfying p | n and pdeg(f)+1 | an.

Proof. Taking f(x) = x2 − x+ 10 we have ∆f = −39 = −1× 3× 13, so 3 | ∆f , and we

have a6 = 81 = 34. Hence in this case 3 is a non-primitive prime divisor of a6 and a

higher power than 3deg(f)+1 = 33 | a6.

We require a further proposition to allow us to create a bound on the size of an

containing no primitive prime divisors. Unfortunately, the proof of the proposition we

now give is non-constructive.

Proposition 6.74. For each prime p such that p | ∆f there exists some number k

such that pk - aprn for all r ≥ 1 and all n.

Proof. This result was proved in a personal communication from Sawin to the author

[47]. In the following we use the p-adic valuation, vp(α), which is an extension of the

function on integers defined by vp(n) = k if pk || n which satisfies the following

properties.

i) if α is an algebraic number then vp(α) is defined;

ii) for all α, β we have vp(αβ) = vp(α) + vp(β);

iii) for all α, β such that vp(α) 6= vp(β) we have vp(α+ β) = min(vp(α), vp(β)).

We now consider some n = mpr where p - m. We define the polynomial g(x) ∈ Z[x] by

g(x) =
∏

ξa∈ρ(Φm)

f(ξax).
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The fact that g(x) ∈ Z[x] may be seen as each coefficient of g(x) is a symmetric

polynomial in the roots of Φm(x). We now have

an =
∏

ξn∈ρ(Φn)

f(ξn) =
∏

ξa∈ρ(Φm)
ξb∈ρ(Φpr )

f(ξaξb) =
∏

ξb∈ρ(Φpr )

g(ξb).

Further, we may define some polynomial h(x) ∈ Z[x] such that h(x− 1) = g(x) so

that we have

an =
∏

ξb∈ρ(Φpr )

g(ξb) =
∏

ξb∈ρ(Φpr )

h(ξb − 1).

Now define k to be the smallest number such that the coefficient of xk in h(x) is not

divisible by p. Note that such a k is guaranteed to exist as h(x) is monic.

Now, we consider the p-adic valuation of an, i.e. the highest power of p dividing an.

We have

vp(an) = vp

 ∏
ξb∈ρ(Φpr )

h(ξb − 1)

 =
∑

ξb∈ρ(Φpr )

vp(h(ξb − 1))

We now consider each term vp(h(ξb − 1)). First, standard p-adic number theory gives

us that vp(ξb − 1) = 1/(pr − pr−1) = ϕ(pr)−1. Let ci denote the coefficient of xi in

h(x). For i < k we have vp(ci(ξb − 1)i) = vp(ci) + i vp(ξb − 1) > 1, as we have

vp(ci) ≥ 1 by assumption. For i > k we have

vp(ci(ξb − 1)i) = vp(ci) + i vp(ξb − 1) > k ϕ(pr)−1, as i > k. Finally, we have

vp(ck(ξb − 1)k) = vp(ck) + k vp(ξb − 1) = k ϕ(pr)−1, as vp(ck) = 0 by assumption.

Now, as k is independent of r we may choose r large enough such that k ϕ(pr)−1 < 1,

which then gives us mini(vp(ci(ξb − 1)i)) is achieved uniquely for i = k, and hence

vp(h(ξb − 1)) = k ϕ(pr)−1. Finally, we have

vp(an) =
∑

ξb∈ρ(Φpr )

vp(h(ξb − 1)) =
∑

ξb∈ρ(Φpr )

k ϕ(pr)−1 = ϕ(pr)(k ϕ(pr)−1) = k.

Altogether this shows for each prime p and number m such that p - m, there is a

computable k such that pk || ampr for sufficiently large r. We arrive at the final

statement of this proposition by noting that for any prime p there are finitely many m

such that p - m and p | am.

We now may combine these two propositions to give a bound on an with no primitive

prime divisors.
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Proposition 6.75. There exists some k ∈ N such that if an contains no primitive

prime divisors then |an| ≤ rad(n)k.

Proof. With our assumptions on f(x) we know that the discriminant ∆f of f(x) is

non-zero, as f(x) is irreducible in Z[x] and thus has no repeated roots. Therefore

there are only finitely many primes p dividing ∆f . For each prime p dividing ∆f

define kp to be the smallest k derived from Proposition 6.74. Now, using

Proposition 6.72 define k by k = max(deg(f),maxp|∆f
(kp)).

We are now in a position to give our first result regarding roots of f(x) of given

multiplicative order.

Proposition 6.76. For any monic irreducible polynomial f(x) ∈ Z[x] there are only

finitely many m such that f(x) has no roots of multiplicative order m in any finite

field.

Proof. From Proposition 6.62 we have that there exist constants C and N such that

|an| > eC
√
n for all n > N , and from Proposition 6.75 we have that there exists some

k such that any an with no primitive prime divisors satisfies |an| ≤ rad(n)k ≤ nk.
Hence, letting N ′ be the smallest N ′ such that eC

√
n > nk for all n > N ′, we have for

all n > max(N,N ′) that |an| > eC
√
n > nk, and so an must have at least one primitive

prime divisor. From Lemma 6.59 we have that an has a primitive prime divisor p if,

and only if, f(x) has a root of order n in a finite field of characteristic p.

This allows us to give our first general result regarding (k, l,m)-regular maps with

automorphism group a fractional linear group.

Proposition 6.77. For each k, l ∈ N such that k, l ≥ 3 and k, l is a hyperbolic pair,

there are only finitely many m such that there are no (k, l,m)-regular maps with

automorphism group a fractional linear group.

Proof. We have that there is a (k, l,m)-regular map with automorphism group a

fractional linear group if, and only if, fk,l(x) has a root of multiplicative order m in

some finite field. By Lemma 6.58 we know that each fk,l(x) has at least one monic

factor g(x) such that g(x) is irreducible, g(x) 6= x and g(x) 6= Φn(x) for any n. Now

we may apply Proposition 6.76 to g(x) to deduce there are only finitely many m such

that g(x) has no roots of multiplicative order m in any finite field. Clearly as all roots

of g(x) are roots of fk,l(x) the result immediately follows.
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6.5 Constructive Cases

Following on from our previous section, we now aim to strengthen the bounds we used

and make them constructive in order to explicitly calculate sets of orders for which a

given polynomial f(x) has no roots of that order. We begin by strengthening our

lower bound. In order to do this, we require a theorem of Mignotte and Waldschmidt

from [42]. First we shall require some definitions.

We shall define the absolute logarithmic height of an algebraic number α, denoted

h(α), where α has minimal polynomial

f(x) = c0x
d + c1x

d−1 + · · ·+ cd = c0

∏
β∈ρ(f)

(x− β),

by

h(α) =
1

d

log c0 +
∑

α∈ρ(f)

log max(1, |α|)

 .

Theorem 6.78 (Mignotte, Waldschmidt). If

i) α1, α2 are two non-zero algebraic numbers,

ii) D = [Q(α1, α2) : Q],

iii) logαi is any non-zero determination of the logarithm of αi for i = 1, 2,

iv) b1 and b2 are positive rational integers such that b1 logα1 6= b2 logα2,

v) B = max(b1, b2),

vi) a1, a2 and f are any real numbers satisfying

i) ai ≥ 1 for i = 1, 2,

ii) ai ≥ h(αi) + log 2 for i = 1, 2,

iii) ai = f | logαi|/D for i = 1, 2,

iv) f ≥ 2e.

then

|b1 logα1 − b2 logα2| ≥ e−270D4a1a2(7.5+logB)2 .

We first use this theorem to create a lemma more suited to our purposes. The

following lemma is a common result given in relation to Baker’s theorem. We quote it
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here both for completeness and to show how we may explicitly calculate the constants

involved. We reproduce the proof from [23].

