1,217 research outputs found

    The integrated use of enterprise and system dynamics modelling techniques in support of business decisions

    Get PDF
    Enterprise modelling techniques support business process re-engineering by capturing existing processes and based on perceived outputs, support the design of future process models capable of meeting enterprise requirements. System dynamics modelling tools on the other hand are used extensively for policy analysis and modelling aspects of dynamics which impact on businesses. In this paper, the use of enterprise and system dynamics modelling techniques has been integrated to facilitate qualitative and quantitative reasoning about the structures and behaviours of processes and resource systems used by a Manufacturing Enterprise during the production of composite bearings. The case study testing reported has led to the specification of a new modelling methodology for analysing and managing dynamics and complexities in production systems. This methodology is based on a systematic transformation process, which synergises the use of a selection of public domain enterprise modelling, causal loop and continuous simulationmodelling techniques. The success of the modelling process defined relies on the creation of useful CIMOSA process models which are then converted to causal loops. The causal loop models are then structured and translated to equivalent dynamic simulation models using the proprietary continuous simulation modelling tool iThink

    Sequential Transfer Machine Learning in Networks: Measuring the Impact of Data and Neural Net Similarity on Transferability

    Get PDF
    In networks of independent entities that face similar predictive tasks, transfer machine learning enables to re-use and improve neural nets using distributed data sets without the exposure of raw data. As the number of data sets in business networks grows and not every neural net transfer is successful, indicators are needed for its impact on the target performance-its transferability. We perform an empirical study on a unique real-world use case comprised of sales data from six different restaurants. We train and transfer neural nets across these restaurant sales data and measure their transferability. Moreover, we calculate potential indicators for transferability based on divergences of data, data projections and a novel metric for neural net similarity. We obtain significant negative correlations between the transferability and the tested indicators. Our findings allow to choose the transfer path based on these indicators, which improves model performance whilst simultaneously requiring fewer model transfers

    Markovian Dynamics on Complex Reaction Networks

    Full text link
    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.Comment: 52 pages, 11 figures, for freely available MATLAB software, see http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.htm

    Simulation modelling of complex distribution systems

    Get PDF
    AbstractIn many lines of business distribution enterprises take over the burden of synchronization of the demand and supply aspects of the supply chain. Their part increases especially on very dynamic markets, with variable demand and a short product life cycle. Then one of the strategy is to postpone production and shift its last stage from the part of industrial companies to distributional enterprises. The article will discuss the issue of network configuration for the needs of complex realization of non-standard orders. The investigation has been conducted on the basis on enterprises designing interorganizational relations in networks of cooperating enterprises

    A Simulation Technology for Supply-Chain Ingeration

    Get PDF

    A Methodology To Stabilize The Supply Chain

    Get PDF
    In today\u27s world, supply chains are facing market dynamics dominated by strong global competition, high labor costs, shorter product life cycles, and environmental regulations. Supply chains have evolved to keep pace with the rapid growth in these business dynamics, becoming longer and more complex. As a result, supply chains are systems with a great number of network connections among their multiple components. The interactions of the network components with respect to each other and the environment cause these systems to behave in a highly nonlinear dynamic manner. Ripple effects that have a huge, negative impact on the behavior of the supply chain (SC) are called instabilities. They can produce oscillations in demand forecasts, inventory levels, and employment rates and, cause unpredictability in revenues and profits. Instabilities amplify risk, raise the cost of capital, and lower profits. To reduce these negative impacts, modern enterprise managers must be able to change policies and plans quickly when those consequences can be detrimental. This research proposes the development of a methodology that, based on the concepts of asymptotic stability and accumulated deviations from equilibrium (ADE) convergence, can be used to stabilize a great variety of supply chains at the aggregate levels of decision making that correspond to strategic and tactical decision levels. The general applicability and simplicity of this method make it an effective tool for practitioners specializing in the stability analysis of systems with complex dynamics, especially those with oscillatory behavior. This methodology captures the dynamics of the supply chain by using system dynamics (SD) modeling. SD was the chosen technique because it can capture the complex relationships, feedback processes, and multiple time delays that are typical of systems in which oscillations are present. If the behavior of the supply chain shows instability patterns, such as ripple effects, the methodology solves an optimization problem to find a stabilization policy to remove instability or minimize its impact. The policy optimization problem relies upon a theorem which states that ADE convergence of a particular state variable of the system, such as inventory, implies asymptotic stability for that variable. The stabilization based on the ADE requires neither linearization of the system nor direct knowledge of the internal structure of the model. Moreover, the ADE concept can be incorporated easily in any SD modeling language. The optimization algorithm combines the advantage of particle swarm optimization (PSO) to determine good regions of the search space with the advantage of local optimization to quickly find the optimal point within those regions. The local search uses a Powell hill-climbing (PHC) algorithm as an improved procedure to the solution obtained from the PSO algorithm, which assures a fast convergence of the ADE. The experiments showed that solutions generated by this hybrid optimization algorithm were robust. A framework built on the premises of this methodology can contribute to the analysis of planning strategies to design robust supply chains. These improved supply chains can then effectively cope with significant changes and disturbances, providing companies with the corresponding cost savings
    corecore