2,789 research outputs found

    Directional multiresolution image representations

    Get PDF
    Efficient representation of visual information lies at the foundation of many image processing tasks, including compression, filtering, and feature extraction. Efficiency of a representation refers to the ability to capture significant information of an object of interest in a small description. For practical applications, this representation has to be realized by structured transforms and fast algorithms. Recently, it has become evident that commonly used separable transforms (such as wavelets) are not necessarily best suited for images. Thus, there is a strong motivation to search for more powerful schemes that can capture the intrinsic geometrical structure of pictorial information. This thesis focuses on the development of new "true" two-dimensional representations for images. The emphasis is on the discrete framework that can lead to algorithmic implementations. The first method constructs multiresolution, local and directional image expansions by using non-separable filter banks. This discrete transform is developed in connection with the continuous-space curvelet construction in harmonic analysis. As a result, the proposed transform provides an efficient representation for two-dimensional piecewise smooth signals that resemble images. The link between the developed filter banks and the continuous-space constructions is set up in a newly defined directional multiresolution analysis. The second method constructs a new family of block directional and orthonormal transforms based on the ridgelet idea, and thus offers an efficient representation for images that are smooth away from straight edges. Finally, directional multiresolution image representations are employed together with statistical modeling, leading to powerful texture models and successful image retrieval systems

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data

    Full text link
    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS407 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Texture Classification by Wavelet Packet Signatures

    Get PDF
    This correspondence introduces a new approach to characterize textures at multiple scales. The performance of wavelet packet spaces are measured in terms of sensitivity and selectivity for the classification of twenty-five natural textures. Both energy and entropy metrics were computed for each wavelet packet and incorporated into distinct scale space representations, where each wavelet packet (channel) reflected a specific scale and orientation sensitivity. Wavelet packet representations for twenty-five natural textures were classified without error by a simple two-layer network classifier. An analyzing function of large regularity (D20) was shown to be slightly more efficient in representation and discrimination than a similar function with fewer vanishing moments (D6) In addition, energy representations computed from the standard wavelet decomposition alone (17 features) provided classification without error for the twenty-five textures included in our study. The reliability exhibited by texture signatures based on wavelet packets analysis suggest that the multiresolution properties of such transforms are beneficial for accomplishing segmentation, classification and subtle discrimination of texture

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations
    corecore