Lemma 6.79. If α is an algebraic number with absolute value 1 and minimal

polynomial f(x) ∈ Z[x] then there is an explicitly computable constant Aα such that

log |αn − 1| ≥ −Aα(7.5 + log n)2 − log 2.

Proof. Choose a branch of the complex logarithm such that, for a complex number z,

we have log z = log |z|+ i arg z where −π < arg z ≤ π. This gives us the expansion

log(z + 1) =
∑∞

k=1(−1)k−1zk/k for |z| < 1. From this expansion one gets the

inequality | log(z + 1)| ≤ 2|z| for |z| ≤ 1/2. We now take z = αn − 1. If |z| > 1/2 then

the statement is trivial, so we may assume |z| ≤ 1/2. Hence we have

log(z + 1) = logαn = n logα+ 2kπi = n logα+ k log 1,

for some k, where we choose an determination of the logarithm in which log 1 = 2πi.

We may now apply Theorem 6.78 with

i) α1 = α and α2 = 1,

ii) D = [Q(α) : Q] = deg(f),

iii) logα1 = i argα where −π < argα ≤ π and logα2 = 2πi,

iv) b1 = n and b2 = k,

v) B = max(b1, b2) = n (as we may choose the determination of

logαn = log |αn|+ i arg |αn| where −π < arg |αn| ≤ π),

vi) a1, a2 and f are real numbers as described in Theorem 6.78.

Applying Theorem 6.78 we now get

| log(z + 1)| = |n logα+ k log 1| ≥ exp(−270D4a1a2(7.5 + log n)2).

As |z| ≤ 1/2, we have | log(z + 1)| ≤ 2|z| = 2|αn − 1|. Therefore we have

2|αn − 1| ≥ e−270D4a1a2(7.5+logn)2 ,

and so

log |αn − 1| ≥ −270D4a1a2(7.5 + log n)2 − log 2.

Taking Aα = 270D4a1a2 gives the result.
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We now use this to create a bound on terms Φn(α) where α is an algebraic number

with |α| = 1.

Lemma 6.80. If α is the root of an irreducible polynomial f(x) ∈ Z[x] such that

f(x) 6= x and f(x) 6= Φn(x) for any n, and |α| = 1, then

|Φn(α)| ≥ exp(−d(n)(Aα(7.5 + log n)2 + log 2)) for some explicitly computable

constant Aα depending only on α.

Proof. From the relation |αn − 1| =
∏
d|n |Φd(α)| we have

|Φn(α)| =
∏
d|n |αd − 1|µ(n/d). Hence we have log |Φn(α)| =

∑
d|n log |αd − 1|µ(n/d).

As log |αk − 1| ≤ log 2 for all k, and

log |αk − 1| ≥ −Aα(7.5 + log k)2 − log 2 ≥ −Aα(7.5 + log n)2 − log 2

for all k, we have

log |αn − 1| =
∑
d|n

|αd − 1|µ(n/d) =
∑
d|n

µ(n/d)=1

|αd − 1| −
∑
d|n

µ(n/d)=−1

|αd − 1|

≥
∑
d|n

µ(n/d)=1

(−Aα(7.5 + log n)2 − log 2)−
∑
d|n

µ(n/d)=−1

log 2

=
∑
d|n

µ(n/d)=1

−Aα(7.5 + log n)2 −
∑
d|n

log 2

≥ −d(n)(Aα(7.5 + log n)2 + log 2).

The result follows immediately.

This addresses the most difficult case of finding a lower bound for terms of the form

Φn(α) when |α| = 1. These terms are intuitively difficult to create a lower bound for

as α is a point on the unit circle, and as it is not a root of unity its powers will get

arbitrarily close to roots of unity infinitely often. We now need to create lower bounds

for terms of the form Φn(α) when |α| > 1 and |α| < 1, both of which are considerably

simpler. We begin with a lower bound for Φn(α) when |α| < 1.

Lemma 6.81. For all |z| < 1 we have |1/(1− z)| ≥ 1− |z|.

Proof. 1/(1− z) ≥ 1/(1 + |z|) = (1− |z|)/(1− |z|2) ≥ 1− |z|.

Lemma 6.82. For all z ∈ C such that |z| < 1, we have |Φn(z)| ≥ exp(−(1− |z|)−3/2).
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Proof. First, we have the identity

Φn(z) =
∏
d|n

(zd − 1)µ(n/d).

Noting Lemma 6.81 and the fact |1− z| ≥ 1− |z|, we have

|Φn(z)| =
∏
d|n

|zd − 1| =
∏
d|n

|1− zd| ≥
∏
d|n

(1− |z|d) ≥
∞∏
n=1

(1− |z|n).

We now note the inequality

log(1− x) ≥ −x√
1− x

for all 0 ≤ x < 1. Letting α = |z|, we have

log

( ∞∏
n=1

(1− αn)

)
=
∞∑
n=1

log(1− αn) ≥ −
∞∑
n=1

αn√
1− αn

.

From 0 ≤ α < 1 we have
√

1− αn ≥
√

1− α, 1/
√

1− αn ≤ 1/
√

1− α and therefore

−1/
√

1− αn ≥ −1/
√

1− α, so we have

−
∞∑
n=1

αn√
1− αn

≥ −
∞∑
n=1

αn√
1− α

≥ − 1√
1− α

∞∑
n=1

αn = −(1− α)−3/2.

Altogether this gives

log |Φn(z)| ≥ −(1− |z|)−3/2 ⇔ |Φn(z)| ≥ exp(−(1− |z|)−3/2).

We are now in a position to give our lower bound on the terms an. We will begin with

the case where f(x) has no roots α such that |α| = 1.

Proposition 6.83. If f(x) ∈ Z[x] satisfies x - f(x) and Φn(x) - f(x) for any n, and

f(x) has no roots α such that |α| = 1, then there is a computable constant C such that

|an| ≥ C M(f)ϕ(n) where M(f) is the Mahler measure of f(x).

Proof. We have

an =
∏

α∈ρ(f)

Φn(α) =
∏

α∈ρ(f)
|α|>1

αϕ(n)Φn(α−1)
∏

α∈ρ(f)
|α|<1

Φn(α).
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From Lemma 6.82 we may take

C =
∏

α∈ρ(f)
|α|>1

e−(1−|α−1|)−3/2
∏

α∈ρ(f)
|α|<1

e−(1−|α|)−3/2
,

and we have

|an| =
∏

α∈ρ(f)
|α|>1

|αϕ(n)Φn(α−1)|
∏

α∈ρ(f)
|α|<1

|Φn(α)|

=
∏

α∈ρ(f)
|α|>1

|αϕ(n)|
∏

α∈ρ(f)
|α|>1

|Φn(α−1)|
∏

α∈ρ(f)
|α|<1

|Φn(α)|

≥ C
∏

α∈ρ(f)
|α|>1

|αϕ(n)| = C M(f)ϕ(n).

We now give our lower bound for |an| in the more complex case in which there exist

roots α of f(x) such that |α| = 1.

Lemma 6.84. If f(x) ∈ Z[x] satisfies x - f(x) and Φn(x) - f(x) for any n then there

are computable constants A, B and C such that

|an| ≥ C M(f)ϕ(n)e− d(n)(A(7.5+logn)2+B log 2).

Proof. As before, from Lemma 6.82 we have

|an| =
∏

α∈ρ(f)

|Φn(α)| =
∏

α∈ρ(f)
|α|>1

|Φn(α)|
∏

α∈ρ(f)
|α|=1

|Φn(α)|
∏

α∈ρ(f)
|α|<1

|Φn(α)|

=
∏

α∈ρ(f)
|α|>1

(|α|ϕ(n)|Φn(α−1)|)
∏

α∈ρ(f)
|α|=1

|Φn(α)|
∏

α∈ρ(f)
|α|<1

|Φn(α)|

≥ C M(f)ϕ(n)
∏

α∈ρ(f)
|α|=1

|Φn(α)|,

where C is given by

C =
∏

α∈ρ(f)
|α|>1

e−(1−|α−1|)−3/2
∏

α∈ρ(f)
|α|<1

e−(1−|α|)−3/2
.

We now use Lemma 6.80 to bound the terms of the form |Φn(α)|. From this lemma,
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for each α there exists some Aα depending only on α such that

|Φn(α)| ≥ e−d(n)(Aα(7.5+logn)2+log 2).

Hence we have

|an| ≥ C M(f)ϕ(n)
∏

α∈ρ(f)
|α|=1

|Φn(α)|

≥ C M(f)ϕ(n)
∏

α∈ρ(f)
|α|=1

e− d(n)(Aα(7.5+logn)2+log 2)

≥ C M(f)ϕ(n)e− d(n)(A(7.5+logn)2+B log 2),

where

A =
∑

α∈ρ(f)
|α|=1

Aα and B =
∑

α∈ρ(f)
|α|=1

1.

In order to use these bounds we are going to need easily usable bounds on the totient

function ϕ(n) and the divisors function d(n). Standard number theory tells us that

ϕ(n) ∼ n1−ε for all ε > 0 and d(n) ∼ nε for all ε > 0. Hence, we shall give arguments

which allow us to calculate, for arbitrary ε > 0, explicit constants Tε and Dε such

that ϕ(n) ≥ Tεn1−ε and d(n) ≤ Dεn
ε.

Lemma 6.85. For each ε > 0 there is a computable constant Tε such that

ϕ(n) ≥ Tεn1−ε.

Proof. For each prime p we aim to find a constant βp such that ϕ(pk) ≥ βp(pk)1−ε.

Let α be the smallest number such that for all x ≥ α we have x ≥ x1−ε + 1, which we

know to exist as 1− ε < 1.

For p > α we have

ϕ(pk) = pk−1(p− 1) ≥ pk−1p1−ε = pk−ε ≥ (pk)1−ε.

Hence taking βp = 1 we have ϕ(pk) ≥ βp(pk)1−ε.

For p ≤ α let Kp be the smallest number such that pk(1− 1/p) ≥ (pk)1−ε for all

k ≥ Kp. Now take

βp = min
1≤i≤Kp

{
pk(1− 1/p)

(pk)1−ε

}
.
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This gives us

ϕ(pk) = pk(1− 1/p) =
pk(1− 1/p)

(pk)1−ε (pk)1−ε ≥ βp(pk)1−ε.

We may now take Tε =
∏
βp where the product is taken over all primes p. As there

are only finitely many primes p such that p ≤ α, and for 0 < p ≤ α we have

0 < βp < 1 this product is well defined. Hence, for n = pa11 p
a2
2 . . . pakk we have

Tεn
1−ε ≤ βp1(pa11 )1−εβp2(pa22 )1−ε . . . βpk(pakk )1−ε

≤ pa11 (1− 1/p1)pa22 (1− 1/p2) . . . pakk (1− 1/pk) = ϕ(n).

The result follows from the fact we may easily compute α and then use this to

compute Tε.

Lemma 6.86. For each ε > 0 there is a computable constant Dε such that

d(n) ≤ Dεn
ε.

Proof. As before, we first prove for each prime p and ε > 0 there exists a computable

constant βp such that d(pk) ≤ βp(pk)ε.

First, letting α = 21/ε, if p ≥ α then we have d(pk) = k + 1 and (pk)ε ≥ 2k ≥ k + 1.

Therefore for all p ≥ α we may take βp = 1 and we have d(pk) ≤ βp(pk)ε.

For p < α, we now define Kp to be the smallest integer such that (pε)k ≥ k + 1 for all

k ≥ Kp which we know to exist as pε > 1. Now we take

βp = max
1≤i≤Kp

{
i+ 1

(pε)i

}
.

Hence we have

βp(p
k)ε = βp(p

ε)k ≥
(
k + 1

(pε)k

)
(pε)k = k + 1.

We now may take Dε =
∏
βp where the product is taken over all primes p. As there

are only finitely many primes p such that p < α, and for all p < α we have that

1 < βp <∞, the product Dε is well defined. Hence, for n = pa11 p
a2
2 . . . pakk we have

Dεn
ε ≥ βp1(pa11 )εβp2(pa22 )ε . . . βpk(pakk )ε

≥ (a1 + 1)(a2 + 1) . . . (ak + 1) = d(n).

The result follows as we may easily compute α and then use this to compute Dε.
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We now have all the material required to create our first explicit lower bounds on the

terms |an|, so we now work to make our upper bound on terms |an| with no primitive

prime divisors explicit. To do this, for a polynomial f(x) ∈ Z[x] we consider each

prime p | ∆f and determine an upper bound on which powers of p may divide terms

|an|. We first require a definition. For a monic polynomial f(x) ∈ Z[x] given by

f(x) = xn − anxn−1 − · · · − a1 we define the companion matrix C ∈Mn of f(x) to be

the matrix

C =



0 0 0 . . . a1

1 0 0 . . . a2

0 1 0 . . . a3

...
...

...
. . .

...

0 0 0 . . . an


.

Lemma 6.87. If C is the companion matrix of an irreducible monic polynomial

f(x) ∈ Z[x], then for any polynomial g(x) ∈ Z[x] we have Det(g(C)) =
∏
α∈ρ(f) g(α).

Proof. The companion matrix of f(x) is similar to the diagonal matrix D given by

D =



α1 0 0 . . . 0

0 α2 0 . . . 0

0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . αn


,

where α1, α2, . . . , αn are the roots of f(x). Hence there exists some matrix Q such

that C = Q−1DQ. Noting that

Cn = (Q−1DQ)n = Q−1DQQ−1DQ . . .Q−1DQ = Q−1DnQ, we have

Det(g(C)) = Det(g(Q−1DQ)) = Det(Q−1g(D)Q) = Det(Q−1) Det(g(D)) Det(Q)

= Det





g(α1) 0 0 . . . 0

0 g(α2) 0 . . . 0

0 0 g(α3) . . . 0
...

...
...

. . .
...

0 0 0 . . . g(αn)




=

∏
α∈ρ(f)

g(α),

as Det(Q−1) Det(Q) = 1.

Letting An =
∏
α∈ρ(f)(α

n − 1) and an =
∏
α∈ρ(f) Φn(α) as before this gives the

following important corollary.
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Corollary 6.88. If f(x) ∈ Z[x] is an irreducible monic polynomial and C is the

companion matrix of f(x) then An = Det(Cn − I) and an = Det(Φn(C)).

Proof. Immediate.

In light of this lemma we now give a method to, for a given prime p, calculate a bound

on powers of p dividing terms of the form an. In the following we make the further

assumption that we are considering an irreducible, monic polynomial f(x) ∈ Z[x] in

which the discriminant ∆f and the constant coefficient of f(x) are coprime.

Lemma 6.89. If p || n and p | an, then for each k there exists a computable number r

such that apin 6≡ 0 (mod pk) for any i if, and only if, apin 6≡ 0 (mod pk) for all

0 ≤ i ≤ r.

Proof. As p || n, from the identity of cyclotomic polynomials Φprn(x) = Φn(xp
r
) and

the fact am = Det(Φm(C)) we have aprn = Det(Φn(Cp
r
)). By assumption, p is not a

divisor of the constant coefficient of f(x), which is given by Det(C), so C is not a zero

divisor in any matrix ring over Z /pk Z, and has multiplicative order bpc for some b

with p - b. Therefore for i ≡ j (mod pcb) we have Ci ≡ Cj (mod pk). Hence, let k be

a high enough power of p such that pk - anpr for any r, which we know to exist by

Lemma 6.74, and let bpc be the multiplicative order of C in over Z /pk Z. By the

Chinese Remainder Theorem the sequence pr (mod bpc) is determined uniquely by

the sequences pr (mod b) and pr (mod pc). For r ≥ c, the sequence pr ≡ 0 (mod pc),

and the sequence pr (mod b) repeats with period the order of p (mod b). Letting m

be the order of p (mod b), we see that for r ≥ c, if 0 ≤ r′ < m and r ≡ c+ r′

(mod m), then aprn ≡ pc+r
′
n (mod pk). Therefore, if aprn 6≡ 0 (mod pk) for all

r ≤ m+ c, then aprn 6≡ 0 (mod pk) for all r.

Due to the technical nature of the lemma, we provide an example to clarify the idea.

Example 6.90. For f(x) = x2 − x− 1, if p | n then an 6≡ 0 (mod p3).

Proof. In this case we have ∆f = 5, so for all primes p 6= 5 we may apply

Proposition 6.72. For the other case, we first have that 5 | an where 5 - n if, and only

if, there is a root of f(x) of order n in Z /5Z. In Z /5Z we have f(x) = (x− 3)2, so

the only an such that 5 | an and 5 - n is n = 4. We follow the previous lemma, taking

n = 4 and p = 5. The companion matrix C of f(x) is given by

C =

0 1

1 1

 .
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We have that C has multiplicative order 500 = 22 × 53 modulo 53. Hence the

sequence 5r (mod 4× 53) can be found by considering the sequences 5r (mod 4) and

5r (mod 53). Clearly 5r ≡ 1r ≡ 1 (mod 4) and 5r ≡ 0 (mod 53) for r ≥ 3. Hence, for

all r ≥ 3 we have

a20×5r ≡ Det(Φ20×5r(C)) ≡ Det(Φ20(C5r))

≡ Det(Φ20(C53)) ≡ a20×53 ≡ a2500 (mod 53)

Hence we calculate a20×5t (mod 53) for 0 ≤ r ≤ 3. We have

a20 ≡ 25, a20×5 ≡ 25, a20×52 ≡ 25, and a20×53 ≡ 25 (mod 53).

The result follows immediately.

We will now give apply these lemmas to an example polynomial fk,l(x) and determine

an explicit bound beyond which roots of all multiplicative orders exist to fk,l(x) in

some finite field. First we require a bound on |an| when an has no primitive prime

divisors.

Lemma 6.91. For f3,7(x) = x6 + 2x5 + 2x4 + 3x3 + 2x2 + 2x+ 1, if an has no

primitive prime divisors then |an| ≤ n6.

Proof. First we calculate the discriminant ∆f of f(x) as ∆f = 31, 213 = 74 × 13.

Hence for all primes p 6∈ {7, 13} we may apply Proposition 6.72 to show that if p | n
then p7 - an.

We now consider the case p = 7. In this case, we have f(x) = (x2 + 3x+ 1)3 in

(Z /7Z)[x], so has only two distinct roots. The roots of f(x) are both multiplicative

order 8, so we have that if 7 | an then n = 8× 7i for some i ≥ 0. Letting C be the

companion matrix of f(x) in GF(7) we have

C =



0 0 0 0 0 6

1 0 0 0 0 5

0 1 0 0 0 5

0 0 1 0 0 4

0 0 0 1 0 5

0 0 0 0 1 5


.

One can easily verify that the multiplicative order of C is 56. Hence, letting

m = ord(C) in Z /77 Z we know that 56 | 7 so one can easily verify m = 76 × 56. We

now use the relation Φ7r×56(x) = Φ56(x7r) for all r to calculate each a7r×56. We
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consider the values of C7r (mod 77), as C is order 77 × 8 we consider the values of 7r

(mod 77 × 8). For r ≥ 7 we have 7r ≡ 0 (mod 77) and 7r ≡ 1 (mod 8) if r is even and

7r ≡ 7 (mod 8) if r is odd. Therefore for any r > 8 there exists some 0 ≤ r′ ≤ 8 such

that C7r ≡ C7r
′

(mod 77). Therefore we calculate a7r×56 ≡ Det(Φ56(C7r)) (mod 77)

for 0 ≤ r ≤ 8. We have a7r×56 ≡ Φ56(C7r) ≡ 76 (mod 77) for all 0 ≤ r ≤ 8, and

therefore for all r. Hence if 7 | n then we have 77 - an.

We now consider the case p = 13. In this case, we have

f(x) = (x+ 12)2(x+ 2)(x+ 7)(x2 + 8x+ 1), from which we calculate the possible

multiplicative orders of roots of f(x) are 1, 12 and 14. Hence if 13 | an we must have

n = 13rk for some k ∈ {1, 12, 14} and r ≥ 0. One can verify that the companion

matrix C of f(x) in Z /13Z has multiplicative order 1092 = 84× 13. Letting m be the

multiplicative order of C over Z /133 Z we therefore easily see that 1092 | m so can

easily verify that m = 132 × 1092. We now consider the values of C13r in Z /133 Z for

different powers of r. As C is order 133 × 84, we therefore consider the values of 13r

modulo 133 × 84. We have 13r ≡ 0 (mod 133) for all r ≥ 3 and 13r ≡ 1 (mod 84) if r

is even and 13r ≡ 13 (mod 84) if r is odd. Hence, for all r > 4 there exists some

0 ≤ r′ ≤ 4 such that C13r ≡ C13r
′

(mod 133). We now calculate a13r×13k for

k ∈ {1, 12, 14} and r ≥ 0. We have

a13 ≡ a132 ≡ a133 ≡ a134 ≡ a135 ≡ 132 (mod 133),

a156 ≡ a13×156 ≡ a132×156 ≡ a133×156 ≡ a134×182 ≡ 132 (mod 133),

a182 ≡ a13×182 ≡ a132×182 ≡ a133×182 ≡ a134×182 ≡ 132 (mod 133).

Finally, any other a13r×13k for k ∈ {1, 12, 14} and r ≥ 0 is equal to one of these, and

therefore if 13 | n then 133 - an and 137 - an.

Altogether we have for all primes that if p | n then p7 - an. Hence, if an only has

non-primitive prime divisors, we must have |an| ≤ rad(n)6 ≤ n6, establishing our

upper bound on an with no non-primitive prime divisors.

We now compute explicit constants to give us a constructive lower bound on |an|.

Lemma 6.92. We have

|an| ≥ C M(f)ϕ(n)e− d(n)(A(7.5+logn)2+B log 2)

≥ C M(f)
√
n/2e−4n1/3(a(7.5+logn)2+B log 2),

where A = 10, 867, 224.615 . . . , B = 4, C = 0.000259611 . . . and M(f) = 1.6355 . . . .
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Proof. We use Lemma 6.84. This immediately allows us to calculate B, C and M(f).

To calculate A we use Lemma 6.79. The bounds for the totient function and the

divisors function used are ϕ(n) ≥
√
n/2 and d(n) ≤ 4n1/3, which may both be derived

from the methods of Lemma 6.85 and Lemma 6.86.

We are now in a position to give our first explicit existence result on roots of f3,7(x).

Proposition 6.93. The polynomial f3,7(x) = x6 + 2x5 + 2x4 + 3x3 + 2x2 + 2x+ 1 has

at least one root of order m in some finite field for all m ≥ 1076.

Proof. By combining Lemma 6.91 and Lemma 6.92 we can show that |an| > n6 for all

n ≥ 1076 and thus all n ≥ 1076 must have at least one primitive prime factor.

We now aim to create a new, better bound which will allow us to show that all an for

n in an interval up to 1076 have at least one primitive prime divisor. To do this, we

shall use a method relying on using continued fraction expansions. The method we

used can be found in [42]. We first require the following standard theorem of

continued fractions, a proof of which may be found in [21].

Theorem 6.94. If [a0; a1, a2, . . . ] is a continued fraction expansion of α, and pn/qn

are its convergents, then∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

(a+ 2)q2

for all q ≤ qn where a = max1≤i≤n+1 ai.

We shall use this bound to create a lower bound on terms of the form Φn(α) when

|α| = 1. First we give a bound on expressions of the form |αn − 1|.

Lemma 6.95. Letting α = ei2πβ where [a0; a1, a2, . . . ] is a continued fraction

expansion of β with convergents pn/qn, for all k ≤ qn we have |αk − 1| ≥ 2π/(a+ 2)k

where a = max1≤i≤n ai.

Proof. For any complex number z such that |z| = 1 we have | arg z| ≥ |z − 1|, where

−π < arg z ≤ π, as arg z measures the distance along the unit circle from 1 to z and

|z − 1| measures the straight line distance from 1 to z. We have

argαn = min
m∈Z

(n argα− 2πm) = min
m∈Z

(n2πβ − 2πm).

Hence we have

|αn − 1| ≥ | argαn| = min
m∈Z

(n2πβ − 2πm) = 2πnmin
m∈Z

(
β − m

n

)
≥ 2πn

(a+ 2)n2
,
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where finally we use Theorem 6.94 to bound the expression minm∈Z(β −m/n).

We now may improve our bound on |an| as follows.

Lemma 6.96. There exist explicitly computable constants C, M(f) and aα for each

α ∈ ρ(f) with |α| = 1 such that

|an| ≥ C M(f)ϕ(n)


∏

α∈ρ(f)
|α|=1

(
2π

(aα + 2)n

)d(n)


≥ C M(f)(1/5)n49/50


∏

α∈ρ(f)
|α|=1

(
2π

(aα + 2)n

)17n4

 ,

for all n ≤ N for some given N .

Proof. The constants C and M(f) are as before in previous results. In this bound we

use tighter explicit constants for bounding the totient function and divisors function

again computable by using Lemma 6.85 and Lemma 6.86. We now focus on bounding

terms of the form Φn(α) where |α| = 1. We have

|Φn(α)| =
∏
d|n

|αd − 1|µ(n/d).

For µ(n/d) = 1 we may use our estimate from Lemma 6.95 directly. For µ(n/d) = −1

we have |αd − 1|−1 ≥ 1/2, whereas for n > 4 we have 2π/(a+ 2)n < 1/2, hence we

may use the same lower bound estimate in the case µ(n/d) = −1. This gives

|Φn(α)| =
∏
d|n

|αd − 1|µ(n/d) ≥
∏
d|n

(
2π

(aα + 2)d

)
≥
∏
d|n

(
2π

(aα + 2)d

)

=

(
2π

(aα + 2)d

)d(n)

≥
(

2π

(aα + 2)d

)17n4

.

The bound now immediately follows.

We now apply this bound to the case f3,7(x) = x6 + 2x5 + 2x4 + 3x3 + 2x2 + 2x+ 1.

Corollary 6.97. For 150, 000 ≤ n ≤ 1076 each an has at least one primitive prime

factor.

Proof. We apply the bound from Lemma 6.96 to show that |an| > n6 within this

range of n.
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Combining Corollary 6.97 and Proposition 6.93 we have that an has a primitive prime

divisor for all n ≥ 150, 000. The number 150,000 is small enough that we may now

complete our investigation by computing an for 1 ≤ n < 150, 000 and determining

which an have primitive prime divisors. This gives the following result.

Proposition 6.98. For f3,7(x) = x6 + 2x5 + 2x4 + 3x3 + 2x2 + 2x+ 1 each an has a

primitive prime divisor for

n 6∈ {1, 2, 3, 4, 5, 6, 7, 10, 11, 16, 17, 18, 24, 27, 36, 38, 56, 60, 78}.

Hence we may state our result as it relates to regular maps.

Corollary 6.99. For all m ≥ 7 and

m 6∈ {7, 10, 11, 16, 17, 18, 24, 27, 36, 38, 56, 60, 78}

there exists a (3, 7,m)-regular map with automorphism group a fractional linear group.

Applying the same logic to all cases of k, l ≤ 10 we find the following exceptional

cases in which (k, l,m)-regular maps do not exist in fractional linear groups.
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k l Exceptions

3 7 1, 2, 3, 4, 5, 6, 7, 10, 11, 16, 17, 18, 24, 27, 36, 38, 56, 60, 78
3 8 1, 2, 3, 4, 5, 6, 9, 12, 14, 24, 30, 60
3 9 1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 28, 30, 36
3 10 1, 2, 3, 4, 5, 6, 7, 10, 18, 24, 30
4 5 1, 2, 3, 4, 5, 7, 10, 18, 24, 30
4 6 1, 2, 3, 4, 6, 12
4 7 1, 2, 3, 4, 5, 7, 18
4 8 1, 2, 3, 4, 8, 10
4 9 1, 2, 3, 4, 9
4 10 1, 2, 3, 4, 5, 8, 20, 30
5 5 1, 2, 3, 4, 6, 7, 8, 15
5 6 1, 2, 3, 5, 8, 10, 20, 30
5 7 1, 2, 3, 4, 5, 8
5 8 1, 2, 3, 5, 6, 7, 12, 20
5 9 1, 2, 3, 42
5 10 1, 2, 3, 4, 6, 10
6 6 1, 2, 3, 4
6 7 1, 2, 3
6 8 1, 2, 3, 5, 8, 12
6 9 1, 2, 3, 18
6 10 1, 2, 3, 5
7 7 1, 2, 3, 4, 8
7 8 1, 2, 5, 7
7 9 1, 2, 12
7 10 1, 2, 3
8 8 1, 2, 4, 6
8 9 1, 2, 3
8 10 1, 2, 4
9 9 1, 2, 4, 12
9 10 1, 2, 12
10 10 1, 2, 3, 5

In addition to our ability to, for a fixed pair (k, l) ∈ N2, calculate explicitly the set of

all m such that no (k, l,m)-regular map exists in fractional linear groups, we are also

able to calculate explicit examples of (k, l,m)-maps where they do exist in fractional

linear groups. To do this, we first calculate N(k, l,m); then, for each prime

p | N(k, l,m), we calculate all solutions to ωk + ωl + ωm + 2 = 0 in finite fields of

characteristic p; then finally we may use our values for ωk, ωl and ωm in our explicit

forms of the generator matrices X, Y and Z to give explicit descriptions of our

groups. We now give some example maps.

Let F = GF(72), and α ∈ F be a root of x2 + 6x+ 3. Define X,Y, Z ∈ SL(2, 72) by

X =

 0 6α+ 4

6α+ 4 0

 , Y =

4α+ 5 α+ 3

6α+ 4 3α+ 2

 and Z =

 0 5α+ 1

3α+ 2 0

 .
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Then the group G = 〈X̄, Ȳ , Z̄〉 ≤ PSL(2, 72) is the automorphism group of a

(3, 7, 8)-regular map. In particular we have ord(X̄Ȳ ) = 7, ord(Ȳ Z̄) = 3 and

ord(Z̄X̄Ȳ ) = 8.

Let F = GF(52), and α ∈ F be a root of x2 + 4x+ 2. Define X,Y, Z ∈ SL(2, 52) by

X =

 0 3α+ 1

4α+ 3 0

 , Y =

4 3

1 1

 and Z =

0 3

3 0

 .

Then the group G = 〈X̄, Ȳ , Z̄〉 ≤ PSL(2, 52) is the automorphism group of a

(4, 5, 6)-regular map. In particular we have ord(X̄Ȳ ) = 5, ord(Ȳ Z̄) = 4 and

ord(Z̄X̄Ȳ ) = 6.

Let F = GF (72) and α ∈ F be a root of x2 + 6x+ 3. Define X,Y, Z ∈ SL(2, 72) by

X =

6α+ 4 0

5α+ 1 α+ 3

 , Y =

6α+ 4 α+ 3

0 α+ 3

 , and Z =

6α+ 4 0

0 α+ 3

 .

The the group G = 〈X̄, Ȳ , Z̄〉 ≤ PSL(2, 72) is the automorphism group of a

(7, 7, 6)-regular map. In particular we have ord(X̄Ȳ ) = 7, ord(Ȳ Z̄) = 7 and

ord(Z̄X̄Ȳ ) = 6.

6.6 Prime Cases

Finally we conclude our discussion of (k, l,m)-regular maps in fractional linear groups

by considering the case in which each of k, l and m is a prime number. In this case we

are able to say a little more than previously regarding the conditions for the existence

of a (k, l,m)-regular map in fractional linear groups.

Throughout this section we shall consider (p, q, r)-regular maps where we assume

p 6= q and that p, q is a hyperbolic pair. First we require the following lemma. In the

following we use the notation Γ(L/K) to denote the Galois group of the field L over

the field K.

Lemma 6.100. [Q(ωp + ωq) : Q] = (p− 1)(q − 1)/4.

Proof. In the case where p = 3 we have ωp = 1 and the result is trivial. Hence we

assume that p, q > 3. To show the result we shall use the following facts

i) if L : K is a normal extension of K, and M is an intermediate field K ⊆M ⊆ L,

then [L : M ] = |Γ(L/M)|;
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ii) the field extension Q(ξpq) : Q is a normal extension and

[Q(ξpq) : Q] = (p− 1)(q − 1);

iii) Q(ξp) ∩Q(ξq) = Q.

Our strategy is to calculate [Q(ξpq : Q(ωp + ωq)] by explicitly calculating

G = Γ(Q(ξpq)/Q(ωp + ωq)). We know that each automorphism φ ∈ H = Γ(Q(ξpq)/Q)

is uniquely defined by some n coprime to pq and the fact for any pqth root of unity ξ

we have φ(ξ) = ξn. From the Galois correspondence we know that G ⊆ H. If φ ∈ G,

then we must have φ(ωp + ωq) = ωp + ωq, as G fixes Q(ωp + ωq), and further we know

that if φ ∈ H and φ(ωp + ωq) = ωp + ωq then φ fixes Q(ωp + ωq). Therefore,

G = {φ ∈ H|φ(ωp + ωq) = ωp + ωq}. We now find all such φ. Suppose φ ∈ H and

φ(ωp + ωq) = ωp + ωq. We may choose ξpq such that ωp = ξqpq + ξ−qpq and

ωq = ξppq + ξ−ppq . Let n be the unique number 1 ≤ n < pq such that (n, pq) = 1 and

φ(ξpq) = ξnpq. This gives us

ξqpq + ξ−qpq + ξppq + ξ−ppq = ωp + ωq = φ(ωp + ωq) = φ(ξqpq) + φ(ξ−qpq ) + φ(ξppq) + φ(ξ−ppq )

= ξnqpq + ξ−nqpq + ξnppq + ξ−nppq

We may rearrange this equation to the following

ξp + ξ−1
p + ξnp + ξ−np = ξq + ξ−1

q + ξnq + ξ−nq ,

where ξp = ξqpq and ξq = ξppq. As the left hand side is in Q(ξp) and the right hand side

is in Q(ξq), we must have that both sides are in Q(ξp)∩Q(ξq) = Q. As one of p, q > 5,

without loss of generality take p > 5. We know that the pth roots of unity form a set

of more than four algebraic numbers linearly independent over Q and so a sum of at

most 4 distinct pth roots of unity equal to a number in Q must be a trivial sum and

equal to zero. This gives us

ξp + ξ−1
p + ξnp + ξ−np = ξq + ξ−1

q + ξnq + ξ−nq = 0.

Hence we have

ξp + ξ−1
p = ξnp + ξ−np and ξq + ξ−1

q = ξnq + ξ−nq .

From the left hand side we deduce that n ≡ ±1 (mod p), and from the right hand

side we deduce n ≡ ±1 (mod q). It is now trivial to show that this gives us exactly

four distinct automorphisms. Therefore, |G| = 4, and hence we have

(p−1)(q−1) = [Q(ξpq) : Q] = [Q(ξpq) : Q(ωp+ωq)][Q(ωp+ωq) : Q] = 4[Q(ωp+ωq) : Q],
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and so [Q(ωp + ωq) : Q] = (p− 1)(q − 1)/4.

This allows us to give the following important corollary.

Corollary 6.101. The polynomial fp,q(x) is irreducible.

Proof. Let α be a root of a factor x2 + (ωp + ωq + 2)x+ 1 of fp,q(x) for ωp + ωq < 0.

We consider [Q(α) : Q]. First, we have that deg(fp,q(x)) = (p− 1)(q − 1)/2, so

[Q(α) : Q] = (p− 1)(q − 1)/2 if, and only if, fp,q(x) is irreducible. We have that

α+ α−1 = −(ωp + ωq + 2), hence Q(ωp + ωq) ⊆ Q(α). Further, as we chose

ωp + ωq < 0, we must have α ∈ C \R, so Q(α) 6= Q(ωp + ωq). Hence, as

g(x) = x2 + (ωp + ωq + 2)x+ 1 ∈ Q(ωp + ωq)[x] we have that [Q(α) : Q(ωp + ωq)] = 2,

and so

[Q(α) : Q] = [Q(α) : Q(ωp + ωq)][Q(ωp + ωq) : Q] = (p− 1)(q − 1)/2,

showing that fp,q(x) is irreducible.

This gives us the further important corollary.

Corollary 6.102. No cyclotomic polynomial Φn(x) satisfies Φn(x) | fp,q(x).

Proof. We know from Corollary 6.101 that fp,q(x) is irreducible, and from

Lemma 6.58 that fp,q(x) has at least one irreducible factor g(x) such that

Phin(x) - g(x) and x - g(x). Hence fp,q(x) satisfies Φn(x) - fp,q(x) for any n.

We now give our condition for the existence of a (p, q, r)-regular map in fractional

linear groups.

Proposition 6.103. There is a (p, q, r)-regular map in fractional linear groups if,

and only if,

ar =
∏

α∈ρ(fp,q)

Φr(α) 6= 1.

Proof. We first show that ar ≥ 0. To show this, we show that am > 0 in the series

corresponding to the polynomial fk,l(x) for arbitrary k and l.

am =
∏

α∈ρ(fk,l)

Φm(α) = (−1)deg(Φm) deg(fk,l)
∏

ξm∈ρ(Φm)

fk,l(ξm)
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=
∏

ξm∈ρ(Φm)

 ∏
ωk∈ρ(Ψk)
ωl∈ρ(Ψl)

(ξ2
m + (ωk + ωl + 2)ξm + 1)


=

∏
ξm+ξ−1

m ∈ρ(Ψm)

(∏
(ξ2
m + (ωk + ωl + 2)ξm + 1)(ξ−2

m + (ωk + ωl + 2)ξ−1
m + 1)

)
=
∏(∏

ξm(ξm + (ωk + ωl + 2) + ξ−1
m )ξ−1

m (ξ−1
m + (ωk + ωl + 2) + ξm)

)
=

∏
ωk∈ρ(Φk)
ωl∈ρ(Φl)
ωm∈ρ(Φm)

(ωk + ωl + ωm + 2)2 = N(k, l,m)2.

We have deg(fk,l(x)) = 2 deg(Ψk) deg(Ψl) and is even, giving us am ≥ 0.

Returning to the case k = p, l = q and m = r where p, q and r are primes with p 6= q

and p, q is a hyperbolic pair. We have that ar = 0 if, and only if, Φr(x) and fp,q(x)

share a common root. From Corollary 6.102 we have that there is no Φn(x) such that

Φn(x) | fp,q(x), so fp,q(x) and Φr(x) share no common root and we have ar 6= 0.

Hence we have ar ≥ 1. Now suppose π | ar. From Proposition 6.11 we see that for

each n ∈ {p, q, r} we have either π - n or π = n, and further as p 6= q we do not have

(p, q, r) = (π, π, π). Therefore, if there is some prime π such that π | ar then there

exists a (p, q, r)-regular map.

This proposition gives our most promising avenue for investigation to provide a proof

on existence of finite (k, l,m)-regular maps for all triples (k, l,m) apart from some

small exceptions. If one can show that for all but a few exceptions we have ar 6= 0,

then (p, q, r)-regular maps will be useful to build maps for arbitrary (k, l,m). Further,

through searching all triples (p, q, r) with p 6= q and p, q, r ≤ 50 the only exceptions

for which (p, q, r)-regular maps do not exist are the following

(3, 7, 7), (3, 7, 11), (3, 7, 17), (3, 11, 13), (3, 11, 23), (5, 5, 7).

Hence it may be possible to show directly that ar 6= 1 for all p, q > 5.
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Chapter 7

Regular Maps with Trinity Symmetry

7.1 Introduction

In this chapter we shall consider the question of for which n ∈ N there exist

(n, n, n)-regular maps which are both self dual and self Petrie dual. Prior to our work,

the problem had already been settled for even n by Archdeacon, Conder and Širáň in

[1]. For odd n, the problem was settled by Širáň, Jeans, Erskine, Hriňáková and the

author in [28, 22]. In [22] Erskine, Hriňáková and Jeans establish sufficient conditions

for the existence of an (n, n, n)-regular map in fractional linear groups. The condition

they provide is that if there is some finite field K of characteristic p and some element

ω = ξ + ξ−1 for ξ ∈ K where ξ has multiplicative order 2n, and we have 3ω2 = 4, then

there is an (n, n, n)-regular map which is both self dual and self Petrie dual. Using

this condition, in [28] the question of whether there exist self dual and self Petrie dual

(n, n, n)-regular maps is resolved by showing that there exist solutions to 3ω2 = 4 for

each prime n > 3. Once this is shown, another argument is used to show that if a self

dual, self Petrie dual (n, n, n)-regular map exists then for any k ∈ N a self dual, self

Petrie dual (kn, kn, kn)-regular map exists, thus resolving the question.

We now address this question using the methods of the previous chapter to show that

there exist self dual, self Petrie dual (n, n, n)-regular maps for all but finitely many

values n which we shall explicitly calculate.

7.2 Application of Earlier Results

We first begin with a small lemma.

Lemma 7.1. There is some ξ ∈ K of order 2n such that 3ω2 = 4 if, and only if,

there is a root of order n to the polynomial f(x) = 3x2 + 2x+ 3 in K.

Proof. We have

3ω2 = 4 ⇔ 3ξ2 + 6 + 3ξ−2 = 4 ⇔ 3ξ4 + 2ξ2 + 3 = 0.

Letting ζ = ξ2 we have that ζ has multiplicative order n and 0 = 3ζ2 + 2ζ + 3 = f(ζ).
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Conversely, suppose that ζ is a root of f(x) of order n. There are two numbers ξ such

that ξ2 = ζ, at least one of which is order 2n, hence let ξ satisfy ξ2 = ζ and

ord(ξ) = 2n. We easily see that 3ω2 = 4 in K.

Hence, from now on we consider the polynomial f(x) = 3x2 + 2x+ 3 and the question

of finding roots of f(x) of particular multiplicative order. Let α and β be the roots of

f(x). As before, we define sequences 〈An〉 and 〈an〉. However, as f(x) is not monic we

must make an adjustment from our previous definition.

An = 3n(αn − 1)(βn − 1) and an = 3ϕ(n)Φn(α)Φn(β).

We have the following properties of the sequences 〈An〉 and 〈an〉.

Lemma 7.2. The sequences 〈An〉 and 〈an〉 satisfy the following properties.

i) An, an ∈ Z for all n ≥ 0;

ii) An =
∏
d|n ad;

iii) there is a root of order n in a finite field of characteristic p if, and only if, p - n

and p | an;

iv) if p | apn then p | an;

v) for each p there exists either one or two numbers k such that p | an implies

n = kpr for some r ≥ 0;

vi) A0 = 0, A1 = 8, A2 = 32 and An+3 = An+2 − 3An+1 + 27An.

Proof. The proofs of these points follows Lemma 6.35. We explicitly prove point (vi)

as follows. We have An = 3n(αn − 1)(βn − 1) = 2× 3n − (3α)n − (3β)n, hence letting

g(x) = (x− 3)(x− 3α)(x− 3β) = x3 − x2 + 3x− 27 we have g(3) = g(3α) = g(3β) = 0

and hence Cγn+3 = Cγn+2 − 3Cγn+1 + 27Cγ for each γ ∈ {3, 3α, 3β}. Hence we have

An+2 − 3An+1 + 27An

=(2× 3n+2 − (3α)n+2 − (3β)n+2)− 3(2× 3n+1 − (3α)n+1 − (3β)n+1)

+ 27(2× 3n − (3α)n − (3β)n)

=2× 3n(32 − 3× 3 + 27)− (3α)n((3α)2 − 3(3α) + 27)

− (3β)n((3β)2 − 3(3β) + 27)

=2× 3n+3 − (3α)n+3 − (3β)n+3 = An+3.

We get A0 = 0, A1 = 8 and A2 = 32 by simple calculation.
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As before, we shall call a prime p such that p - n and p | an a primitive prime divisor

of an. Again, we aim to give an upper bound on an with no primitive prime divisors.

We start with the following lemma.

Lemma 7.3. For any prime p 6∈ {2, 3} if p | n then p3 - an.

Proof. The proof of Proposition 6.72 may be applied for all primes p such that both

p - ∆f = −32, the discriminant of f(x), and the lead coefficient of f(x) is non-zero in

Z /pZ. Hence we may apply Proposition 6.72 for all p 6∈ {2, 3}.

We now settle the cases of p ∈ {2, 3}.

Lemma 7.4. For all n we have 3 - an.

Proof. From Lemma 7.2 we have that An (mod 3) is given by

A0 ≡ 0, A1 ≡ 2, A2 ≡ 2, and An+3 ≡ An+2 (mod 3).

Hence we have An ≡ 2 (mod 3) for all n ≥ 1. Hence from the formula An =
∏
d|n ad

we may deduce that a1 ≡ 2 (mod 3) and an ≡ 1 (mod 3) for all n ≥ 2. Hence we have

3 - an for all n ≥ 1.

Lemma 7.5. If 2 | n then 23 - an.

Proof. First, we note from Lemma 7.2 that 2 | an and 2 - n if, and only if, f(x) has a

root of order n in a finite field of characteristic 2. In GF(2) we have f(x) = (x+ 1)2,

hence we have 2 | an and 2 - n implies n = 1. Combining this with the fact 2 | a2n

implies 2 | an we have 2 | an implies n = 2k for some k ≥ 0. Further, we have

An = 3n(αn − 1)(βn − 1) = 2× 3n − (3α)n − (3β)n,

and hence

A2n = 32n(α2n − 1)(β2n − 1) = 3n(αn − 1)(βn − 1)3n(αn + 1)(βn + 1)

= An(2× 3n + (3α)n + (3β)n) = An(4× 3n −An).

Hence, as A1 = 8 = 23, we may use induction to show that 23+2k || A2k for k ≥ 0, and

hence we have 23 || a1 and 22 || a2k for k ≥ 1. As 2 - an for any n 6= 2k the result

immediately follows.
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We now combine these lemmas to give our bound on |an| when an has no primitive

prime divisors.

Corollary 7.6. If an has no primitive prime divisors then |an| ≤ rad(n)2.

Proof. Immediate from combining Lemma 7.3, Lemma 7.4 and Lemma 7.5.

This completes our upper bound on |an| when an has no primitive prime divisors. We

now aim to create a lower bound on |an|.

Lemma 7.7. We have the following inequality for |an|

|an| > 3ϕ(n) exp(−2 d(n)(A(7.5 + log n)2 + log 2))

> 3
√
n/2 exp(−8n1/3(402000(7.5 + log n)2 + log 2)).

Proof. We have an = 3ϕ(n)Φn(α)Φn(β), hence we use Lemma 6.80 to find a bound for

|Φn(α)|, noting that |Φn(β)| = |Φn(α)| as α and β are complex conjugates. We

calculate the constant A as follows. In Theorem 6.78 we take

i) α1 = α, α2 = 1;

ii) D = [Q(α) : Q] = 2;

iii) logα1 = logα = 1.910 . . . i, logα2 = log 1 = 2πi;

iv) f = 2e.

This gives h(α1) = log 3/2, and hence a1 = f | logα|/2 > max(1, h(α) + 2), and

a2 = fπ > max(1,h(1)). This gives us

A = 270D4a1a2 = 270× 24 × 4e2 × π < 402, 000.

Proposition 7.8. For all n ≥ 1067 there is at least one primitive prime divisor of an.

Proof. We may use the bound of Lemma 7.7 to show that for all n ≥ 1067 we have

|an| > n2 ≥ rad(n)2, and hence by Corollary 7.6 we see that an must have at least one

primitive prime divisor.

We now use the method of continued fractions to improve this bound.
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Proposition 7.9. For all 16, 767 ≤ n ≤ 1067 there exists at least one primitive prime

divisor of an.

Proof. Taking a continued fraction expansion of α we find that in this range of n the

following inequality applies

|an| ≥ 3(1/5)n49/50

(
2π

1220n

)17n1/4

.

Using this inequality we may show |an| > n2 within this range, from which we get the

result.

Finally, we may explicitly compute an for all 1 ≤ n ≤ 16, 767 in order to determine all

n for which an has at least one primitive prime divisor.

Proposition 7.10. For all n 6∈ {2, 3, 4, 10} there is at least one primitive prime

divisor of an.

Proof. This is the combination of Proposition 7.8, Proposition 7.9 and a computer

search.

This now allows us to state our result regarding regular maps.

Proposition 7.11. For all n 6∈ {1, 2, 3, 4, 10} there exists an (n, n, n)-regular map

which is both self dual and self Petrie dual whose automorphism group is a fractional

linear group.

We now give some examples of generators of automorphism groups of regular maps

with trinity symmetry.

Let X,Y, Z ∈ SL(2, 11) be given by

X =

4 7

7 7

 , Y =

0 10

1 0

 , and Z =

0 4

8 0

 .

The group G = 〈X̄, Ȳ , Z̄〉 ≤ PSL(2, 11) is the automorphism group of a

(5, 5, 5)-regular map with trinity symmetry.

Let F = GF(52) and let α ∈ F be a root of x2 + 4x+ 2. Define X, Y and Z by

X =

4α+ 3 α+ 1

2α+ 1 α+ 2

 , Y =

 0 3α

α+ 4 0

 , and Z =

 0 3α+ 1

4α+ 3 0

 .
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The group 〈X̄, Ȳ , Z̄〉 ≤ PSL(2, 52) is the automorphism group of a (6, 6, 6)-regular

map with trinity symmetry.

Let F = GF(132) and let α ∈ F be a root of x2 + 12x+ 2. Define X, Y and Z by

X =

2α+ 12 10α+ 3

α 11α+ 1

 , Y =

 0 6α+ 5

11α+ 8 0

 , and Z =

0 6

2 0

 .

The group 〈X̄, Ȳ , Z̄〉 ≤ PSL(2, 132) is the automorphism group of a (7, 7, 7)-regular

map with trinity symmetry.
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Conclusion

We now provide a brief summary of the work undertaken in this PhD.

Our work with Moore graphs and mixed Moore graphs both provided an alternate

derivation of the Hoffman-Singleton graph and showed a fundamental similarity

between the problem of determining Moore graphs of diameter 2 and mixed Moore

graphs of diameter 2 and directed out degree 1. In this area, the important

outstanding problems are the question of the existence of a (57, 2)-Moore graph and a

(21, 1, 2)-mixed Moore graph. The problem of the potential existence of a

(57, 2)-Moore graph is amongst the most famous open problems in algebraic graph

theory, and therefore any results which may shed light on this problem are of great

interest. The most powerful results concerning a potential (57, 2)-Moore graph

currently known are that such a graph cannot be vertex transitive, proved by Higman

in unpublished lectures, and that if such a graph exists its automorphism group must

have at most 375 automorphisms, Mačaj and Širáň [41]. The most natural extension

of our results which we have not explored is to attempt to modify the proofs of these

facts to the case of a (21, 1, 2)-mixed Moore graph. In these case neither of the

corresponding results is currently known. Further, as all known Moore and mixed

Moore graphs are vertex transitive, one could attempt to prove that a (21, 1, 2)-mixed

Moore graph would necessarily be vertex transitive. Hypothetically, if such a method

of proof could be achieved for non-existence of a mixed Moore graph that would form

an important contribution to the research into the degree diameter problem.

In our work on Gómez graphs we showed that the Gómez graphs are the extremal

graphs for given degree and diameter for our definition of shift restricted word graphs.

We also showed that the extremal Gómez graphs are not Cayley graphs.

Unfortunately, however, our method of proof is difficult to apply in general, and

indeed leaves the question of whether the non-extremal Gómez graphs are Cayley

open. A natural question to pursue following our results is whether a simpler

condition may be placed on the defining set of permutations for a word graph to

determine whether it is Cayley. This would be of great help in eliminating the

possibility of word graphs playing a role in forming the largest known Cayley graphs

for given degree and diameter. Further, one could hope to show that no Gómez graphs

are Cayley (beyond the exceptional cases already alluded to). Further to this, the

179 James Fraser



180 8 Conclusion

author is not aware of any research into non-shift restricted word graphs to see if they

form an interesting category of graphs in relation to the degree diameter problem.

Our work into regular maps of given face, vertex and Petrie dual orders provides us a

method to construct maps of given face, vertex and Petrie dual orders provided they

exist in fractional linear groups, and allows us to determine exactly when such regular

maps exist provided two of the parameters are fixed. However, the question of

determining precisely when finite regular maps exist for given triples of face, vertex

and Petrie dual orders remains open. We have provided a condition which, if true, will

show there exist regular maps of arbitrary face, vertex and Petrie dual orders where

each parameter is a prime greater than five and not all parameters are the same. If

this condition can be shown to be true then our work may provide a valuable first

step in resolving the problem. However, if a proof of this condition remains elusive

then our work may indicate another approach is required to address this problem.

With regards to investigating other approaches, the fact the method we provided may

be altered to be constructive will allow the construction of example regular maps for

given parameters, which may prove useful in further research into the question.

The related work undertaken regarding demonstrating when regular maps exhibiting

trinity symmetry exist in fractional linear groups fully addresses the given problem.

Further work in this area may include considering further symmetries that a regular

map may exhibit and providing similar constructions in fractional linear groups.

However, on this note it has been shown recently that there do not exist kaleidoscopic

regular maps in fractional linear groups, and hence this approach will not always be

applicable.

James Fraser
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[16] Marston Conder, Primož Potočnik, and Jozef Širáň, Regular hypermaps over projective
linear groups, Journal of the Australian Mathematical Society (2008), 155–175.

[17] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups,
Springer, 1972.

[18] R. M. Damerell, On Moore graphs, Mathematical Proceedings of the Cambridge
Philosophical Society (1973), 227,236.

[19] Antonio Breda D’Azevedo, Roman Nadela, and Jozef Širáň, Classification of regular
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Möbius regular maps on linear fractional groups.

[23] Jan-Hendrik Evertse, Linear forms in logarithms.

[24] V. Faber and J. W. Moore, High-degree low-diameter interconnection networks with
vertex symmetry: The directed case, Techincal Report LA-UR-88-1051, Los Alamos
National Laboratory (1988).

[25] V. Faber, J. W. Moore, and W. Y. C. Chen, Cycle prefix digraphs for symmetric
interconnection networks, Networks 23 (1993), 641,649.

181 James Fraser



182 BIBLIOGRAPHY
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